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Abstract

We study relational contracting and renegotiation in environments with external
enforcement of long-term contractual arrangements. A long-term contract governs the
stage games the contracting parties will play in the future (depending on verifiable
stage-game outcomes) until they renegotiate. In a contractual equilibrium, the parties
choose their individual actions rationally, jointly optimize when selecting a contract,
and exercise their relative bargaining power. Our main result is that in a wide variety
of settings, the optimal contract is semi-stationary, with stationary terms for all future
periods but special terms for the current period. In each period the parties renegotiate
to this same contract. For example, in a simple principal-agent model with a choice of
costly monitoring technology, the optimal contract specifies mild monitoring for the
current period but intense monitoring for future periods. Because the parties renegoti-
ate in each new period, intense monitoring arises only off the equilibrium path after a
failed renegotiation.

*We depart from alphabetical order to acknowledge the first author’s outsized conceptual and technical
contributions to this project. Watson: UC San Diego; Miller: University of Michigan; Olsen: NHH Norwegian
School of Economics. For helpful comments and encouragement, the authors thank Jeff Ely and five anonymous
referees; Nageeb Ali, Daniel Barron, Matthias Fahn, and Andy Skrzypacz; organizers and participants at the
2016 Econometric Society Winter Meetings, the 2016 Stanford Institute for Theoretical Economics summer
conference, the Third Annual Conference on Relational Contracts at Northwestern (2017), the 2018 American
Economic Association Winter Meetings, the 2018 EARIE Conference, and the Contract Theory Workshop at
Kyoto (2019); as well as seminar participants at Cambridge INET Institute, Florida International University,
Indiana University, Johns Hopkins Carey Business School, Kellogg, Konstanz, Michigan, NHH Norwegian
School of Economics, Penn State, Princeton, Seoul National University, Shanghai Jiaotong University, Tulane,
UCSD, UC3 Madrid, and Washington. Watson thanks the NSF (SES-1227527) and UCSD for grant support.



In many long-term relationships—such as between a worker and a firm, two business

partners, or an upstream supplier and a downstream buyer—the parties would like to co-

operate for their mutual benefit but are each tempted to deviate for individual gain. The

contracts they form typically provide incentives through a combination of self-enforcement

(the parties’ coordinated behavior to reward and punish each other over time) and external

enforcement, such as provided by courts and the legal system. The literature on relational

contracting has provided insights on self-enforcement in the context of stationary exter-

nally enforced terms. We develop a general model in which the parties can write arbitrary

non-stationary, long-term contracts that they can freely renegotiate at any time. We provide

results on the form of optimal contracts and on the complementarity of external enforce-

ment and self-enforcement. Further, we present novel applications in which a worker and

manager contract over a monitoring technology.

The prior literature establishes that, in a stationary environment without external en-

forcement, if the parties can make monetary transfers that enter their payoffs linearly, then

stationary behavior on the equilibrium path is optimal (see, e.g., Levin 2003; Miller and

Watson 2013). Introducing external enforcement, we find that while the parties optimally

write the same long-term contract every time they renegotiate, the contract they write is in

general non-stationary. If monetary transfers as a function of verifiable outcomes can be

externally enforced, or if no outcomes are verifiable, then the non-stationarity takes a par-

ticular form with regard to external enforcement: The future part of the contract, which the

parties will inherit in the next period, is stationary; but the present part, which governs the

current period, is special. We call such a contract semi-stationary. Intuitively, the parties

choose the future part to maximize the power of incentives, while they choose the present

part to maximize their joint payoffs given the power of incentives available to them. Since

they anticipate renegotiating in each new period, along the equilibrium path they always

operate under the present part of the optimal contract.1

A common theme in our applications is that, because equilibrium contracts are semi-

stationary, strict contractual terms such as intense monitoring are routinely adjusted to

milder terms in the short run. Such behavior is often observed in reality. For instance, many

organizations have strict formal rules, regarding attendance and procedures at work, that

management routinely allows employees to bend. Our result on complementarity speaks to

empirical findings as well.2

1While a semi-stationary contract is intended to be renegotiated every period, we explain in Section 3.1
how such renegotiation could be avoided in an expanded model in which contracts can include options, without
otherwise affecting any of our conclusions.

2Iossa and Spagnolo (2011) provides an explanation of the first phenomenon that is related to ours; we
discuss the differences in Section 5. Empirical findings of complementarity are briefly discussed in Section 3.4.
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Following the relational contracts literature (e.g., Levin 2003; Malcomson 2012), we

view the contract between parties as an agreement encompassing both externally enforced

and self-enforced parts. The former, which we call the external contract, prescribes how

a court or other external referee is to intervene in the relationship conditional on verifiable

information. The latter, self-enforced part specifies the parties’ individual actions over time,

as well as their anticipated revisions of the external contract.3 In our model, the external

contract specifies the stage game to be played in each period, as a function of the verifiable

history. We normally refer to an external contract as simply a contract, as it will typically

be clear from the context whether we are addressing both parts of the contract or just the

external part. We add “external” where needed to avoid confusion.

Allowing for arbitrary long-term contracts sets our model apart from the previous liter-

ature on relational contracting with limited external enforcement, which has typically either

allowed for only short-term (spot) contracts, or assumed that long-term contracts are sta-

tionary.4 Though the environment is stationary, non-stationary contracts introduce a payoff-

relevant state variable: The contract the parties agreed upon previously sets the disagree-

ment point for renegotiation in the current period, and it therefore influences the agreement

that they reach. Moreover, much of the related literature assumes that self-enforcement is

irrevocably terminated after a deviation, so then parties behave myopically. In contrast, we

suppose that the parties can renegotiate all aspects of their relationship every period, and

we find that they continue to combine optimal self-enforcement with external enforcement

even after a deviation. Our approach thus addresses how agents initiate and manage their

relationship, including how their agreements evolve after deviations and disagreements.

Kostadinov (2019), developed independently and contemporaneously, is the only other

project of which we are aware that studies long-term, non-stationary contracts in an envi-

ronment with external enforcement and renegotiation. That project is conceptually distinct

from ours on two dimensions. First, Kostadinov studies a particular principal-agent game

in which the agent is strictly risk averse, and uses the specific properties of the agent’s risk

aversion to prove results. In contrast, we examine a wide range of settings with mone-

tary transfers and quasilinear utility. Second, Kostadinov primarily employs a concept of

renegotiation based on “strong optimality” (following Levin 2003), without a theory of bar-

gaining. In contrast, we use contractual equilibrium to explicitly model renegotiation, as

we describe next. Nonetheless, Kostadinov finds a comparable result: in a strongly optimal

3See Watson 2013, 2001 for detailed discussion. In the literature, external and self-enforced contractual el-
ements are variously differentiated with the terms “explicit/implicit,” “formal/informal,” and “legal/relational”.
The “external/self-enforced” terminology we prefer focuses attention on the source of the enforcement power.

