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Abstract

This paper examines a contractual setting with unverifiable investment and a durable

trading opportunity, in which trade can take place in any one of an infinite number of

periods. The contractual setting features cross-investment, meaning that the seller’s

investment affects the buyer’s benefit of trade. Two different trade technologies are

studied, one in which the seller has the individual action that consummates trade and

one in which the buyer has the action that consummates trade. The set of outcomes

supported in the durability setting is shown to be equivalent to the set supported in

the related setting without durability. Thus, rather than durability, it is the technol-

ogy of investment and trade — in particular, whether investment and trade actions are

divided or unified (Buzard and Watson 2009) — that plays the critical role in deter-

mining whether the seller can be induced to invest at the efficient level. The issue of

multiple equilibrium is analyzed and it is shown that particular non-stationary con-

tracts can achieve unique implementation. The modeling exercise thus qualifies the

recent view that durability may contribute to the hold-up problem.

1 Introduction
The hold-up problem arises in situations in which contracting parties can renegotiate their

contract between the time they make unverifiable relation-specific investments and the time

at which they can trade.1 For instance, consider a simple model of trade between a buyer

and a seller. First, the parties write a contract specifying the terms of trade. Second, the

seller chooses a level of investment, which is observed by the buyer but is unverifiable to the

external enforcer (i.e., court). Next the parties can renegotiate their contract. Finally, the

∗Watson: University of California, San Diego; http://weber.ucsd.edu/∼jwatson/. Wignall: Quant Eco-

nomics. The authors appreciate feedback from folks at Yale, Sungkyunkwan University, Seoul National

University, Hong Kong University of Science and Technology, Hong Kong University, and UC San Diego,

and from anonymous reviewers.
1Che and Sákovics (2008) provide a short overview of the hold-up problem, which was first described by

Klein, Crawford and Alchian (1978), and Williamson (1975,1977). Analysis was provided by Grout (1984),

Grossman and Hart (1986), and Hart and Moore (1988).
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parties have the opportunity to trade and the external enforcer compels monetary transfers

conditional on the verifiable trade actions. Assume that the seller’s investment affects only

the buyer’s benefit of trade — a setting that presents a particular challenge for aligning

incentives (Che and Hausch 1999). “Hold-up” refers to the constraint that renegotiation

puts on the problem of designing a contract to motivate the seller to invest.

Many authors have analyzed the severity of hold-up in this general setting. (Public

messages are usually included in the time line but add nothing in the cases analyzed in

this paper.) Prominent models yield different predictions, but their disparate assumptions

make comparisons difficult. Watson (2007) shows an essential difference between var-

ious models in the literature lies in the modeling of the actions that consummate trade.

“Individual-action” models explicitly account for how the contracting parties take individ-

ual actions to consummate trade (such as the buyer’s action of whether to install the good

produced by the seller). “Public-action” models abstract a bit by considering trade actions

to be taken by the external enforcer as a function of messages from the contracting parties.

Watson demonstrates that public-action models essentially constrain attention to the class

of “forcing” contracts, which do not consider how individual trade actions can serve as

options.2 Thus, to examine the full range of feasible contracts, it is important to explicitly

model the players’ individual trade actions — in other words, to provide a noncooperative

game-theoretic account of trade.

Buzard and Watson (2009) take the analysis a step further by investigating how the

ability to motivate ex ante investments depends critically on which of the parties has the

action that consummates trade. Fix the setting described above, where the seller makes the

investment choice. In Buzard and Watson’s case of divided investment and trade actions,

trade is determined by the buyer’s choice of whether to install the intermediate good. In the

unified case, it is the seller’s act of delivery that consummates trade. Buzard and Watson

show that efficient investment can be supported in the divided case but not generally in the

unified case.3

In this paper, we examine another dimension of the trade technology: the extent to

which the trading opportunity is durable. In relationships with a durable trading opportu-

nity, if the parties do not complete the trade in a given period then they will have another

opportunity to do so in the future. Most of the literature on investment and hold-up focuses

on models with a nondurable trading opportunity, in which trade can only take place at a

single point in time. However, the motivations for these analyses often involve stories of a

durable trading opportunity. For example, Nöldeke and Schmidt (1998) argue that suitably

defined option contracts function to induce efficient investment when parties can consum-

mate trade at any time. Edlin and Hermalin (2000), on the other hand, argue that a party

2Lyon and Rasmusen (2004) also argue that models in the previous literature make limiting assumptions

about how option contracts may function. They note that options can be exercised even following impasse in

renegotiation.
3Buzard and Watson (2009) concentrate on the setting in which a single player has the trade action. They

also show how it becomes easier to encourage investment if both parties have verifiable trade actions, which

is a characteristic of Evans’ (2008) model that we discuss below.
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can effectively let an option expire and then renegotiate from scratch. Che and Sákovics

(2007), in summarizing the literature, point to durability as a contributor to the hold-up

problem.

Our objective here is to provide a precise analysis of durability and its effect on the hold-

up problem. We construct and analyze a model that explicitly accounts for the technology

of trade, including the durability of the trading opportunity. As Buzard and Watson (2009)

do, we limit attention here to settings in which just one of the players has a trade action.

The model has cross-investment (as in Che and Hausch 1999), whereby the seller makes

an investment that influences the buyer’s benefit of trade later.

By comparing the durable trade environment with a benchmark model that has only one

trading opportunity, we develop our main theme: that durability of a trading opportunity

does not complicate the hold-up problem per se. Specifically, if an outcome is supported

in the nondurability environment then it is also supported in the environment in which the

trading opportunity is durable. Furthermore, we show that the nature of the trade action

(whether it is the buyer’s or seller’s action) plays an important role in the durability model

just as it does in the nondurability model. To be precise, in the simple class of contractual

relationships studied here, the outcomes supported in the durability and nondurability en-

vironments are identical. Therefore, the efficient outcome can always be obtained in the

divided case (where the buyer has the trade action) but not in the unified case (where the

seller has the trade action).4

We show that simple open-ended option contracts suffice to deliver our results in the

durability environment. These are stationary contracts that trigger a transfer from one party

to the other in the period in which trade occurs, whenever it may be. The specified transfer

is independent of the time period. We also show that, in some cases, these stationary con-

tracts gives rise to multiple equilibria in the post-investment continuation. Interestingly,

the two equilibria that emerge represent the different outcomes described by Nöldeke and

