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Excess Volatility in the Financial Markets: 
A Reassessment of the Empirical Evidence 

Marjorie A. Flavin 
University of' Virginia 

Numerous authors, including Shiller, LeRoy and Porter, and Sin- 
gleton, have reported empirical evidence that stock prices and long 
interest rates are more volatile than can be justified by standard 
asset-pricing models. This paper shows that in small samples the 
"volatility" or "variance-bounds" tests tend to be biased, often se- 
verely, toward rejection of' the null hypothesis of' market efficiency. 
Thus the apparent violation of market efficiency may be reflecting 
the sampling properties of' the volatility measures, rather than a 
failure of the market efficiency hypothesis itself'. The paper also 
reports some unbiased estimates of the bounds on holding period 
yields and long interest rates. Much of the evidence of' excess volatil- 
ity disappears when the tests are corrected for small sample bias. 

In recent papers, Shiller (1979) and LeRoy and Porter (1981) have 
reported empirical evidence that stock prices and long interest rates 
are more volatile than can be justified within the standard asset- 
pricing models. Further empirical evidence on excess volatility in the 
financial markets has been reported in numerous studies, including 
Pesando (1979), Amsler (1980), Singleton (1980), Grossnman and Shil- 
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ler (198 1), Shiller (198 1 a, 198 1 b, 198 1 c), and Blanchard and Watson 
(1982). According to the empirical evidence reported in these papers, 
the variance of stock prices, holding yields on long-term bonds, and 
long interest rates exceed the upper bounds implied by the variance 
of dividends and short interest rates. Further, the variances of stock 
prices and long interest rates exceed their estimated upper bounds by 
very large margins in many cases. 

This paper argues that in small samples the "volatility" or "vari- 
ance-bounds" tests tend to be strongly biased toward rejection of the 
null hypothesis of no excess volatility. Thus the apparent violation of 
the market efficiency hypothesis may be reflecting the sampling prop- 
erties of the volatility measures in small samples rather than a failure 
of the market efficiency hypothesis. 

The innovative tests developed by Shiller and LeRoy and Porter are 
formulated according to the following line of reasoning. If stock 
prices are modeled as the present discounted value of rationally fore- 
casted future dividends, the volatility, or variance, of the stock price is 
limited by the volatility, or variance, of the dividend series. Similarly, 
under the expectations theory of the term structure of interest rates, 
which asserts that the long-term interest rate is equal to an average of 
rationally expected future short-term interest rates, the variance of 
the long rate is limited by the variance of the short rate. The upper 
bound on the volatility of long rates, or stock prices, has been tested 
either (1) by comparing a point estimate of the upper bound with a 
point estimate of the variance being bounded or (2) by calculating 
both point estimates and the asymptotic covariance matrix of the 
estimates and testing whether the estimated variance of long rates or 
stock prices exceeds the estimated upper bound by an amount that is 
statistically significantly greater than zero. In either procedure, the 
test statistics may be misleading if, for samples of the size typically 
used in the variance-bounds tests, the point estimates are biased or, 
more generally, if the asymptotic distributions are not close approxi- 
mations to the finite sample distributions. This paper argues that the 
estimate of the upper bound in these tests is biased downward in small 
samples and that the magnitude of the bias is large enough to provide 
a potential explanation of the apparent violation of the bounds. 

To see intuitively why the variance-bounds tests tend to be biased 
against the null hypothesis, consider the basic bound on the volatility 
of long interest rates: var (R,) < var (Rh), where R, is the actual long 
rate and R* is the perfect-foresight long rate, defined as the value the 
long rate would take if agents had perfect foresight concerning the 
path of the short rate. Under the market efficiency hypothesis, R. is 
equal to the expectation of R* conditional on currently available in- 
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formation and therefore must have a variance smaller than the vari- 
ance of'R*. If the population means of'R, and R* were known a priori, 
unbiased estimates of var (R,) and var (R*) could be obtained by 
taking squared deviations of' R, and R* from their population means. 
The empirical applications of the variance-bounds tests have relied on 
sample variances of R. and R* that were computed iby taking devia- 
tions from sample means. Taking deviations from the sample mean 
induces downward bias in the sample variance, however, since the 
sample mean has the following property: the sample variance of a 
data series, expressed in deviations from some constant, is minimized 
when that constant is set equal to the sample mean. The greater the 
variance of the sample mean, the greater is the extent to which the 
sample mean will "fit" some of the stochastic components of the data 
series and the greater is the bias in the sample variance. Because R, is 
a long moving average of' a variable (the short rate), which is itself' 
highly serially correlated, the variance of'R* tends to exceed the vari- 
ance of R, and as a result the sample variance of' R* tends to be more 
strongly downward biased than the sample variance of R,. Since var 
(R*) is the upper bound on var (R.), the net effect is that the differ- 
ence var (R*) - var (R,) is biased toward rejection of' the null hy- 
pothesis of no excess volatility. This bias toward rejection of' the null 
hypothesis also arises in tests of the upper bound on the variance of 
stock prices and the variance of holding period yields on long-term 
bonds. 

Section I considers an economy in which the short rate is generated 
by an ARI process with the autoregressive parameter equal to 0.915 
for quarterly observations. Investors are risk neutral and form expec- 
tations of' future short rates rationally, with the result that yields on 
20-year discount bonds are generated exactly as hypothesized by the 
pure (i.e., no liquidity premium) expectations hypothesis. The exact 
finite sample distributions of the sample statistics, var (R,), valr (R*), 
and var (R*) - var (R,), are calculated for a sample of' size 1 00 in such 
an economy. 

In Section II, some of' the test procedures implemented in Shiller 
(1979, 1981b) and Singleton (1980) are reviewed in light of' the 
findings concerning the small sample distributions of the variance- 
bounds statistics. Depending on the bound being tested and the esti- 
mation method used, the bias toward rejection of' no excess volatility 
ranges from modest to strong to severe. Section II also reports some 
unbiased estimates of the bounds on the variances of' holding period 
yields and long interest rates. Much of the evidence of excess volatility 
in the bond market disappears when the tests are corrected for small 
sample bias. 
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I. Comparison of Small Sample and Asymptotic 
Distributions in an Efficient-Market Economy 

In order to keep the problem as simple as possible, the model econ- 
omy studied in this section is one in which the short rate follows a 
first-order autoregressive (AR1) process: 

rl p'r,1 - I t, (1) 

where r, is the short-term interest rate, expressed in deviations from 
the mean, and Et is an independently and identically distributed dis- 
turbance; E - N(O, 2E). 

According to the expectations hypothesis of the term structure, the 
linearized long rate on a pure discount bond is simply the average of' 
current and future expected short rates: 

1I- I 

R= - / ,r, + (2) 

where RU is the n-period long rate and ,r,+1 is the expectation, in 
period t, of r,+1. Note that the long rate does not include a liquidity 
premium. 

Using the assumption that the short rate follows an ARI process, 
we see that all expected future short rates are proportional to the 
current short rate: 

1. = 
1=) 

Thus the long rate is also proportional to the short rate: 

R 1 1 =E (4) 
n(I-p) n(I-p) .=) 

Define the "perfect-foresight" long rate, R*, as the value the long 
rate would take if agents had perfect foresight concerning the path of' 
the short rate: 

U -I 

R* =I jr,+? . (5) 

By straightforward but tedious manipulation, the perfect-foresight 
long rate can be expressed as a linear combination of' past, current, 
and future disturbances: 

1 
Shiller Uses the terminology "ex post rational' long rate in referring to this varial)le. 
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1 )(1-t ? 1t (6) 

R=(1 p) I (1 - ) + 

Equation (6) reflects the basic hypothesis of' efficiency in the bond 
market: the actual long rate, R., is the expectation of' the perf'ect- 
f'oresight long rate, R*, conditional on all available information. 