4Prominent entries include Baker, Gibbons, and Murphy 1994, 2002; Schmidt and Schnitzer 1995; Che
and Yoo 2001; Kvaløy and Olsen 2009; Iossa and Spagnolo 2011; and Itoh and Morita 2015.
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equilibrium, the long-term contract is renegotiated each period and is non-stationary.5

Our model applies the concept of contractual equilibrium (Miller and Watson 2013;

Watson 2013) to a hybrid dynamic game in which each period has first a cooperative ne-

gotiation phase and then a non-cooperative action phase. In the negotiation phase, players

renegotiate their contract and can make monetary transfers; in equilibrium they reach an

agreement according to the generalized Nash (1950) bargaining solution. The disagree-

ment point entails no immediate transfer. In the action phase, players choose actions in the

contractually specified stage game; in equilibrium these actions depend only on the public

history and satisfy individual incentive constraints, as in a perfect public equilibrium.6

Our model accommodates a variety of applications (such as employment relations, re-

peated procurement, team production, and partnerships) and a variety of externally enforced

elements, such as contingent payments, production technologies, and task assignment. In

an application, the scope of external enforcement is represented by an exogenously given

set of stage games that are available for the players to specify in their contract. Each stage

game includes a partition defining the extent to which outcomes are verifiable.

Section 1 presents our general model and the definition of contractual equilibrium, ex-

pressed as a recursive characterization of equilibrium continuation values. This character-

ization extends the notion of self-generation (Abreu, Pearce, and Stacchetti 1990) for our

contracting environment and is convenient for applications.

Section 2 presents our leading application, a principal-agent relationship with a costly

and externally enforceable monitoring technology, which illustrates the components of our

theory and all of our general results. In a setting with no verifiable information, optimal

contracts are semi-stationary and specify mild monitoring for the current period but in-

tense monitoring for future periods, which the players adjust each period in equilibrium.

When we augment the example by adding a verifiable monitoring signal but no externally

enforced contingent transfers, the optimal contract is no longer semi-stationary. But with

contingent transfers, there is once again an optimal semi-stationary contract. This extension

demonstrates the importance of contingent transfers for our main result: if there is verifi-

able information but externally enforced transfers are constrained by, say, limited liquidity

or legal constraints, then semi-stationary contracts will not generally be optimal.

5Kostadinov’s logic is similar to that behind our main result: players design the future part of their contract
to harshly punish a deviating player, but each period they renegotiate to special terms for the current period.
Kostadinov also shows that such a result would also arise from applying a generalized notion of contractual
equilibrium in his model.

6Miller and Watson (2013) and Watson (2013) provide non-cooperative foundations for the hybrid
cooperative/non-cooperative game, using cheap-talk bargaining and axiomatic equilibrium selection. In Ap-
pendix B.3 we explain how to generalize Miller and Watson’s results to our setting with external enforcement.
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Section 3 presents our general results. Section 3.1 shows how to construct optimal con-

tracts within the class of semi-stationary contracts. Theorem 1, in Section 3.2, shows that

semi-stationary contracts are optimal in contractual settings with externally enforced con-

tingent transfers. Theorem 2, in Section 3.3, obtains the same result for contractual settings

with no verifiable information. Section 3.4 explains why improvements in external enforce-

ment are always complementary with self-enforcement in our model. Appendix A provides

the proof of Theorem 1, and Appendix B provides provides foundations for contractual

equilibrium and a discussion of technical issues related to existence.

In Section 4, we expand the application from Section 2.2 by allowing option contracts,

in which one player verifiably selects from a menu of monitoring/payment pairs. This

application shows how giving parties the ability to contractually allocate decision rights

can expand the scope for cooperation. In this case, whether decision rights are optimally

allocated to the manager or to the worker depends on their relative bargaining strengths.

1 The Model

We generalize the model of Miller and Watson (2013) by adding external enforcement.

Players 1 and 2 play a relational contracting game in discrete time over an infinite horizon,

with discount factor δ ∈ (0, 1). In each period, there are two phases: the negotiation

phase, followed by the action phase. In the negotiation phase, the players jointly decide

to form or revise their contract and make an immediate monetary transfer. In the action

phase, the players individually select actions in a stage game and receive payoffs. External

enforcement is incorporated into the stage game, which may vary from period to period as

specified by the players’ contract. At the end of each period the players jointly observe an

unverifiable draw from a randomization device that we assume is uniformly distributed on

the unit interval. We normalize payoffs by multiplying by 1− δ.

1.1 Stage games and external contracts

A stage game γ = (A,X, λ, u, P ), to be played in the action phase, has the following

components:

• a set of action profiles A = A1 ×A2,
• an outcome set X ,
• a conditional distribution function λ : A→ ∆X ,
• a payoff function u : A→ R2, and
• a partition P of X .
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Each player i takes an action ai ∈ Ai. The action profile a ∈ A determines the probabil-

ity distribution λ(a) ∈ ∆X over outcomes. The realized outcome x ∈ X is commonly

observed by the players, but only the partition element that contains x, denoted P (x), is

verifiable. Though stage-game payoffs can in general depend on both the action profile a

and the outcome x, we define u(a) as the expected payoff over x ∼ λ(a) when the players

choose action profile a. Player i observes only the outcome x and her own action ai.7

In each period, the players’ current external contract specifies a stage game for them

to play in the action phase, as a function of the history of stage-game outcomes. Formally,

there is a set Γ of feasible stage games, and we let X ≡ ∪{X | (A,X, λ, u, P ) ∈ Γ} be

the set of possible stage-game outcomes. Let HX ≡ ∪∞k=0X k be the space of finite-length

outcome histories, where X 0 ≡ {h0} is the singleton consisting of the null history at the

start of the game. An external contract is a function c : HX → Γ, where c(h) is the stage

game to be played in the period following outcome history h ∈ HX . As noted in the

Introduction, we use the qualifier “external” to distinguish this from the self-enforced part

of the players’ contract, their coordinated play in the action phase over time. But where it

would not cause confusion, we drop the qualifier and say simply “contract”.

In our analysis, we study such contracts in the form of “continuation contracts.” Given

a history of outcomes through period t−1, the continuation contract from period t gives the

stage game in each period τ ≥ t as a function of the history of outcomes from t until τ − 1.

The continuation contract may be interpreted as specifying (i) the stage game to be played

in period t and (ii) a mapping from the stage-game outcome to the continuation contract in

period t+ 1. Formally, for any c : HX → Γ, let g(c) ≡ c(h0) be the stage game prescribed

for the initial period. For any x ∈ X and h ∈ HX , where h is k periods in length, let

xh denote the (k + 1)-period outcome history in which x is followed by the sequence h.

