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Abstract: This article describes the emerging game-theoretic framework for
modeling long-term contractual relationships with moral hazard. The frame-
work combines self-enforcement and external enforcement, accommodating
alternative assumptions regarding how actively the parties initially set and
renegotiate the terms of their contract. A progression of theoretical compo-
nents is reviewed, building from the recursive formulation of equilibrium con-
tinuation values in repeated games. A principal-agent setting serves as a run-
ning example.

A contract is an agreement that is intended to be enforced. Almost all contracts are
enforced with a combination of external enforcement and self-enforcement. External en-
forcement refers to actions of third parties, such as courts and other legal authorities col-
lectively called the external enforcer, that influence the contracting parties’ behavior. Self-
enforcement entails coordinated actions that the contracting parties themselves take, con-
sistent with their individual incentives. In a relational-contracting environment, the parties
interact over time, so there is an intertemporal aspect of self-enforcement whereby behavior
at one time relates to the parties’ anticipated response later.1

Relational contracts are everywhere and in every branch of economics. The scientific
literature on the topic is dispersed. A subset of the relational-contract literature sometimes
called “relational incentive contracts” has congregated on a class of repeated-game style
models of ongoing relationships with moral hazard, most notably ones involving a firm’s
arrangements with suppliers or its management of workers. Models in this area vary in
terms of time lines, technological assumptions, and formalism. As a result, it may be chal-
lenging for prospective researchers to find the modeling elements essential for capturing
the literature’s broad themes and insights.
∗This is a short version of an overview of relational contracting in the author’s forthcoming manuscript

on contract theory.
†https://econweb.ucsd.edu/ jwatson/. The author thanks Trond Olsen, Xiameng Hua, Stephen Morris, and

Matthias Fahn for their generous input.
1An organized society contracts in multitude layers, and at some level all enforcement is self-enforcement.

But in models of individual relationships, it is convenient to treat third parties as external and to abstract from
their incentives.



This article gives an overview of a core game-theoretic framework that has emerged
in recent years for the analysis of relational incentive contracts. The framework covers
relationships with the following attributes:

• discrete-time interaction with an infinite number of periods;
• external enforcement of monetary transfers contingent on verifiable information;
• a stationary productive environment, without initial private information;
• multiple-phase interaction within a period, with monetary transfers and negotiation

in one phase and productive interaction in another; and
• payoffs that are linear in money.

Equilibrium analysis is put in terms of dynamic programming, where equilibrium continu-
ation values are characterized recursively. Ultimate versions of the framework incorporate
bargaining theory to model active contracting.

To describe the core theory, this article reviews in linear fashion a small number of key
technical steps taken in the literature. I focus on fundamental definitions and analytical
methods, without technical details and formal results. The concepts and methods are il-
lustrated with a running numerical example. I assume the reader has knowledge of game
theory at the level of a solid game-theory textbook such as Watson (2002).

I hope this presentation will be useful to readers in multiple categories. For the applied
researcher, it may serve as a bridge to the theory and essential techniques. For graduate
students and other scholars, it introduces the theory of relational contracts and details the
special structure of these game-theoretic models. The modeling framework may be a useful
starting point for future theoretical studies.

Terminology

In preparation for the technical presentation, here are some notes on the terminology used
in the contract-theory literature. Because the models are game-theoretic, we typically call
the contracting parties players and their utilities payoffs. In addition to the distinction
between self-enforcement and external enforcement, there are important distinctions to be
made regarding information and the components of contract. Private information refers to
something that one player observes but other players do not observe. Items that all of the
players see are called commonly observed, and information available to an external enforcer
is called verifiable.2

Every contract can be described as combining an external part and an internal part.
External contract refers to the contractual provisions that instruct the external enforcer on
how to intervene in the relationship, typically by compelling monetary transfers as a func-
tion of verifiable information. The internal part of a contract records how the contracting
parties have agreed to themselves act. Note that this terminology differs from other terms
used in various strands of the literature. For instance, lawyers traditionally reserved the

2Foundations of verifiability are developed by Bull and Watson (2004).
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term “contract” for an agreement, ideally formalized in writing, that the court would en-
force. As a result, when distinguishing between external and self-enforcement, scholars
have adopted terms like “formal versus informal” and “explicit versus implicit.” But these
words create confusion, for plenty of agreements that could not be enforced by courts are
nonetheless highly detailed and formalized in writing. Likewise, many contracts that rely
on court enforcement are informally expressed. Therefore, I stick to the external/internal
terminology.

Historical notes

The term “relational contract” originated in the legal literature, where scholars observed
the prevalence of self-enforcement in long-term relationships, studied examples, and dis-
cussed the relation to external enforcement. Macaulay (1963) and Macneil (1978) are focal
references. The starting point in the formal analysis of relational contracts by economists
and game theorists is not clear. But as the mechanics of self-enforcement in relational
contracts are given by the conditions for equilibria in repeated games, the core elements
of relational contracting were first developed in the late 1950s by game theorists. Rubin-
stein (1979) examined a repeated-game model of a principal-agent relationship with binary
choices for the two parties, and the following years saw the introduction of applied mod-
els with monetary transfers. Telser (1980) and Klein and Leffler (1981) modeled repeat
purchases, where prices above the competitive level give firms the incentive to provide
high quality over time. Shapiro and Stiglitz (1984) examined employment relationships,
similarly finding that high “efficiency wages” induce workers to exert effort. Bull (1987)
distinguished between self-enforcement and external enforcement in a finite-period model.

In the large literature that developed since the early 1980s, a few articles stand out as
exemplars with regard to technical steps that, collectively, led to the general framework
that I present here. Radner (1985) developed a discrete-time, repeated-game model of
a principal-agent setting with an infinite horizon and external enforcement of short-term
contracts (monetary transfers contingent on output, assumed observable and verifiable).
He studied a class of equilibria in which the players use “review strategies.” Spear and
Srivastava (1987) examined equilibria more generally and put the analysis in terms of a
dynamic program featuring continuation values. Meanwhile, MacLeod and Malcomson
(1989) developed a model of employment relationships that distinguishes between observ-
able and verifiable aspects of production (they assumed that only employment is verifiable)
and with separate phases within a period for transfers and the worker’s effort choice. This
led to a more general analysis of contractual arrangements than Shapiro and Stiglitz (1984)
studied. The assumption of quasilinear utility, in both papers, simplified the analysis of
incentive conditions.

The full-blown recursive characterization of “perfect public equilibrium” values in
general repeated games was pioneered by Abreu, Pearce, and Stacchetti (1990). Later
Goldlücke and Kranz (2012, 2013) characterized perfect public equilibrium values for gen-
eral repeated games with quiasilinear utility and separate phases for transfers and produc-
tive actions in each period. Miller and Watson (2013) added an explicit account of bargain-
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ing and defined “contractual equilibrium” in general settings with self-enforcement. Finally
Watson, Miller, and Olsen (2020) extended the theory to settings with external enforcement
of long-term contracts.3

Popular theoretical applications

To appreciate the generality of the core theory presented here, it is useful to note the range
of theoretical applications that appear in the recent literature. Applications vary in terms of
the details of production and the presence of additional strategic elements. I mention a few
popular ones next, citing one or two representative papers for each (by no means a compre-
hensive list). Additional citations appear later in this article. For a broader discussion of
applications and economic insights, the reader may want to look also at MacLeod (2007)
and Malcomson (2013).

The most extensively studied settings are long-term principal-agent relationships, par-
ticularly employment relations (as in MacLeod and Malcomson 1989 and Levin 2001)
but also a variety of similar relationships such as between regulators and firms (Bertelli
and Smith 2010) or environmental organizations and communities (Gjertsen et. al. 2020).
Multi-sided moral hazard is present in models of production by teams within a firm, part-
nerships, and joint-ventures (Doornik 2006) and also international agreements (Klimenko,
Ramey, and Watson 2008). Models of supply management study managers’ policies to
select from qualified suppliers over time (Board 2011, Andrews and Barron 2016).

A great deal of research has been aimed at explaining specific employment practices and
the form of contracts, in some cases extending the core theory to include elements such as
private information. Influential early entries include Holmstrom and Milgrom (1987) on a
justification for linear bonus contracts; Baker, Gibbons, and Murphy (1999) on the source
of authority in organizations; Baker, Gibbons, and Murphy (1994, 2002) and Schmidt and
Schnitzer (1995) on the interaction between external and internal contracts; and Halonen
(2002) on ownership structure in relational contracts. More recent entries include analysis
of how routines emerge in organizations (Chassang 2010), dynamics related to restricted
transfers (Li, Matouschek, and Powell 2017), and private monitoring with verifiable reports
(Fuchs 2007). More distant from the core theory presented here are studies of long-term
asymmetric information and project choice (Watson 1999, 2002) and privately known out-
side options (Halac 2012).