Substituting equation (4) into equation (6) yields 

Rt* = R. + O, (7) 

where 
,,- 1 

ot= 1~ 1) (1 - P"1-)e+. 
n(l -~ 

R., which depends only on current and past disturbances, and 0,, 
which depends only on future disturbances, are distributed indepen- 
dently, with the implication that 

var (R*) = var (R,) + var (0,). (8) 

Since the variance of' the forecast error illust be nonnegative, the 
variance of R* constitutes an upper bound on the variance of R,: 

var (R*) D var (R,). (9) 

The upper bound on the variance of the long rate, eqLatiOnl (9), is, 
of course, a restriction on the population moments of' R`1_ and R.. 
Assuming that r, and therefore R* and R., are stationary and ergodic 
time-series processes, the population variances of' R, and R, can be 
consistently estimated from a single realization of' the process over 
time.2 

The upper bound on the volatility of' long rates, or stock pr-ices, has 
been tested either by comparing point estimates of' var (R*) and var 
(R,) or by calculating both point estimates of var (R*) and var (R,) and 
the asymptotic covariance matrix of the estimates and testing whether 
the difference vAr (R*) - vAr (R.) is significantly less than zero. In 
either procedure, the test statistics may be misleading if', for samples 
of the size typically used in the variance-bounds tests, the point esti- 
mates are biased or, more generally, if' the asymptotic (listrlibutions 
are not close approximations to the finite sample distributions. 

2 If the short rate is nonstationarv (i.e., it p - 1) the variances oF r, R,, and R* are 

undefined and the theoretical variance )onds(lS most b)e retformlUlated. Almolst aill of the 

empirical volatility literature, including LeRoy and Porter ( 198 1), Shiller ( 1979, 1981 ) b) 

and Singleton (1980), has been based on the aSSuLmptiOnl that thie Short rate (or divi- 

dends) is a stationary process. 
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This section of' the paper studies the properties of the variance- 
bounds statistics in samples of' 100 quarterly observations on the 
yields of 20-year discount bonds and 3-month bills. These observa- 
tions are assumed to be drawn from an efficient-market economy in 
which the short rate is generated by an ARI process with p = 0.95. 
The exact small sample distributions that the sample statistics, var 
(R*), vAr (R,), and vAr (R*) - var (R,), would have in such an economy 
are then calculated and compared to the asymptotic distributions. 

Calculation of the Small Sample Distributions3 

In order to avoid having to refer to "the variance of the variance of 
R,," the following notation will be used: V = var (R,), V* = var (R*), 
and D = vAr (R*) - var (R,). 

In equations (1)-(6), the first observation on the short rate, rl, was 
expressed as a function of disturbances from the infinite past. For the 
purpose of calculating the small sample distributions, it is more con- 
venient to model the first observation on the short rate as a random 
draw from the stationary distribution of the short rate: 

ri 1 (10) 
1 p2 

where E1 - N(0, Se>). By modeling rl as a drawing from the stationary 
distribution of the short rate, a sample of T observations on r can be 
expressed as a function of 7' disturbances rather than an infinite 
number. For the purpose of characterizing the distributions of V, V*, 
and D, the stochastic specification of ri given by equation (10) is com- 
pletely equivalent to the specification of rl as a function of distur- 
bances from the infinite past. 

With this modification, each of' the random variables V, V*, and D 
can be expressed as a quadratic form in the disturbance of the short- 
rate process, E. To construct the quadratic form representing the 
variance of the long rate, V, recall that in this example the long rate is 
proportional to the short rate, 

R= tr,, (11) 

where cx = (1 - p")/n(I - p). The vector of T observations on the 
short rate can be expressed as a linear transformation of the distur- 
bances: 

3I am grateful to Robert Hall for suggesting this approach for computing the exact 
finite sample distributions of the variances. 
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ri 0 0 0 ... 0 El1 

r2 
P I1 0 0 . 0 E2 

P2 

r3 - A dz 1 0 0 E3. (12) 

P T-2 T-3 T .. 

LrT , p p p ... 1 ET 

Using the notation S (for short rate) for the T x T matrix in equa- 
tion (12) and e for the T-element column vector of disturbances, the 
sample variance of the long rate, V, can be expressed as a quadratic 
form in E, 

V = E'AE, (13) 

where A is the T x T symmetric matrix, A = oY2T- 'S'S. At this point, 
the mean of the short rate, which is also the mean of the long rate, is 
assumed to be known a priori; the quadratic form A represents the 
variance of R1 around the population mean. The variance of RI 
around its sample mean will be studied later. 

The quadratic form representing the sample variance of the per- 
fect-foresight long rate, V*, will be of order T + n - 1, where n is the 
number of periods in the long rate, because the last observation on R*I 
depends on rT and n - 1 subsequent observations on the short rate. 
Let L denote the T x T + n - 1 matrix that transforms the T + n - 

1 observations on the short rate into T observations on the perfect- 
foresight long rate: 

R I 11 .1. 1 0 0 0 ... 0 r1 

R 0 111 1 ... 0 0.2 

R* 0 0 - 1 1 .10 
... 

0 . . , (14) n 

R* 0 0 0 ... 0 1 11... 1 T+,I 

where the width of the band of ones is n. 
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The sample variance of R* around its population mean can be 
expressed as the quadratic form of order T + n - 1, 

V* = >'Be, (15) 

where B = T- 'S'L'LS; S is the lower-triangular matrix defined as in 
equation (12), except with order T + n - 1 instead of T, and E is the 
T + n - 1 element column vector of' disturbances. 

The difference between the variances, D = V* - V, is given by the 
difference of the quadratic forms for V* and V: 

D = E'[B - A]E. (16) 

(Of course the T x T matrix A as defined above must be augmented 
by adding n - 1 rows and n - 1 columns of zeros so that it conforms 
with the matrix B.) 

The problem now becomes one of calculating the distribution of a 
quadratic form in normal deviates. Let A denote the diagonal matrix 
with the eigenvalues of the quadratic form A on the main diagonal, 
and P the matrix of eigenvectors; P'AP = A. Since PP' = I, E'AE = 

E'PP'APP'E = E'PAP'E. Define a new disturbance term ij such that 
1 = PE>. Since P is an orthonormal matrix, the new disturbances are 
independently distributed, -q N(O, oT2), with the same variance as the 
original disturbance, E. Thus the sample variance of the long rate, V, 
is a weighted sum of squared normal deviates: 

T 

V = E'AE = 'Ai= l Xjq, (17) 

where X are the eigenvalues of the quadratic form A. The charac- 
teristic function of ET ljqj is 

T 

d(t) = {4(I - 2iX1o.ty I" (18) 

By inverting the characteristic function, one can obtain the cumula- 
tive distribution function of the random variable, V. The value of the 
distribution function, evaluated at x, is given by 

I I/ 
F(x) - '2 - t- 'I[e-i'"(t)1dt, (19) 

where IL[] denotes the imaginary part of the expression in the 
brackets. 

All of the small sample distributions reported in the next section 
were computed by the following procedure: (1) The symmetric ma- 
trix defining the quadratic form was generated, after assigning nu- 
merical values to the parameters T, ti, and p; (2) the eigenvalues of the 
matrix were obtained using numerical methods; and (3) the inversion 
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formula (eq. [19]), which is a function of the eigenvalues, was inte- 
grated numerically."' 