Schmidt (1998) and Edlin and Hermalin (2000). However, we prove that the desired out-

come (that which gives the seller the greatest incentive to invest ex ante) can be uniquely

implemented by using a nonstationary contract. Furthermore, our notion of unique imple-

mentation requires this property from every continuation under the original contract. As an

aside, we discuss how our results relate to the “outside option principle” from bargaining

theory.5

This paper adds to the substantial literature on contracting with unverifiable invest-

ments. Many of the papers in this literature examine public-action mechanism-design mod-

els.6 Examples of individual-action models in the literature, among others, are the articles

4Our analysis is particularly straightforward because, for the class of relationships we analyze, there is no

benefit of introducing messages so we can leave them out of the model.
5Some recent papers, including Edlin and Hermalin (2000) and Wickelgren (2007), have motivated the

link between durability and hold-up by appealing to the outside option principle, which basically states that

a bargainer’s ability to opt out of negotiation does not affect the outcome of bargaining if the option gives a

sufficiently low payoff to this player. This result does not hold if the outside option is close to efficient, which

is the case in the contractual setting studied here.
6These include Aghion, Dewatripont, and Rey (1994), Che and Hausch (1999), Hart and Moore (1999),
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of Hart and Moore (1988), MacLeod and Malcomson (1993), Nöldeke and Schmidt (1995),

Lyon and Rasmussen (2004), Watson (2007), and Buzard and Watson (2009).

Most closely related to our work is that of Evans (2008), who also studies an individual-

action model with durable trading opportunities. Evans’ model is very general in terms

of the investment technology and the available times at which the players can trade and

renegotiate. He examines a single trade technology in which trade requires an individual

action of the seller (verifiable production and delivery) followed by an individual action

of the buyer (verifiable acceptance of the good). Evans shows that contracts that generate

multiple equilibria in the post-investment continuation can be usefully employed to give

incentives to invest, by having the contracting parties condition their equilibrium selection

on the unverifiable investments. He proves that the efficient outcome can be achieved in a

broad range of settings, most generally if the players can commit to a joint financial hostage

(money deposited with a third party until trade occurs, if ever).

Our work complements Evans (2008) by showing that, for the setting we study: (a)

holding the trade technology fixed, the outcomes supported in the cases of nondurable

and durable trading opportunities are equivalent; and (b) with or without durability, vastly

different outcomes arise depending on the technology of trade (whether the buyer or seller

has the action that consummates trade). Also, the analysis of unique implementation in the

durability model is unique to our modeling exercise.

In the next section we describe and analyze the model of a nondurable trading oppor-

tunity, for both the cases of divided and unified investment and trade actions. In Section 3,

we describe the model of a durable trading opportunity and we study its relation to the

nondurability model. Section 4 presents our analysis of nonstationary option contracts

and unique implementation. In Section 5 we provide some general analysis of bargaining

with outside options that serves to clarify the outside option principle and its implications

for hold-up. The Conclusion contains some additional comments about the literature and

extensions.

Maskin and Moore (1999), Segal (1999), and Segal and Whinston (2002). The more recent entries by Roi-

der (2004) and Guriev (2003) have the same basic public-action structure. Demski and Sappington (1991),

Nöldeke and Schmidt (1998), and Edlin and Hermalin (2000) examine models with sequential investments

in a tradeable asset; in these models, transferring the asset is essentially a public action. In some papers, such

as with Edlin and Reichelstein (1996) and Stremitzer (2009), trade actions are modeled as public but simple

contracts (or breach remedies) are sufficient to achieve an efficient outcome anyway. Related as well is the

work of Boeckem and Schiller (2008) and Ellman (2006).
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2 The Benchmark Model of a Nondurable Trading
Opportunity

We start with an individual-action model with unverifiable investment and a verifiable in-

dividual trade action, as in Watson (2007). A buyer and a seller interact as described in the

introduction. The order of actions is:

• Period 0

– The parties write a contract C specifying an externally enforced monetary trans-

fer m from the buyer to the seller to be compelled if trade occurs in period 1.

We normalize to zero the payment specified for the contingency in which trade

does not occur. The contract may also specify an up-front transfer, which will

not affect the subsequent analysis.7

– The seller makes an investment choice, selecting between H at personal cost c
and L at zero cost. Let θ denote the seller’s choice, which we call the state. This

investment action is observed by the buyer but is unverifiable to the external

enforcer.

• Period 1

– The parties have an opportunity to renegotiate the contract, altering the specifi-

cation of C and potentially including an up-front transfer.

– One of the parties takes the trade action a ∈ {0, 1}, where a = 1 means

that trade occurs and a = 0 means that trade does not occur. This choice is

verifiable.

– The external enforcer compels the contractually specified monetary transfer,

which is m if the trade occurred (that is, if a = 1) and zero otherwise.

We will examine two versions of the model which differ in the technology of trade. In

the first version, the buyer has the trade action, which one can regard as a choice of whether

to install (a = 1) or not install (a = 0) the intermediate good supplied by the seller. Using

the terminology of Buzard and Watson (2009), we call this the case of divided investment

and trade actions (because investment is chosen by one party, whereas the other chooses

whether to trade). In the second version, the seller has the trade action, which one can

interpret as whether to deliver the intermediate good (a = 1) or not (a = 0). This is called

the unified case. The trade technology is exogenously given.

Here is an example of the divided case: Suppose that the seller is a public-relations firm

that designs logos and other graphics for its clients; the buyer is a health-care provider that

wants to “re-brand” with a new high-quality logo to put on its web site and letterhead. The

seller invests to create a logo. High investment implies that the logo is valuable to the buyer

7The assumption of zero payment conditional on no trade is therefore without loss of generality.
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(it would attract new customers). The buyer observes the logo and recognizes the value it

would generate. Then the buyer takes the trade action, which is either to place the new

logo on its web site or to continue using its old logo. This choice is verifiable. That is, the

external enforcer can easily access the Internet to see whether the new logo was installed,

but does not observe its benefit to the buyer.

For an example of the unified case, suppose that the seller is an advertisement agency

that owns billboards, while the buyer is a company that would gain from advertising on a

billboard. The seller invests to create the layout of the advertisement. The buyer observes

the layout and recognizes what the benefit would be of posting it on a billboard. Subse-

quently, the seller chooses whether or not to mount it on one of its billboards; this is the

trade action.

We suppose that if the seller invests in period 0 (so that θ = H), then trade gives benefit

x > c to the buyer. If the seller does not invest (θ = L), then the intermediate good is

worthless. To keep the model simple, we assume that the trade action has no direct affect

on the seller’s payoff; in the unified case, for instance, there is no delivery cost. The joint

value of high investment and trade is x−c. Note that the specification of the trade action as

an individual action is the key to having a precise account of the technology of trade. We

have not included in the specification of the game a phase in which the parties can make

announcements, because messages will not affect our results; we discuss this further in the

Conclusion.