3Here are other notable entries that I will discuss later: Levin (2001) expanded MacLeod and Malcomson’s
(1989) model to study a range of production technologies and to further characterize equilibrium strategies.
Baker, Gibbons, and Murphy (1994, 2002) and Schmidt and Schnitzer (1995) explored the interaction of
external and self-enforcement in settings where parties have more information than is verifiable. Ramey and
Watson (1997, 2001) and den Haan, Ramey, and Watson (2000) put relational contracts in the context of a
matching market, showing how incentives in employment relationship interact across markets in the presence
of shocks.
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Outline

I begin in the next section with the description of a short-term contractual setting, to show
the conceptual connections between short-term and long-term relationships. Section 2 de-
scribes contractual settings with an infinite horizon, where the phases of the short-term
setting repeat but where the external contract may create nonstationarities. This environ-
ment has all of the key features highlighted in the brief historical review above. Section 2
ends with a description of the operator used for the recursive characterization of equilib-
rium values. Section 3 provides details of the framework for settings with trivial external
enforcement, where the focus is on self-enforcement, and Section 4 expands the framework
to settings with nontrivial external enforcement.

1 Setting the Stage: Modeling a Short-Term Relationship
Let us begin with a contractual setting in which all productive actions take place at one time
(a static setting). There are n contracting parties, also called players. They interact first
in the negotiation phase, where they negotiate a contract and make immediate monetary
transfers, and then in the production phase (also called the productive-action phase), where
they simultaneously choose productive actions and receive payoffs. The production phase
is formally described as a stage game.

The players’ contract combines an external part and an internal part. The external part
specifies how the external enforcement authority should intervene in the relationship, such
as by compelling monetary transfers as a function of verifiable information or providing
a monitoring service. All externally enforced aspects of the contract are assumed to be
represented in the stage game, which I denote by γ. Thus, in the negotiation phase, the
players essentially pick a stage game γ from a set of feasible games Γ, where Γ represents
the scope of external enforcement.4 The internal part of the contract specifies how the
players have agreed to behave in the stage game; this part must be self-enforced.5

Behavior in the production phase is modelled noncooperatively, where self-enforcement
is typically expressed as a Nash equilibrium of the stage game. Behavior in the negotia-
tion phase can also be modelled noncooperatively, with a bargaining protocol, or by using
a cooperative solution concept such as the generalized Nash bargaining solution. Let us
take the latter route and denote by π = (π1, π2, . . . , πn) the fixed vector of nonnegative
bargaining weights, where π1 + π2 + · · ·+ πn = 1.6

4The parties’ choice of a production technology can also be incorporated into the set Γ.
5How the theorist’s abstract model relates to contracting and enforcement in the real world is an important

topic, especially because actual enforcement authorities are not as passive as our theoretical models typically
assume. For an overview in the context of the basic setting described below, see Watson (2002, Chapter 13).
For discussion and analysis of contract interpretation, see Shavell (2006), Listokin (2010), and Schwartz and
Watson (2013).

6If we model the negotiation phase noncooperatively, then we are looking at a grand noncooperative game
consisting of a bargaining protocol in the negotiation phase followed by the stage game in the second phase.
Under some assumptions regarding how the players coordinate their behavior in the stage game, parameters
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1.1 The basic setting
Let us focus on a special case along the lines of Holmström (1982) and Legros and Matthews
(1993): utility that is linear in money, a fixed production technology, and external enforce-
ment of only monetary transfers. In this setting, the technology of productive interaction
is fixed and described by an underlying game, representing the players’ productive actions,
personal costs and benefits, and the intrinsic distribution of returns.7 The underlying game
is denoted γ = (A,X, λ, u, P ), with the components described as follows:

• a set of action profiles A = A1 × A2 × · · · × An,
• an outcome set X ,
• a conditional distribution function λ : A→ ∆X ,
• a payoff function u : A→ Rn, and
• a partition P of X representing verifiability constraints.

Each player i takes an action ai ∈ Ai. The action profile a ∈ A determines the probability
distribution λ(a) ∈ ∆X over outcomes.8 The realized outcome x ∈ X is commonly
observed by the players, but only the partition element that contains x, denoted P (x), is
verifiable. Though stage-game payoffs can in general depend on both the action profile a
and the outcome x, define u(a) as the expected payoff over x ∼ λ(a) when the players
choose action profile a. Player i observes only the outcome x and her own action ai.9

The external part of the players’ contract specifies an externally enforced monetary
transfer between them as a function of the outcome x. It is a function b : X → Rn

0 , where

Rn
0 =

{
m ∈ Rn

∣∣∣∣∣
n∑
i=1

mi = 0

}

is the space of balanced transfers. For any action profile a and outcome x in the underlying
game, the payoff vector is u(a)+ b(x). Let b(a) ≡ Eλ(a)b(x) be the expected transfer given
action profile a ∈ A. Then the externally enforced transfer transforms the underlying game
into the induced game given by

〈A, u+ b〉. (1)

and this is the stage game that the players effectively play in the production phase.
Importantly, transfer function b is constrained to be P -measurable, because the exter-

nal enforcer can observe only what is verifiable about the outcome. Thus, if the external
enforcer cannot distinguish between outcomes x and x′, meaning that x ∈ P (x′), then

of the bargaining protocol translate into the bargaining weights in the hybrid model where the negotiation
phase is modelled cooperatively.

7Ruled out here are elements such as decisions about production technology and third-party monitoring
services.

8“∆X” denotes the set of probability distributions over X .
9To model a setting in which players observe each other’s actions, X and λ can be defined so that the

outcome reveals the action profile. This framework also accommodates applications in which the players
may not observe their own payoffs.
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b(x) = b(x′) is required. Note also that, by assuming only balanced transfers are enforced,
the model does not allow the players to commit to send money to a third party or other-
wise throw away money. The justification for such an assumption is that if the players had
specified such a thing, then once the outcome occurs they would have the joint incentive to
renegotiate their contract in order to release themselves from this obligation.

In summary, the contractual setting plays out as follows: In the negotiation phase, the
players form a contract specifying an immediate transfer, a transfer function b, and a mixed
action profile α ∈ ∆A (an uncorrelated probability distributions over A) for the production
phase. This leads to the induced game in Expression 1, where the players have agreed to
coordinate on action profile α.10 Self-enforcement requires α to be a Nash equilibrium of
the induced game, so that each player best-responds to the others’ action profile.

To round out the model, we must describe the disagreement point of bargaining, which
is what would happen if the players fail to make an agreement in the negotiation phase.
Suppose that disagreement involves no immediate transfer and b ≡ 0, the constant function
that gives a transfer of zero, so that the stage game is simply the unaltered underlying
game. Also suppose that the players would then coordinate on an exogenously given Nash
equilibrium α of the underlying game.11

With transferable utility and efficient bargaining, as the Nash solution predicts, clearly
in the negotiation phase the players will choose the external and internal contractual ele-
ments b and α to maximize their joint value

∑n
i=1 ui(a) subject to b being P -measurable

and α being a Nash equilibrium of the induced game in Expression 1. Letting α∗ and b∗

denote a solution, and defining L∗ ≡
∑n

i=1 ui(α
∗) and w ≡ u(α), the Nash bargaining so-

lution predicts that the players will make an up-front transfer to achieve the payoff vector
w + π (L∗ −

∑n
i=1wi) from the negotiation phase.

It is easy to see that improvements in the external enforcement technology, such as
increased verifiability as represented by a more refined partition P , can only improve the
prospects for aligning incentives and must weakly increase welfare.

1.2 Example
I next introduce a two-player example that will be used throughout this article. Consider a
relationship between a worker (player 1) and a manager (player 2). In the underlying game,
the worker chooses whether to exert effort and, if so, to which of three projects to apply
his effort. He can expend effort on only one project. The manager observes the worker’s
effort choice and receives the revenue that it generates. The manager has no action in the
underlying game. The worker’s effort choice is unverifiable, but the outcome includes a

10It is not necessary at this point to separate the immediate transfer from the outcome-contingent transfer.
The former can be incorporated in b. However, the added terms helps organize our accounting of payoffs and
continuation values in multi-period settings.

11Subtle issues arise here that are sometimes swept under the rug in the contract-theory literature. For
instance, what would we predict if the underlying game has no Nash equilibrium or multiple Nash equilibria?
Further, what would happen in other off-equilibrium-path contingencies, such as if the players made an
agreement other than the one our theory predicts?
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a1 player 1’s cost player 2’s revenue σ(a1)

0 0 0 0
1 11 19 1/2
2 1 7 1/4
3 22 28 1

Table 1: Payoff and signal parameters in the project-choice example.

verifiable binary signal of this action.
The set of feasible effort choices is A1 = {0, 1, 2, 3}, where a1 = 0 represents no effort

and a1 > 0 means applying effort to project a1. The signal is 1 with probability σ(a1) and
0 with probability 1 − σ(a1). For each effort level, the Table 1 gives the worker’s effort
cost, the manager’s revenue, and the probability of the high signal. Note that a1 = 1 is
the efficient effort choice, yielding a joint value of 8. Effort choices 2 and 3 each yields a
joint value of 6. The choices all differ in terms of the probability of the high signal. The
payoff vectors for the underlying game, along with the frontier of feasible values utilizing
transfers, are pictured in the left graph of Figure 1.

The outcome space is X ≡ {00, 01, 10, 11, 20, 21, 30, 31}, where the first digit of
the outcome is a1 and the second digit is the realization of the signal. The contingent
distribution function λ is given by λ(0)(00) = 1, λ(1)(10) = 1/2, λ(1)(11) = 1/2,
λ(2)(20) = 3/4, λ(2)(21) = 1/4, and λ(3)(31) = 1. Assume that the signal is verifi-
able but player 1’s effort choice is not verifiable, so the outcome partition is

P = {{00, 10, 20, 30}, {01, 11, 21, 31}} .