Define c|x : HX → Γ by (c|x)(h) ≡ c(xh) for every h ∈ HX . If the players operate under

continuation contract ct in period t, then they play stage game g(ct) and, after realizing

outcome xt in period t, they will inherit continuation contract ct|xt in period t+ 1.

External contracts can depend only on information that is verifiable. This means the

transition from a continuation contract in one period to the continuation contract in the fol-

lowing period must be measurable with respect to the partition of stage-game outcomes.

Formally, for any contract c, and letting (A,X, λ, u, P ) = g(c), the contract respects veri-

fiability if x ∈ P (x′) implies c|x = c|x′ for all x, x′ ∈ X . Let C be the set of contracts that

7To model a setting in which players observe each other’s actions, X and λ can be defined so that the
outcome reveals the action profile. The framework also allows for applications in which the players may not
observe their own payoffs.
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respect verifiability.8

1.2 The relational contracting game

We now describe the relational contracting game. In each period t, players enter the nego-

tiation phase with a contract ĉt ∈ C, inherited from period t − 1. The inherited contract

at the beginning of the game, denoted c0 ≡ ĉ1, is exogenous and represents the default

legal rule. In the negotiation phase, the players bargain to select a contract ct ∈ C and an

immediate monetary transfer mt ∈ R2
0, where R2

0 ≡ {m ∈ R2 | m1 +m2 = 0} is the set of

balanced transfers. The negotiated transfer is enforced automatically with the agreement.

If the players do not reach an agreement, then they operate under the inherited contract, so

ct = ĉt and the transfer is zero.

We model interaction in the negotiation phase cooperatively. The bargaining protocol is

represented by a fixed vector of bargaining weights π = (π1, π2) satisfying π1, π2 ≥ 0 and

π1 + π2 = 1. The bargaining weights can be viewed as a reduced form of a noncooperative

bargaining protocol, such as one in which πi is the probability that player i gets to make

an ultimatum offer. Appendix B.3 discusses the connections between the cooperative and

noncooperative approaches, along the lines of Miller and Watson (2013) and Watson (2013).

In the action phase of period t, the players simultaneously choose actions in the stage

game γt = (At, Xt, λt, ut, P t) prescribed by the current contract ct. Action profile at ∈ At
leads to an outcome xt, distributed according to λt(at). Along with the outcome, the players

observe the draw of the public randomization device.

The payoffs within period t are given by the sum of any monetary transfer and the stage-

game payoffs, normalized by 1− δ, so the expected payoff vector is (1− δ)(mt + ut(at)).

As the game progresses, the players’ behavior and the outcomes of the exogenous random

variables induce a sequence of transfers and stage-game payoffs, so the continuation payoff

vector from any period τ is the expected value of

∞∑
t=τ

δt−τ (1− δ)
(
mt + ut(at)

)
,

conditioned on the history prior to time τ and the specification of behavior from period τ .

In summary, the contractual setting is described by the set of feasible stage games Γ

(and its associated set of contracts C that respect verifiability), the default contract c0, and

8Limitations on external enforcement can be modeled as restricting the players to a subset Ĉ ⊂ C of
enforceable contracts. Our analysis applies without alteration if Ĉ is closed under the transition relation. In the
Supplementry Appendix we provide an existence result for finite Ĉ. Otherwise we shall not constrain C.
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bargaining weights π. We make two regularity assumptions throughout. First, we assume

that c0 specifies the same stage game for every history and that this stage game has a Nash

equilibrium. Second, we assume that Γ has uniformly bounded joint values: There is a

number ϑ ∈ R such that for every stage game (A,X, λ, u, P ) ∈ Γ and every a ∈ A, we

have −ϑ ≤ u1(a) + u2(a) ≤ ϑ.

1.3 Contractual equilibrium values

We analyze behavior using the concept of contractual equilibrium (Miller and Watson 2013;

Watson 2013), which requires the following: In the action phase, each player’s individual

action is optimal in response to the other player’s action and the equilibrium specification of

future behavior. In the negotiation phase, the players reach an agreement consistent with the

generalized Nash bargaining solution with bargaining weights π, where the disagreement

point entails equilibrium play from the action phase of the current period under the inherited

contract with no immediate transfer. The players renegotiate their entire contract in the

negotiation phase, including the external contract c, their coordinated play in the stage game

of the current period, and their plans for how future play under disagreement depends on

the history of stage-game outcomes. Thus, an agreement in one period implicitly specifies

the disagreement points in future periods.9

There are two standard approaches to characterizing equilibria in repeated games. The

first involves describing strategies for the dynamic game and then stating and evaluating

equilibrium conditions on the strategy space. The second characterizes the set of equilib-

rium continuation values recursively, following Abreu, Pearce, and Stacchetti (1990), with

equilibrium conditions expressed through dynamic programming. While both approaches

extend to contractual equilibrium, we follow the recursive approach for convenience. Ap-

pendix B.1 exposits the strategic approach and the links between the two approaches.

Because long-term contracts render the relational contracting game nonstationary, the

set of continuation values attainable from a given period depends on the inherited contract.

We therefore deal with collections of the formW = {W (c)}c∈C where, for every c ∈ C,

W (c) ⊂ R2 is the set of equilibrium continuation values from the beginning of a period in

which c is the inherited contract.10 Our characterization of equilibrium values extends the

notion of self-generation (Abreu, Pearce, and Stacchetti 1990), as we describe next.

Note that in a given period under contract c, the players interact in stage game g(c) ≡
(A,X, λ, u, P ) and will get an outcome x ∈ X , leading to inherited contract c|x in the

9As in perfect public equilibrium, contractual equilibrium assumes that the players’ equilibrium behavior is
conditioned only on their common history, so the bargaining set and disagreement point are commonly known.

10We need to allow W (c) = ∅ for technical reasons discussed in footnote 12 and Appendix B.2.
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next period. The players will then anticipate coordinating on some continuation value in

W (c|x) in the next period. Since the players can randomize over continuation values by

conditioning on the draw of the public-randomization device, they are essentially picking

a value in the convex hull of W (c|x), which we denote coW (c|x). Let y(x) denote the

expected continuation value that the players coordinate on in the event that outcome x

occurs in the current period. Also, given such a continuation function y : X → R2, let

y : A→ R2 be the expected continuation function y(a) ≡ Ex[y(x) |x ∼ λ(a)].