In the divided case, the contract C is called a forcing contract if it specifies either

m < 0 (giving the buyer the incentive to install regardless of the seller’s investment level)

or m > x (giving the buyer the incentive to never install). We call C an option contract if

it specifies m ∈ [0, x], since the buyer has the incentive to install in state H and not in state

L. In the unified case, since the seller faces no direct cost of delivery, the contract forces

trade if m > 0, it forces no trade if m < 0, and it functions as an option when m = 0.

The seller’s choice of investment action and the behavior of the player with the trade

action are assumed to be consistent with sequential rationality. Thus, each player selects his

individual actions to maximize his/her expected payoff, and the players anticipate rational

behavior in the future.

If the contract would induce an inefficient trade action (in particular, a = 0 in state H),

then the parties will renegotiate just before the time that the trade action must be selected.

The outcome of renegotiation is assumed to be consistent with a “black-box” coopera-

tive bargaining solution in which the players divide surplus according to fixed bargaining

weights πB and πS for the buyer and seller. Surplus is defined relative to the continua-

tion value of proceeding under the original contract. This characterization of renegotiation

along with the sequential rationality conditions identify a contractual equilibrium (see Wat-

son 2004).8

8Because the players are risk neutral in money, the cooperative solution yields the same expected payoffs

as does the following non-cooperative specification of negotiation: Nature selects one of the players to make

an ultimatum offer to the other player, who either accepts or rejects it; Nature selects player i with probability

πi. We assume that (i) on the self-enforced component of contract, players behave as agreed whenever this is
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A value function gives the continuation payoffs from the start of period 1, gross of

investment cost, as a function of the state.9 Without loss of generality we can focus on

contracts that yield a payoff vector of (0, 0) to the players in state L. Thus, the value

function is characterized by the continuation payoff vector in state H, which we denote

v = (vB, vS) ∈ R
2.

The normalization of payoffs in state L implies a restriction on the domain of m. In

the divided case, we can assume that m ≥ 0. This is because m < 0 is a forcing contract

that ensures the seller’s payoff in state L is strictly negative. We can increase m to bring

the seller’s payoff in state L up to zero, without changing incentives in either state (so the

seller’s payoff in state H rises by the same amount). Likewise, in the unified case we can

assume that m ≤ 0. A strictly positive m would be a forcing contract that ensures the seller

a strictly positive payoff in state L; resetting m to zero would make the seller’s payoff

zero in state L and it shifts her payoff in state H by the same amount (without changing

incentives in either state).

The value vector v is said to be implemented by contract C if there is an equilibrium

(combining sequential rationality and the bargaining solution) of the game from period 1

that achieves this payoff vector in state H and gives each player zero in state L. Our interest

is in finding a contract that gives the seller the incentive to invest efficiently. From the time

of her investment action in period 0, the seller will obtain −c + vS by investing at level H
and will obtain zero (no cost and zero value from period 1) by investing at level L. Thus,

our objective is to determine whether some value v = (vB, vS) that satisfies vS ≥ c can be

implemented.

For our simple model of nondurability, it is easy to determine whether a contract can

induce efficient investment and trade. The result differs significantly depending on whether

investment and trade actions are divided or unified, as Watson (2007) and Buzard and

Watson (2007) emphasize.

Proposition 1: In the model with a nondurable trading opportunity and divided investment
and trade actions, v can be implemented if and only if vS ∈ [0, x] and vB = x− vS. There
is an option contract that induces efficient investment and trade.

Proof: Take any vector v that satisfies the conditions of the proposition. Let the contract C
specify m = vS. Then under contract C, the buyer has the incentive to select a = 1 in state

H and he has the incentive to choose a = 0 and in state L. No renegotiation will take place

in either state, because the buyer’s trade action yields an efficient outcome. So the buyer’s

payoff from the beginning of period 1 is x−m, the seller’s payoff is m, and therefore v is

implemented.

consistent with individual rationality; and (ii) if an offer is rejected, then the equilibrium in the continuation of

the game does not depend on the identity of the offerer or on the nature of the offer. These are the Agreement

and Disagreement Conditions described in Watson (2004).
9That is, the value function does not incorporate any cost of investment that the seller may incur in period

0.
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It is easy to verify that no other value vectors can be implemented. For instance, spec-

ifying m > x will force the buyer to choose a = 0, and renegotiation then implies that

(vB, vS) = (πBx, πSx) is implemented. Alternatively, if m = 0 were specified and the

buyer would select a = 1 in both states, then there is no renegotiation gain. This contract

implements (vB, vS) = (x, 0) in state H. ‖

Note that setting vS ∈ [c, x] induces efficient investment and trade, so we conclude that

the efficient outcome will be obtained in the divided case. As the next result shows, the

unified case gives a less encouraging result.

Proposition 2: In the model with a nondurable trading opportunity and unified investment
and trade actions, v is implementable if and only if vS ∈ [0, πSx] and vB = x−vS. Efficient
investment cannot be achieved if c > πSx.

Proof: Consider a contract specifying m = 0. This contract will implement every v in

the set described in the proposition. To see this, observe that under this contract the seller

would be indifferent between selecting a = 0 and a = 1 in both states. Suppose that in

state L the seller would select a = 0 and in state H she would select a = 1 with probability

α. Then in state H the renegotiation surplus is (1 − α)x, which the parties split according

to their bargaining weights. Therefore

(vB, vS) = (αx+ (1− α)πBx, (1− α)πSx)

is implemented. Varying α from zero to one achieves exactly the set of implementable

values described in the proposition. No other values can be implemented. In particular,

specifying m < 0 forces the seller to choose a = 0 in both states, renegotiation occurs in

state H, and the normalized implemented value is then (vB, vS) = (πBx, πSx). Further, if

c > πSx then we necessarily have vS < c and so the seller cannot be given the incentive to

invest efficiently. ‖

Proposition 2 shows that the conclusion of Che and Hausch (1999) applies to our simple

model in the case of unified investment and trade actions. That is, the best contract is a

“null” contract and the only way for the seller to extract part of the benefit of her investment

is through ex post renegotiation. Proposition 1 shows that this negative conclusion does not
apply in the case of divided investment and trade actions. In fact, the efficient outcome can

be attained in this case. This point — that the technology of trade has implications for

hold-up and efficiency — was first made by Watson (2007), with general analysis provided

by Buzard and Watson (2009).10

10Recall that public-action models, such as that of Che and Hausch (1999), do not make the distinction

between the divided and unified cases.
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3 The Model of a Durable Trading Opportunity
We next consider a durable trading opportunity in which the opportunity to trade persists

indefinitely. Time is discrete and the parties discount the future using discount factor δ.

