A Note on the Relation Between Models in Discrete and Continuous Time

Joel Watson*

November 2020

Abstract

This note provides a uniform convergence result that relates (i) a sequence in discrete time that is defined inductively with respect to a transition function and (ii) the solution of a differential initial-value problem in continuous time that is derived from the same transition function.

1 Introduction

Consider a discrete-time modeling exercise with a solution that can be expressed inductively. The model specifies a state space $X \subset \mathbb{R}^n$, an initial state $x^0 \in X$, and a period length $\Delta > 0$. The solution (the model’s prediction) is a sequence $\{x^k(\Delta)\}_{k=0}^{\infty}$, where x^k denotes the state in period k. Suppose that the solution is characterized by a function $f: X \times \mathbb{R}_+ \rightarrow X$, such that

$$x^0(\Delta) = x^0 \quad \text{and} \quad x^{k+1}(\Delta) = f(x^k(\Delta), \Delta) \quad \text{for each } k \in P,$$

where $P = \{0, 1, 2, \ldots\}$ is the set of natural numbers.

In some settings, whereas the transition function f can be calculated at least implicitly, it would be difficult to solve for $\{x^k(\Delta)\}$. Nevertheless, it may be possible to calculate a continuous-time limit as $\Delta \rightarrow 0$ using the transition function. Specifically, suppose that

$$h(x) \equiv \lim_{\Delta \rightarrow 0^+} \frac{f(x, \Delta) - x}{\Delta},$$

is well defined (that is, the limit exists) for every $x \in X$, and suppose there is a unique solution $y: \mathbb{R}_+ \rightarrow X$ to the system of differential equations $Dy = h(y)$ with initial value $y(0) = x^0$. Here Dy denotes the first derivative (Jacobian) matrix of y.

A key issue is whether y is a good approximation of $\{x^k(\Delta)\}$ for small values of Δ. To make this precise, let us convert the sequence into a function that gives the state

x as a function of the time t on the continuum, so that it is comparable to y. For simplicity, let it be the piece-wise linear function \(\hat{x}: \mathbb{R}_+ \times \mathbb{R}_+ \times X \rightarrow X \) defined by

\[
\hat{x}(t, x^0; \Delta) \equiv x^{[t/\Delta]}(\Delta) + \left(t - \frac{[t/\Delta]}{\Delta} \right) \left(x^{[t/\Delta]+1}(\Delta) - x^{[t/\Delta]}(\Delta) \right),
\]

where for any number \(a \geq 0 \), \([a]\) denotes the largest integer \(k \) satisfying \(k \leq a \). Thus, for every time \(t \) satisfying \(t = k\Delta \) for some integer \(k \), we have \(\hat{x}(t, \Delta) = x^k(\Delta) \), and the function is continuous with linear segments.

Suppose we are interested in the comparison for an interval \([0, T]\) in continuous time. Then we should ask whether \(\hat{x}(\cdot, x^0; \Delta) \) converges to \(y(t) \) uniformly in \(t \in [0, T] \) as \(\Delta \) approaches zero. If so, we can say that the function \(y \) well approximates the sequence \(\{x^k(\Delta)\}_{k=0}^{\lfloor T/\Delta \rfloor} \) on \([0, T]\). This note shows that convergence is assured under appropriate conditions on the primitives that one would hope to be able to check in applications. It also gives a similar result for more challenging settings in which \(x^{k+1} \) is a function of both \(x^k \) and \(x^{k-1} \). One component of the analysis utilizes a standard result on the convergence of Euler’s one-step method for approximating the solution of an initial-value problem for ordinary differential equations.

2 Results

Note that if \(h \) is well defined and \(f \) is differentiable, then it must be that \(f(x, 0) = x \) and \(h(x) = D_\Delta f(x, 0) \) for all \(x \in X \), the latter conclusion following from L’Hôpital’s rule. Some assumptions described below are made directly on \(h \) for convenience but could also be put in terms of \(f \). Let \(D \) denote the first-derivative, as already mentioned, and \(D^2 \) the second derivative. Subscripts will indicate differentiation with respect to a subset of the variables (either \(x \) or \(\Delta \)). Depending on the functions being dealt with, the derivatives may be matrices or scalars. Let \(P_+ \) denote the positive integers \(\{1, 2, \ldots\} \).

Let us start by comparing \(\{x^k(\Delta)\}_{k=0}^{\lfloor T/\Delta \rfloor} \) with another sequence \(\{z^k(\Delta)\}_{k=0}^{\lfloor T/\Delta \rfloor} \) that is defined by the natural discrete-time approximation of \(y \) using the known derivative \(h \):

\[
z^0(\Delta) = x^0 \quad \text{and} \quad z^{k+1}(\Delta) = z^k(\Delta) + h(z^k(\Delta))\Delta \quad \text{for each} \ k \in P.
\]

We translate this sequence into a function of continuous time, \(\hat{z}: \mathbb{R}_+ \times \mathbb{R}_+ \times X \rightarrow X \), by defining

\[
\hat{z}(t, x^0; \Delta) \equiv z^{[t/\Delta]}(\Delta) + \left(t - \frac{[t/\Delta]}{\Delta} \right) \left(z^{[t/\Delta]+1}(\Delta) - z^{[t/\Delta]}(\Delta) \right).
\]