Incorporating the anticipated continuation value, in the current period the players’ in-

teraction is effectively to play the induced static game

〈
A, (1− δ)u(·) + δy(·)

〉
, (1)

where A is the set of action profiles, and payoffs are the convex combination of stage-game

payoffs and continuation values. The players can self-enforce any mixed action profile

α ∈ ∆A that is a Nash equilibrium of this induced game, resulting in continuation value

w = (1− δ)u(α) + δy(α) (2)

from the action phase in the current period.11

Definition 1. Given γ = (A,X, λ, u, P ) ∈ Γ and y : X → R2, call action profile α ∈ ∆A

enforced relative to γ and y if it is a Nash equilibrium of Induced Game 1.

Definition 2. Given W = {W (c)}c∈C , take any c ∈ C, and let g(c) = (A,X, λ, u, P ).

Say that w ∈ R2 is c-supported relative to W if there exist α ∈ ∆A and y : X → R2 such

that y(x) ∈ coW (c|x) for all x ∈ X , α is enforced relative to g(c) and y, and Equation 2

holds.

Turning to the negotiation phase of the current period, under inherited contract ĉ the

players would coordinate on some ĉ-supported continuation value w in the event that they

fail to make an agreement. Thus, w is the disagreement point for negotiation in the current

period. The Nash bargaining solution predicts that the players renegotiate to a contract c

and coordinate on a c-supported continuation value that maximizes their joint value,

L(W) ≡ max{w1 + w2 | c ∈ C and w is c-supported relative toW}, (3)

and they make an immediate transfer to split the surplus in proportion to their bargaining

weights. We call L(W) the level of the collection. Because an equilibrium collection W
11Here ∆A is defined as the space of uncorrelated probability distributions over A.
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gives the continuation values available from every period, it must satisfy the following self-

generation condition.

Definition 3. Say that a collectionW = {W (c)}c∈C is bargaining self-generating (BSG)
if for every ĉ ∈ C and w ∈ W (ĉ), there exists a value w that is ĉ-supported relative toW
such that w = w + π

(
L(W)− w1 − w2

)
.

The BSG condition captures the idea of internal consistency in that the bargaining solu-

tion selects among all continuation values attainable relative toW . Contractual equilibrium

incorporates the additional condition of external consistency, meaning that the players at-

tain the maximum joint value over all internally consistent equilibria.

Definition 4. A collectionW is called a contractual equilibrium value (CEV) collection
if it is BSG and its level L(W) is maximal among the set of BSG collections.

We will say that contractual equilibrium exists if there is a CEV collectionW with the

property that W (c0) 6= ∅. Existence of contractual equilibrium is analyzed in the context of

our main characterization results in the next section.12 At this point, we have the following

immediate implication of the CEV definition.

Lemma 1. For a given contractual setting, all CEV collections attain the same level.

For every c ∈ C, let W ∗(c) be the union of all W (c) sets, over all CEV collections,

and letW∗ ≡ {W ∗(c)}c∈C . Under conditions for existence developed in the next section,

W∗ is also a CEV collection and so we refer to it as the maximal CEV collection. We call c∗

an optimal contract if it solves the maximization problem that definesL(W∗) in Equation 3.

We sometimes refer to the equilibrium level as L∗.

Clearly, from Lemma 1 and the BSG definition, we have w1 +w2 = L∗ for every c and

every w ∈ W ∗(c). Also, for an arbitrary set Y ⊂ R2 of constant joint value, let us refer to

the vertical/horizontal distance between its extreme points as its span:

Span(Y ) ≡ sup{w1 − w′1 | w,w′ ∈ Y }.

We shall say that Y attains its span if it contains its extreme points, so there are elements

z1, z2 ∈ Y such that z21 − z11 = Span(Y ).

12Existence of a BSG collection requires existence of a maximum in Expression 3. Note that contractual
equilibrium can exist with W (c) = ∅ for some values of c, which we allow to deal with off-path contracts
under which there would be no best response in the action phase (see Appendix B.2). Also, for convenience we
allow W (c) to be empty if c is a contract that would never be inherited. In Supplementary Appendix C.3 we
prove an existence result for settings with a finite number of external contracts, where W (c) 6= ∅ for all c.
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As for which payoff vector in a CEV collection the players obtain from the start of

the game, it depends on what their continuation play would be if they fail to agree in the

first period. For instance, if the initial contract c0 specifies a constant stage game that

represents the players’ outside values, and we normalize these outside values to zero, then

in a contractual equilibrium the players get payoffs of exactly πL∗. That is, they split the

surplus (using voluntary transfers in the negotiation phase) relative to their outside values

in accordance with their bargaining weights.

2 Example: Choice of Monitoring Technology

This section analyzes a simple example, in several variations, to illustrate our approach and

main results, in a way that we hope also provides some novel economic insights. Consider

a relationship between a worker (player 1) and a manager (player 2), with an externally

enforced monitoring technology. In the action phase, the players interact in a stage game

parameterized by a monitoring level µ ∈ [0, 1]. The worker privately chooses effort a1 ∈
A1 = {0, 1}. High effort, a1 = 1, imposes a cost β ∈ (0, 1) on the worker and yields a

benefit of 1 to the manager, both in monetary terms. The manager has no action but pays

k(µ) for the monitoring technology. The stage-game payoff vector is therefore given by

u(a1) = (−βa1, a1 − k(µ)). Assume k(·) is differentiable, k′ > 0, and β + k(1) ≤ 1.

The stage-game outcome x ∈ X = {1, 0} is a signal of the worker’s effort choice.

We call x = 1 the “high” signal and x = 0 the “low” signal. If the worker exerts high

effort then the signal is high for sure, but if the worker exerts low effort then the signal is

high with probability 1− µ and low with probability µ. The manager does not observe the

worker’s effort choice or the payoff he receives.13 Assume that the signal is not verifiable

(the external enforcer cannot distinguish between x = 1 and x = 0), and so P = {{0, 1}}.
Because nothing is verifiable, an external contract is simply a sequence c = {µτ}∞τ=1,

where µ1 is the monitoring level specified for the current period, µ2 is the monitoring level

specified for the next period, and so on. Note that regardless of the outcome x in the current

period, the contract inherited in the following period is c|x = {µτ}∞τ=2.

2.1 Fixed monitoring technology

As a benchmark, we first examine the setting in which the monitoring technology µ is

exogenously fixed and constant over time. That is, Γ contains just one stage game, so in

13Alternatively, we could assume that the manager’s payoff depends only on the monitoring signal, equaling
1 if x = 1 and −(1− µ)/µ if x = 0, which implies the same payoff function u.
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the negotiation phase, the players have only their immediate transfer and their self-enforced

continuation play to discuss. There is just one set of continuation values to calculate, W ,

which we write without reference to the lone contract c0.