Interaction in each period t = 1, 2, . . . is identical to period 1 of the model without durable

trade except that, from a given period t, the game continues into period t+ 1 if and only if

a = 0 was selected in period t. The game ends at the end of the period in which a = 1 is

chosen. Here is the time line:

• Period 0

– The parties write a contract C = {mt}∞t=1 which, for each period t, specifies an

externally enforced monetary transfer mt to be compelled if a = 1 in period t.

– The seller makes an investment choice, selecting between H at personal cost c
and L at zero cost. Let θ denote the seller’s choice, which we call the state. This

investment action is observed by the buyer but is unverifiable to the external

enforcer.

• Period t = 1, 2, . . .

– The parties have an opportunity to renegotiate the contract.

– The player who has the trade action selects a ∈ {0, 1}, where a = 1 means

that trade occurs and a = 0 means that trade does not occur. This choice is

verifiable.

– The external enforcer compels the contractually specified monetary transfer,

which is mt if a = 1 was selected and zero otherwise. If a = 1, then the

buyer obtains the benefit of the intermediate good and the relationship ends.

Otherwise, the relationship continues into the next period.

We model the players’ behavior as in Section 2. In each period, the player with the trade

action selects a to maximize his/her payoffs. Furthermore, the resolution of renegotiation

in each period is consistent with the bargaining solution that divides surplus according to

the fixed bargaining weights. A value vector v is implemented by contract C if there is

an equilibrium (combining sequential rationality and the bargaining solution) of the game

from period 1 that achieves this payoff vector in state H and gives each player zero in state

L.

The equilibrium construction is more complicated here in the setting of a durable trad-

ing opportunity than it was in the setting of nondurability, because there is an infinite hori-

zon. However, note that delaying trade in state H is an off-equilibrium-path phenomenon

because, conditional on arriving at any period t, renegotiation will ensure that trade occurs

at t. Still, we have to analyze what would happen if any given period t were reached with

the original contract C in force.
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Because we now have an infinite number of periods, there will be a sequence of state-

contingent continuation values. As before, we can normalize so that the continuation values

in state L are always zero. Correspondingly, without loss of generality we can assume

that mt ≥ 0 in the divided case and mt ≤ 0 in the unified case. We then express the

relevant values in terms of a sequence {vt}∞t=1 of continuation values in state H. For each

t, vt = (vtB, v
t
S) ∈ R

2 is the continuation payoff vector from period t in state H under the

original contract C.

Also, we shall need to describe the behavior over time of the player who has the trade

action. For most of our analysis, this player can be assumed to always select a = 0 in state

L. We describe the behavior in state H as a sequence {at}∞t=1, with the interpretation that if

the game reaches period t in state H then at is the trade action that is chosen in this period.

Where we need to look at random choices, we will use αt to denote the probability that

a = 1.

We separate the analysis of the two trade technologies into the following two subsec-

tions, starting with the case of divided investment and trade actions.

Divided Case
Consider the divided case, where the buyer has the trade action in each period. We

examine contracts satisfying mt ≥ 0 for all t, due to our normalization that equilibrium

payoffs in state L are zero. In state H it is rational for the buyer to install (at = 1) in period

t if and only if x−mt ≥ δvt+1
B , because when the buyer does not trade he gets zero in the

current period and then waits for the continuation value from the start of the next period.

Thus, in equilibrium, the buyer’s individual behavior and continuation payoffs in state H

must satisfy
at = 1 only if x−mt ≥ δvt+1

B , and

at = 0 only if x−mt ≤ δvt+1
B .

(1)

The opportunity for renegotiation in period t implies that, in state H,

vt = wt + π[x− wt
B − wt

S], (2)

where

wt =

{
(x−mt,mt) if at = 1
δvt+1 if at = 0.

In these expressions, wt denotes the disagreement point of negotiation, which is the value

of continuing in the current period under the original contract. The parties can achieve the

maximum joint surplus by renegotiating to a contract that forces trade, so the surplus of

renegotiation in state H is x− wt
B − wt

S.

In summary, a pure-strategy equilibrium is characterized by a sequence {at, vt} such

that Conditions 1 and 2 hold for all t. Thus, the H-state value v is implemented by contract

C if there is an equilibrium (combining sequential rationality and the bargaining solution)

of the game from period 1 such that v = v1. Consideration of mixed actions add nothing

to the implementable set in the divided case. We call C a simple open-ended contract if it
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specifies a single price m that the buyer must pay when he installs the good, so mt = m
for all t. That is, the price m is constant across periods and the contract does not expire.

We next calculate the set of implementable values and compare it to the implementable

set in the benchmark model with a nondurable trading opportunity.

Proposition 3: In the model with a durable trading opportunity and divided investment
and trade actions, v can be implemented if and only if vS ∈ [0, x] and vB = x− vS. Thus,
the implementable set is the same as in the benchmark (nondurability) model. There is a
simple open-ended option contract that induces efficient investment and trade.

Proof: Consider a contract that, for some m ∈ [0, x], specifies mt = m for all t. This

is a simple open-ended contract. Note that the contract specifying m implements v =
(x−m,m) in the setting of a nondurable trading opportunity. We shall demonstrate that the

open-ended version of the contract implements the same H-state payoff vector in the setting

of a durable trading opportunity. Specify {at, vt} such that at = 1 and vt = (x − m,m)
for all t. We show that {at, vt} is an equilibrium by checking that Conditions 1 and 2 hold

for all t. The first condition reduces to x−m ≥ δ(x−m) and so clearly holds. Note that

wt = (x−m,m) so the surplus of renegotiation is zero and the second condition holds.

To see that no other values can be implemented, let β be the maximum implementable

continuation value for the seller in state H, with the value in state L normalized to zero.

That is, β is the maximal implementable vS. Note that, because the trading environment is

stationary, β characterizes the maximum vtS for every period t (over all contracts). We can

use a recursive formulation to determine β. Consider some period t and let us find an upper

bound on vtS using Conditions 1 and 2, with the constraint that vt+1
S ≤ β.

