ECONOMICS 100A: MICROECONOMICS

Fall 2013
Tues, Thur 2:00-3:20pm
Center Hall 101
Professor Mark Machina Office: Econ Bldg 217 Office Hrs: Wed 9am-1pm
(See other side for Section times \& locations, and TA's offices \& office hours)
Date Topic Text Chapter/Math Handout Section
Sep. 26 Introduction \& Mathematical Review \#1
Oct. 1 Mathematical Review \#1 (cont.)
Ch.1, 2.1, 2.5/Sects. A, B
Sect. C
Oct. 3 Consumer Preferences: Utility Functions and Indifference Curves Ch.3.1, 3.2
Oct. 8 Consumer Preferences: Utility Functions and Indifference Curves (cont.)
Oct. 10 Mathematical Review \#2
Sects. D, E
Oct. 15 Mathematical Review \#2 (cont.)
Oct. 17 Utility Maximization and Demand Functions
Ch. 3.3, 3.4,4.1
Oct. 22 (Tuesday) 1st Midterm Exam
Oct. 24 Utility Maximization and Demand Functions (cont.)
Oct. 29 Utility Maximization and Demand Functions (cont.)
Oct. 31 Comparative Statics of Demand
Ch. 4.2, 4.3
Nov. 5 Comparative Statics of Demand (cont.)
Nov. 7 Comparative Statics of Demand (cont.)
Nov. 12 Comparative Statics of Demand (cont.)
Nov. 14 (Thursday) 2nd Midterm Exam
Nov. 19 Supply of Labor: The Labor-Leisure Decision
Nov. 21 Supply of Capital: Consumption-Saving Decision
Nov. 26 Supply of Capital: Consumption-Saving (cont.)
Dec. 3 Decision Making under Risk and Uncertainty (cont.) Ch. 16.1, 16.2

Dec. 5 Decision Making under Risk and Uncertainty (cont.)
FINAL EXAM (Thursday, Dec. 12, 3:00-6:00pm)
(location TBA)
TEXT \& READINGS: Microeconomics: Theory and Applications, Third Custom Edition for UCSD, by Jeffrey Perloff, Addison Wesley, 2014. There is also a Soft Reserve Package which contains the Math Handout, practice problems, and old exam questions. Although we will go over some of these questions in office hours and review sessions, the best way to prepare for the exam is to form study groups and practice doing them together.

EXAMS: Grades are determined on the basis of two Midterm Exams and a Final Exam.
COURSE WEB PAGE: The course web page is at:

ECON 100A FALL 2013 SECTION TIMES, TAS' OFFICES \& OFFICE HOURS

Section	Day, Time	Room	TA	Office \& Office Hours
C01	Mon 4:00-4:50pm	Pepper Canyon Hall 122	Onyi Lam	Sequoyah Hall 235 Thursday 4-6pm
C02	Wed 6:00-6:50pm	Cognitive Sciences Bldg. 102	Vincent Leah-Martin	Economics Bldg. 124 Monday 5-7pm
C03	Tues 7:00-7:50pm	Center Hall 109	Vincent Leah-Martin	Economics Bldg. 124 Monday 5-7pm

ECON 100A COURSE OUTLINE - Fall 2013

I. INTRODUCTION

a. Domain of Microeconomic Analysis
b. Circular Flow Diagram
c. Stocks vs. Flows and the Dimensions of Economic Variables
II. MATHEMATICAL REVIEW \#1
a. Calculus Review (Math Handout, Section A)

Derivatives, Partial Derivatives and the Chain Rule
Approximation Formulas for Small Changes in Functions (Total Differentials)
b. Elasticity (Math Handout, Section B)

Absolute, Proportionate and Percentage Changes in Variables
Definition of Elasticity
Constant Elasticity Functions
c. Level Curves of Functions (Math Handout, Section C)

Definition and Graphical Illustration
Algebraic Formula for a Level Curve
Formula for the Slope of a Level Curve
III. CONSUMER PREFERENCES: UTILITY FUNCTIONS \& INDIFFERENCE CURVES
a. Commodities, Commodity Bundles and Preferences