This relationship falls within the class analyzed by Miller and Watson (2013), where

the contractual equilibrium value set W ∗ is easily characterized.14 Because every element

of W ∗ has the same joint value L∗, W ∗ is a subset of a line segment of slope −1. In fact,

W ∗ attains its span, and we let z1 and z2 denote the extreme points, where z1 gives the

worst continuation value for player 1 and z2 gives the worst for player 2. Other points

in W ∗ are inessential to the equilibrium construction because the players can utilize the

public randomization device to coordinate on any point in the convex hull as an expected

continuation value. Depending on parameter values, either high effort will be sustainable

and L∗ = 1− β − k(µ), or high effort cannot be achieved and L∗ = −k(µ).

Let us proceed under the presumption thatL∗ = 1−β−k(µ). With reference to the BSG

condition, we can determine z1 and z2 by characterizing the associated disagreement points

w1 and w2 for which z1 = w1 +π(L∗−w1
1−w1

2) and z2 = w2 +π(L∗−w2
1−w2

2). Here

w1 must be the supported continuation value from the action phase that is most favorable

to player 2, whereas w2 is the one most favorable to player 1.

Disagreement point w1 is characterized as follows and displayed in Figure 1. The play-

ers coordinate on a1 = 1 being played in the current period. Then if the signal is high, they

coordinate to achieve expected continuation value z1 + (ρ,−ρ) from the next period. If the

signal is low, they coordinate on z1 from the next period. Thus

w1 = (1− δ)(−β, 1− k(µ)) + δz1 + δ(ρ,−ρ). (4)

The value of ρ must be large enough to ensure that the worker does not want to deviate to

low effort, knowing that such a deviation would be detected with probability µ, and then

punished:

−(1− δ)β + δ(z11 + ρ) ≥ (1− δ) · 0 + µδz11 + (1− µ)δ(z11 + ρ).

This incentive constraint simplifies to µδρ ≥ β(1 − δ). Because we are characterizing the

14It is also easy to calculate, as a benchmark, the optimal perfect public equilibrium in a setting with no
negotiation but still with voluntary transfers, as analyzed by Levin (2003). High effort from the worker and
payments from the manager can then be sustained in equilibrium if the cost saved by a deviation is no larger
than the expected loss of future surplus, weighted by the probability of detecting the deviation—that is, if
(1 − δ)β ≤ δµ (1− β). This equilibrium can be sustained by reversion to low effort and no payments in all
future periods if any party should deviate. However, such behavior is not credible if the parties can renegotiate
and can each exercise bargaining power. Contractual equilibrium explicitly accounts for such negotiations.
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FIGURE 1. CONTRACTUAL EQUILIBRIUM WITH FIXED MONITORING. Figures in Section 2 are
drawn to scale using parameters β = 1

4 , k(µ) = 3
4µ, δ = 3

4 , and π1 = π2 = 1
2 . Disagreement

point w1 or any other point in W ∗ is attained by making an appropriate transfer, playing a1 = 1,
and continuing with promised utility z1 + (ρ,−ρ) if the signal is x = 1, but with z1 if x = 0. Since
w1 ∈ W ∗, z1 = w1. Disagreement point w2 is attained by playing a1 = 0 and continuing with z2

regardless of x. When w2 is the disagreement point, the parties negotiate to z2.

supported continuation value that is worst for player 1, it is optimal to pick the smallest

possible value of ρ, so we set ρ = (1 − δ)β/δµ. Because play in the current period is

efficient, w1 + w2 = L∗, so there is no bargaining surplus; thus z1 = w1. Combining this

with Equation 4, inserting the values of ρ and L∗, and solving for z1 yields

z1 =

(
β

µ
− β, 1− k(µ)− β

µ

)
.

The payoffs reflect the worker’s rent from exerting effort under imperfect monitoring.

Disagreement point w2 is characterized as follows and displayed in Figure 1. The play-

ers coordinate on a1 = 0 being played in the current period and, regardless of the signal

realization, they coordinate to achieve continuation value z2 from the next period. Thus,

w2 = (1− δ)(0,−k(µ)) + δz2.

Combining this with z2 = w2 + π(L∗−w2
1−w2

2) and inserting the value of L∗, we obtain

z2 = (0,−k(µ)) + π(1− β).

Here the payoffs reflect that the parties share the bargaining surplus in proportion to their

12



bargaining weights.

The final equilibrium condition is that ρ ≤ Span(W ∗); that is, the bonus in continuation

value that the worker receives for a high signal must be attainable. Noting that

Span(W ∗) ≡ z21 − z11 = z12 − z22 = π1(1− β)−
(
β

µ
− β

)
and recalling that ρ = (1− δ)β/δµ, we find that the condition for sustaining high effort in

contractual equilibrium simplifies to

β ≤ µδ(π1 + β − π1β). (5)

If this inequality does not hold, then high effort cannot be sustained, the level is L∗ =

−k(µ), and (0,−k(µ)) is the unique contractual-equilibrium value.15

It is important to note how the equilibrium span and level depend on the monitoring

technology µ. The span is increasing in µ, because with better monitoring the worker

can be promised a smaller reward ρ for a high signal, which reduces z11 . The level is

decreasing in µ, because better monitoring costs more. There is thus a trade-off in setting

the monitoring level: a high enough span is needed for the worker’s incentive condition, but

it comes at a higher monitoring cost. The monitoring level that maximizes welfare is the

lowest that satisfies Condition 5, which is µ = β/(δβ + δπ1 − δπ1β).

2.2 Contractible monitoring technology

Now suppose that Γ contains all monitoring levels µ ∈ [0, 1], so the players can write a

contract that specifies any sequence c = {µτ}∞τ=1. For any contract c ∈ C, let z1(c) and

z2(c) denote the extreme points of W ∗(c), which attains its span as in the previous setting.

As before, we let zi(c) denote the worst point for player i.

It turns out that, in contractual equilibrium, stationary contracts (specifying the same µ

in all periods) are suboptimal in the present setting. Instead, the optimal contract is semi-

stationary, specifying one monitoring level µ̂ for the current period and another level µ for

all future periods. Then in equilibrium the inherited contract is always {µ}∞t=1, and the

players always renegotiate to specify µ̂ for the current period and µ for all future periods.

Intuition gleaned from the fixed-µ case helps explain this result. To achieve the high-

est joint value in the current period, the players want µ in this period to be low to save

15Unless µ = π1 = 1, the condition for sustaining high effort in the contractual equilibrium is stricter than
the corresponding condition for the optimal perfect public equilibrium described in Footnote 14. The difference
arises because the perfect public equilibrium employs punishments that would not survive renegotiation.