Note that if mt is set to induce at = 0 in state H (for instance, if mt ≥ x), then the

seller’s payoff in state H would be vtS = δvt+1
S +πSx(1−δ) < δβ+πSx(1−δ). If we instead

wanted to induce at = 1 in state H (by specifying mt ≤ x), we would have vtS = mt. These

expressions imply that vtS is maximized at max{δβ + πSx(1− δ), x}. This maximum must

equal β. If δβ+πSx(1−δ) ≥ x were the case then the implication is δβ+πSx(1−δ) = β,

which simplifies to β = πSx. Thus we know that β must equal x, which coincides with the

upper limit of values implemented by the simple open-ended contract. ‖

Unified Case
Next consider the unified case, where the seller has the trade action in each period. We

examine contracts satisfying mt ≤ 0 for all t, due to our normalization that equilibrium

payoffs in state L are zero. In fact, we can fix attention to mt = 0 for all t, because the

seller would not trade in either state if mt < 0. Then in state H it is rational for the seller

to choose a = 1 in period t if and only if δvt+1
S ≤ 0. Thus, in equilibrium, the seller’s

individual behavior and continuation payoffs in state H must satisfy

at = 1 only if δvt+1
S ≤ 0 and

at = 0 only if δvt+1
S ≥ 0.

(3)
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The opportunity for renegotiation in period t implies Condition 2 described in the previous

subsection.

A pure-strategy equilibrium is therefore characterized by a sequence {at, vt} such that

Conditions 3 and 2 hold for all t. We will have to examine mixed actions as well, but there is

no need to complicate the exposition with the mixed-action versions of Conditions 3 and 2.

A value v is implemented by contract C if there is an equilibrium (combining sequential

rationality and the bargaining solution) of the game from period 1 such that v = v1. The

following result shows that we have the same relation between the settings of nondurable

and durable trading opportunities in the unified case as we found in the divided case.

Proposition 4: In the model with a durable trading opportunity and unified investment
and trade actions, v is implementable if and only if vS ∈ [0, πSx] and vB = x − vS. Thus,
the implementable set is the same as in the benchmark (nondurability) model. Efficient
investment cannot be achieved if c > πSx.

Proof: Because we focus on contracts that specify a transfer of zero if trade does not occur

in a period (and the corresponding normalization that continuation payoffs are zero in the L

state), the proof here is a bit involved. In footnote 11 (at the end of this proof), we sketch a

simpler method using a contract that specifies mt > 0 with an up-front transfer (or transfer

to the buyer if trade does not occur in a given period).

Consider a contract that specifies mt = 0 for all t. We first show that this contract

implements both (vB, vS) = (x, 0) and (vB, vS) = (πBx, πSx). The first value arises if we

prescribe {at, vt} such that at = 1 and vt = (x, 0) for all t. The second value is achieved

by prescribing at = 0 and vt = (πBx, πSx) for all t. It is easy to check that Conditions 3

and 2 hold for all t in both of these specifications.

To obtain intermediate values we can construct an equilibrium in which the seller would

sometimes randomize between a = 1 and a = 0. The simplest way to proceed is to assume

that the players have access to a public randomization device, which they could use to

obtain arbitrary mixtures of the two values just described. But we haven’t assumed such a

randomization device and so our construction will be a bit more involved.

Define the contract so that mt = 0 for all t. Let T be a positive integer and let us

prescribe that at = 1 and vt = (x, 0) for all t > T , so that the equilibrium continuation

from period T + 1 gives the seller a payoff of zero. Suppose that in period T the seller

would pick aT = 1 with probability α, which is rational. The renegotiation surplus in

period T is (1− α)(1− δ)x, implying that

vTS = πS(1− α)(1− δ)x.

Backward induction then determines behavior and continuation values in earlier periods.

In particular, for t = 1, 2, . . . , T − 1 we have at = 0 and (omitting algebra)

vtS = πSx[1− δT−t(δ + α(1− δ))].

12



The implemented value for the seller from period 1 is

v1S = πSx[1− δT−1(δ + α(1− δ))].

It is not difficult to verify that for any y ∈ [0, πSx], we can find numbers T and α so that

v1S = y. Also, using the same logic employed in the proofs of Propositions 2 and 3, one

can show that no other values can be implemented.11 ‖

4 Multiple Equilibrium and Unique Implementation
In this section we explore the issues of multiple equilibrium and unique implementation.

We focus on the case of divided investment and trade actions, and we add footnotes to

discuss the unified case.

As Proposition 3 shows, with a simple open-ended option contract, there is an equi-

librium of the game with a durable trading opportunity in which the parties invest and

trade efficiently. That is, the hold-up problem is completely avoided. This would seem

to verify Nöldeke and Schmidt’s (1998) intuition regarding open-ended option contracts.

Interestingly, in addition to demonstrating that durability does not necessarily exacerbate

the hold-up problem, our modeling exercise gives some support to Edlin and Hermalin’s

(2000) intuition about the buyer being able to credibly commit to refrain from installing

the good until the contract is renegotiated. More precisely, a simple open-ended option

contract may give rise to multiple equilibria, including one that is consistent with Edlin

and Hermalin’s story.

Proposition 5: Consider a durable trading opportunity and divided investment and trade
actions. An open-ended option contract specifying a price of m ≥ (1− δπB)x implements
both the value (vB, vS) = (x −m,m) and the value (vB, vS) = (πBx, πSx), in both cases
with payoff vector (0, 0) in state L.

Proof: That v = (x − m,m) is implemented follows from Proposition 3. To see that

v = πx is also implemented, specify at = 0 and vt = (πBx, πSx) for all t. Under the

assumption m ≥ (1 − δπB)x, we have x −m ≤ δπBx and so Condition 1 holds for all t.
Since at = 0 for all t, wt = δvt+1 and so Condition 2 clearly holds as well. ‖

11Here is a sketch of a simpler proof that utilizes an up-front transfer. Let mt = m ∈ [0, πSx] for all

t. Clearly, this gives the seller the incentive to deliver in state L (strictly if m > 0). Suppose that, under

the contract, the seller would never deliver in state H, so we have at = 0 for all t. Continuation values are

vt = (πBx, πSx) for all t. It is easy to see that these specifications constitute an equilibrium for δ close

enough to 1. In particular, the seller is happy to wait for renegotiation in period t + 1 rather than trade in

period t. Thus, the contract implements (πBx, πSx) in state H and (−m,m) in state L. An up-front transfer

of m from the seller to the buyer then makes the implemented values conform to our normalization. Another

way to implement the same values is to specify mt = 0 but have the seller make a transfer to the buyer in

the event that he does not deliver in a given period. With either method, for low values of δ we can specify

randomization appropriately to achieve the desired value in state H.
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If the players are patient (δ is close to one) and the buyer has substantial bargaining

power relative to the seller’s cost of high investment, then an open ended option with m
near x supports an equilibrium in which the players divide the trade value according to

their bargaining weights. In this equilibrium, unless c < πsx, the seller will not have the

incentive to invest efficiently.