Commodities are Typically Flows, not Stocks
Issue of Divisibility
The Relevant Time Period
b. Preference Relations and Utility Functions

Preferences are defined over Commodity Bundles, not Individual Commodities
Weak Preference, Strict Preference and Indifference
Utility Functions and Total Utility Curves
Important Examples: Linear, Cobb-Douglas, Leontief
Marginal Utility and Marginal Utility Curves
Hypothesis of Diminishing Marginal Utility
Monotonic Transformations of Utility Functions
c. Indifference Curves and the Marginal Rate of Substitution

Deriving a Consumer's Indifference Curves from Their Utility Function
General Properties of Indifference Curves:
One Through Every Commodity Bundle
Downward Sloping and Can't Cross
Marginal Rate of Substitution (MRS)
Graphical Interpretation: Slope of the Indifference Curve
Algebraic Formula: Ratio of Marginal Utilities
Hypothesis of Diminishing Marginal Rate of Substitution

IV. MATHEMATICAL REVIEW \#2

a. Scale Properties of Functions (Math Handout, Section D)
b. Solving Optimization Problems (Math Handout, Section E)

General Structure of Optimization Problems
First and Second Order Conditions for Unconstrained Optimization Problems
First Order Conditions for Constrained Optimization Problems
c. Inequality Constraints and Corner Solutions

v. UTILITY MAXIMIZATION AND DEMAND FUNCTIONS

a. Utility Maximization Subject to a Budget Constraint

Graphical Illustration
First Order Conditions for Utility Maximization
Two Interpretations of the First Order Conditions
Second Order Conditions (Hypothesis of Diminishing MRS)
Corner Solutions: Graphical Illustration and Algebraic Condition
Indirect Utility Functions and their Properties
b. Regular ("Marshallian") Demand Curves and Demand Functions

Plotting Regular Demand Curves
Regular Demand Functions
General Properties of Demand Functions:
Walras’ Law
Scale Invariant in Prices and Income
Relationship between Price Elasticities \& Income Elasticity for a Good
Examples: Cobb-Douglas, Leontief, Linear
Market Demand Functions

VI. COMPARATIVE STATICS OF DEMAND

a. Income Changes

Income-Consumption Locus
Engel Curves: Definition and Graphical Derivation
Income Elasticity
Superior, Normal and Inferior Goods
Income Elasticity and Budget Shares
Relationship Between Income Elasticities of All Goods
Algebraic Derivation of the Effect of an Income Change
b. Price Changes

Price-Consumption Locus
Graphical Derivation of Marshallian Demand Curves
Own Price Elasticity
Price Elasticity and Expenditures
Cross Price Elasticity
Gross Substitutes and Gross Complements
Algebraic Derivation of the Effect of a Price Change
c. Compensated Price Changes and Compensated ("Hicksian") Demand Functions

Graphical Illustration of a Compensated Price Change
The Expenditure Minimization Problem
Compensated Demand Functions and their Properties
Expenditure Functions and their Properties
Algebraic Derivation of the Effect of a Compensated Price Change
d. The Slutsky Equation

Expressing Each of the Three Basic Changes in Terms of the Other Two
Graphical Illustration
Algebraic Formulation and Informal Proof
Giffen Goods
e. Consumer Surplus and Welfare Analysis

Consumer Surplus
Equivalent and Compensating Variation

VII. SUPPLY OF LABOR: THE LABOR-LEISURE DECISION

Income-Leisure Space and the Labor-Leisure Decision First Order Conditions for Optimal Supply of Labor Comparative Statics: Income and Substitution Effects
Backward Bending Supply of Labor Curves
Kinked Budget Lines and the Overtime Decision

VIII. SUPPLY OF CAPITAL: THE CONSUMPTION-SAVINGS DECISION

Intertemporal Income and Consumption Streams
Interest Rates and Discounted Present Value of a Stream
Intertemporal Utility Maximization
First Order Conditions and Interpretation
Comparative Statics: Income and Substitution Effects

IX. DECISION MAKING UNDER RISK AND UNCERTAINTY

a. Outcomes, Lotteries and Expected Value

Choice over Lotteries
Expected Value
The St. Petersburg Paradox
b. Expected Utility