Theorem 1: Let \(X \) be an open subset of \(\mathbb{R}^n \), where \(n \) is finite, and let \(\Gamma \) be an open interval of \(\mathbb{R} \) containing 0. Let \(f: X \times \Gamma \rightarrow X \) be a thrice continuously differentiable function satisfying \(f(x, 0) = x \), and define \(h: X \rightarrow \mathbb{R}^n \) by \(h(x) = D_\Delta f(x, 0) \) for all
\(x \in X \). Assume \(D^2_\Delta f(\cdot, 0) \) and \(D^2 h \) are bounded. Let functions \(\hat{x} \) and \(\hat{z} \) be defined by Expressions 1, 3, 4, and 5. Fix a positive number \(T \). Then \(\hat{x}(\cdot; \cdot; \Delta) \) and \(\hat{z}(\cdot; \cdot; \Delta) \) converge uniformly on \([0, T] \times X\) as \(\Delta \to 0 \).

The next result establishes the uniform convergence of \(\hat{z} \) to \(y \) which, together with the first theorem, establishes that \(\hat{x} \) converges uniformly to \(y \). This theorem is a slight extension of a standard convergence result for Euler’s one-step approximation of the solution of an initial-value problem (see, for instance, Suli and Mayers 2003, pages 317–323).

Theorem 2: Let \(X \) be an open subset of \(\mathbb{R}^n \), where \(n \) is finite, and consider any twice-differentiable function \(h : X \to \mathbb{R}^n \). Assume that the second derivatives of \(h \) are bounded. For a given \(x^0 \in X \), suppose there is a unique solution to the system of differential equations \(Dy = h(y) \) with initial value \(y(0) = x^0 \). Let function \(\hat{z} \) be defined by Expressions 4 and 5. Consider any function \(\tilde{x}^0 : \mathbb{R}_+ \to X \) such that \(\tilde{x}^0(\Delta) \) converges to \(x^0 \) as \(\Delta \to 0 \), and let \(T \) be any positive number. Then \(\hat{z}(\cdot; \tilde{x}^0(\Delta); \Delta) \) converges to \(y \) uniformly on \([0, T] \) as \(\Delta \to 0 \).

The third result is a version of Theorem 1 for a setting in which the first two elements of the sequence \(\{x^k(\Delta)\} \) are given, and the transition function has arguments \(x^k \) and \(x^{k-1} \). That is, the state in the next period is a function of the current-period state and its value in the previous period:

\[
x^0(\Delta) = x^0, \quad x^1(\Delta) = x^1, \quad \text{and} \quad x^{k+1}(\Delta) = f(x^k(\Delta), x^{k-1}(\Delta), \Delta) \quad \text{for each} \quad k \in \mathbb{P}. \quad (6)
\]

Let us limit attention to the case of \(n = 1 \), so all arguments are scalars. Let \(f_1 \) denote the derivative of \(f \) with respect to its first argument, \(x^k \); let \(f_2 \) denote the derivative of \(f \) with respect to its second argument, \(x^{k-1} \), and let \(f_\Delta \) denote the derivative of \(f \) with respect to its third argument, \(\Delta \). The definition of function \(\hat{x} : \mathbb{R}_+ \times \mathbb{R}_+ \times X \to X \) is the same as in the first setting except now we write \(\hat{x}(t, x^0, x^1; \Delta) \) to show the dependence on the first two elements of the sequence.

Before stating the theorem, it is useful to present some intuition. Consider a point in continuous time \(t \in \mathbb{R}_+ \). For any \(\Delta \), the period closest to \(t \) is \(k = [T/\Delta] \). Let us describe the slope

\[
\frac{\hat{x}(t + \Delta, x^0, x^1; \Delta) - \hat{x}(t, x^0, x^1; \Delta)}{\Delta} = \frac{x^{k+1}(\Delta) - x^k(\Delta)}{\Delta}
\]

and give a heuristic characterization of the limit as \(\Delta \) converges to 0. Using Equation 6, this slope is

\[
\frac{f(x^k(\Delta), x^{k-1}(\Delta), \Delta) - x^k(\Delta)}{\Delta}.
\]

For convenience, imagine that \(x^k(\Delta) \) is a constant \(x \). The key thing to notice is that \(x^{k-1}(\Delta) \) changes as \(\Delta \) approaches 0, and for the discrete-time model to converge, it
must be that \(x^{k-1}(\Delta) \to x \). Then as \(\Delta \) approaches 0, its direct effect on the slope is roughly \(\lim_{\Delta \to 0^+} \frac{f(x, x^k(\Delta), 0) - x}{\Delta} = -f_2(x, x, 0) \cdot \lim_{\Delta \to 0^+} \frac{x - x^{k-1}(\Delta)}{\Delta} \).

We thus conclude that the slope of \(y \) at time \(t \) is

\[
h(x) = f_\Delta(x, x, 0) - f_2(x, x, 0) \cdot \lim_{\Delta \to 0^+} \frac{x - x^{k-1}(\Delta)}{\Delta}.
\]

Further, \(\lim_{\Delta \to 0^+} \frac{x - x^{k-1}(\Delta)}{\Delta} \) must be the same slope \(h(x) \). So we have \(h(x) = f_\Delta(x, x, 0) - f_2(x, x, 0)h(x) \); rearranging yields \(h(x) = f_\Delta(x, x, 0)/(1 + f_2(x, x, 0)) \). As before, bounds on the derivatives of \(f \), and additional conditions on \(f_2 \) and the initial values, will be sufficient for a convergence result.