In this setting, the external contract b essentially specifies a bonus ρ to be transferred from
player 2 to player 1 in the event of the high signal, along with a constant baseline transfer
that we can set to zero without loss of generality. The middle graph of Figure 1 shows the
induced game for a contract specifying ρ = 4, while the right graph shows the induced

u1

u2

u(1)
u(3)

-22

19

u(0)

u(2)

underlying game payoffs
-11

28

8
u1

u2

6

5

u1

u2

-18

17

induced game payoffs,  = 4
-9

24

8

u(3) + b(3)

u(1) + b(1)

u(2) + b(2)
u(0) + b(0)

83

u(1) + b(1)

u(0) + b(0)

u(3) + b(3)
u(2) + b(2) =

induced game payoffs,  = 28

Figure 1: Payoffs in the project-choice example.
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game corresponding to ρ = 28. Note the change in scale relative to the left graph.
Because only player 1 has an action in the stage game, it is easy to visualize player 1’s

incentives by looking at the graph of the payoffs in the induced game. Clearly, player 1 will
select whatever action corresponds to the right-most point in the graph, yielding the highest
payoff for this player. It is thus helpful to consider the “implementation problem” where,
for any given a1, we determine whether there is a value of ρ that would give player 1 the
incentive to choose this action—that is, that makes u(a1) + b(a1) the right-most point in
the graph.

There are four things to note for this example. First, the players can achieve a joint
value of 6 by agreeing to a bonus that satisfies ρ ≥ 4, such as those illustrated in the
middle and right graphs of Figure 1. Second, the players cannot do better because no
contract can implement the efficient action a1 = 1. This is easy to see by observing that
u1(2) + b(2) > u1(1) + b(1) for ρ < 40, and u1(3) + b(3) > u1(1) + b(1) for ρ > 22.

Third, the difference

max
a1=0,2,3

u1(a1) + b(a1)−
(
u1(1) + b(1)

)
,

though strictly positive, is minimized by choosing ρ = 28 as shown in the right graph of
Figure 1. In other words, ρ = 28 provides the greatest incentive for player 1 to choose
a1 = 1, but it is still not enough to motivate player 1 to actually choose this action. An
implication is that, if we were to embellish the model with a complementary element to
enhance the incentive for player 1 to choose a1 = 1, then it would be best for the contract
specify ρ = 28. Fourth, note that if the players’ contract specifies ρ = 4, then the induced
game has two Nash equilibria, a1 = 0 and a1 = 2. The third and fourth items will play an
important role in the analysis of relational contracting that I turn to next.

2 Repeated Interaction and Relational Contracts
In a relational-contract setting, productive interaction occurs over multiple periods of time.
In this section I describe the main components of a general model of relational contract-
ing with an infinite number of discrete periods. I begin by describing the payoff relevant
elements and discuss how one can organize equilibrium analysis using the notion of contin-
uation value, which is the payoff vector in the continuation of the game from any particular
point in time. I then describe the key operator that relates sets of equilibrium continuation
values across periods.

2.1 Main ingredients of the basic model
The basic relational-contracting model has an infinite time horizon, discrete periods, and
a fixed production technology that the players engage in repeatedly. The time period is
denoted t = 1, 2, 3, . . .. In each period, the players interact just as in the short-term set-
ting: the negotiation phase followed by the production phase. In the production phase, the
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players choose actions in an underlying game (A,X, λ, u, P ), which I now sometimes call
the underlying stage game, and the outcome determines a monetary transfer according to
the function b : X → Rn

0 that their external contract specifies. These elements are defined
exactly as before. The underlying stage game is fixed and the same in all periods.

To incorporate discounting, assume that the players have a common discount factor
δ ∈ (0, 1) that, by multiplication, translates a payoff received in any period t + 1 into the
period-t equivalent. Further, let us normalize payoffs in each period by multiplying by
1− δ, which will be useful later to facilitate comparisons between stage-game payoffs and
continuation values. This is a standard normalization in repeated-game theory.

The external contract is in general more complicated than in the single-period setting.
It specifies a transfer function bt : X → Rn

0 for each period t, which gives the monetary
transfer at the end of this period as a function of this period’s outcome. The contract could
specify different transfer functions for different periods. Further, it could make bt a function
of the verifiable history of the relationship through period t−1. For instance, in the project-
choice example, the contract can increase or decrease the bonus in period t based on the
values of the signal in previous periods.

The model may be starting to sound complicated, but bear with me because I’ll next
scale back the generality to describe the simple setting in which the players are restricted
to contractual provisions that make bt the same in each period (equivalently, where the ex-
ternal enforcement authority will enforce only contracts of this form). Focusing on this
restricted “stationary” setting will allow me to provide intuition and to describe the recur-
sive methodology for analyzing relational contracting problems. Further, you’ll be happy
to know that a large part of the relational contracting literature focuses on such restricted
settings. But don’t get too elated, because this restriction is unrealistically artificial and I’ll
return to the more general setting later in this article, for currently the most active areas of
relational-contract analysis feature elements that make {bt} nonstationary.

I should also note at this point that some standard relational-contracting models in-
corporate additional strategic elements within a period of time. One such element is an
outside-option phase at the end of the period, where the players simultaneously decide
whether to continue or end their relationship. If one or both players elects to sever the
relationship, then they receive terminal payoffs that represent their values of finding other
trading partners or working on their own. Models sometimes also include a voluntary-
transfer phase between the production phase and the outside-option phase. I will comment
on these variations later.

As with the short-term setting, there are multiple ways to model behavior in the negoti-
ation phase of each period. There is the choice of cooperative or noncooperative bargaining
models, and there is a variety of alternative assumptions one can make regarding how com-
munication in the negotiation phase translates into coordinated play in the production phase
of the current period and beyond. I will leave the negotiation phase unspecified for now,
but note that the payoff relevant aspect of play is an immediate transfer the players make
in reaching an agreement. Let us denote by mt the transfer in the negotiation phase of
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period t. I assume mt ∈ Rn
− where

Rn
− ≡ {m ∈ Rn | m1 +m2 + · · ·+mt ≤ 0}.

That is, the players can transfer money between them and also can throw away money.

2.2 Continuation values and equilibrium
There are two standard approaches to characterizing equilibria in repeated games and
relational-contract models. The first involves describing strategies for the entire game and
then stating and evaluating equilibrium conditions on the strategy space. The second ap-
proach, pioneered by Abreu, Pearce, and Stacchetti (1990), characterizes the set of equilib-
rium continuation values recursively via dynamic programming. I focus on the recursive
approach here, because it is particularly elegant and has a special structure due to special
features of relational contracting models. This subsection initiates the analysis with a note
on equilibrium concepts and the definition of continuation values.

The solution concepts we will use assume that equilibrium behavior in each period
depends on only the jointly observable history of play. In particular, in equilibrium a player
does not condition her behavior on her own past productive actions except to the extent that
they are revealed by the outcome. This is the standard restriction that defines the notion of
perfect public equilibrium in repeated-game theory.

The payoff vector in period τ is the expectation of (1 − δ) (mτ + u(aτ ) + bτ (xτ )),
where mτ is the transfer made in the negotiation phase, aτ is the action profile played in
the production phase, xτ is the outcome, and bτ is the transfer function in period τ . The
continuation value from the beginning of any period t is the expected discounted sum of
the payoff vectors from this period on. Denoting this value yt, we have:

yt = E
∞∑
τ=t

δτ−t(1− δ) (mτ + u(aτ ) + bτ (xτ )) ,

where the expectation is taken with respect to the distribution of {mτ , aτ , xτ , bτ}∞τ=t.
The continuation values we need to analyze are those that arise in equilibrium. Ignoring

that I have not finished describing the game or the equilibrium concept, suppose that for
a given history of play through period t − 1, the equilibrium will specify behavior in the
continuation of the game from period t, resulting in a continuation value yt. We can write
yt as the sum of the expected payoff in period t and the discounted continuation value from
period t+ 1:

yt = E
[
(1− δ)

(
mt + u(at) + bt(xt)

)
+ δyt+1

]
,

where the expectation is conditioned on the history of play through period t− 1.
We can describe the continuation value from the production phase similarly. Fix the

history of play through period t− 1, and also fix mt and bt. Define b
t
: A→ Rn

0 to give the
expectation of bt as a function of the action profile, as in the short-term setting. Suppose
that the players are about to interact in the production phase of period t. If action profile
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at ∈ A is played then the players obtain (1 − δ)(u(at) + b
t
(at)) in the current period

and continuation value yt+1 from the start of the next period. Since all of this is already
conditioned on the history through the negotiation phase of period t, we can think of yt+1

as a function only of xt, the verifiable outcome of production in period t. We can then
write the continuation value from the production phase as a function of the action profile at

chosen in the current period. To do this, define yt+1 : A→ R2 by yt+1(at) ≡ Eλ(at)y
t+1(xt)

for every at ∈ A. Therefore, if at is played in period t, the continuation value from the
production phase is

(1− δ)
(
u(at) + b

t
(at)
)

+ δyt+1(at). (2)

2.3 Incentives in the production phase of a single period
We next explore the players’ incentives in the production phase of any given period t.
Rather than refer to period t by number, I’ll now refer to it as “the current period.” Dropping
the superscripts in Expression 2, let b be the contracted transfer function for the current
period, let y denote the continuation value from the start of the next period, and let b and
y give the expectations of b and y as a function of the action profile. Then Expression 2
becomes (1− δ)(u(a) + b(a)) + δy(a), where a is the action profile in the current period.