Asymptotic Distributions 

Unlike the small sample distributions, the asymptotic distributions 
can be derived analytically. Let V, V*, and D denote the sample statis- 
tics calculated by taking deviations from the population mean, and V,, 
V,*, and D, denote the corresponding statistics computed by taking 
deviations from the sample mean. The bias induced in V,, V*, and D, 
by taking deviations from the sample mean is of order 1IT (Anderson 
1971, p. 463). Similarly, T- var (V,), T- var (V,), and T- var (D,) differ 
from T- var (V), Th var (V*), and T- var (D), respectively, by terms of' 
order 1/T (Anderson 1971, p. 471). Thus, in deriving the means and 
variances of the asymptotic distributions of V,, V,* and D,, we can 
analyze the simpler case in which the statistics are calculated by taking 
deviations from the population mean. 

Using equations (4) and (6) for R, and R*, respectively, we see that 
straightforward calculation of the means of the asymptotic distribu- 
tions of' V, V*, and D yields 

2 2o2 
[v E (RI) cz (r 

tv*= E(R*2) =( _p + > c4i)| e (20) 

tIi- 1 

[tj) = E[(R* - R.)2] = (Tj ( 

where x = (1 - p")/n(1 - p) and i = [1 - p(''-)]/n(l - p). 
Singleton (1980) showed that the sample statistics V, V*, and D are 

consistent estimators of [tvV, [v*, and [SjO. Further, V, V*, and D are 
asymptotically normally distributed, with variances given by 

lim T var (V) = 2 X [E'(RtR +.,)]2 

lim T var (V*) = 2 f [E(Rz*RK*)]2, (21) 

lim T var (D) = 2 j [E(OtO+,)]2 

(Recall that 0t = R* - Rt.) 
' The eigenvalues were computed Using the International Mathi and Science Library 

(IMSL) routine EIGRS; the numerical integration was performed using IMSL routine 
D)CADRE. 
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Evaluating these variances for the model posited in this paper gives 

var (V) 
T(I3(1 -p22)3 

2 2 

var (V*) =+ 2 + A>c4x) 

I- _ 2 (22) 
? E_ atpiI1 ) 

2 c [& t ? - 
l I ) 

,,- I n,,-2 ,.-I- 12- 

var (D) 7 +( , ) + 2 Z ( i titi;j1 ] 

Comparison of Small Sample and Asymptotic Distributions 

Recall that the numerical example was constructed to mimic quarterly 
data in which the short rate was a 3-month rate and the term of the 
long rate was 20 years. The autoregressive parameter of the short- 
rate process, p, was set at 0.95.') For the small sample distributions, the 
sample size, T, was set at 100 (quarterly) observations. Table 1 reports 
the means of' the asymptotic distributions of' V, V*, and D, for p = 
0.95, T = 100, and n = 80. The variance of the short-rate innovation 
is normalized at one (cr= 1). 

The asymptotic standard deviations reported in table 1 were ob- 
tained by evaluating the expressions (22) for the asymptotic variances 
of V, V*, and D for a sample size of' 100. Before turning to the 
calculations of' the actual small sample distributions, it should be 
noted that table 1 itself contains some evidence that the asymptotic 
distributions are not close approximations to the small sample distri- 
butions for samples of' 25 years of' quarterly data. Because V and V* 
are both sample variances, neither random variable can take on nega- 
tive values. Using asymptotic distribution theory to approximate the 
distribution of V*, however, one would conclude that V* is normally 
distributed with mean 3.802 and standard deviation 4.619, implying 
that V* is less than zero for over 20 percent of its distribution. 

In a first-order auitoregression of qUarterly observations on 3-nmonth Treasury bill 
yields (sample periodic 195(): I-1982: 1), the estimated autoregressive parameter was 
0.953, with a standard error of .03. (These data were obtained from Salomon Brothers, 
Inc. 1982.) 
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TABLE I 

MEANS AND STANDARD DEvIAI ONS oF) AsNvsi1o r)I DISIRIBuTI'ONS 

Variable Mean Asymptotic Standard DeviatiOh 

V* 3.802 4.6 1 9 
V .620 .15() 

D 3.182 3. 1'39 

The actual small sample distributions of V, V*, and D are plotted in 
figure 1. In each of the three panels of figure 1, the distributions 
labeled a represent the small sample distributions of V*, V, and D, 
assuming that the mean of the short-rate process is known a priori. 
The distributions labeled b represent the small sample distributions of 
V*, V, and D, when R, and R* are each expressed in deviationss front 
their respective sample means instead of the population mean. The 
distributions labeled c in panels 1 and 3 represent the small sample 
distributions of V* and D,, respectively, when R* is calculated using a 
terminal condition RT and both R* and R. are expressed in deviations 
from the sample mean. The distributions labeled d represent the 
small sample distributions of spectral estimates. The distl-ibutions b, c, 
and d are explained more fully below. 

Consider the distributions labeled a. If the mean of the underlying 
process is known, the sample variance is an unbiased estimate of the 
population variance (Anderson 1971, p. 448).i3 However, even when 
the mean is known, the sample variances are not closely approxi- 
mated by the normal distribution. All three random variables have 
strongly skewed small sample distributions; the probability that V will 
take on a value less than its mean is 60 percent, and V* and D each 
have a 65 percent probability of taking on values less than their re- 
spective means. 

It is important to keep in mind that two unrealistically strong as- 
sumptions concerning the information available to the econometri- 
cian have been maintained in computing the small sample distribu- 
tions represented by the a curves. First, the mean of the short-rate 
process has been assumed to be known a priori. Second, the perfect- 
foresight variance V* has been calculated assuming that all of the nl - 
1 postsample observations on the short rate, rT+ I to rT+,,_ -, are avail- 
able, enabling the econometrician to construct the perfect-foresight 

6 The means of the small sample distribdtions of V, Vt, antI 1) were clAculated making 
use of the fact that the mean of a quadratic form ill normal deviates is equal to the su1m 
of the eigenvalues of the quadratic form. For each of the three (Juadratic forms, the 
sum of the eigenvalues matched the analytically derived l)optllation mean (reported in 
table 1) to four decimal places. 
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long-rate series, R. to R*, without having to resort to any form of' 
extrapolation of the short-rate data. Even under these unrealistically 
favorable assumptions concerning the availability of prior informa- 
tion and data, there is a 6.6 percent chance that the sample variance, 
V, will exceed its upper bound, V*, if' the null hypothesis of' market 
efficiency is true. 

In practice, the variance-bounds tests have been implemented us- 
ing data on r, and R, in deviations from their sample means rather 
than deviations from population means. Let A, denote the quadratic 
form representing the variance of' R, expressed in deviations from its 
sample mean.7 The distribution of' V, = E'AE is given by curve b in 
panel 2 of figure 1. When the population mean of' R is not known a 
priori and the sample variance is expressed in deviations from the 
sample mean, the sample variance is a downward biased estimator of' 
the population mean of' var (R,); the mean of' V, is 0.4251, as com- 
pared to the population mean of' var (R,) of' 0.6200. 