Theorem 3: Let \(X \) be an open and bounded subset of \(\mathbb{R} \) and let \(\Gamma \) be an open interval of \(\mathbb{R} \) containing 0. Let \(f : X \times X \times X \to X \) be a twice continuously differentiable function satisfying \(f(x, x, 0) = x \). Define \(h : X \to \mathbb{R}^n \) by \(h(x) \equiv f_\Delta(x, x, 0)/(1 + f_2(x, x, 0)) \), for all \(x \in X \). Assume that \(f_2 \) is bounded below 1, the second derivatives of \(f \) are bounded, and \(D^2 h \) is bounded. Let functions \(\hat{x} \) and \(\tilde{z} \) be defined by Expressions 6, 3 (but including \(x^1 \) as an argument of \(\hat{x} \)), 4, and 5. Consider any functions \(\tilde{x}^0 : \mathbb{R}_+ \to X \) and \(\tilde{x}^1 : \mathbb{R}_+ \to X \) such that \(\tilde{x}^0(\Delta) \) and \(\tilde{x}^1(\Delta) \) both converge to a given \(x^0 \in X \) as \(\Delta \to 0 \), and suppose \((\tilde{x}^1(\Delta) - \tilde{x}^0(\Delta)) / \Delta \) is bounded. Let \(T \) be any positive number. Then \(\hat{x}(\cdot, \tilde{x}^0(\Delta), \tilde{x}^1(\Delta); \Delta) \) and \(\hat{z}(\cdot, \tilde{x}^0(\Delta), \tilde{x}^1(\Delta); \Delta) \) converge uniformly on \([0, T]\) as \(\Delta \to 0 \).

3 Proofs

Proof of Theorem 1: Let \(B \) be a number such that, for every \(x \), the components of \(D^3 f, D h, \) and \(D^2 h \) are all between \(-B\) and \(B \). (That \(D^2 h \) is bounded implies \(D h \) is bounded.) The Euclidean norm is denoted by \(| \cdot | \) below.

The main steps of the proof involve examining the difference between \(x^{k+1}(\Delta) \) and \(z^{k+1}(\Delta) \); implications for the functions \(\hat{x} \) and \(\hat{z} \) are worked out at the end. Using Equations 1 and 4,

\[
x^{k+1}(\Delta) - z^{k+1}(\Delta) = f(x^k(\Delta), \Delta) - z^k(\Delta) - h(z^k(\Delta))\Delta.
\]

Substituting for the first term using the first-degree Taylor polynomial centered at \((x^k(\Delta), 0)\), and using the identity \(h(x) = D_\Delta f(x, 0) \) and that \(f(x, 0) = x \), we obtain

\[
x^{k+1}(\Delta) - z^{k+1}(\Delta) = f(x^k(\Delta), 0) + D_\Delta f(x^k(\Delta), 0)\Delta + E^2(k, \Delta) - z^k(\Delta) - h(z^k(\Delta))\Delta
\]

\[
= x^k(\Delta) - z^k(\Delta) + D_\Delta f(x^k(\Delta), 0)\Delta - h(z^k(\Delta))\Delta + E^2(k, \Delta)
\]

\[
= x^k(\Delta) - z^k(\Delta) + [h(x^k(\Delta)) - h(z^k(\Delta))]\Delta + E^2(k, \Delta),
\]
where $E^2(k, \Delta) = \frac{1}{2}D^2_{\Delta} f(x^k(\Delta), \hat{\Delta}) \Delta^2$ for some $\hat{\Delta} \in [0, \Delta]$, and therefore

$$|E^2(k, \Delta)| \leq B \Delta^2.$$

Because h maps one n-dimensional vector to another, let us write

$$h(x) = \begin{pmatrix} h^1(x) \\ h^2(x) \\ \vdots \\ h^n(x) \end{pmatrix},$$

where h^i denotes the ith component. We can use the first-degree Taylor approximation for h, centered at $z^k(\Delta)$, to write

$$h(x^k(\Delta)) = h(z^k(\Delta)) + Dh(z^k(\Delta))(x^k(\Delta) - z^k(\Delta)) + \tilde{E}^2(k, \Delta),$$

where $\tilde{E}^2(k, \Delta)$ is a vector whose ith component is equal to

$$\frac{1}{2} (x^k(\Delta) - z^k(\Delta))^T D^2 h^i(\hat{x}^i)(x^k(\Delta) - z^k(\Delta))$$

for some \hat{x}^i between $x^k(\Delta)$ and $z^k(\Delta)$. Here $D^2 h^i$ is the Hessian matrix of h^i, which is a real-valued function. The bound B implies that

$$|\tilde{E}^2(k, \Delta)| \leq n^2 B |x^k(\Delta) - z^k(\Delta)|^2.$$

Using Equation 7 to substitute for $h(x^k(\Delta))$ in the expression for $x^{k+1}(\Delta) - z^{k+1}(\Delta)$, we obtain

$$x^{k+1}(\Delta) - z^{k+1}(\Delta) = x^k(\Delta) - z^k(\Delta) + [h(x^k(\Delta)) - h(z^k(\Delta))] \Delta + E^2(k, \Delta)$$

$$= x^k(\Delta) - z^k(\Delta) + Dh(z^k(\Delta)) (x^k(\Delta) - z^k(\Delta)) \Delta$$