Therefore, interaction in the production phase of the current period is essentially play
of the induced game

〈A, (1− δ)(u+ b) + δy〉. (3)

Self-enforcement in the current period amounts to coordination on a Nash equilibrium of
this induced game. In comparison to the induced game in Expression 1 in the short-term
setting, the induced game here simply adds the continuation value as an extra consequence
of the productive actions. As in the short-term setting, for various functions b and y, we can
determine whether any given mixed action profile α is self-enforced in the current period
as a Nash equilibrium of induced game, and calculate the resulting payoff vector.

I recommend checking your understanding of b and y, including how they are con-
strained in the construction of an equilibrium of the game from the current period. The first
thing to note is that incentives in the production phase of the current period are influenced
by both the current-period transfer b and the continuation value y. Second, y incorporates
both self-enforcement and external enforcement of future behavior.

Third, verifiability constraints limit the scope of b, requiring this function to be P -
measurable. Verifiability constraints apply also to the externally enforced aspect of future
behavior, but the self-enforced aspect of future behavior (the manner in which the players
coordinate future actions to achieve a continuation value) is not constrained by verifiability
because the players commonly observe x. In this sense y is less constrained than is b.
However, for any fixed x, whereas b(x) is unbounded, y(x) must be in the set of equilibrium
values in the continuation of the game from the next period. Hence, a major theme of the
analysis of enforcement is that there is a trade-off between current-period transfers and the
next period’s continuation value in the provision of incentives.
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Although I have not yet provided details about the negotiation phase or specified an
equilibrium notion, we can begin to characterize equilibrium behavior in the negotiation
phase in terms of supportable continuation values. We have defined y : X → Rn to give
the continuation value from the start of the next period as a function of the current-period
outcome x, and we know that y is constrained by enforcement and verifiability conditions in
the continuation of the game. These constraints can represented by a subset Y of functions
from X to Rn. Again, we haven’t defined the full model yet, but it is enough to recognize
that there will be some set of achievable functions that give the continuation value from the
next period, and so let us call it Y .

Consider any P -measurable transfer function b : X → Rn
0 , any continuation-value func-

tion y ∈ Y , and any mixed action profile α ∈ ∆A. Suppose the players enter the production
phase with a contract that specifies b for the current period, continuation values in the next
period given by y, and play of α in the current period. The key question is whether α is self-
enforced, meaning that it is a Nash equilibrium of the induced game in Expression 3. If so,
we know that, from the production phase in the current period, the following continuation
value is achievable:

(1− δ)
[
u(α) + b(α)

]
+ δy(α).

If we add the transfer made in the negotiation phase of the current period, then we get the
continuation value from the start of the current period.

The foregoing analysis provides a way to calculate the set of achievable continuation
values from the production phase of a given period, as a function of the current-period
transfer function b and the set Y of continuation-value functions. For any such b and Y ,
where b is P -measurable, let us define

D(b, Y ) ≡
{

(1− δ)
[
u(α) + b(α)

]
+ δy(α)

∣∣ y ∈ Y and

α is a Nash equilibrium of 〈A, (1− δ)(u+ b) + δy〉
}
. (4)

This operator is the core element of the recursive technique for characterizing equilib-
ria of repeated-game and relational-contracting models. The operator is monotone in that
D(b, Y ) ⊂ D(b, Y ′) for Y ⊂ Y ′. For the rest of the analysis, we have to fill out the details
of the model by describing exactly what happens in the negotiation phase of each period.

2.4 An aside: repeated games and the APS algorithm
Before analyzing versions of the relational-contracting model in detail, it is useful to con-
sider a standard repeated game with imperfect public monitoring, where there is no negoti-
ation phase and no contractible transfers. In each period, the players only choose actions in
a stage game 〈A,X, λ, u〉 and receive payoffs. The components of the stage game are the
same as in the relational-contracting model, but without the partition P because there is no
external contract to study. The stage game is the same in every period.

Such a repeated game can be analyze in the framework of our relational-contracting
model by ignoring P , assuming that nothing takes place in the negotiation phase (no trans-
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fers, in particular), and assuming that the externally enforced transfer function is exoge-
nously fixed at b ≡ 0 in every period. Let us also assume that the players have access to an
arbitrary public randomization device at the end of each period; this enables the players to
jointly randomize over their future plans.

The standard solution concept for this repeated-game model is perfect public equilib-
rium (PPE), which is a strategy profile that satisfies two conditions. First, each player best
responds in the continuation of the game from every period and for every history of play.
Second, the strategies are functions only of the public history. That is, the equilibrium
action profile in period t depends only on {x1, x2, . . . , xt−1}.

There are generally many perfect public equilibria, and thus many different equilibrium
payoff vectors. Abreu, Pearce, and Stacchetti (1990) established a relation between PPE
and a set operator like that developed in the previous subsection. To be precise, for any
set W ⊂ Rn, let F (W ) to be the set of all functions from X to convW , where “convW ”
denotes the convex hull of W :

F (W ) ≡ {y : X → convW}.

The convex hull captures the effect of the public randomization device. Abreu, Pearce, and
Stacchetti (1990) prove that the set of PPE payoff vectors in the repeated game is exactly
the largest fixed point of the operator D(0, F (·)).

The recursive technique allows us to characterize PPE continuation values without de-
scribing full strategies. One procedure for calculating W ∗ takes advantage of its monotone
property; we start with the convex hull of the set of all feasible payoff vectors and apply
the operator D(0, F (·)) iteratively to find a limit set. This procedure is sometimes diffi-
cult to perform because it operates in the space of subsets of Rn. But the counterpart for
relational-contract settings is simplified by the special structure of these models, as shown
below.

3 Relational Contracts with Trivial External Enforcement
In this section I describe the analysis of settings in which the externally enforced transfer
function b is exogenously fixed and the same in every period. The interpretation is that
either there is no external enforcement authority at all, or the enforcement technology re-
quires commitment to a single transfer function over time. In the latter case, we could
imagine that the players or an outside party selects the transfer function before the relation-
ship starts. Let us continue to assume that the players have access to an arbitrary public
randomization device at the end of each period.

3.1 Passive contracting
In the first version of the model, all that happens in the negotiation phase is that the play-
ers simultaneously make voluntary transfers, modeled noncooperatively. Each player can
transfer any nonnegative amounts of money to the others and can also throw money away.
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These transfers are observed by everyone. The vector sum of transfers defines m ∈ Rn
−,

the total transfer in the negotiation phase. Since there is no real negotiation accounted
for in the negotiation phase, I call this a relational-contracting environment with “passive
contracting.”12 Quite a few relational-contract models essentially fall into this category.13

As with the class of repeated games described in Section 2.4, perfect public equilibrium
is the solution concept typically used to analyze this model, and it can be expressed in terms
of a recursive formulation of equilibrium continuation values from each phase of the game.
Let W ∗ denote the set of PPE continuation values from the start (negotiation phase) of
every period, as before. Additionally, let W ′ be the set of PPE continuation values from the
production phase in each period. These two sets are of course related. Incentive conditions
in the production phase require W ′ = D(b, F (W ∗)) because, after production, interaction
continues in the negotiation phase of the next period. Likewise, incentive conditions for
the negotiation phase are captured by an operator that makes W ∗ a function of W ′.

To define the second operator, let us work out what continuation values can be supported
from the negotiation phase when the players must coordinate on values in a given set W
from the production phase of the current period. The players choose voluntary transfers,
resulting in the sum transfer m. Then, as a function of the transfers made, they proceed
to coordinate on a particular continuation value w ∈ W . Normalizing the transfer, this
produces a continuation value of (1− δ)m+ w from the negotiation phase.

Note that the most severe way to punish player i for not making the required transfer
would be to coordinate on a continuation value in W that minimizes wi. Player i can
guarantee herself at least this amount from the negotiation phase by transferring nothing to
the others. It turns out that any feasible continuation value that gives each player at least his
or her minimum level can be achieved in a way that satisfies all of their incentive conditions
in the negotiation phase.14 Allowing for the fact that the minimum I just referred to may
not exist, so the infimum is needed, define

triW ≡
{

(1− δ)m+ w
∣∣ m ∈ Rn

−, w ∈ W , and for every i,
there exists wi ∈ W such that (1− δ)mi + wi ≥ wii} .

Here tri stands for “triangle;” the reason for this name will be apparent shortly. The sets of
PPE continuation values must satisfy W ∗ = triW ′.

The PPE characterization follows by combining operators D and tri. Because these
operators are both monotone, the composition triD(b, F (·)) is also monotone. We have
as a result that the set of PPE payoff vectors in the relational-contract game is exactly the
largest fixed point of the operator triD(b, F (·)), which we have denoted W ∗.