Similarly, the curve labeled b in panel 1 is the small sample distribu- 
tion of V* in which the vector of' observations on the short rate is 
expressed in deviations from the sample mean before constructing 
the series on R*. Again, expressing the data in deviations from the 
sample mean creates a downward bias: the mean of the distribution b 
is 1.537, less than half the value of the population moment, var (R*) 
of 3.802. Because V*, is more strongly downward biased than Vs, ex- 
pressing the data in deviations from sample means results in a net 
downward bias to D, Ves - V,. When the data are expressed in 
deviations from sample means, D, has a mean of' 1.1 12, as comipcared 
to a population value of' var (R*) - var (R.) of' 3. 182. Further, there is 
a 16.8 percent chance that the sample variance, Vs. will exceed its 
upper bound, V*, if the null hypothesis of market efficiency is true. 

II. Review of Previous Tests of Excess Volatility 

In this section some of' the test procedures implemented by Shiller 
and Singleton are reviewed in light of' the findings concerning the 
small sample distributions of' the variance-bounds test statistics. 

7 To construct the quadratic form A, take the nmatrix S and cal((culate the sumn of the 
elements in each column111. Denote the sumI of the elements in the jth column (Is m1(j). 
Subtract mn (j)/110f) fromn each element of the jth column of the original mittm ix S, forj 
1, 2, ..., 1(). PrenmUtltiplying this matrix by its transpose and multiplling by the scalar 
,2T- l gives the quadratic form A,. In mio(lifyingA to forni A,. the degrees of freedom 
correction is automatically incorporate(1 into A, since the rank of the quatdratic( forn is 
reduced by one by the modification. Thus A has T nonzerO eigenvalties, while A has 7' 
- 1 nonzero eigenvaclues. 
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Shiller's Approach 

In his empirical work on the volatility of' stock prices and long interest 
rates (Shiller 1979, 198 1la, 1981 b, 1981 e; Grossman and Shiller 1981), 
Shiller not only examines the basic upper bound on the variance of 
the long interest rate or stock prices, var (R,) < var (R*), but also 
formulates and presents empirical evidence on an upper bound on 
the variance of' holding period yields. 

In illustrating the apparent excess volatility of long interest rates in 
his 1979 paper, Shiller graphs actual AAA utility bond yields against 
a perfect-foresight long rate constructed from data on the 4-6-month 
prime commercial paper rate. In these graphs, the perfect-foresight 
long rate moves smoothly and remains within the band between 6.25 
percent and 6.75 percent, while the actual long rate moves sharply 
and varies between 4.5 percent and 1 1.5 percent over the same period 
(1966:1-1977: 111). Since the variance of' the perfect-foresight long 
rate places an upper bound on the variance of the actual long rate, 
these graphs do appear to "stand in glaring contradiction" (p. 1213) 
to the efficient markets model. 

In the absence of actual data on the postsample values of the short 
rate, Shiller computed the perfect-foresight long-rate series, R*, re- 
cursively from an assumed terminal value, R*, 

RE = GyR*+1 + (1 - -y) r, (23) 

where By is a constant close to but less than one.8 In the case of a pure 
discount bond, y = (n - 1)/n. The terminal value, R *, was assumed to 
be equal to the average short rate over the sample period. It is a 
simple matter to grind out the distribution of' Shiller's approximation 
to the perfect-foresight long rate using the methods of the previous 
section. Let Rt denote Shiller's approximation to R*' and Vf* the sam- 
ple variance of R, expressed in deviations from the sample mean; 17* 
= E'Be, where B., is a symmetric matrix of' order 100) 

The parameter -y arises in Shiller's linearization of the basic term structure equation 
relating the long rate to future expected short rates. If a coupon bond is selling near 
par, the mean of the long rate (R) xvill be approximately equal to the coupon rate (C). 
Shiller takes Taylor series expansions around R. K ( and r,+= R = C, j 0, 
1, . . ., lo - 1, to obtain R, = [(1 - y)/(l - -y")] , 'y S',+,, where -y 1/(1 + RI,) and 
RO is the point around which the equation is linearized. In practice, Shiller sets R(, R 
and thus linearizes around the mean of the long rate. For a pure discount bond, C 0 
and -y 1 so that the long rate is a simple (Unweighted) average of future short rates in 
the linearized model: R, (=1/) I,' ,' ,r,+j (see Shiller 1979, pp. 1194-99). 

'The quadratic form representing V* was generated in the following way. The 100 
x 100 matrix, L, which transfornis the 100 observations on the short rate into 100 
observations on R*, was constructed by setting its first 2 1 rows equal to the first 21 rows 
of the previously defined matrix L. (This reflects the fact that the first 21 observations 
on R* do not depend on the assumed terminal value P-,.) The assumption that R-K' is 
equal to the average short rate over the samp)le period is imposed by setting each 
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The distribution of the quadratic form E'Be, which represents the 
sample variance of the perfect-foresight long rate constructed using 
Shiller's assumption concerning the terminal value of Rt, is given by 
the curve c in panel 1 of figure 1. The small sample variance E'BsE 
has a mean of 0.1521 and a zero probability of' taking on values 
greater than 1.1. As illustrated in panel 1, Shiller's method of obtain- 
ing an approximate series for R*, when applied to this numerical 
example, results in an estimated variance of R* that is severely biased 
downward. Not only is the expectation of E'BE ftar below the popula- 
tion mean of var (I,*) of 3.802, there is a zero probability that E'B.> 
will take on a value even one-third the value of the population mean 
of var (R*). 

Curve c in panel 3 shows the distribution of'E'[IB, - AE, which 
represents the difference between Shiller's approximation to the vari- 
ance of R* and the variance of R, both expressed in deviations from 
sample means. The measure of the perfect-foresight variance is more 
strongly biased than the sample variance of' I, and the difference 
between the sample variances is negative throughout 99.9 percent of' 
its distribution. The mean of E'[B, - AJE is - 0.2729, as compared 
to the population mean of the difference var (R*) - var (R.) of' 3. 182. 
Thus, even though markets are efficient in this example and the 
population variance of Rt* is several times the population variance of'R, 
estimating the variance of R* by imposing the terminal condition that 
R* equal the sample mean of the short rate induces so much down- 
ward bias that the sample variance of R. exceeds its estimated upper 
bound with probability .999. 

It is important to point out that Shiller's 1979 paper uses the con- 
structed variable R* only for the purpose of illustrating the notion of' 
excess volatility of long interest rates; none of' his formal statistical 
tests of market efficiency in the bond market use the constructed 
variable. In his subsequent paper addressing the volatility of' stock 
prices (1981b), however, Shiller does use a perfect-foresight stock 
price variable that parallels R* in its construction. That is, the perfect- 
foresight stock price variable is constructed by assuming a terminal 
value equal to the sample mean of the (detrended) actual stock price 

element of the last (1 00th) row equal to 0.01 . Using L(i, j) to denote the element in the 
ith row and the 'th column of rows 99-22 were generated rectursively by setting L(i, 
j) = (79/80))L(i + 1, j) for i $ and LfU, I) = (79/80)L(i + 1, j) + (1/80) for i 
The 100 observations on P* are given by R* = LSE, where S is the previously de- 
fined matrix that transforms the vector of' disturbances into the vector of' realizations 
on the short rate. In order to reflect the fact that R,* is expressed in deviations from 
the sample mean, take the matrix product LS and calculate, for each column, the sulm 
of' the elements in the column. Denote the suim of' the elements in the jth column as 
m(j). Subtract m(j)/100 from each element of' the jth column of' the original matrix 
product LS, for j = 1, 2, 100. Premultiplying this matrix by its transpose anll 
dividing by 7' gives the matrix B,. 
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series and solving backward recursively. While the numerical values 
in this paper were chosen with the bond market rather than the stock 
market in mind, the two problems are similar enough that the evi- 
dence of downward bias in Shiller's estimate of the perfect-foresight 
long rate may indicate that his estimate of the standard deviation of' 
the perfect-foresight stock price index could be seriously downward 
biased as well. 