$$+ E^2(k, \Delta) \Delta + E^2(k, \Delta).$$

Using the error bounds for \tilde{E}^2 and E^2, and noting that

$$|Dh(z^k(\Delta)) (x^k(\Delta) - z^k(\Delta)) \Delta| \leq nB \Delta |(x^k(\Delta) - z^k(\Delta))|,$$

we find that

$$|x^{k+1}(\Delta) - z^{k+1}(\Delta)| \leq |x^k(\Delta) - z^k(\Delta)| + nB \Delta |(x^k(\Delta) - z^k(\Delta))|$$

$$+ n^2 B \Delta |x^k(\Delta) - z^k(\Delta)|^2 + B \Delta^2 \quad (8)$$

For any fixed Δ and T, we next construct an upper bound on $|x^k(\Delta) - z^k(\Delta)|$, denoted $b^k(\Delta)$, for each $k = 1, 2, \ldots, \lfloor T/\Delta \rfloor$. Set $b^1(\Delta) = B \Delta$, which is clearly an upper bound on $|x^1(\Delta) - z^1(\Delta)|$, from Inequality 8, the fact that $\Delta \leq 1$, and because $x^0(\Delta) =
By letting \(\Delta \) be small enough, the upper bounds \(b^2(\Delta), b^3(\Delta), \ldots, b^{[T/\Delta]}(\Delta) \) will be constructed in a way that ensures they are all weakly greater than \(B\Delta \) and weakly less than 1. With reference to the right side of Inequality 8, this means that
\[
b^k(\Delta) + nB\Delta b^k(\Delta) + n^2B\Delta b^k(\Delta)^2 + B\Delta^2 \leq b^k(\Delta) (1 + \Delta (1 + nB + n^2B)).
\]
Inductively define \(b^2(\Delta), b^3(\Delta), \ldots, b^{[T/\Delta]}(\Delta) \) by setting
\[
b^{k+1}(\Delta) = b^k(\Delta) (1 + \Delta (1 + nB + n^2B)) \tag{9}
\]
for all \(k = 1, 2, \ldots, [T/\Delta] - 1 \). Then these are valid upper bounds if they are all in the interval \([B\Delta, 1]\). Clearly the sequence is increasing, so \(b^k(\Delta) \geq B\Delta \) for each \(k \). Recall that we have set \(b^1(\Delta) = B\Delta \), and so we can use Equation 9 to explicitly solve for \(b^{[T/\Delta]}(\Delta) \):
\[
b^{[T/\Delta]}(\Delta) = B\Delta (1 + \Delta (1 + nB + n^2B)) ^{[T/\Delta]}.
\]
Note that, from the definition of the natural number \(e \), the right side is less than \(B\Delta e^{1+nB+n^2B} \). For \(\Delta \) small enough, this number is below 1 and our presumptions hold.

Further, for any desired \(\varepsilon > 0 \) we can find a number \(\overline{\Delta} > 0 \) such that \(\Delta < \overline{\Delta} \) implies that \(B\Delta e^{1+nB+n^2B} < \varepsilon \), and so \(b^k(\Delta) < \varepsilon \) for every \(k = 1, 2, \ldots, [T/\Delta] - 1 \). This means \(|\hat{x}(k\Delta, x^0; \Delta) - \hat{x}(k\Delta, x^0; \Delta)| < \varepsilon \) for every \(k \in P \) and every \(x^0 \in X \). From the definitions of these functions as piece-wise linear, the same inequality holds at all other values of \(t \in [0, T] \), proving the theorem. \(\Box \)

Proof of Theorem 2: This proof is similar to the previous proof. For simplicity, let us focus on the case in which \(\hat{x}^0(\Delta) = x^0 \) for every \(\Delta \). Extending the proof to the case of a nontrivial limit of initial values is straightforward because of the uniform nature of convergence and that \(y \) is uniformly continuous in its initial value.