13



on the monitoring cost. In order to support high effort with a low monitoring level in the

current period, the players need the span of continuation values from the next period to be

large. To maximize the span, it is best to specify a high monitoring level for future periods,

which supports wide-ranging disagreement points. The players anticipate renegotiating in

the future to lower the monitoring level one period at a time. Renegotiation shifts every dis-

agreement point to a continuation value in the direction of π because players share surplus

in this proportion, so renegotiation ensures a high joint value while maintaining the large

span of continuation values.

To perform the analysis formally and to calculate the monitoring levels µ̂ and µ that

are featured in the optimal contract, take as given any contract c = {µτ}∞τ=1 and let c′ =

c|x = {µτ}∞τ=2 denote the inherited contract in the next period. We shall express z1(c)

and z2(c) as functions of z1(c′) and z2(c′) which, in particular, relates Span(W ∗(c)) to

Span(W ∗(c′)) and also helps us calculate L∗.

The specifications of disagreement play that support extreme points z1(c) and z2(c) are

exactly as in the fixed-µ case, except that the continuation values in the following period

are taken from the set W ∗(c′). In the disagreement point associated with z1(c), players

coordinate on play of a1 = 1 in the current period and on continuation value z1(c′) +

x(ρ,−ρ) from the next period (giving a bonus of ρ to the worker if the signal is high):

w1(c) = (1− δ)(−β, 1− k(µ1)) + δz1(c′) + δ(ρ,−ρ). (6)

Since the last term is a transfer and z1(c′) has joint value L∗, the negotiation surplus derives

entirely from changing the monitoring level in the current period, and we have z1(c) =

w1(c) + (1− δ)π
(
L∗ − (1− β − k(µ1))

)
. Combining this with Equation 6 yields

z1(c) = (1− δ)
(
β

µ1
− β, 1− β

µ1
− k(µ1)

)
+ (1− δ)π

(
L∗ − 1 + β + k(µ1)

)
+ δz1(c′).

(7)

where we have set ρ = (1− δ)β/δµ1 to make the worker’s incentive constraint bind.16 The

payoff to the worker in the current period reflects her rent from effort plus her share of the

negotiation surplus.

The disagreement point associated with z2(c), as before, entails play of a1 = 0 and

coordination on continuation value z2(c′) from the next period, implying

w2(c) = (1− δ)(0,−k(µ1)) + δz2(c′).

16If (1− δ)β/δµ1 > Span(W ∗(c′)) then high effort cannot be supported in disagreement and z1(c) is the
same as z2(c) characterized below.
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The bargaining solution implies z2(c) = w2(c)+(1−δ)π
(
L∗ + k(µ1)

)
. Combining these

expressions yields

z2(c) = (1− δ)
(
0,−k(µ1)

)
+ (1− δ)π

(
L∗ + k(µ1)

)
+ δz2(c′). (8)

Recalling the definition of span, we subtract Equation 7 from Equation 8 to obtain

Span(W ∗(c)) = (1− δ)(1− β)π1 − (1− δ)β 1− µ1
µ1

+ δ Span(W ∗(c′)). (9)

Suppose that we want to design a contract to maximize Span(W ∗(c)). Because Expres-

sion 9 is increasing in µ1 and in Span(W ∗(c′)), we should set µ1 = 1 and, by induction,

specify the same maximal monitoring level in all future periods. Therefore, the span is

maximized by the contract c ≡ {1}∞τ=1. Inserting c = c′ = c into Expression 9 and sim-

plifying yields Span(W ∗(c)) = π1(1 − β), which is strictly higher than the span of W ∗

in the fixed-µ setting. Correspondingly, the sufficient condition for enforcing high effort,

ρ ≤ Span(W ∗(c)), is weaker than Inequality 5.

Of course, when the players negotiate in a given period, they will want to maximize the

span not from the current period but from the next period, which allows them to support high

effort in the current period at the lowest possible monitoring level (to save on monitoring

costs that they will actually have to pay). Therefore they should agree on a contract that

makes c the inherited contract in the next period. To calculate the monitoring level needed

to support high effort in the current period, recall that the worker must be rewarded for

high output with a bonus in continuation value of at least (1 − δ)β/δµ, where µ is the

monitoring level in the current period. The best choice for µ is the smallest value that

satisfies the constraint (1− δ)β/δµ ≤ Span(W ∗(c)), which is

µ̂ =
(1− δ)β
π1δ(1− β)

. (10)

To summarize, in the contractual equilibrium the players initially choose contract c∗ =

{µτ}∞τ=1 defined by µ1 = µ̂ and µτ = 1 for τ = 2, 3, . . .. In each subsequent period,

the players inherit contract c and renegotiate back to c∗. In other words, they revise their

inherited contract by specifying µ̂ in the current period but leave the specified monitoring

level at 1 for all future periods. The equilibrium continuation values and disagreement

points are displayed in Figure 2. Is it easy to verify that µ̂ is strictly less than the optimal

monitoring level in the fixed-µ setting, for parameter values under which cooperation can

be sustained. Therefore, the players get a strictly higher joint value from the optimal semi-
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FIGURE 2. CONTRACTUAL EQUILIBRIUM WITH CONTRACTIBLE MONITORING TECHNOLOGY.
Disagreement point w1 is attained by playing a1 = 1 under contract c (with monitoring level µ = 1)
and continuing with promised utility z1(c) + (ρ,−ρ) if the signal is x = 1, but with z1(c) if x = 0.
Disagreement point w2 is attained by playing a1 = 0 under c and continuing with z2(c) regardless
of x. When wi is the disagreement point, the parties negotiate to contract c∗ (with monitoring
level µ̂) and utility zi(c). Any point in W ∗ is attained by playing a1 = 1 under c∗, making an
appropriate transfer, and continuing with z2(c) if x = 1, but with z1(c) if x = 0.

stationary contract than from the best stationary contract.

2.3 Verifiable signal

The example presented in the previous subsections illustrates one of our general results:

Semi-stationary contracts are optimal in settings with no verifiable information. We next

show that this result does not extend to all settings with verifiable information. To do this,

we examine an extension of the example in which the stage-game outcome x is verifiable.

As before, external enforcement entails only operation of the monitoring technology at the

contractually specified level, but now the sequence of monitoring levels can be conditioned

on past realizations of x. We assume that externally enforced outcome-contingent transfers

are not available; such transfers are discussed in the next subsection.

A semi-stationary contract does not condition the monitoring level on past realizations
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of x; it specifies a monitoring level µ̂ in the current period and a monitoring level µ for

all future periods regardless of the history of signal realizations. The best semi-stationary

contract c∗ is exactly as described in the previous subsection, with µ̂ given by Equation 10

and µ = 1. Players coordinate on behavior and continuation values as before.