Two-Stage Lotteries and the Independence Axiom
von Neumann-Morgenstern Utility Functions and Expected Utility
c. Risk Aversion

Properties of Risk Averse Preferences
Arrow-Pratt Measure of Risk Aversion
Risk Aversion and Wealth
d. Measures of Risk Aversion
e. Demand for Insurance
f. Investment in a Risky Asset

FAMOUS OPTIMIZATION PROBLEMS IN ECONOMICS

Optimization Problem	Objective Function	Constraint	Control Variables	Parameters	Solution Functions	Optimal Value Function
Consumer's Problem	$U\left(x_{1}, \ldots, x_{n}\right)$ utility function	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}=I$ budget constraint	$\begin{gathered} x_{1}, \ldots, x_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, I prices and income	$\begin{aligned} & x_{i}\left(p_{1}, \ldots, p_{n}, I\right) \\ & \text { regular demand } \\ & \text { functions } \end{aligned}$	$\begin{aligned} & V\left(p_{1}, \ldots, p_{n}, I\right) \\ & \text { indirect utility } \\ & \text { function } \end{aligned}$
Expenditure Minimization Problem	$p_{1} \cdot x_{1}+\ldots+p_{n} \cdot x_{n}$ expenditure level	$U\left(x_{1}, \ldots, x_{n}\right)=u$ desired utility level	$\begin{gathered} x_{1}, \ldots, x_{n} \\ \text { commodity } \\ \text { levels } \end{gathered}$	p_{1}, \ldots, p_{n}, u prices and utility level	$h_{i}\left(p_{1}, \ldots, p_{n}, u\right)$ compensated demand functions	$\begin{aligned} & e\left(p_{1}, \ldots, p_{n}, u\right) \\ & \text { expenditure } \\ & \text { function } \end{aligned}$
Labor/Leisure Decision	$U(H, I)$ utility function	$\begin{gathered} I=I_{0}+w \cdot(168-H) \\ \text { budget constraint } \end{gathered}$	H, I leisure time, disposable inc.	w, I_{0} wage rate and nonwage income	$168-H\left(w, I_{0}\right)$ labor supply function	$\begin{aligned} & V\left(w, I_{0}\right) \\ & \text { indirect utility } \\ & \text { function } \end{aligned}$
Consumption/ Savings Decision	$\begin{aligned} & U\left(c_{1}, c_{2}\right) \\ & \text { utility function } \end{aligned}$	$\begin{gathered} c_{2}=I_{2}+(1+i) \cdot\left(I_{1}-c_{1}\right) \\ \text { budget constraint } \end{gathered}$	c_{1}, c_{2} consumption levels	I_{1}, I_{2}, i income stream and interest rate	$c_{1}\left(I_{1}, I_{2}, i\right), c_{2}\left(I_{1}, I_{2}, i\right)$ consumption functions	$\begin{aligned} & V\left(I_{1}, I_{2}, i\right) \\ & \text { indirect utility } \\ & \text { function } \end{aligned}$
Long Run Cost Minimization	$w \cdot L+r \cdot K$ total cost	$F(L, K)=Q$ desired output	L, K factor levels	Q, w, r desired output and factor prices	$L(Q, w, r), K(Q, w, r)$ output-constrained factor demand functions	LTC (Q, w, r) long run total cost function
Long Run Profit Maximization (in terms of Q)	$\begin{gathered} P \cdot Q-L T C(Q, w, r) \\ \text { total profit } \end{gathered}$	none	$\begin{gathered} Q \\ \text { output level } \end{gathered}$	P, w, r output price and factor prices	$\begin{aligned} & Q(P, w, r) \\ & \text { long run supply } \\ & \text { function } \end{aligned}$	$\pi(P, w, r)$ long run profit function
Long Run Profit Maximization (in terms of L and K)	$\begin{gathered} P \cdot F(L, K)-w \cdot L-r \cdot K \\ \text { total profit } \end{gathered}$	none	$\begin{gathered} L, K \\ \text { factor levels } \end{gathered}$	P, w, r output price and factor prices	$L(P, w, r), K(P, w, r)$ factor demand functions	$\pi(P, w, r)$ long run profit function