The formal statistical evidence of' excess volatility of' long interest 
rates presented in Shiller's 1979 paper was based primarily on a com- 
parison of the variance of the holding period return of a long-term 
bond with the variance of the short interest rate. As derived by Shil- 
ler, the linearized holding yield (H.) is given by 

1-R.f- 7,zR, +, (24) 
1- 711 

where -yl = y(1 - -y"- ')/(I - y), -y is as previously defined, and n is 
the number of periods in the long-term bond. Directly from equation 
(24), var (fit) can be expressed as a function of' var (R,) and cov (R, 
R,+ 1). The cov (R,, Rt+ ,) term is then substituted out to obtain an 
expression for var (hr.) in terms of' var (R), var (r,), -y, and plK (the 
correlation coefficient between R, and rt). The upper bound on var 
(H.) is obtained by maximizing this expression with respect to var (R,); 
thus the bound itself is not a function of var (R,): 

max var (I,) 
2 

var (r)pR5) 

V(1,) 1 - (25 

Since PVR must be less than one, the variance of the short rate places an 
upper bound on the variance of Ilt. Shiller's basic inequality restric- 
tion is 

cr(Ht) acr(r,), (26) 

where a = 1/A1 - 

Using the fact that H, is approximately serially uncorrelated (and 
assuming that fH. is normally distributed), Shiller uses the X2 distribu- 
tion to compute a one-sided 95 percent confidence interval for the 
sample statistic &(Ht). A lower bound on &(Ht, denoted ,,.(Ht), is 
then calculated from the confidence interval. Since the small sample 
distribution of the estimated standard deviation of' the short rate, 
&(r6), is not known, Shiller does not conduct a formal statistical test of' 
the hypothesis that the standard deviation of the holding period re- 
turn satisfies the upper bound in equation (26). However, comparison 
of the point estimates of the standard deviation of the short rate with 
the lower bound on the holding period yield seems discouraging from 
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the point of' view of proponents of market efficiency. In four of the 
six data sets studied by Shiller, the lower bound on the variability of 
holding period yields, rZ(H,), was twice as large as the point estimate 
of its upper bound. For the other two data sets, i,,(HI,) was narrowly 
within the estimated upper bound."' 

To see that inequality (26) will tend to be biased toward rejection of' 
the null hypothesis of' market efficiency, note that under Shiller's 
assumptions an unbiased estimate of the variance of the holding pe- 
riod yield can be obtained simply by taking the sum of squares of the 
deviations of hI, from its sample mean and dividing by degrees of' 
freedom (T - 1) rather than sample size (T). However, the short rate, 
rt, is highly serially correlated, so that the same correction for degrees 
of freedom will not eliminate the downward bias in the sample vari- 
ance of r,. Recall that in the numerical example studied in this paper 
the actual long rate is proportional to the short rate. Thus the small 
sample distribution of the variable V = E'A,E characterizes the sam- 
ple variances of either R, or r, under different normalizations of the 
error variance, c4r. For the numerical values examined above, the 
downward bias was substantial even for a sample of 25 years worth of' 
data; the sample standard deviation of r, is A/.4251/.6200 = 82.8 
percent of the population standard deviation of r,. 

Using the notation var (r,) for the population variance of r, and var 
(rt) for the sample variance of r, (computed by taking deviations from 
the sample mean and dividing by T), we denote the relative bias of' var 
(rt) by'' 

E[vi r (r,)] 1 _ var (rt) 
var (r,) var (r,) 

where var (Trt) is the variance of the sample mean of r,. If the short rate 
is generated by an ARl process, equation (27) can be evaluated by 
straightforward algebra: 

E[vzar (r,)] - 1 - (1 + + ( _ p) (28) 
var (rt) (1 - p)T (I - p) 2T2 (8 

"' In the paper discussed above, Shiller's long-term interest rate data consisted of 
data on bonds with very long terms to maturity; in some data sets, the bonds were 25- 
year bonds, in other data sets, the bonds were consols. In a subsequent paper (1981c), 
Shiller reports the sample standard deviations of the 6-monoth Treasury bill rate and 
the holding period yield on medium term bonds (1-year-4.5-year Treasury notes). For 
the sample period 1955:11-1972:11, the sample standard deviation of the holding 
period yield did not exceed the point estimate of its upper bound for Treasury notes 
with 1 year or 1.5 years to maturity. For Treasury notes with 2-4.5 years to maturity, 
the sample standard deviation of the holding period yield did exceed the point estimate 
of the upper bound, but the violation was smaller in magnitude than the violations 
reported in Shiller (1979), based on the very long-term bonds. 

l I am grateful to James H. Stock for suggesting the closed-form expressions (eqq. 
[27] and [28]) for the bias of the sample variance of the short rate. 
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TABLE 2 

a&(r) 

7 n 'Yn P 56(r) ad(r) k k 5(H) am(H) 
Data Set (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1. U.S., quarterly 
1966:1-1977:11 46 100 .978 .95 1.78 8.55 .70 12.21 19.5 16.5 

2. U.S., monthly 
1969:1-1974:1 61 288 .992 .983 1.77 14.03 .53 26.47 27.4 23.6 

3. U.S., annual 
1960-76 17 25 .925 .815 1.39 3.66 .79 4.63 9.82 7.65 

4. U.S., annual 
1919-58 40 25 .940 .815 1.86 5.44 .90 6.04 5.48 4.58 

5. U.K., quarterly 
1956:1-1977:11 86 x .980 .95 2.84 14.3 .81 17.65 34.4 30.4 

6. U.K., annual 
1824-1929 106 - .968 .815 1.17 4.66 .96 4.85 4.95 4.43 

NoTE.-Explanation of syosbols: T = sample size; n = number of periods in the long-term bond; Yn = constant 
involved in the linearization of the utodel; p = aultoregressive parameter in the short-rate process; 6(rc) = estimated 
standard deviation of the short rate, calculated by taking deviations front the sample mean and dividing by 7 - 1; 
au,(r) = estimated upper bound, where a = 1/(1 - y,) ; k = relative bias of 6r(r); 6((I) = estimated standard 
deviation of the linearized holding period yield; (r,,,(H) = critical value for the lower 5 percent tail of&(H), assuming 
that (1i) is distributed x2. 

Using equation (28) we can calculate and correct for the bias to the 
upper bound of the holding period yield. The accuracy of the bias 
calculation depends, of course, on the validity of the assumption con- 
cerning the time-series process generating the short rate. Table 2 
calculates the bias to the upper bound on the holding period yield for 
each of the six data sets studied in Shiller's 1979 paper. In calculating 
the bias, I retain the assumption that quarterly data on short-term 
interest rates (3-6-month maturities) are well approximated by an 
ARI process with an autoregressive parameter of 0.95. I also assume 
that the ARI parameter for monthly, as opposed to quarterly, obser- 
vations on the short rate is 0.95''` = 0.983 and that the ARL parameter 
for annual observations is (0.95)4 = 0.815. 

Columns 2, 3, 5, 6, 9, and 10 of table 2 reproduce certain columns 
of table 1 in Shiller (1979).12 Column 7 reports the value of k, the 
relative bias of &(r); E[&(r)] = kr(r), which was calculated as 

k = {(T + p + 2p((1 - pT) 
/2 (29) 

As indicated by column 7, the small sample bias in &(r) ranges from 
trivial for the data set with a sample period of 100 years (k = 0.96) to 
substantial for the monthly data set with a sample period of 5 years 

12 Shiller also reports a "tighter" upper bound on o(H) as well as bounds that are 
applicable when r, is nonstationary in his table 1. 
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(k = 0.53). Column 8 reports the estimated upper bound, corrected 
for small sample bias: a&(r)/k. 