Here is where transferable utility, the simplifying assumption made by MacLeod and
Malcomson (1989) and many others since, starts to deliver benefits in the characterization

12See Watson (2013) for a discussion of how to model variations in the “activeness of contracting.”
13These include, for example, MacLeod and Malcomson (1989) and Levin (2003) on principal-agent rela-

tionships, Doornik (2006) and Schöttner (2008) on partnerships/team production. They include extra phases
and (except for Schöttner 2008) separation choices in each period. The threat of separation imposes a lower
bound on equilibrium continuation values, but otherwise, there is not much of consequence that differs.

14This is not difficult to show. See Goldlücke and Kranz (2012, 2013) for general analysis.
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of equilibrium. Observe that, whatever is W , triW is a generalized triangle with a linear
frontier of slope −1. If W is compact, there are numbers w1

1, w
2
2, . . . , w

n
n such that, letting

L = maxw∈W
∑n

i=1wi denote the level, we have v ∈ triW if and only if
∑n

i=1 vi ≤ L and
vi ≥ wii. Thus, the PPE value set W ∗ has the same characterization and we name its level
L∗. Every element of W ∗ splits the joint value of L∗ arbitrarily between the players, with
free disposal and such that each player i gets at least her minimum wii.

In other words, a vector is in W ∗ if and only if it can be expressed as the players jointly
getting level L∗ and making a monetary transfer that is unrestricted except that each player
must obtain at least her minimum continuation value. Thus, specifying a continuation value
to be received at the start of the next period is just like picking a transfer to be received in
the current period, factoring in discounting. The set W ∗ is characterized by n+ 1 numbers
and, for relatively simple production technologies, it becomes straightforward to calculate.
Furthermore, we do so without having to describe the equilibrium strategies.

Perfect public equilibrium in the project-choice example

Consider the example described in Section 1.2, with parameters shown in Table 1 and stage-
game payoffs pictured in Figure 1. In the current setting of trivial external enforcement,
the externally enforced bonus payment ρ is constant across periods. We can characterize
the PPE set for any fixed value of ρ and parameters δ and π, and then identify a value of
ρ that maximizes the level L∗. Let us work through the analysis in the cases of ρ = 4 and
ρ = 28. It turns out that the level is no higher for any other bonus. Since ρ defines b, given
the normalization that the transfer is zero under the low signal, I write D(ρ, F (W ∗)) rather
than D(b, F (W ∗)) in expressions to follow.

Start with the case of ρ = 4. From the characterization result described above, we know
that the PPE value set is of the form

W ∗ = conv{(w1
1, L

∗ − w1
1), (L

∗ − w2
2, w

2
2), (w

1
1, w

2
2)}.

In the production phase, by choosing a1 = 0 or a1 = 2, player 1 can guarantee himself a
continuation value of at least (1− δ) · 0 + δw1

1. Similarly, player 2’s continuation value is
bounded below by (1− δ) · 0 + δw2

2. It is also easy to see that a1 = 0 is a Nash equilibrium
of the induced game with constant continuation-value function y(0) = y(1) ≡ (w1

1, w
2
2),

which establishes that δ(w1
1, w

2
2) is for both players the lowest value in the setD(4, F (W ∗))

and hence the same in triD(4, F (W ∗)). Therefore δ(w1
1, w

2
2) = (w1

1, w
2
2), which implies

w1
1 = w2

2 = 0.
To finish calculating the PPE value set, we need only determine L∗, which will depend

on the discount factor. Consider a candidate value set W with level L. The highest con-
tinuation value for player 1 from the negotiation phase of any period is L and the lowest is
0. Note that a1 = 2 is a Nash equilibrium of the induced game in the production phase for
any constant continuation-value function, which achieves value (0, 6), and therefore L is at
least 6.

To have L = 8, player 1 must be given the incentive to select a1 = 1. Presuming
that this is the case, note that the greatest incentive for a1 = 1 is provided as follows:
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Figure 2: PPE values in the example with ρ = 4.

Contingent on a1 = 1 in the current period, the players coordinate to achieve continuation
value (8, 0) from the negotiation phase of the next period; for any other a1 (in particular for
a1 = 0 or a1 = 2, which give the greatest deviation gain), they coordinate to achieve (0, 8)
from the next period. The resulting incentive condition is:

(1− δ)(−9) + δ · 8 ≥ (1− δ) · 0 + δ · 0,

which simplifies to δ ≥ 9/17.
Thus, if δ ≥ 9/17 then cooperation with the efficient project choice can be sustained

and L∗ = 8, and otherwise L∗ = 6. Consistent with intuition central to repeated-game
theory, cooperation can be sustained if the players are patient enough. The PPE value set
W ∗ is pictured in Figure 2.

The analysis is similar in the case of ρ = 28. By choosing a1 = 2 or a1 = 3, player 1
can guarantee himself a continuation value of at least (1− δ) · 6 + δw1

1 from the production
phase. Similarly, player 2’s continuation value is bounded below by (1−δ)·0+δw2

2. Clearly
a1 = 2 is a Nash equilibrium of the induced game with constant continuation-value function
y(0) = y(1) ≡ (w1

1, w
2
2), which establishes that (1 − δ)(6, 0) + δ(w1

1, w
2
2) = (w1

1, w
2
2),

implying (w1
1, w

2
2) = (6, 0). To reach level 8, player 1 must be given the incentive to select

a1 = 1 by rewarding with continuation value (8, 0) and punishing with (6, L − 6). The
resulting incentive condition is:

(1− δ) · 3 + δ · 8 ≥ (1− δ) · 6 + δ · 6,

which simplifies to δ ≥ 3/5. Thus, under this condition cooperation with the efficient
project choice can be sustained and L∗ = 8; otherwise L∗ = 6.

Because the PPE level is at least 6 with both ρ = 4 and ρ = 28, and because the cutoff
discount factor for level 8 is lower under ρ = 4, it is optimal to specify bonus ρ = 4 for the
relationship, regardless of the discount factor. Cooperation can be sustained at the efficient
project choice in the case of δ ≥ 9/17.
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In their analysis of principal-agent settings, MacLeod and Malcomson (1989) observed
that the worker’s incentive condition in the production phase and the manager’s incentive
condition regarding compensating the worker in the negotiation phase can be pooled to
form a single necessary and sufficient inequality. Levin (2003) further observed that, if
cooperation can be sustained in a PPE, then it can be sustained in a Pareto-perfect PPE,
where every equilibrium continuation value is on the efficient frontier of W ∗. Goldlücke
and Kranz (2013) provide general results for all settings with two players and perfect mon-
itoring.15 But note also that, regardless of δ, inefficient PPE exist, such as the strategy that
has the players never making transfers and player 1 choosing a1 = 0 in the project-choice
example with ρ = 4.

The nature of contract

Since there is only self-enforcement in this version of the model, the relational “contract”
here is just whatever perfect public equilibrium the players have coordinated on. Because
this model does not have active contracting, there is no theory of how the equilibrium is
selected, much less that the players would coordinate on an equilibrium at all. In other
words, the current model incorporates the self-enforced aspects of contracting but says
nothing about the establishment of contracts. For a more complete model of relational
contracting, we need to account for the contracting process, and this is where the next
section heads.

3.2 Active contracting
The next step in our tour is to enrich the model with an explicit account of active con-
tracting, where players exercise bargaining power in the process of reaching agreements.
Whereas in the previous version of the model we assumed that the negotiation phase is
just a time when players make voluntary transfers, we now assume that interaction in the
negotiation phase includes actual bargaining over a contract and an immediate transfer. In
the present context, where there is trivial external enforcement, a contract is an agreement
only about future behavior to be self-enforced. As in the model of a short-term relation-
ship, one can account for negotiation either noncooperatively or cooperatively. The former
approach specifies a noncooperative bargaining protocol, where players make and respond
to offers of contracts and immediate transfers. The latter approach specifies a cooperative
bargaining solution to account for play in the negotiation phase.

15Here Pareto-perfection is imposed in the negotiation phase. Imposing the condition in a standard re-
peated game with voluntary transfers incorporated into the stage game, as examined by Baliga and Evans
(2000), yields a less tractable characterization of equilibrium values. Pareto-perfection underlies definitions
of renegotiation-proof equilibrium in the repeated-game literature, specifically those of Rubinstein (1980),
Bernheim and Ray (1989), and Farrell and Maskin (1989). Pearce’s (1987) definition has a different founda-
tion and allows for Pareto-ranked equilibrium continuation values. None of these theories of renegotiation-
proofness actually model the negotiation process; they does not contemplate the possibility of disagreement,
and bargaining power plays no role. In contrast, the theory of contractual equilibrium, discussed in the next
subsection, is based on an explicit account of the negotiation process.
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Miller and Watson (2013) and Watson (2013) introduced a framework for modeling
relational contracts with active contracting, and this is what I’ll focus on here.16 Miller and
Watson (2013) develop a fully noncooperative model as well as a hybrid version in which
the negotiation is modeled cooperatively using the Nash bargaining solution with fixed bar-
gaining weights.17 They provide an equivalence result that connects the two approaches.
The result is a theory of behavior called contractual equilibrium in both the fully noncoop-
erative game and the hybrid game. Conveniently, the set of contractual equilibrium values
has a recursive characterization along the lines of that for PPE values. So we do not need
to fuss with a description of equilibrium strategies here, but instead describe the hybrid
version of the model and the recursive formulation of equilibrium values.