Let \(B \) be a number such that, for every \(x \), the components of \(h, Dh \), and \(D^2h \) are all between \(-B\) and \(B \). (That \(D^2h \) is bounded implies \(Dh \) and \(h \) are bounded.) Consider any \(\Delta \geq 0 \) and nonnegative integer \(k \). Using the definition of \(\{z^k(\Delta)\}_{k=0}^\infty \) and that \(y(t) = y(s) + \int_s^t h(y(r)) dr \) for \(t \geq s \), we have
\[
z^{k+1}(\Delta) - y(\Delta(k + 1)) = z^k(\Delta) + h(z^k(\Delta)) \Delta - y(\Delta k) - \int_{\Delta k}^{\Delta(k+1)} h(y(r)) dr \tag{10}
\]
Considering the upper limit of the integral as a variable, let us write the integral using the first-degree Taylor expansion centered at \(\Delta k \):
\[
\int_{\Delta k}^{\Delta(k+1)} h(y(r)) dr = 0 + h(y(\Delta k)) \Delta + E^2(k, \Delta),
\]
where \(E^2(k, \Delta) \) is a vector whose \(i \)th component is equal to
\[
(1/2) Dh^i(y(\hat{r}^i)) Dy(\hat{r}^i) \Delta^2 = (1/2) Dh^i(y(\hat{r}^i)) h(\hat{r}^i) \Delta^2
\]
for some \(r^i \in [\Delta k, \Delta (k + 1)] \). We thus know that
\[
|E^2(k, \Delta)| \leq nB^2\Delta^2.
\]
Substituting for the integral in Equation 10 yields
\[
z^{k+1}(\Delta) - y(\Delta(k + 1)) = z^k(\Delta) - y(\Delta k) + [h(z^k(\Delta)) - h(y(\Delta k))] \Delta - E^2(k, \Delta). \tag{11}
\]
We can write \(h(z^k(\Delta)) \) using the first-degree Taylor polynomial centered at \(y(\Delta k) \):
\[
h(z^k(\Delta)) = h(y(\Delta k)) + Dh(y(\Delta k)) (z^k(\Delta) - y(\Delta k)) + \tilde{E}^2(k, \Delta),
\]
where, similar to what we found in the proof of the first theorem,
\[
|\tilde{E}^2(k, \Delta)| \leq nB^2 |z^k(\Delta) - y(\Delta k)|^2.
\]
Substituting for \(h(z^k(\Delta)) \) in Equation 11 yields
\[
z^{k+1}(\Delta) - y(\Delta(k + 1)) = z^k(\Delta) - y(\Delta k) + Dh(y(\Delta k)) (z^k(\Delta) - y(\Delta k)) + \tilde{E}^2(k, \Delta + E^2(k, \Delta).
\]
Using the error bounds for \(\tilde{E}^2 \) and \(E^2 \), and noting that
\[
|Dh(y(\Delta k)) (z^k(\Delta) - y(\Delta k)) \Delta| \leq nB\Delta |z^k(\Delta) - y(\Delta k)|,
\]
we find that
\[
|z^{k+1}(\Delta) - y(\Delta(k + 1))| \leq |z^k(\Delta) - y(\Delta k)| + nB\Delta |z^k(\Delta) - y(\Delta k)|
+ n^2B\Delta |z^k(\Delta) - y(\Delta k)|^2 + nB^2\Delta^2. \tag{12}
\]
Similar to the final step in the proof of the first theorem, for any fixed \(\Delta \) and \(T \) we construct an upper bound on \(|z^k(\Delta) - y(\Delta k)| \), denoted \(b^k(\Delta) \), for each \(k = 1, 2, \ldots, \lfloor T/\Delta \rfloor \). Set \(b^1(\Delta) = nB^2\Delta \), which is clearly an upper bound on \(|z^k(\Delta) - y(\Delta k)| \), from Inequality 12 and because \(z^0(\Delta) = y(0) = x^0 \). By letting \(\Delta \) be small enough, the upper bounds \(b^2(\Delta), b^3(\Delta), \ldots, b^{\lfloor T/\Delta \rfloor}(\Delta) \) will be constructed in a way that ensures they are all weakly greater than \(nB^2\Delta \) and weakly less than 1. With reference to the right side of Inequality 12, this means that
\[
b^k(\Delta) + nB\Delta b^k(\Delta) + n^2B^2\Delta b^k(\Delta)^2 + nB^2\Delta^2 \leq b^k(\Delta)(1 + \Delta(1 + nB + n^2B)).
\]
Inductively define \(b^2(\Delta), b^3(\Delta), \ldots, b^{\lfloor T/\Delta \rfloor}(\Delta) \) by setting
\[
b^{k+1}(\Delta) = b^k(\Delta)(1 + \Delta(1 + nB + n^2B)) \tag{13}
\]
for all \(k = 1, 2, \ldots, \lfloor T/\Delta \rfloor - 1 \). Then these are valid upper bounds if they are all in the interval \([nB^2\Delta, 1]\). Clearly the sequence is increasing, so \(b^k(\Delta) \geq nB^2\Delta \) for each
k. Recall that we have set \(b^1(\Delta) = nB^2\Delta \), and so we can use Equation 13 to explicitly solve for \(b^{T/\Delta}(\Delta) \):

\[
b^{T/\Delta}(\Delta) = nB^2\Delta (1 + \Delta (1 + nB + n^2B))^{T/\Delta}.
\]

Note that, from the definition of the natural number \(e \), the right side is less than \(nB^2\Delta e^{1+nB+n^2B} \). For \(\Delta \) small enough, this number is below 1 and our presumptions hold.

Further, for any desired \(\varepsilon > 0 \) we can find a number \(\Delta > 0 \) such that \(\Delta < \Delta \) implies that \(nB^2\Delta e^{1+nB+n^2B} < \varepsilon \), and so \(b^k(\Delta) < \varepsilon \) for every \(k = 1, 2, \ldots, \lfloor T/\Delta \rfloor - 1 \).

The implication for \(|\hat{z}(\cdot, x^0; \Delta) - y| \) is derived with one more step. Note that \(\hat{z}(\cdot, x^0; \Delta) \) is a piecewise linear spline with mesh points \(t = 0, \Delta, 2\Delta, \ldots \), where the \(k \)th line segment has the slope \(h(k\Delta) \). Writing the first-degree Taylor polynomial of \(y \) centered at \(k\Delta \) to approximate \(y(k|de+\Delta) \), we find that \(Dy \) is equal to \((y(k\Delta + \Delta) - y(k\Delta))/\Delta \) plus an error term of order \(\Delta^2 \). Doing the same to approximate \(y(t) \) for any \(t \in [k\Delta, k\Delta + \Delta] \) gives \(y(t) \) equals \(y(k\Delta) + Dy(k\Delta)(t - k\Delta) \) plus an error term of order \(\Delta^2 \). Using the first calculation to substitute for \(Dy(k\Delta) \) in the second, we get