Without the bias correction, the upper bound on the volatility of 
holding period yields was violated on the basis of the sample statistics, 
that is, or,,(H) > a&(r), for four of the six data sets. Further, in the 
four data sets that violate the bound, (,,(H) is roughly twice its es- 
timated upper bound. 

The bias correction changes the result of only one data set (data set 
2) from violation to nonviolation of the bound. However, the three 
data sets that still violate the bound are not independent observations 
against the null hypothesis since they cover substantially the same 
historical period: each of the three contains the period 1966-76. 

After the upper bound has been corrected for bias, the evidence of 
excessive volatility of holding period yields is considerably less dra- 
matic: for three virtually nonoverlapping sample periods (U.S., 
1969-74; U.S., 1919-58; and U.K., 1824-1929), the standard devia- 
tion of holding period yields is narrowly within the upper bound. The 
standard deviation of holding period yields exceeds the upper bound 
by a margin of 35-75 percent for the three data sets that contain the 
period 1966-76.'3 

Singleton's Approach 

While Singleton (1980) reports some results based on holding period 
returns, his paper focuses primarily on the upper bound on the long 
interest rate: 

var (R.) S var (R*). (30) 

Using spectral analysis, Singleton computes consistent estimates not 
only of var (R,) and var (R*) but also of the covariance matrix of the 
estimates of var (R.) and var (R*). Like Shiller, Singleton finds that his 
point estimates of var (R.) exceed the point estimates of the upper 
bound, var (R*). Further, Singleton conducts asymptotic tests of 
whether the variance of the long rate satisfies the upper bound. For 

1' When the bound on the volatility of holding period yields is applied to the stock 
market, Shiller finds that the estimated standard deviation of the holding period yiel(l is 
more than five times the upper bound, even with a sample period of over one hundred 
years (Shiller 1981b). Considering the sample size, correcting for the bias intluceti by 
eliminating the sample mean will not substantially change the magnitutle of the viola- 
tion. However, the exponential trend in the stock price series hadl been removed front 
the stock price data as well as the dividend data in order to achieve stationaritv. One 
would have to assess the biases potentially induced by the detrending in order to 
reliably interpret the strength of the evidence against the market efficiency hypothesis 
in the context of the stock market. Shiller emphasized that the results could be sensitive 
to detrending, stating that "assumptions about public knowledge or lack of knowledge 
of the long run growth path are important" (1981b, p. 421, n. 2). 
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each of the three data sets analyzed, the violation of the upper bound 
is statistically significant at the 5 percent level. 

Singleton does not use postsample data on the short rate to literally 
construct a data series on the perfect-foresight long rate R*. Instead, 
his estimates of var (R*) are computed on the basis of observations on 
the short rate and on the theoretical relationship between the short 
rate and the perfect-foresight long rate. The perfect-foresight long 
rate in Shiller's linearized model is given by 

)1- I 

R = 8 E er, (31) 
.,= () 

where -y is a constant (see n. 8), and 8 = (1 - y)/(l - -y"). Based on the 
known linear relationship between R* and r,, " the spectral density of' 
R* can be expressed as a function of the spectral density of' r,: 

SR*(X) = g2(X)S(X), 1 X I (32) 

where g2(X) = 82[l - 2y" cos (nX) + y2,']/[l + _y2 - 2y cos (X)] and 
SR*(X) and Sr(X) are the spectral density functions of R* and r,, respec- 
tively. The variance of R* is equal to the integral of' the spectral 
density of R*: 

var R*) = SR*(X)dX. (33) 

Singleton estimated the variance of the perfect-foresight long rate 
by estimating Sr(X) from the short-rate data, calculating the function 
SR*(O) implied by equation (32), and integrating the estimate of SR*(X) 
over the interval - Tr to a. Before computing the spectral densities of' 
rt and Rt, Singleton removed the sample mean and sample (linear) 
trend from the data, which consisted of' monthly observations over 
the sample period 1959: 1-1971:6. 

In his appendix, "Model Restrictions on the Spectral Densities of' 
Interest Rates," Shiller discusses the theoretical relationship (eq. [32]) 
between the spectral densities of R* and r, in the limiting case in which 
the long bond is a consul. He notes that g2(X) is equal to one at X = 0 
and declines monotonically as X increases. Further, g2(X) drops rap- 
idly as X increases for -y close to one. 

The fact that g2(X) declines monotonically implies that the low fre- 

14 For purposes of illustration, I assume that the parameters as well as the form of the 
relationship between R* and r, are known. In the context of the term structure of 
interest rates, treating -y as known is, in my view, a sensible interpretation of the model, 
since -y is defined as y = 11(1 + Re), where R, is the point around which the lineariza- 
tion is taken. In practice, both Shiller and Singleton set R, = R, anld linearize around 
the sample mean of the long rate. Empirical results reported below indicate that the 
results are perceptibly but not dramatically affected by varying the value of Y. 
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quency components of S, (X) account for a greater proportion of the 
variance of R,* than of the variance of r,. A sample mean and sample 
trend will tend to "fit" much of the low frequency movement in a 
small sample of time-series data. Thus, taking deviations from the 
sample mean and trend will bias a sample variance downward by 
underestimating the low frequency movements of the series. This 
downward bias in the sample variance of the short rate will be 
"amplified" by the filter function g2 (X) to create a (proportionally) 
greater downward bias in the estimate of var (R*).'1 Elimination of 
the sample mean and sample trend will also create a downward bias in 
the sample variance of the actual long rate, R. However, because the 
spectrum of the actual long rate is much less concentrated at the low 
frequencies than the perfect-foresight long rate, the bias in the sam- 
ple variance of R, will tend to be smaller than the bias to the estimated 
variance of RKt 

The Appendix describes a procedure for constructing quadratic 
forms that represent the sample statistics calculated by applying the 
spectral estimators to 100 quarterly observations generated by the 
model economy specified in Section 1.1" The finite sample distribu- 
tions of these quadratic forms are plotted in figure 1. The distribution 
of the spectral estimate of var (R*) was so close to the distribution of 
Shiller's estimator that it could not be plotted distinctly from curve c 
in panel 1. The mean of the spectral estimate of var (R*) was 0. 183, as 
compared to the population value of var (R*) of 3.802. The curve 
labeled d in panel 2 gives the small sample distribution of the spectral 
estimate of var (R,), which has mean 0.288, as compared to the popu- 
lation value of var (R,) of 0.62. The small sample distribution of the 
spectral estimate of the difference is given by curve d in panel 3. In 
the numerical example, Ad, = var (R*) - var (R,) = 3.2. However, 
because of the severe bias to the spectral estimate of var (R*), the 
spectral estimate of D has mean -0.104 and has a 92.12 percent 
probability of taking on values less than zero. That is, the estimated 
variance of R, exceeds the estimated upper bound 92 percent of the 
time, even though the null hypothesis of market efficiency holds, by 
construction, in the numerical example. 

' The point that Singleton's estimate of' the tLipper )oLnFl twas biased downward b1 
the detrending is stated in Shiller (1 981 c): 'Perhaps [Singleton's] more dramatic results 
stem from his decision to subtract linear trends from the dlata, and in et'fect assume the 
trends were known by the market in adlvance. Any such assumIlptionI has the ef'f'ect of' 
reducing the uncertainty about future interest rates and thus reduLIcinlg the permissible 
volatility of' long rates according to the expectations model. Ultimately the inequality 
tests must hinge on our priors as to the reasonableness of' Such assumnptions" (p. 76). 