In summary, stationary (constant price) contracts induce multiple equilibria for rela-

tively high prices.12 One of the equilibria leads to efficient outcomes, whereas another

exhibits hold-up. It is important to note that the parties have an ex ante joint interest in

selecting an equilibrium that induces an efficient outcome. Thus, if hold-up persists in

environments with durable trading opportunities, it is because of adverse equilibrium se-

lection.

Consideration of non-stationary contracts allows us to reach an even stronger conclu-

sion. Ex ante, the buyer and the seller may wish to ensure selection of an equilibrium that

gives the seller the incentive to invest efficiently. We shall demonstrate that a nonstation-

ary option contract can be structured so that, in each state, there is a unique equilibrium

from period 1 and, furthermore, that the seller invests efficiently. We say a contract C
uniquely implements a value v if there is one and only one sequence {at, vt}∞t=1 that satis-

fies Conditions 1 and 2 for all t, and such that v1 = v. This is a stronger notion of unique

implementation than is typically studied, because we are insisting that the entire sequence

{at, vt}∞t=1 be uniquely determined, rather than just v1. We want a unique equilibrium value

in state L as well, but it will trivially be the case here given the range of mt considered and

that trade yields zero in state L.

Proposition 6: In the setting with a durable trading opportunity and divided investment
and trade actions, any v = (vB, vS) satisfying vS ∈ [0, x) and vB + vS = x can be uniquely
implemented (by a nonstationary contract).

Proof: Consider any v = (vB, vS) such that vS ∈ [0, x) and vB + vS = x. Select an

integer T . For all t ≥ T , let C specify mt = 0. In state H, therefore, the buyer will

exercise the option in period T (choosing at = 1) and will also do so in every subsequent

period (Condition 1 is met). Clearly, continuation values in all periods t ≥ T are uniquely

determined.

Next, define {mt}T−1
t=1 inductively so that, for each t < T ,

mt = min

{
mt+1

2
+

δmt+1 + x(1− δ)

2
, vS

}
.

By construction, we have

x−mt > δ(x−mt+1)

12Multiple equilibria with open-ended options also exist in the unified case. The construction in footnote 11

relies on selecting an equilibrium in state H where the parties renegotiate because they anticipate that the seller

will not deliver otherwise. There is another equilibrium in which the seller delivers without renegotiation and

πx is the implemented value in the state H.
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for every t, which means that the buyer strictly prefers to install in period t rather than

wait to do so in period t + 1. Because continuation values from period T are uniquely

determined, this implies (via backward induction) that continuation values in all previous

period are also uniquely determined. In each period, contingent on trade not occurring

earlier, the buyer will install. Letting at ≡ 1 for all t, we therefore know that {at, vt}∞t=1

uniquely satisfies Conditions 1 and 2.

By choosing T sufficiently large, we have m1 = vS and the desired value v1 is uniquely

implemented. It is clear also that (0, 0) is the sole equilibrium value in state L. Note that,

since it would leave the buyer with a payoff of zero (and be indifferent between actions), a

value with vS = x cannot be uniquely implemented. ‖

The proof constructs a contract that yields a unique equilibrium from every period

and in which renegotiation never occurs.13 There are simpler contracts that achieve the

same objective in a less elegant way, but may have some realistic features. Consider a

contract that gives the buyer the option of trading at a fixed price m ∈ [0, x) in any period

t < T , but then would force the buyer to trade at price m in any period t ≥ T . From

period T all continuations have a unique equilibrium in both states. One can easily use

backward induction to check that the equilibrium is unique from all previous periods as

well. From period 1, the payoff vector in state H is (x − m,m) and the payoff vector in

state L is (πBδ
T−1m, πSδ

T−1m). Normalizing the latter to (0, 0) yields the same set of

values described in the proposition.

Our point in this section has not been to pick sides in the debate between Edlin and

Hermalin (2000) and Nöldeke and Schmidt (1998). It may be interesting that their separate

intuition regarding open-ended option contracts is played out in the multiple equilibria

supported by a stationary contract in the case of divided investment and trade actions. But

rather, we emphasize the significant difference in implementable outcomes between the

divided and unified cases. Note that the models of Edlin and Hermalin (2000) and Nöldeke

and Schmidt (1998) abstract from consideration of the technology of trade; that is, they

do not specify whether the divided or unified case is being perceived. We stress that it

is illuminating to model the technology of trade — by treating trade actions as individual

actions and, for the setting of a durable trading opportunity, by modeling the time periods.

13Unique implementation in the case of unified investment and trade actions is more challenging because,

in our simple model, the seller’s delivery cost does not vary with the state. Thus, the seller’s preferences

regarding the trade action are exactly the same in both states. However, it is still possible to uniquely and

approximately (within a small error) implement the set of values delineated in Proposition 4, for δ close to 1.

For instance, the value (vB, vS) = (πBx, πSx) can be uniquely implemented using a contract that forces no

trade in each period. More complicated contracts (for example, ones that force no trade up to some period T
and then force trade afterward) can implement values that give the seller between zero and πSx in state H.
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5 Comments on the Outside Option Principle
Many authors have noted the relationship between contracting models with renegotiation

and models of bargaining with outside options. For example, Edlin and Hermalin (2000)

appeal to the outside option principle, which states that, with some bargaining protocols, if

a player has an outside option then it affects the outcome of negotiation only if this player’s

value of taking the outside option exceeds his equilibrium value in the setting without the

outside option. In other words, the option serves as a constraint on the player’s payoff, in

that the player with the option must get at least his outside option payoff. If this payoff is

less than the subgame perfect equilibrium payoff when there is no outside option, then any

threat to opt out is non-credible and it does not affect the bargaining.

The outside option principle is motivated by a non-cooperative bargaining game, but in

fact the set of equilibrium outcomes is very sensitive to assumptions about the timing of

the option.14 Also, it is typically assumed that a single player has an outside option which,

if taken, gives a positive payoff only to this player. In contrast, in the contract renegotiation

under investigation here, opting out means exercising the contractual option (by installing

the good) which generally gives positive payoffs to both players. In fact, exercising the

option yields a payoff vector that is on the efficient frontier.

We next show that the outside option principle is generally invalid in settings where the

outside option yields close to an efficient outcome. More precisely, when the outside option

is close to efficient but gives little to the player with the option, there are multiple equilibria.