\[
y(t) = y(k\Delta) + \left(\frac{t - k\Delta}{\Delta} \right) (y(k\Delta + \Delta) - y(k\Delta)) + E^2(k, \Delta),
\]

where \(E^2(k, \Delta) \) is of order \(\Delta^2 \). Likewise, from Equation 5 and the bound on \(b^k(\Delta) \) calculated above, we have

\[
\hat{z}(t, x^0; \Delta) = y(k\Delta) + \left(\frac{t - k\Delta}{\Delta} \right) (y(k\Delta + \Delta) - y(k\Delta)) + \tilde{E}^2(k, \Delta),
\]

where \(|\tilde{E}^2(k, \Delta)| < 3\varepsilon \), proving that \(|\hat{z}(t, x^0; \Delta) - y(t)| < 3\varepsilon \) for all \(t \in [0, T] \).

Proof of Theorem 3: Because \(f \) is continuously differentiable, it must be that \(f(x, x, 0) = x \). Let \(B \) be a number such that, for every \(x \), the components of \(Df \) and \(D^2f \), and values \(h \), \(Dh \), and \((x^1(\Delta) - x^0(\Delta))/\Delta \) are all between \(-B\) and \(B \), and additionally assume that \(B \) is larger than \(\sup\{x - x' \mid x, x' \in X\} \). (That \(D^2h \) and the second derivatives of \(f \) are bounded implies bounds on \(Dh \) and \(Df \).) Define

\[
m^k(\Delta) \equiv \frac{x^{k+1}(\Delta) - x^k(\Delta)}{\Delta} - h(x^{k+1}(\Delta)).
\]

Lemma: There exist a number \(\beta \), a decreasing function \(\kappa : \mathbb{R}_+ \to \mathbb{R}_+ \), and a number \(\Delta > 0 \) with the following properties for all \(\Delta < \Delta \). First, \(|m^k(\Delta)| < \beta \Delta \) for every integer \(k > \kappa(\Delta) \). Second, \(|m^k(\Delta)| \leq 2B \) for every integer \(k \leq \kappa(\Delta) \). Third, \(\Delta \kappa(\Delta) \) converges to 0 as \(\Delta \to 0 \).
// Proof of the Lemma: By the definition of h and the transition function f, we have

$$m^k(\Delta) = \frac{f(x^k(\Delta), x^{k-1}(\Delta), \Delta) - x^k}{\Delta} = \frac{f_\Delta(x^k(\Delta), x^k(\Delta), 0) - f_2(x^k(\Delta), x^k(\Delta), 0)}{1 + f_2(x^k(\Delta), x^k(\Delta), 0)}.$$

Note that, using the first-degree Taylor polynomial centered at $(x^k(\Delta), x^k(\Delta), 0)$, we can write

$$f(x^k(\Delta), x^{k-1}(\Delta), \Delta) = f(x^k(\Delta), x^k(\Delta), 0) + f_2(x^k(\Delta), x^k(\Delta), 0)(x^{k-1} - x^k) + f_\Delta(x^k(\Delta), x^k(\Delta), 0)\Delta + E^2(k, \Delta),$$

where $E^2(k, \Delta)$ is $1/2$ times the Hessian matrix of f as a function of its second and third arguments, pre- and post-multiplied by the vector $(x^{k-1} - x^k, \Delta)$. Because the second derivatives of f are bounded by B, the error term $E^2(k, \Delta)$ satisfies

$$|E^2(k, \Delta)| \leq B|x^k(\Delta) - x^{k-1}(\Delta)|^2 + 2B|x^k(\Delta) - x^{k-1}(\Delta)|\Delta + B\Delta^2$$

$$= \frac{|x^k(\Delta) - x^{k-1}(\Delta)|^2}{\Delta^2} + 2B \left| \frac{x^k(\Delta) - x^{k-1}(\Delta)}{\Delta} \right|^2 + B\Delta^2.$$

Using $f(x^k(\Delta), x^k(\Delta), 0) = x^k(\Delta)$, combining the fractions, and simplifying terms yields:

$$m^k(\Delta) = -f_2(x^k(\Delta), x^k(\Delta), 0) \left(x^k(\Delta) - x^{k-1}(\Delta) - h(x^k) \right) + \frac{E^2(k, \Delta)}{\Delta},$$

and so

$$m^k(\Delta) = -f_2(x^k(\Delta), x^k(\Delta), 0) \cdot m^{k-1}(\Delta) + \frac{E^2(k, \Delta)}{\Delta}. \quad (14)$$

Recall that $|h|$ and $|x^k(\cdot) - x^0(\cdot)|/\Delta$ are bounded by B, implying that $|m_0(\Delta)| \leq 2B$. If we find that $|m^k(\Delta)| < 2B$ for all k, then $|x^k(\Delta) - x^{k-1}(\Delta)|/\Delta < 4B$, which implies that $|E^2(k, \Delta)| < (16B^3 + 8B^2 + B)\Delta^2$. This will indeed be the case for Δ less than $\overline{\Delta}$ defined below. Limiting attention to $\Delta < 1$, we thus have that the sum of these terms, in absolute value, is bounded above by $c\Delta$, where $c = 16B^3 + 8B^2 + B$. Let $a < 1$ be an upper bound on f_2, the existence of which has been assumed. Then for all $\Delta < 1$ and every $k \in P_+$, Equation 14 implies:

$$|m^k(\Delta)| < a|m^{k-1}(\Delta)| + c\Delta.$$

Define the indexed sequence $\{b^k(\Delta)\}_{k=0}^\infty$ recursively by setting $b^0(\Delta) = 2B$ and, for every $k \in P_+$, let $b^k(\Delta) = ab^{k-1}(\Delta) + c\Delta$. Then for every $k \in P$, we have that $|m^k(\Delta)| \leq b^k$.