We can think of the players, in the negotiation phase of any period, as bargaining over
(i) an immediate transfer, (ii) the action profile they will play in the current period, and
(iii) their coordinated behavior in future periods. The third element is summarized by their
continuation value as a function of the current-period outcome. The continuation value
incorporates the players’ anticipated renegotiation of their agreement in future periods.
One way to parse this is that the players agree how they will play in future periods unless
and until they successfully renegotiate, so the value of the agreed behavior becomes the
disagreement point for future renegotiation. They are thus implicitly bargaining over the
implied continuation values that incorporate anticipated renegotiation in future periods.

Contractual equilibrium values

In the hybrid model, the bargaining protocol is represented by an exogeounsly fixed vector
of bargaining weights π = (π1, π2, . . . , πn) satisfying πi ≥ 0 and

∑n
i=i πi = 1, applying to

every period. Bargaining in the negotiation phase is resolved according to the generalized
Nash bargaining solution, where the players coordinate to achieve a continuation value that
maximizes their joint value and, by making an immediate transfer, distribute the surplus in
proportion to their bargaining weights. The surplus is relative to a disagreement point that
is assumed to entail no immediate transfer and then coordination to achieve an available
continuation value from the production phase. The disagreement point may depend on the
history of interaction to the previous period, implying that generally multiple continuation
values can be supported from the negotiation phase.

Here is the characterization of the contractual equilibrium value set. Suppose a set
W gives the continuation values from the negotiation phase of any period. Just as in the
previous version of the model, incentive conditions in the production phase imply that
D(0, F (W )) is the set of equilibrium values from the production phase, and the maximum

16The theory builds on the hybrid modeling approach described in Watson (2001).
17Because players can threaten to “hold-up” negotiation, they take advantage of bargaining power in much

the same way as in models of short-term trading relationships in which unverifiable investments are followed
by verifiable trade, as in Williamson (1985) and Grossman and Hart (1986). For general analysis based on
mechanism design, see Maskin and Moore (1999) and Watson (2007).
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joint value is

L = max
w∈D(0,F (W ))

n∑
i=1

wi .

The bargaining solution requires that every value w ∈ W must satisfy

w = w + π

(
L−

n∑
i=1

wi

)
, (5)

for some w ∈ D(0, F (W )). In this expression, w is the disagreement point and the term
in parentheses is the bargaining surplus. We say the set W is bargaining self-generating
(BSG) if it satisfies this condition, and we call L its level. Clearly any BSG set has a
constant joint value in that

∑n
i=1wi = L for every w ∈ W . The contractual equilibrium

value (CEV) set W ∗ is defined as the dominant BSG set in the sense of maximizing the
level, and we let L∗ denote its level.18 Under suitable technical conditions, contractual
equilibrium exists and W ∗ is compact.

Figure 3 illustrates the CEV set in the two-player setting. Here the CEV set is a compact
subset of a line of slope −1, characterized by its endpoints z1 and z2, where z1 is the value
that is worst for player 1 and z2 is the worst point for player 2. In fact, whether any
particular points in the interior of this line segment are included in W ∗ is inconsequential
to the equilibrium construction because all such points can be achieved in expectation using
the public randomization device. Therefore, we only need to keep track of the endpoints z1

and z2. The span of W ∗, denoted by d∗, is defined as the horizontal (equivalently vertical)
length of the CEV set; that is, d∗ = z21 − z11 = z12 − z22 . The span figures prominently in the
analysis of examples.

We can find the CEV set W ∗ by deconstructing the two endpoints. Associated with
each endpoint zi is a disagreement point wi ∈ D(0, F (W ∗)) such that the following holds:

zi = wi + π
(
L∗ − wi1 − wi2

)
= πL∗ +

(
π2w

i
1 − π1wi2, π1wi2 − π2wi1

)
. (6)

This is the condition of Equation 5. Because z1 is the point inW ∗ that minimizes player 1’s
payoff, the associated disagreement point w1 is the point in D(0, F (W ∗)) that is furthest
in the direction (−π2, π1), orthogonal to π. Likewise, disagreement point w2 is the point
in D(0, F (W ∗)) that is furthest in the direction (π2,−π1). This is illustrated in the right
graph of Figure 3.

Let us pause for a moment to interpret the solution concept and reflect on how features
of the model relate to the characterization of the CEV set. Recall that, in the setting of
passive contracting, transferrable utility and the ability to make transfers in the negotiation
phase implies that the PPE value set is a generalized triangle and therefore characterized
by n + 1 numbers. In the current setting of active contracting, the model’s bargaining

18The dominance condition is straightforward to assess because BSG sets have constant joint values and
are therefore ranked by level. In turns out that this ranking is also in terms of Pareto dominance, in the sense
that if BSG setsW andW ′ have levels satisfying L ≤ L′, then there exists a BSG setW ′′ with level L′′ ≥ L′
such that every point in convW is weakly Pareto dominated by a point in convW ′′.
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Figure 3: An illustration of the CEV set.

component implies that continuation values from the beginning of periods all have the same
joint value, which puts more structure on the CEV set. For more intuition, in particular on
steps to calculate the CEV set, let’s return to the example.

Contractual equilibrium in the project-choice example

Similar to our analysis of PPE values, we can characterize the CEV set in our running
example for any fixed value of ρ and parameters δ and π. Then we can identify a value of
ρ that maximizes the level L∗. As before, it suffices to focus on the cases of ρ = 4 and
ρ = 28, because the players can do no better with any other external contract.

Consider the case of ρ = 4 and let us take any candidate value set W with endpoints z1

and z2, level L, and span d. It is not difficult to confirm that the point inD(4, F (W )) that is
furthest in the direction (π2,−π1) is achieved by specifying y(0) = y(1) = z2 and having
player 1 choose a1 = 0, which is an equilibrium of the induced game. Player 1’s payoff is
maximized and player 2’s payoff is minimized. Therefore w2 = (1− δ)(0, 0) + δz2. Using
Equation 6 for i = 2, substituting for w2, using the fact that z21 + z22 = L∗, and rearranging
terms yields z2 = πL.

We can also confirm that, if it is possible to give player 1 the incentive to choose a1 = 1,
then the point in D(4, F (W )) that is furthest in the direction (−π2, π1) is achieved by
specifying y(1) = z1 + (9,−9)(1 − δ)/δ, y(0) = z1, and play of a1 = 1. We obtain this
specification of y by combining the incentive condition for a1 = 1, namely

(1− δ)(−9) + δy1(1) ≥ (1− δ) · 0 + δy1(0),

with the objective of reducing player 1’s payoff by making y(1) as small as possible while
also keeping y(0) in W . We then have

w1 = (1− δ)(−9, 17) + δ

(
z1 + (9,−9) · 1− δ

δ

)
= (1− δ)(0, 8) + δz1.
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Figure 4: CEV set in the example with ρ = 4.

Achieving a1 = 1 implies L = 8, and so z11 + z12 = 8 and w1
1 + w1

2 = 8. The surplus
of negotiation in this case is zero, and Equation 6 for i = 1 then amounts to z1 = w1 =
(1− δ)(0, 8) + δz1, which simplifies to z1 = (0, 8).

But note that this construction relies on y(1) being an element of W , which requires
d ≥ 9(1 − δ)/δ. From our analysis of the other endpoint, we have z2 = 8π, implying
d = 8π1. Thus, a1 = 1 is indeed viable only if 8π1 ≥ 9(1 − δ)/δ, which simplifies to
δ ≥ 9/(9 + 8π1).

In conclusion, if δ ≥ 9/(9 + 8π1) then cooperation with high effort can be sustained,
L∗ = 8, d∗ = 8π1, and the CEV set W ∗ has endpoints z1 = (0, 8) and z2 = 8π. Otherwise,
in equilibrium player 1 must select a1 = 0 or a1 = 2 in the production phase, L∗ = 6,
d∗ = 6π1, and W ∗ has endpoints z1 = (0, 6) and z2 = 6π. The CEV set is shown in
Figure 4.

The case of ρ = 28 is similarly analyzed. If δ ≥ 3/(3 + 2π1) then cooperation with
high effort can be sustained, L∗ = 8, d∗ = 2π1, and W ∗ has endpoints z1 = (6, 2) and
z2 = (6, 0) + 2π. Otherwise, in equilibrium it is only possible to have a1 = 2 or a1 = 3 in
the production phase, L∗ = 6, and W ∗ is the singleton with z1 = z2 = (6, 0). Observe that
the level is at least 6 with both ρ = 4 and ρ = 28; further, the cutoff discount factor for level
8 is lower under ρ = 4. Therefore ρ = 4 is optimal for the relationship, regardless of the
discount factor. Notice that, whereas ρ = 28 minimizes player 1’s gain of deviating from
a1 = 1 in the stage game, the relatively small span makes this external contract inferior to
ρ = 4.