But c∗ is no longer optimal. To see why, recall that the worker will select high effort

only if the difference between his continuation values following high and low signals is at

least (1 − δ)β/δµ, where µ is the monitoring level in the current period. Maximizing the

difference allows µ, and hence the cost of monitoring, to be minimized. In the initial exam-

ple, regardless of the contract c, these continuation values were required to be elements of a

single set W ∗(c|x), because c|x could not depend on x (it was unverifiable). However, with

x now verifiable, the inherited contracts c|1 and c|0 may differ. Rewards and punishments

may be enhanced by conditioning c|x on x.

Specifically, to reward the worker following a high monitoring signal (x = 1) in the

current period, the inherited contract c|1 should maximize z21(c′) over c′ ∈ C, and the

players should coordinate on z2(c|1), the worker’s best continuation value. As in the initial

example, z21(·) is maximized by contract c specifying µ = 1 in all periods regardless of

the signal realizations.17 Likewise, to best punish the worker after a low monitoring signal

(x = 0) in the current period, c|0 should minimize z11(c′′) over c′′ ∈ C, and the players

should coordinate on z1(c|0). But c generally does not minimize z11(·). In fact, a stationary

contract specifying a lower monitoring level may be better, depending on cost parameters.

Consider such a contract c̃ that specifies µ = µ̃ < 1 in all periods regardless of the signal

realizations. The disagreement point associated with z1(c̃) involves high effort, as in the

initial example. We find that if the marginal monitoring cost is sufficiently large at the

maximal level (specifically, if π1k′(1) > β), then z11(c̃) is increasing in µ̃ for µ̃ near 1. This

implies that there is a value µ̃ < 1 for which z11(c̃) < z11(c).18

Suppose we design a contract c so that c|1 = c and c|0 = c̃, where the players would

coordinate on continuation value z2(c) following the high signal and z1(c̃) following the

low signal. Such a contract supports high effort in the current period with less monitoring

than c∗ requires, because z21(c) − z11(c̃) > Span(W ∗(c)). The associated continuation

values and disagreement points are displayed in Supplementary Appendix C.4. Importantly,

17Assuming that the maximum is attained, let c′ maximize z21(·). Clearly the disagreement point that favors
player 1 involves low effort in the current period and continuation value z21(c′) regardless of the signal, so
Equation 8 is valid with c = c′. Player 1’s payoff is increasing in µ1, implying c′ = c.

18Equation 7 is valid with c = c′ = c̃ and µ1 = µ̃ if µ̃ is close to 1, because the disagreement behavior
associated with z1(c̃) is as described in the initial example. Algebra yields z1(c̃) =

(
β/µ̃ − β, 1 − β/µ̃ −

k(µ̃)
)

+π
(
L∗−1+β+k(µ̃)

)
. Increasing µ̃ reduces the worker’s rent from effort (the first term) but increases

the negotiation surplus (the second term). For µ̃ near 1, the latter dominates if π1k
′(1) > β.
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c is not semi-stationary because the monitoring level specified for the following period

depends on the verifiable outcome in the current period. The equilibrium level strictly

exceeds what can be achieved by any semi-stationary contract.

2.4 Contingent transfers

In this subsection we preview our main result, that semi-stationary contracts are optimal

in settings with contingent transfers (external enforcement of arbitrary budget-balanced

monetary transfers as a function of the verifiable outcome). Note first that adding contingent

transfers to the example discussed in the previous subsection, where x is verifiable, enables

the moral-hazard problem to be solved without any relational incentives. It suffices to

choose a stationary contract that specifies a large monetary bonus for the worker in the

event of x = 1. However, the prospect of being forced to pay a large bonus could tempt

the manager to manipulate the signal. To better illustrate our main result, we extend the

example to allow for non-verifiable signal manipulation by the manager. We show that the

contractual equilibrium is semi-stationary, with incentives for effort provided by contingent

bonuses, and incentives to abstain from manipulation provided by self-enforcement.

We augment the example so that the manager can take an unverifiable action that cost-

lessly “jams the signal.” The manager’s action in the stage game is denoted a2 ∈ A2 =

{0, 1}, where a2 = 0 refers to jamming the signal and a2 = 1 means not jamming it.

Stage-game payoffs are the same as before; they do not depend on a2. The outcome is now

written x = (x1, x2) ∈ {0, 1} × {0, 1}, where x1 is the signal realization and x2 = a2. If

the manager chooses a2 = 1 then x1 depends on a1 and µ exactly as in the initial example.

If the manager chooses a2 = 0 then with probability ε the signal is jammed and x1 = 0

regardless of the worker’s action, and with probability 1− ε the signal realization depends

on a1 and µ as before. The probability ε is a fixed parameter. Note that x1 is verifiable, as

in the previous subsection, while x2 is not verifiable.

Contingent transfers are incorporated as follows. The external contract can specify,

in addition to the monitoring level, a monetary transfer from the manager to the worker

as a function of the verifiable x1. Let b1(x1) ∈ R denote the transfer in the event of

signal realization x1. The set of stage games Γ is parameterized by
(
µ, b1(1), b1(0)

)
and

stage-game payoffs include the expected transfer as a function of the action profile. A

semi-stationary contract specifies two combinations of a monitoring level and contingent

transfers: (µ̂, b̂1(1), b̂1(0)) in force for the current period, and (µ, b1(1), b1(0)) in force for

all future periods irrespective of signal realizations.

Such a contract turns out to be optimal. A key idea is that, because renegotiation ensures
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that all continuation values inW∗ have the same joint value, shifts between them are equiv-

alent to monetary transfers. So rather than having external enforcement of current-period

actions occur through the inherited contract in the next period—by specifying c|(1, x2) 6=
c|(0, x2) so that W ∗(c|(1, x2)) 6= W ∗(c|(0, x2))—it could alternatively occur with a mon-

etary transfer in the current period. This is possible because the continuation contract c|x
and the transfer b1(x) are both conditioned on only the verifiable signal x1.

A complication arises, however, because players also rely on self-enforcement (coordi-

nating on continuation values within each set W ∗(c|x)), and generally they can condition

their play on elements of the outcome that are unverifiable, in particular the manager’s ac-

tion a2. There is no way to substitute for this using externally enforced transfers. But trans-

fers can substitute for shifting from one set of continuation values W ∗(c|(1, x2)) to another

set W ∗(c|(0, x2)), as long as the latter set has as much scope for enforcing actions in the

current period as does the former. Self-enforcement is best served by a large span of con-

tinuation values, so, with appropriate transfers, it is optimal to specify c|(1, x2) = c|(0, x2)
and to let this be the contract with the largest span.

The foregoing logic is a key element in the proof of our main result. While the general

analysis requires additional technical steps, it is straightforward to summarize the equilib-

rium characterization in the example; a few of the calculations are shown in Supplementary

Appendix C.5. Using the same steps as in the initial example, we find that the largest span

is achieved by the contract c that specifies µ = 1, b1(1) = β, and b1(0) = 0 in all periods

regardless of the stage-game outcomes. We obtain Span(W ∗(c)) = π1(1 − β) as before,

but now the disagreement point associated with z1(c) requires that a = (1, 1) be enforced.