Recall that $a \in (0, 1)$. Let $\overline{\Delta}$ be any number in the interval $(0, 2(1-a)B/c)$. For $\Delta < \overline{\Delta}$, the equation $m = am + c\Delta$ is solved by the value $m = c\Delta/(1 - a)$ that is less
than $2B$, and the sequence $\{b^k(\Delta)\}$ is decreasing and converges to $c\Delta/(1-a)$. In fact, we have

$$b^k = \frac{c\Delta}{1-a} + \left(2B - \frac{c\Delta}{1-a}\right)a^k$$

for each $k \in P$.

Let us set $\beta = 2c/(1-a)$ and define function κ so that, for every Δ,

$$\frac{c\Delta}{1-a} + \left(2B - \frac{c\Delta}{1-a}\right)a^{\kappa(\Delta)} = \Delta \beta = \frac{2c\Delta}{1-a}.$$

That is, letting $Q(\Delta) \equiv \frac{c\Delta}{1-a} / (2B - \frac{c\Delta}{1-a})$, we have $a^{\kappa(\Delta)} = Q(\Delta)$, and therefore $\kappa(\Delta) = \ln Q(\Delta)/\ln a$. By definition of κ, we have $b^k(\Delta) < \Delta \beta$, proving the first claim of the Lemma. The second claim follows from the fact that $b^0(\Delta) = 2B$ and $\{b^k(\Delta)\}$ is decreasing. Straightforward calculations show that $\lim_{\Delta \to 0^+} \Delta \ln Q(\Delta) = 0$ (using L'Hôpital's rule), which proves the third claim. \(/\)

With the Lemma in hand, we can put steps together to prove Theorem 3. As in the proof of Theorem 1, let us write $x^{k+1} - z^{k+1}$ as a function of $x^k - z^k$. Using Equations 4 and 6, we have

$$x^{k+1}(\Delta) - z^{k+1}(\Delta) = f(x^k(\Delta), x^{k-1}, \Delta) - z^k(\Delta) - h(z^k(\Delta))\Delta.$$

In the expressions that follow, the dependence of the sequence elements on Δ is suppressed to save space. Substituting for the first term using the first-degree Taylor polynomial centered at $(x^k, x^k, 0)$, and using $f(x^k, x^k, 0) = x^k$ and the identity $h(x) \equiv f_\Delta(x^k, x^k, 0)/(1 + f_2(x^k, x^k, 0))$ to substitute terms, we obtain

$$x^{k+1} - z^{k+1} = f(x^k, x^k, 0) + f_2(x^k, x^k, 0)(x^{k-1} - x^k) + f_\Delta(x^k, x^k, 0)\Delta + E^2(k, \Delta)$$

$$- z^k - h(z^k)\Delta$$

$$= x^k - z^k + f_2(x^k, x^k, 0)(x^{k-1} - x^k) + h(x^k)\Delta$$

$$+ h(x^k)f_2(x^k, x^k, 0)\Delta + E^2(k, \Delta) - h(z^k)\Delta$$

$$= x^k - z^k + [h(x^k) - h(z^k)] \Delta + E^2(k, \Delta)$$

$$+ f_2(x^k, x^k, 0) [x^{k-1} - x^k + h(x^k)\Delta],$$

Because the second derivatives of f are bounded by B, the error term satisfies

$$|E^2(k, \Delta)| \leq B|x^k(\Delta) - x^{k-1}(\Delta)|^2 + 2B|x^k(\Delta) - x^{k-1}(\Delta)|\Delta + B\Delta^2$$

$$= B \left|\frac{x^k(\Delta) - x^{k-1}(\Delta)}{\Delta}\right|^2 \Delta^2 + 2B \left|\frac{x^k(\Delta) - x^{k-1}(\Delta)}{\Delta}\right| \Delta^2 + B\Delta^2.$$

Further, the Lemma gives us a way to construct a bound on $E^2(k, \Delta)$ in terms of only Δ and constants. Recall the definition of m^k. Limiting attention to $\Delta < \min\{\Delta, 1\}$
and letting $B' = \max\{\beta, 2B\}$, the Lemma establishes that $|m^k(\Delta)| \leq B'$ for all $k \in P$. That is

$$-B' \leq \frac{x^{k+1}(\Delta) - x^k(\Delta)}{\Delta} - h(x^{k+1}(\Delta)) \leq B'.$$

Subtracting $h(x^{k+1}(\Delta))$ from both sides of these inequalities and recalling that $|h| \leq B$, we find that

$$\left| \frac{x^{k+1}(\Delta) - x^k(\Delta)}{\Delta} \right| \leq B' + B.$$

So setting $C = B(B' + B)^2 + 2B(B' + B) + B$, we conclude that $|E^2(k, \Delta)| \leq C\Delta^2$ for every $k \in P$.