Comparing the results here to those in the previous subsection, the implications of
active contracting are clear. First, because players can renegotiate in every period and
would pursue their mutual interest in increasing their joint value, in equilibrium they are
always at the frontier of their achievable set of continuation values from the negotiation
phase. Thus, whereas the PPE value set in the setting of passive contracting generally has

22



Pareto-ranked elements, the CEV set in the setting of active contracting does not.
Second, the players’ bargaining weights affect the CEV set. In this example, disagree-

ment point w2 entails selection of a project in the current period that is inefficient compared
to the choice that defines w1. The renegotiated continuation value z2 adds a surplus, of
which player 1 obtains fraction π1. Indeed, this is the continuation value that the players
would coordinate on to reward player 1 for choosing the efficient project in the previous
period, so providing player 1 with incentives requires that he have sufficient bargaining
power to extract a substantial share of the renegotiation surplus. In other words, when it
comes time for player 2 to compensate player 1 for exerting high effort in the previous
period, player 2 can hold up player 1 and try to avoid the payment. But this would lead
player 1 to exert low effort in the current period, so they renegotiate and player 1 uses her
bargaining power to extract the transfer from player 2.

3.3 Variations and extensions
Miller and Watson’s (2013) analysis is based on assumptions about the meaning of state-
ments that the parties make to each other. Alternatives assumptions lead to variations of
the contractual-equilibrium concept. For instance, Ramey and Watson (1999, 2002) and
Klimenko, Ramey, and Watson (2008) invoke a tighter theory of bargaining in which the
disagreement point in any given period cannot depend on the history of interaction. An
implication is that contract enforcement requires group punishments that enforcement in-
stitutions may be needed to facilitate.19 Goldlücke and Kranz (2019) develop a similar
model in which renegotiation is triggered randomly, and when it occurs, the disagreement
point depends only on a state verifiable representing a prior technology choice. Safronov
and Strulovici (2018) adopt a more permissive theory of bargaining than do Miller and
Watson (2013), in which players may be punished for proposing Pareto improvements; this
leads to a wider range of equilibrium outcomes than predicted by contractual equilibrium.

As mentioned already, a number of relational-contracting models include an option for
unilateral separation. Models in the macro-labor literature typically combine relational
contracting between workers and firms with matching markets; thus, when the relationship
between a worker and firm is severed, the worker enters the unemployment pool to await a
match with another firm, while the firm enters the pool of employers with vacant positions.
Relational contracts interact with conditions in the matching market and in other markets.20

The effect on attainable values of the option to separate depends on whether separation is
assumed to be triggered by disagreement in the negotiation phase, where it becomes the
disagreement point, or is an option at another time in each period, where it may be chosen to
punish a deviation. Generally, increasing the value of the players’ outside options tightens
incentive constraints within a relationship.

19This may be particularly salient in international trade. Samples of recent theoretical studies are Beshkar
(2016) and Buzard (2017).

20Articles in this category include Shapiro and Stiglitz (1984), MacLeod and Malcomson (1989), Ramey
and Watson (1997), and den Haan, Ramey, and Watson (2000), and Sobel (2006).
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Another active direction of research is analysis of relational contracts with private in-
formation. In one category are models with imperfect private monitoring, such as where a
manager receives a private signal of the worker’s effort. If we assume that the manager can
make a statement about her signal, which becomes part of the outcome of production, then
this setting fits into the framework described here. A second category comprises models
with persistent private information, such as if a worker’s effort cost is determined by nature
at the beginning of the game and known only to the worker, which are well outside our
framework.21

4 Relational Contracts with Nontrivial External
Enforcement

Let us next examine settings with nontrivial external enforcement. The literature contains a
variety of modeling exercises in which self-enforced and externally enforced terms interact,
but most studies substantially limit the extent of external enforcement and/or make ad hoc
assumptions about equilibrium selection. Here I’ll sketch a special case of the general
model of Watson, Miller, and Olsen (2020), which does not have such limitations and has
the added benefit of including a recursive formulation of equilibrium values. It is a setting
of active contracting and the solution concept is contractual equilibrium. At the end of this
section I briefly describe some of the other theories in the literature.

Let us drop the assumption made in Section 3 that the transfer function b is exogenously
fixed at 0 for all periods, so we return to the full generality of the model sketched in Sec-
tion 2. I now provide more details. Let B ≡ {b : X → Rn

0} denote the set of transfer
functions, and let HX ≡ ∪∞k=0X

k be the space of finite-length outcome histories, where
the element for k = 0 is defined as the null history h0 at the start of the relationship. An
external contract specifies a transfer function bt for each period t, itself as a function of the
history of outcomes through period t − 1. To be formal, an external contract is a function
c : HX → B, where for any (t− 1)-period history h ∈ HX , the transfer function specified
for period t is bt = c(h).

It is most convenient to deal with these contracts in the form of “continuation contracts.”
Given a history of outcomes through period t − 1, the continuation contract from period t
gives bτ in each period τ ≥ t as a function of the history of outcomes from t until τ − 1. In
other words, for any fixed history to period t − 1, we keep track of the contracted transfer
functions starting from period t, as a function of the outcomes from period t on.

The continuation contract in a given period may be interpreted as specifying the transfer
function b for the current period and a mapping from current-period outcome x to the
continuation contract in force at the beginning of the next period. Formally, for any x ∈ X
and h ∈ HX , where h is k periods in length, let xh denote the (k + 1)-period outcome

21MacLeod (2003), Levin (2003), and Fuchs (2007) analyzes settings with private monitoring. Persistent
private information is found in the models of Watson (1999, 2002), Halac (2012), Malcomson (2016), and
Fahn and Klein (2019).
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history in which x is followed by the sequence h. Define c|x : HX → B by (c|x)(h) ≡
c(xh) for every h ∈ HX . If the players operate under continuation contract c in period t,
then they have transfer function c(h0) in this period and, after realizing outcome x, they
will enter the following period with continuation contract c|x.

Because external contracts can depend only on information that is verifiable, the transi-
tion from a continuation contract in one period to the continuation contract in the following
period must be measurable with respect to the partition of stage-game outcomes. Let C be
the set of contracts that respect verifiability.22

4.1 Active contracting
In the setting of nontrivial external enforcement, contracting cannot be completely passive
because a negotiation protocol is required to model how the players can make changes
to the external contract. While it is possible to model contracting that is passive to some
degree, I shall skip such an exercise and proceed directly to active contracting along the
lines of the model described in Section 3.2. Let us focus on the case of two players, where
n = 2.

Players begin their relationship in period 1 with the default external contract ĉ1 that
specifies transfer function 0 for every period regardless of the history. Then in the negotia-
tion phase of the first period, the players bargain over a new external contract c1 to replace
ĉ1, an immediate transfer m1, and a specification of future behavior summarized by con-
tinuation values. The disagreement point entails c1 = ĉ1 and m1 = (0, 0). At the end of
the first period, the productive outcome x1 determines the continuation contract ĉ2 = c1|x1
that the players inherit at the start of period 2.

The negotiation phase works the same way in every future period t. The players enter
the period with continuation contract ĉt, they negotiate to change it to ct and make transfer
mt, and then the outcome xt determines ĉt+1 = ct|xt for period t + 1. The disagreement
point entails ct = ĉt and mt = (0, 0). Note that the players bargain over both externally
enforced and self-enforced components of their contract in the negotiation phase, so there
is more happening in this model than we had in the setting of Section 3.2.

Contractual equilibrium

Let us account for interaction in the negotiation phase cooperatively, where the bargain-
ing protocol is represented by a fixed vector of bargaining weights π = (π1, π2) satisfying
π1, π2 ≥ 0 and π1 + π2 = 1. Contractual equilibrium can be represented by a recur-
sive formulation of continuation values as before. Because external contracts render the
relational-contracting game nonstationary, the set of continuation values attainable from a
given period depends on the inherited contract. Let W (c) ⊂ R2 denote the set of contin-
uation values from the beginning of a period in which c is the inherited contract, and let
W = {W (c)}c∈C be the collection.

22A contract c respects verifiability if, for all x, x′ ∈ X , x ∈ P (x′) implies c|x = c|x′.
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Let us first consider what continuation values can be achieved from the production
phase of a period under continuation contract c. Note that for any outcome x, the contract
inherited in the next period will be c|x and so the continuation value from the start of the
next period must be in the set W (c|x). This means that the set of feasible continuation-
value functions is

F c(W) ≡ {y : X → R2 | y(x) ∈ convW (c|x) for every x ∈ X}.

Recalling that c specifies transfer function b = c(h0) in the current period, we find that the
set of continuation values attainable from the production phase is D(c(h0), F c(W)).

Next we apply the bargaining solution. In the negotiation phase under inherited contract
ĉ the players would coordinate on some value w ∈ D(ĉ(h0), F ĉ(W)) in the event that they
fail to make an agreement, making w the disagreement point for negotiation. The Nash
bargaining solution predicts that the players renegotiate to a contract c and coordinate on a
continuation value that maximizes their joint value,

L ≡ max{w1 + w2 | c ∈ C, w ∈ D(c(h0), F c(W))}, (7)

and they choose an immediate transfer to achieve continuation value

w = w + π (L− w1 − w2) . (8)

A collectionW = {W (c)}c∈C is called bargaining self-generating (BSG) if for every ĉ ∈
C and w ∈ W (ĉ), there exists a value w ∈ D(ĉ(h0), F ĉ(W)) such that Equation 8 holds.
We call L the level of the collection. Then the contractual equilibrium value (CEV) collec-
tion W∗ = {W ∗(c)}c∈C is defined as the dominant BSG collection in the sense of maxi-
mizing the level, denoted L∗. Under suitable technical conditions, contractual equilibrium
exists.