16 Because the long rate in the numerical example is asstLimed to be the yield oni a 

pure discount bond, the parameters in the linearized term structure relation (eq. [31]) 
can be specified a priori; -y 1 and 8 =: 11/. 
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TABLE 3 

ESTIMATED NONCENTRAL SECOND MOMENT OF R* AND R, 

ESTIMATED NONCENTRAL 

SECOND MOMENT OF 
TERM OF SAMPLE 

LONG BOND PERIOD R* Rt 

10 years 1950:1-1973:1 22.03 19.00 
20 years 1950:1-1963:1 17.79 10.90 

NOTE.-Noincentral second moments were cal(Aklatet as (lIT) ET= I X2, where T denotes the number of observa- 
tions. 

Some Unbiased Estimates 

The paper closes by reporting some unbiased estimates of the vari- 
ance-bounds statistic var (R*) - var (Rt). Following a suggestion of 
Richard Porter, the noncentral second moments of R* and Rt were 
calculated. Assuming that the long rate does not contain a liquidity 
premium, R* and Rt have the same mean, VL. Since 

E(R*) = var (R*) + 2 

and (34) 

E(R 2) var (Rt) + Vu2, 

the difference between the noncentral moments is an unbiased esti- 
mate of var (R*) - var (Rt). 

Data series on R* for 10- and 20-year Treasury bonds were con- 
structed from data on the 3-month Treasury bill rate using Shiller's 
linearized term structure relation: 

11-1 

R* = Y r, y = 1r+ R ' (35) 

where n = 40 for the 10-year bond and n = 80 for the 20-year bond. 
The term structure equation was linearized around the point R( = 
0.01. Data were available on the short rate for 1950:1-1982: IV.17 In 
order to avoid using a terminal condition, the R* series for the 10- 
year bond was calculated for t = 1950:1-1973: 1 and the R* series for 
the 20-year bond was calculated for t = 1950:1-1963:1. The es- 
timated noncentral second moments of Rt* and Rt are reported in 
table 3.18 

17 The data were from Salomon Brothers, Inc. (1982). 
18 If the term structure relation is linearized around R() = 0.02 instead of 0.01, the 

sample noncentral second moment of R* is 21.19 for the 10-year bond and 15.22 for 
the 20-year bond. With quarterly data, R() is a quarterly (nonannualized) interest rate. 
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According to table 3, the difference between the estimated non- 
central second moments of R* and Rt, which is an unbiased estimate 
(assuming no liquidity premium) of var (R*) - var (Rt), is 3.03 for the 
10-year bonds and 6.89 for the 20-year bonds.'9 The empirical 
finding that var (Rt) is within the upper bound imposed by var (R*) 
will not be reversed if the model is generalized to include a (constant) 
positive liquidity premium in the long rate. If Rt does contain a liquid- 
ity premium, the population mean of R, would exceed the population 
mean of R*. Thus the assumed absence of a liquidity premium biases 
the estimate of var (R*) - var (Rt) downward. 

The average of the squared observations on the short rate for the 
sample, 1950:1-1982: IV, was 34.53. Since r,, R, and R* all have the 
same population mean in the absence of a liquidity premium, these 
estimates of the noncentral second moments imply that the variances 
are in the order predicted by the efficient markets model: 

var (r,) > var (R*) > var (R,). (36) 

Since var (R*) - var (R,) = var (0,), table 3 provides estimates of the 
market's standard error in predicting R*. For the 10-year bonds, 
the market's standard error in forecasting R* was 174 basis points; 
for 20-year bonds, the standard error was 262 basis points. 

The postwar quarterly data on the 3-month Treasury bill rate, 10- 
year Treasury bond yield, and perfect-foresight Treasury bond yield 
are plotted in figure 2. The perfect-foresight 10-year bond yield, 
denoted by the dotted line, starts to rise steeply in the early 1970s, 
reflecting the unusually high short rates in 1979-82. The rise in the 
long rate may have appeared, in 1969, to indicate overreaction to the 
contemporaneous rise in short rates, or excess volatility. However, 
history has clearly exonerated the sharp rise in the long rate in the 
late 1960s and early 1970s. In studying figure 2, one is struck, not by 
the volatility of the long rate, but by the accuracy of the long rate in 
predicting the explosion of short rates in the early 1980s. 

19 In calculating the noncentral second moment of' R, the sample period was limited 
to the exact sample available for the corresponding perfect-foresight long rate; i.e., the 
1973:11-1982: IV data on the 10-year long rate and the 1963:11-1982: IV data f'or the 
20-year long rate were not used. If the noncentral second moment of' R, itself' were of' 
primary interest, using all of the available data would be efficient. However, in the 
variance-bounids problem, one is primarily interested in obtaining a precise estimate of' 
the difference of the two moments. The sampling variability of the difference of' the two 
sample moments is an increasing function of the variance of the sample second mo- 
ment of R, and a decreasing function of the covariance of' the sample second moments 
of R, and R*. Including the additional data on R, reduces the variance of' the sample 
moment of R, but also reduces the covariance of the two sample moments. Based on the 
conjecture that the effect of the covariance term dominates, the additional observations 
available for R, were excluded. 



952 JOURNAL OF POLITICAL ECONOMY 

.16- 

15 

.14 I , 

.13 

.12 2iii t 

.11 1I 

.10 

. 09 I 

.08 - 

.06 2fl 

.05 v ', I I 

W 

W ~ ~ ~ ~~~~~pR*~I 

rt 
.03 

- 
* 

r t4 

.01 I 

.00 .I . I l I . I 

'50 '55 '60 '65 '70 '75 '80 '05 

Ft(;. 2. Plot of -,, R,, and R*, U.S. TreasuIy securities: ra = 3-nionth TreasuIry bill 
rate, dlenotedl by dashed line; R, = 10-year Treasury bond yield, denoted l)y solid line; 
A* = perfect-foresight 1 0-year rate, denoted by dotted line. The sample period for the 
short-rate data is 1 9501():-1982: IV. The perfect-foresight long rate was computed 
Rising Shiller's linearized term structure relations R* = [(1 - y)/(1 - y")] >1~' y,+ 

for y 1=(1 + R,,), where R., is the point around which the term structure relation is 
linearized. For the R* series plotted in figure 2, Ro = 0.0 1 and ii = 40. The series on R* 
was com1)Lted only uip to 1973 :1, the last observation for which the necessary postsam- 
pie data were available. The data, from Salomon Brothers (1982), consist of observa- 
tions taken during january, April, July, and October of each year. 

III. Conclusions 

The basic problem addressed by this paper-that the upper bound 
on the volatility of long interest rates or stock prices is difficult to 
measure in small samples-was certainly recognized by the authors 
who formulated the variance-bounds tests. In fact, Shiller refrains 
from conducting formal statistical tests of the hypothesis that the 
holding period yield on long interest rates is within its upper bound 



EXCESS VOLATILITY 953 

on the grounds that the small sample distribution of the upper bound 
is unknown. In the conclusion to his 1979 paper, Shiller acknowl- 
edges that he cannot rule out the possibility that the population vari- 
ance of the short rate exceeds the sample variance by a sufficiently 
large margin to exonerate the market efficiency hypothesis, "since we 
have no real information in small samples about possible trends or 
long cycles in interest rates. Indeed, some would claim that short-term 
interest rates may be unstationary and hence have infinite variance. 
The fact that the lower bound on the left-hand side exceeds the 
sample value of the right-hand side may be interpreted as safely tell- 
ing us, then, that we must rely on such unobserved variance or ex- 
pected explosive behavior of short rates if we wish to retain expecta- 
tions models" (pp. 1213-14). 