One equilibrium yields the payoff vector predicted by the outside option principle, but

another equilibrium yields a payoff vector that is close to that of the outside option. This

helps to explain why the outside option principle offers incomplete intuition regarding

the properties of equilibrium in contractual settings with renegotiation and durable trading

opportunities.15

Consider a simple model of bargaining in which player 1 and player 2 are bargaining

over a surplus of size one. In each period one of the players is randomly selected to propose

a division of the surplus. If the other party accepts the proposal, the game ends and the

parties get the proposed payoffs. If the proposal is rejected, then player 1 has an opportunity

to take an outside option and end the game. If the proposal is rejected and the outside option

is not taken, the interaction repeats in the next period. Players discount future periods using

discount factor δ. The probability that player 1 gets to make the offer in any given period

is π1, whereas π2 is the probability that player 2 gets to make the offer. If player 1 takes the

outside option, he gets a payoff of w1 and player 2 gets a payoff of w2.

The bargaining model described here assumes that the offers made by the parties are

efficient (the proposed payoffs sum to one). In addition, we focus on equilibria in which

the outcome is efficient from the start of any given period. More generally, there may exist

14For an analysis of the different cases, see Osborne and Rubinstein (1990).
15The point we are making here is distinct from the message of Avery and Zemsky (1994). They show that

in various examples in the bargaining literature, multiple equilibria arise because there is an outside option

that yields an inefficient outcome. See also Evans (2008) on this idea.
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equilibria with delay (and therefore equilibrium payoffs that sum to less than one).16 The

following two results characterize the equilibrium payoffs; the first result, which illustrates

the basic idea of the outside option principle, is a special case of the second. See Figure 1

for a graphical depiction. Define p∗ ≡ δπ1/(1− δπ2).

Result 1: Suppose w2 = 0. Then:

1. For w1 < δπ1, the unique equilibrium payoff vector is π = (π1, π2).

2. If δπ1 ≤ w1 ≤ p∗ then, for all

z ∈
[
w1 + (1− δ)π1,

p∗

δ

]
,

there exists an equilibrium with payoffs (z, 1− z).

3. For p∗ < w1, the unique equilibrium payoff vector is (π1 + π2w1, π2(1− w1)).

Result 1 demonstrates the basic idea behind the outside option principle: the ability to

opt out only affects the outcome of the bargaining when the value of the option is greater

than the bargaining outcome in the game without an outside option (that is, when w1 >
δπ1). Settings of contract renegotiation, however, generally do not have the property that

w2 = 0. The following result describes the equilibria with general outside option payoff

vectors.

Result 2: Consider any w = (w1, w2).

1. (Region A) If w1 ≤ δπ1 and w1 + p∗w2 ≥ p∗, then for all

z ∈ [π1(1− w2) + π2w1, π1] ,

there exists an equilibrium with payoff vector (z, 1− z).

2. (Region B) If w1 > δπ1 and w1 + p∗w2 > p∗, then the unique equilibrium payoff
vector is (π1(1− w2) + π2w1, π1w2 + π2(1− w1)).

3. (Region C) If w1 < δπ1 and w1 + p∗w2 < p∗, then the unique equilibrium payoff
vector is π.

4. (Region D) If w1 ≥ δπ1 and w1 + p∗w2 ≤ p∗, then for all

z ∈
[
w1 + (1− δ)π1,

p∗(1− w2)

δ

]
,

there exists an equilibrium with payoff vector (z, 1− z).
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Figure 1: Regions of the space of outside-option payoff vectors.

To understand the implications of this result, consider a setting in which an efficient

outcome occurs if player 1 takes the outside option; that is, w1 + w2 = 1. Recognize that

this is essentially the contractual situation evaluated in the divided case of Section 3 with

the contract specifying m ∈ [0, x]. Refining further, consider the case in which w1 < δπ1

(which corresponds to having m close to x in the contracting model). Then Region A is

the relevant region of Result 2 and we have a continuum of equilibrium payoff vectors.

There is an equilibrium in which player 1’s payoff z is equal to w1, another equilibrium

in which player 1’s payoff is z = π1, and a continuum of equilibria between (that is, each

z ∈ [w1, π1] can be supported in an equilibrium).

This analysis demonstrates that arguments about the outside option principle, for ex-

ample by Edlin and Hermalin (2000), are implicitly arguments about equilibrium selection.

Since player 2 gets a positive payoff if player 1 takes the option, and because the sum of

the players’ outside option payoffs equals the whole surplus, Result 2 applies and there ex-

ists an equilibrium of the bargaining game (specifically, with z = w1) that gives the seller

a sufficient ex ante incentive to invest. Edlin and Hermalin’s story possibly relates to a

different equilibrium of the bargaining game, in which z = π1.17

16In particular, equilibria with delay will arise in the cases with multiple equilibria described below.
17Wickelgren (2007) also appeals to the outside option principle in his analysis of buyer-option contracts.

He asserts that the seller’s valuation of the outside option does not affect the set of equilibrium payoffs, which

is contrary to what we find in Result 2. In addition, his discounting rule is equivalent to an assumption that

the outside option yields a payoff vector on the line w1 + w2 = δ, meaning that by renegotiating the players

somehow can trade sooner. Following Watson (2007), we view it more realistic to consider that the trade

action takes place at a fixed point in time, whether or not renegotiation occurs before.
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6 Conclusion
We have shown for a model of unverifiable investment that durability of the trading op-

portunity does not contribute to the hold-up problem. In fact, simple open-ended option

contracts achieve in the durability environment what their static counterparts achieve in the

nondurability environment. Furthermore, nonstationary option contracts can be utilized to

uniquely implement the desired outcome. In the end, the major determinant of whether

efficient investment and trade can be achieved is the nature of the trade action. Efficiency

is obtained in the case of divided investment and trade actions, whereas it is not generally

obtained in the unified case.

We demonstrated that, under some stationary contracts (for example, with m close to x
in the divided case) multiple equilibria exist in the continuation from period 1 in state H.

This multiplicity was not useful in expanding the set of implementable value functions in

our setting, but, as Evans (2008) shows, it may be useful more generally. In fact, this can be

demonstrated in a simple variant of our model in which both the buyer and the seller have

investment choices. Suppose that the parties simultaneously choose between low and high

investment, and let cB and cS be the buyer’s and seller’s costs of high investment. Assume

that he investment choices are commonly observed but not verifiable. Let θ be either H or

L as before, which indicates whether the buyer’s benefit of trade is x or 0; this as well is

unverifiable. Assume that if both players invest high then θ = H for sure, whereas θ = L
for sure if they both invest low. If one player invests high and the other invests low, then

θ = H with probability q. Assume that x > cB + cS and (1 − q)x > cB, cS, which means

that it is efficient for both players to invest high and then for trade to occur.