This model may seem impossible to solve, because the set of external contracts is huge
and it is not obvious how to even begin the analysis of any example. Contracted trans-
fers may depend on the outcome history in a nonstationary manner. For instance, in a
principal-agent setting, a contract could specify a schedule of bonus payments that changes
in response to past outcomes, ratcheting up or down over time. Several questions must be
raised. What are the properties of the optimal external contract? Do the players renegotiate
it on or off the equilibrium path? Does the external enforcement technology complement
self-enforcement?

Fortunately, Watson, Miller, and Olsen (2020) provide a characterization result that
applies to the model sketched here (their model is more general), greatly simplifying the
analysis and helping to answer the questions just now posed. The optimal continuation
contract c∗, which the players select to achieve the level L∗, is semistationary. Is specifies
one transfer function b∗ for the first period and another transfer function b for all other
periods. There is no dependence on the history of outcomes. Thus, in equilibrium, in the
first period the players agree to the external contract that specifies b∗ for period 1 and b for
every period 2, 3, . . . ., regardless of the history.
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Furthermore, both on and off the equilibrium path, in each period the players renego-
tiate back to this same continuation contract. That is, in period 2 they revise the external
contract to specify b∗ in period 2, retaining the specification of b for all future periods. In
period 3 they revise again to specify b∗ for period 3, and so on. The transfers they make in
the renegotiated deals depend on the history because the manner in which they coordinate
in disagreement depends on past outcomes.

The intuition behind this result has two parts: First, transfers specified in b can substi-
tute for variations in the continuation contract, because they are conditioned on the same
information, and this substitution can be done while preserving any needed variations in
the self-enforced aspects of continuation value. This means that the continuation contract
can be constant in the outcome of the current period. Second, what matters for incentives in
the current period is the span of continuation values. By specifying a transfer function for
all future periods to achieve the largest span, the players will be able to achieve the highest
attainable joint value in the current-period stage game, and future renegotiation will en-
sure that the high value is achieved in future periods as well, without reducing the span of
continuation values.

On the technical side, the characterization result provides an algorithm for calculating
b∗ and b. The latter is determined as follows: Suppose we exogenously fix a single transfer
function b̂ for all periods as in Section 3, a stationary setting with trivial external enforce-
ment. Then we can calculate the game’s CEV set—call it Ŵ (b̂)—and see how it depends
on b̂. It turns out that b is the transfer function that maximizes the span of Ŵ (b̂). Then b∗ is
the transfer function that maximizes the players’ joint value in the induced game in which
all continuation values are in Ŵ (b).

Kostadinov (2020), in work contemporaneous with Watson, Miller, and Olsen (2020),
proved a similar result for a principal-agent setting with risk aversion, utilizing the PPE
solution concept. In Kostadinov’s model, the parties form a semistationary external contract
specifying one bonus scheme for the first period and a second bonus scheme for all future
periods. Then in every period on or off the equilibrium path, the parties revise the contract
to provide the former bonus scheme in the current period.23

Contractual equilibrium in the project-choice example

Our running example illustrates contractual equilibrium in the setting with nontrivial ex-
ternal enforcement, as well as attendant economic insights regarding the functionality of
nonstationary contracts. As before, please refer to Table 1 and Figure 1 for a reminder of
the parameters. The analysis of contractual equilibrium in the setting of trivial external
enforcement provides guidance for determining both b and b∗.

Let us first put ourselves in the stationary setting of Section 3, where the bonus is fixed
at ρ for all periods. Recall that in Section 3.2 we reached the conclusion that bonus ρ = 4
is optimal because it leads to a lower cutoff discount factor for the efficient project choice

23Other reasons for optimal contracts to be nonstationary in time-invariant environments are one party’s
limited commitment to a long-term contract (Ray 2002), limited liability (Fong and Li 2017), or persistent
private information (Martimort, Semenov, and Stole 2016).

27



than would bonus ρ = 28. The incentive condition for a1 = 1 resulted from comparing the
deviation gain, which is 9(1 − δ) in the case of ρ = 4 and 3(1 − δ) in the case of ρ = 28,
with the span used for rewards and punishments from the next period. Under parameter
values that yield L = 8 where a1 = 1 is achieved, the span of the CEV set is 8π1 in the
case of ρ = 4 and 2π1 in the case of ρ = 28.

With nontrivial external enforcement, the players can specify different bonuses for the
current and future periods, effectively coupling a small deviation gain in the current period
with a large span from the next period. Importantly, bonus ρ = 4 results in a CEV span of
at least 6π1 even if it is not possible to achieve the efficient project choice a1 = 1 under
this bonus. Further, bonus ρ = 28 minimizes the current-period deviation gain. Thus,
by specifying ρ = 28 for the current period and ρ = 4 for all future periods, player 1 is
given the greatest possible incentive to choose a1 = 1 in the current period. The incentive
condition is 3(1− δ) ≥ L∗π1δ, which simplifies to δ ≥ 3/(3 + L∗π1).

The conclusion is thus: If 3/(3 + 6π1) ≤ δ ≤ 9/(9 + 8π1), then efficient effort can
be sustained, L∗ = 8, and the optimal external contract is semistationary. The contract
specifying a large bonus of ρ = 28 in the first period and a smaller bonus ρ = 4 in all
future periods is optimal. In each period, the players revise the bonus scheme to increase
the current-period bonus to ρ = 28; renegotiation does not change the implied span of
continuation values, which is 6π1. If δ ≥ 9/(9 + 8π1) then efficient effort can be sustained
with a stationary external contract that provides for a bonus of ρ = 4 in every period. If
δ < 3/(3 + 6π1) then efficient effort cannot be sustained in equilibrium.

Notably we have found that, with nontrivial external enforcement, a semistationary
contract delivers the efficient outcome in settings where efficiency is not attainable with
a constant bonus (as studied in Section 3.2). This is the case for δ between 3/(3 + 6π1)
and 9/(9 + 8π1). Thus, for applications, it is important to carefully consider nonstationary
contracts and renegotiation.

4.2 Variations and extensions
Prior to Watson, Miller, and Olsen (2020) and Kostodinov (2019), most models of rela-
tional contracting with negotiation and nontrivial external enforcement restricted attention
to short-term external contracts, as in Radner (1985) and Pearce and Stacchetti (1998),
or stationary long-term external contracts, as in Che and Yoo (2001) and Itoh and Morita
(2015). Prior theories are also varied in terms of whether and when active negotiation is
assumed to occur, and whether players are able to renegotiate over one or both parts of
their contract. For instance, Baker, Gibbons, and Murphy (1994, 2002) and Schmidt and
Schnitzer (1995) assumed any deviation triggers an end to intertemporal self-enforcement,
meaning that play in each future period must be a Nash equilibrium of the induced game
with constant continuation values. But they also assumed that, following a deviation, the
players would be able to renegotiate the external contract.24 An implication is that im-

24A similar line is taken by Kvaløy and Olsen (2009) and Iossa and Spagnolo (2011). And plenty of
models with external enforcement assume that contracts are formed in a fairly passive way (such as via a
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proving the external enforcement technology can have the effect of tightening incentive
conditions and reducing welfare. In contrast, Watson, Miller, and Olsen (2020) show that,
in the more realistic setting in which players can renegotiate both components of their con-
tract, the external-enforcement technology always complements self-enforcement.

5 Directions for Further Study
The modeling framework presented here incorporates the essential elements of relational
incentive contracts, is straightforward to work with, and suits a variety of applications. This
simple and general platform is a good starting point for a research projects in a variety of
areas. One promising line of research is to broaden the theoretical foundations of active
contracting and bargaining power, motivated by questions such as the following. What
might make bargaining over an external contract different from bargaining over the internal,
self-enforced part? On either dimension, are parties more easily able to negotiate over
some aspects of their relationship relative to other aspects? How do they establish or lose
trust with respect to the connection between what they pledge to do and actually do? What
happens if trust and coordination break down completely? These questions require a deeper
analysis of bargaining and equilibrium selection than has been summarized in this article,
and may also require theories of chaos.

There are technological variations to explore, especially for contractual equilibrium
and related concepts. I have in mind issues such as costly contracting, bounds on transfers,
nonstationary settings with state variables (such as debt holdings or capital), endogenous
monitoring and technology choice, long-term investments, and short-term shocks.25 An-
other research area ripe for further investigation is contracting in settings with overlapping
relationships, both in time such, as with overlapping generations, and in space, such as with
networks or communities.26 Finally, there is plenty to explore in settings with persistent
private information. In all of these areas, contributions that incorporate active contracting
and deepen the foundations of bargaining would be well received.
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Goldlücke, Susanne and Sebastian Kranz: “Infinitely Repeated Games With Public Moni-
toring and Monetary Transfers,” Journal of Economic Theory 147 no. 3 (2012): 1191–
1221.
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