Shiller's subsequent papers on long interest rate volatility (1981a, 
1981c) reach the same general conclusion: the observed volatility of 
long interest rates can be justified as the rational response to new 
information about future short-term interest rates only if the popula- 
tion variance of short interest rates is much larger than the sample 
variance. In addition to random sampling error, Shiller cites several 
situations in which the population variance of the short rate would 
tend to exceed the sample variance: the short-rate process is non- 
stationary; the short-rate process is stationary but inappropriately de- 
trended;20 or the short-rate data suffer from what Krasker (1980) has 
termed the "peso problem"-market participants rationally perceived 
the possible occurrence of a major disturbance that was not realized 
within the sample period.2' 

2() LeRoy and Porter (198 1) also recognized the importance of' the treatment of' 
trends. They write, "The question remains whether the resulting series Fearnings and 
price data for Standard and Poor's composite Index, ATT, GE, and GM, corr -ected fo(r 
inflation and earnings retention] can be assumed to obey the stationarity requirement. 
There appears to be some evidence of downward trends, although they are not clearly 
significant. We have decided to neglect such evidence and simply assume that the series 
are stationary since otherwise it is necessary to address such difficult q(Uestions as 
ascertaining to what degree stockholders can be assumed to have foreseen the assumed 
trend in earnings. It seems preferable to assume instead that there exist long cycles in 
the earnings series, implying that a sample of' only a f'ew decades may well appear 
nonstationary.... We do not argue that this treatment is entirely adequate, nor do we 
in any way minimize the problem of nonstationarity; the dependence of our results on 
the assumption of' stationarity is probably their single most severe limitation" (pp. 568- 
69). 

21 Krasker (1980) examines an "apparent" failure of market efficiency in which the 
forward rate for Mexican pesos persistently underpredicted the future spot rate. Kras- 
ker argued that market participants rationally perceived a significant probability that 
the peso would be devalued. Since the devaluation did not occur within the sample 
period, the rational discounting of the peso in forward contracts gave rise to strong 
serial correlation in the spot-rate forecast errors. 
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This paper is focused primarily on the small sample properties of 
the variance-bounds test when the variances are expressed in devia- 
tions from the sample mean rather than the population mean. Even 
in the absence of other problems, such as nonstationarity, inappropri- 
ate detrending, and the peso problem, the results of the paper indi- 
cate that the variance-bounds test statistics tend to be seriously biased 
toward rejection of the null hypothesis of market efficiency when the 
variances are computed in deviations from sample means. For sam- 
ples of the size typically used in the variance-bounds tests, the mag- 
nitude of the bias is substantial. The strategy of focusing on the conse- 
quences of taking deviations from the sample mean was not motivated 
by ajudgment that other potential problems with the data, such as the 
peso problem, are empirically unimportant. To the contrary, my 
guess is that, for some data sets, the peso problem is probably very 
important. However, the effects of the peso problem are extremely 
difficult to assess empirically since by definition it involves the effects 
of unrealized possible outcomes. 

By taking into account the small sample properties of the variance- 
bounds statistics, the evidence of excess volatility of holding period 
returns and long rates is attenuated along several dimensions. First, 
the upper bound on the variance of 10- and 20-year long rates is not 
violated in the postwar U.S. quarterly data. Second, the violation of 
the upper bound on holding period yields is not robust with respect to 
sample period. Third, in data sets for which the variance of holding 
period yields still exceeds the upper bound, the magnitude of the 
violation is smaller, and no evidence has been presented that the 
violation of the upper bound is statistically significant. 

Appendix 

Procedure for Obtaining the Small Sample Distributions 
of the Spectral Estimates 

A vector of 101 observations on the short rate is given by Se, where S is a 
square matrix of order 101 as given in equation (12) and e is a vector of 1)01 
observations on the disturbance. Before computing the spectra, Singleton 
transformed the data by removing the sample mean and sample trend and by 
prewhitening by the filter 1 - .85L. Defining X as the 101 X 2 matrix 
consisting of a column of ones and the column vector [ 1, 2, 3, . . ., 10 1 ]', and I 
the 101 x 101 identity matrix, construct M = [I - X(X'X)- 'X']. Construc- 
tion of a 1(00 x 101 matrix, denoted H, which quasi differences the data with 
the filter 1 - .85L is straightforward. A vector of 100 observations on the 
transformed short-rate data is represented as HMSE . Denote the matrix 
product HMS as the 100 x 101 matrix D: D = HMS. 
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Construct the complex-valued matrix P, 
el IA e 2Xo ... e l 1A,, 

el Xi e 29X ... el(Al P = e ' e ' ... e ,(A 1 ) 

Lel x,\ el2 X7 -I . j elX 
where T is the sample size (in this case 1)00) and Xi = 2lTj/T, J 0, . . ., 7' - 1. 
The Fourier transform of the data is given by PDf. 

The unweighted sum of the periodogram ordinates could be obtained 
by computing E'D'P'PDE, where P is the conjugate of P. Singleton's estimates 
were weighted averages of the periodogram ordinates, however; he first 
smoothed the ordinates with an inverted V window (of width nine ordinates) 
and multiplied by a filter function, denoted /'(X). The filter function is used to 
"recolor" the data and, in the case of the perfect-foresight long rate, also 
incorporates the theoretical filter g2(X) given in equation (32). Denote the 
column vector of T periodogram ordinates as z. Applying the window can be 
represented by premultiplying z by a square matrix V of order T. Define a 
diagonal matrix F, also of order T, in which the kth diagonal element isf/(X,) 
XJ = 2-Tr(k - 1)/T. The sum of the weighted periodograin ordinates is given by 
uFVz, where u is a T-element row vector of ones. Denote the T-element row 
vector uFV as w and construct the T x T diagonal matrix W, in which the ith 
diagonal element of W is the ith element of the vector w. ThuIs the weighted 
sum of periodogram ordinates is given by 

E'D'P' WPDE-. (A2) 

Multiply the matrix product D'P'WPD by the scalar 2r/T and(l denote the 
resulting matrix as C: 

= 
T_ D'P'WPD. (A3) 
T 

The matrix C is a real, symmetric matrix of order 101. 
Thus the sum of the weighted spectral density function can be expjresse(1 as 

a quadratic form in normal deviates. The small sample distributions of the 
spectral estimates of the variances can be obtained by applying the procedure 
described in Section I to the quadratic form >'C,>. 

All that remains is to specify the filters used to weight the smoothed pe- 
riodogram ordinates. In the case of the spectral estimate of var (R*), the filter 
was 

f,() 
(1I .85) 

2 ) - 1 - cos (nX1) (A4) 

n 2(1 -cosX)[ 1 - 2(.85) cosXJ + (.85)2 

where Xj = 2-NJ/T,j = 1, 2, . . ., T - 1, and n = 80. 
To obtain the spectral estimate of var (R.), the filter was 

fi,(AX) = c ? ( 85)2 (A5) 
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where K1 = 2r]j/T, j = 0, 1, . .., T - 1, and (x is the factor of proportionality 
between the short rate and the long rate in the numerical example; (x = (1 - 
p')/n(1 - p). 
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