Next use the zero-degree Taylor approximation for h, centered at z^k, to write

$$h(x^k) = h(z^k) + Dh(\hat{x}^k)(x^k - z^k),$$

where \hat{x}^k is a number between x^k and z^k. Substituting for $h(x^k)$ in the expression for $x^{k+1} - z^{k+1}$, using the definition of m', and rearranging terms, we obtain

$$x^{k+1}(\Delta) - z^{k+1}(\Delta) = x^k(\Delta) - z^k(\Delta) + Dh(\hat{x}^k(\Delta))(x^k(\Delta) - z^k(\Delta))\Delta + E^2(k, \Delta) - f_2(x^k(\Delta), x^k(\Delta), 0)m^{k-1}(\Delta)\Delta. \quad (15)$$

For any fixed $\Delta < 1$, we next construct an upper bound on $|x^k(\Delta) - z^k(\Delta)|$, denoted $b^k(\Delta)$, for each $k = 2, 3, \ldots$. The construction proceeds in two parts, first defining $b^k(\Delta)$ for each $k \leq [\kappa(\Delta)]$ and then defining the bound for $k > [\kappa(\Delta)]$. Continue to limit attention to $\Delta < \min\{\overline{\Delta}, 1\}$.

Part one: $k \leq [\kappa(\Delta)]$

With reference to Equation 15, recall that X is bounded, so that $|x^k(\Delta) - z^k(\Delta)| \leq B$. Remember also that $|Dh| \leq B$, $|f_2| < 1$, and $|m^k(\Delta)| \leq 2B$ from the Lemma. Thus, we know that

$$|Dh(\hat{x}^k(\Delta))(x^k(\Delta) - z^k(\Delta))\Delta + E^2(k, \Delta) - f_2(x^k(\Delta), x^k(\Delta), 0)m^{k-1}(\Delta)\Delta| \leq B^2\Delta + C\Delta + 2B\Delta.$$

Let $G = \max\{B^2 + C + 2B, 1\}$. (Making sure that $G > 1$ comes in handy for Part two below.) Because $x^0(\Delta) = z^0(\Delta)$ and $x^1(\Delta) = z^1(\Delta)$, this implies that $|x^k(\Delta) - z^k(\Delta)| \leq kG\Delta$ for all $k \leq [\kappa(\Delta)]$. Therefore, for all $k \leq [\kappa(\Delta)]$ let us set $b^k(\Delta) = kG\Delta$.

Part two: $k > [\kappa(\Delta)]$

We next construct $b^{[\kappa(\Delta)]+1}(\Delta), b^{[\kappa(\Delta)]+2}(\Delta), \ldots$. Refer again to Equation 15 and recall that the Lemma gives a tighter bound on $m^k(\Delta)$ for $k > [\kappa(\Delta)]$ than was the case for smaller values of k. In particular, we now have $|m^{k-1}(\Delta)| < \beta\Delta$. Putting this together with other bounds that we already calculated, we have that

$$|x^{k+1}(\Delta) - z^{k+1}(\Delta)| \leq |x^k(\Delta) - z^k(\Delta)| + B|x^k(\Delta) - z^k(\Delta)|\Delta + C\Delta^2 + \beta\Delta^2. \quad (16)$$
By letting Δ be small enough, our constructed values $\{d^k(\Delta)\}$ will all weakly exceed Δ, and so $d^k(\Delta)\Delta \geq \Delta^2$. With reference to the right side of Inequality 16, this means that

$$|x^k(\Delta) - z^k(\Delta)| + B |x^k(\Delta) - z^k(\Delta)| \Delta + C\Delta^2 + \beta\Delta^2 \
\leq b^k(\Delta) + b^k(\Delta)B\Delta + b^k(\Delta)C\Delta + b^k(\Delta)\beta\Delta.$$

Inductively define $b^{[\kappa(\Delta)]+1}(\Delta), b^{[\kappa(\Delta)]+1}(\Delta), \ldots, b^{[T/\Delta]}(\Delta)$ by setting

$$b^{k+1}(\Delta) = b^k(\Delta)(1 + \Delta(B + C + \beta)) \quad (17)$$

for all $k = [\kappa(\Delta)], [\kappa(\Delta)] + 1, \ldots$. Then these are valid upper bounds if they are all weakly greater than Δ, which is the case because the sequence is increasing and we have set $b^k(\Delta) = kG\Delta$ for $k \leq \kappa(\Delta)$, where G is at least 1.

We can use Equation 17 to explicitly solve for $b^{[T/\Delta]}(\Delta)$:

$$b^{[T/\Delta]}(\Delta) = \kappa(\Delta)G\Delta(1 + \Delta(B + C + \beta))^{[T/\Delta] - [\kappa(\Delta)].}$$

From the definition of the natural number e, the right side is less than $\kappa(\Delta)G\Delta e^{B+C+\beta}$. Because $\lim_{\Delta \to 0^+} \kappa(\Delta)\Delta = 0$, for any $\varepsilon > 0$ we can find a number $\Delta > 0$ such that $\Delta < \Delta$ implies that $\kappa(\Delta)G\Delta e^{B+C+\beta} < \varepsilon$ and so we have $b^k(\Delta) < \varepsilon$ for every $k = 1, 2, \ldots, [T/\Delta]$. The last step of writing the implication for $|\hat{\varepsilon}(k\Delta, \hat{x}^0(\Delta), \hat{x}^1(\Delta); \Delta) - \hat{\varepsilon}(k\Delta, \hat{x}^0(\Delta); \Delta)|$ is the same as in the proof of Theorem 1. \hfill \Box

Reference