In the example just described, the state of the relationship is given by the players’ invest-

ment choices and θ. Clearly, to motivate the players to invest high, we want to differentiate

between cases in which θ = H but one of the player cheated by investing low. We can use

the equilibrium multiplicity to do this. For example, take a contract that specifies m very

close to x. In the event that θ = H we know there are two equilibria from period 1. In one

of the equilibria, the buyer obtains a payoff of x −m ≈ 0, whereas in the other the buyer

gets πBx. It enhances the buyer’s incentive to invest when the players plan to coordinate on

the latter equilibrium if the buyer invests high and on the former equilibrium if the buyer

invests low.

So, in a more general version of our model, if one does not insist on unique implemen-

tation, we expect that a larger set of value functions can be implemented in the environment

of a durable trading opportunity than can be implemented in the nondurability environment.

An interesting topic for future research would be to characterize the set of uniquely imple-

mentable value functions in a broader class of contractual relationships (with messages)

and compare it to the implementable set in the nondurability model.18

18Evans’ (2008) use of a financial hostage may raise the question of whether such arrangements can operate

well in reality. On this subject, Baliga and Sjöström (2009) have suggested conditions under which third-party

budget-breaking schemes can withstand collusive side deals. Bull (2009) shows that these schemes fall apart

if side contracts can condition on messages sent in the original contract.
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In our model of trade, installation by the buyer ends the interaction. This action, there-

fore, is not reversible. That is, once trade has occurred, the parties cannot revert to the

no-trade outcome. It would be interesting to examine a more general model with reversible

trade actions and analyze how differential reversibility affects the scope of contracting and

the hold-up problem. A small step in this direction is taken in Watson (2005). On a related

note, one might wonder about variations of durability. For example, instead of the buyer’s

benefit of trade being constant across time (so discounting is the only cost of waiting), one

could imagine that the benefit x declines each period by a fixed amount, until it reaches

zero. Consider the divided case, where the buyer has the trade action. It should be clear

that a stationary open-ended option contract will not perform well in this setting, because

eventually the buyer will essentially be forced to not trade and will extract a share of the

benefit in renegotiation. On the other hand, our results extend using nonstationary contracts

in which the option price tracks the buyer’s trade benefit over time.

A Appendix - Proof of Outside Option Results
Result 1 follows immediately from Result 2 (setting w2 = 0), so we proceed to prove

Result 2. The proof uses the standard technique of constructing relations between bounds

on equilibrium payoffs in various subgames. We focus on equilibria in which the outcome

is efficient in the continuation from the start of any given period.

Let η and η be the maximum and minimum of player 1’s payoff from the beginning

of a period, over all efficient subgame perfect equilibria in the game from this point. (The

construction will establish that the bounds are met, so the maximum and minimum exist.)

Let γ and γ be the maximum and minimum of player 1’s continuation values from the stage

at which he has the opportunity to take the outside option. Similarly, let μ and μ be the

maximum and minimum of player 2’s continuation values from the option stage. Then we

have

η = π1(1− μ) + π2γ and η = π1(1− μ) + π2γ. (4)

For intuition, consider the first of these and note that when player 1 is selected to make

the offer, the best equilibrium outcome for him is to hold player 2 down to her worst

equilibrium outcome, which gives player 1 the payoff 1− μ.

Our analysis continues by separately examining three cases having to do with whether

player 1 has the incentive to take the outside option in a given period:

Case 1: w1 > δη, so player 1 always takes the outside option.

Case 2: w1 < δη, so player 1 never takes the outside option.

Case 3: w1 ∈ [δη, δη], so player 1 may take the outside option following some

histories and forego the outside option following others.

In Case 1, the equilibrium continuation values are nailed down uniquely: γ = γ = w1,

μ = μ = w2, and

η = η = π1(1− w2) + π2w1.
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Define p∗ = δπ1/(1− δπ2). Note that, by substituting for η, the presumption for this case

(w1 > δη) becomes the necessary condition w1 + p∗w2 > p∗.
The continuation values are also uniquely determined in Case 2. We obtain γ = δη,

γ = δη, μ = δ(1 − η), and μ = δ(1 − η). The presumption for this case becomes the

necessary condition w1 < δπ1.

Case 3 is more complicated. Considering player 1’s incentive in the option stage of a

period, we see that the best equilibrium continuation for player 1 from the option stage is to

forego the outside option and get η from the start of the next period. Thus, we have γ = δη.

Likewise, the worst continuation has player 1 receiving η from the next period, which

would motivate player 1 to take the outside option, implying γ = w1. Player 2’s worst and

best continuation values from the option stage will depend on the relative magnitude of w2:

μ = max
{
w2, δ

(
1− w1

δ

)}
μ = min{w2, δ(1− η)}

Here, attaining the bounds requires a selection over equilibria in the continuation from the

next period.

We continue the analysis of Case 3 by exploring the possibilities for w2. The inequality

w1 ≤ δη implies that δ(1 − η) ≤ δ(1 − w1/δ), and therefore there are three subcases to

consider:

Subcase 3a: w2 ≤ δ(1− η).

Subcase 3b: δ(1− η) < w2 < δ
(
1− w1

δ

)
.

Subcase 3c: δ(1− w1

δ
) ≤ w2.

Working through the straightforward implications of these inequalities, we obtain the fol-

lowing. In Subcase 3a, we have μ = δ − w1 and μ = w2. Substituting for μ, μ, γ, and γ in

equations 4 and solving for η and η then yields

η =
p∗(1− w2)

δ
and η = w1 + (1− δ)π1.

The presumptions for Case 3 and Subcase 3a translate into the necessary conditions w1 ≥
δπ1 and w1 + p∗w2 ≤ p∗. (The inequality defining Subcase 3a is implied by these two

inequalities.)

Subcases 3b and 3c are handled the same way. In Subcase 3c, we obtain η = π1 and

η = π1(1 − w2) + π2w1 with necessary conditions w1 ≤ δπ1 and w1 + p∗w2 ≥ p∗. (The

inequality defining Subcase 3c is implied by these two inequalities.) Subcase 3b turns out

to be vacuous because solving for η and η and substituting in the presumptions for this

subcase yields a contradiction.

Consider the four regions described in Result 2. Note that Region A satisfies the nec-

essary conditions for Case 3c. In addition, the interior of Region A satisfies the necessary

conditions for Cases 1 and 2 which identify equilibrium payoffs that are contained in the
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set identified by Case 3c. Thus, Case 3c gives the set of equilibrium payoffs for Region A.

Region D is consistent with the necessary conditions of Case 3a and only this case. Re-

gion B is consistent with the necessary conditions of only Case 1, and Region C satisfies

the necessary conditions of only Case 2. These facts imply the results.
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