The optimal contract c∗ satisfies c∗|x = c for all x, and it provides incentives to the worker

through a current-period monetary bonus b1(1) − b1(0) > 0. The players coordinate on

the manager’s favorite continuation value z1(c) if x2 = 1 (no jamming), and on z2(c) if

x2 = 0. Adjusting for the expected transfer, this provides incentives to the manager.

The manager’s ability to jam the signal constrains the use of contingent transfers, but

nonetheless L∗ is higher than in the initial example. In fact, among the examples in this

section, those with greater scope for external enforcement exhibit higher equilibrium wel-

fare levels, illustrating the general complementarity result we derive in the next section.19

To our main point, the optimal contract in this example is semi-stationary, specifying µ < 1

and a transfer bonus b1(1)− b1(0) = β/µ in the current period, and specifying µ = 1 and

b1(1)− b1(0) = β in all future periods regardless of the stage-game outcomes.

19Adding signal jamming to Sections 2.2 and 2.3 would not affect equilibrium welfare levels, because those
examples do not have externally enforced contingent transfers.
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3 Optimal Contracts and Semi-Stationarity

This section develops our main results, which show that the findings in our leading example

regarding semi-stationary contracts hold broadly. We begin with these general definitions:

Definition 5. A contract c ∈ C is stationary if c|x = c for every x ∈ X .

Definition 6. A contract c ∈ C is semi-stationary if there is a stationary contract c such

that c|x = c for all x ∈ X . In this case, we say that c transitions to c .

A stationary contract c always transitions back to itself, so it specifies the same stage

game g(c) in every period regardless of the history. A semi-stationary contract c starts with

stage game g(c) and then specifies g(c) in all future periods regardless of the history.

The first subsection below provides an algorithm to find an optimal contract in an ar-

tificial setting in which the players are restricted to semi-stationary contracts. In the sub-

sections that follow, Theorem 1 establishes that semi-stationarity is indeed optimal in con-

tractual settings with externally enforced contingent transfers, provided that the algorithm

has a solution, and Theorem 2 obtains the same result for contractual settings with no ver-

ifiable information. The algorithm can then be used to calculate an optimal contract. The

last subsection explains why external enforcement and self-enforcement are always com-

plementary.

3.1 Optimization within the class of semi-stationary contracts

We introduce two optimization problems that jointly identify a contract that attains the max-

imal level among semi-stationary contracts. The first optimization problem determines the

stationary part of the contract by finding the maximal span of continuation values that can

be supported in the current period, as a function of the span of continuation values in the

next period. This exercise corresponds to the analysis behind Equation 9 in the example in

Section 2.2. The second optimization problem maximizes the joint payoff attained in the

current period, assuming that the span of continuation values in the next period is the max-

imal fixed point from the first problem. It corresponds to the analysis behind Equation 10

in the example.

Because negotiation always leads to the same welfare level, in both optimization prob-

lems we normalize the continuation values from the action phase so that they lie on the

line R2
0 with zero joint value. The normalization is done by shifting stage-game payoffs

along a ray in the direction of relative bargaining powers, π, which translates a payoff vec-

tor u to the point u − π(u1 + u2). (Intuitively, this corresponds to a bargaining outcome
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u+π(L−u1−u2) with L normalized to zero.) Likewise, we normalize expected continua-

tion values from the next period to be on the line segment R2
0(d) ≡

{
m ∈ R2 | m1 +m2 =

0 and m1 ∈ [0, d]
}

, for a given span d.

In the first optimization problem, to maximize the span for the current period we look

for a stage game γ = (A,X, λ, u, P ) and action profiles α1 and α2, where α1 supports a

continuation value that is worst for player 1 and α2 supports a continuation value that is

best for player 1 (worst for player 2). These action profiles must be enforced relative to the

stage game and some selection of continuation values from the start of the next period. For

any action profile α ∈ ∆A and continuation value function y : X → R2
0(d), define

ω(γ, α, y) = (1− δ) (u(α)− π(u1(α) + u2(α))) + δy(α).

This is the normalized continuation value. Then let Λ(d) denote the maximized difference

between player 1’s normalized continuation values, by choice of the stage game, enforced

action profiles, and continuation value functions:

Λ(d) ≡ max ω1(γ, α
2, y2)− ω1(γ, α

1, y1)

by choice of: γ = (A,X, λ, u, P ) ∈ Γ;

y1, y2: X → R2
0(d); and

α1, α2 ∈ ∆A;

subject to: α1 is enforced relative to γ and y1, and

α2 is enforced relative to γ and y2.

(11)

For the second optimization problem, let Ξ(d) denote the maximized joint payoffs, by

choice of the stage game, enforced action profile, and continuation value function:

Ξ(d) ≡ max u1(α) + u2(α)

by choice of: γ = (A,X, λ, u, P ) ∈ Γ,

y :X → R2
0(d), and

α ∈ ∆A;

subject to: α is enforced relative to γ and y.

(12)

Assume that Λ(d) is defined for all d and has a largest fixed point, denoted d∗, and

that Ξ(d∗) exists. Let γ = (A,X, λ, u, P ), y1, y2, α1, and α2 denote any solution to

Optimization Problem 11 for Λ evaluated at d∗. Let γ∗ = (A∗, X∗, λ∗, u∗, P ∗), y∗, and α∗

denote any solution to Optimization Problem 12 for Ξ evaluated at d∗, so Ξ(d∗) is the

maximum value. Define c to be the stationary contract that specifies stage game γ in every
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period, and define c∗ to be the semi-stationary contract that specifies stage game γ∗ for the

current period and then transitions to c.

If players were restricted to semi-stationary contracts, c∗ would be optimal and the

equilibrium level L∗ would equal Ξ(d∗). Further, there would be a CEV collection in which

W (c) = {z1(c), z2(c)} where, for j = 1, 2, the disagreement point is

wj = (1− δ)u(αj) + δ
(
z1(c) + yj(αj)

)
,

and the bargaining solution implies zj(c) = wj+π(L∗−wj1−wj2). Using these expressions,

the definition of ω, and that span of W (c) is d∗, we derive:

z1(c) = ω(γ, α1, y1) + π(1− δ)L∗ + δz1(c)

z2(c) = ω(γ, α2, y2) + π(1− δ)L∗ + δz2(c) + δ(−d∗, d∗)

These correspond to Equations 7 and 8 in the initial example.20 Collecting the z1(c) and

z2(c) terms gives a direct expression of these values.

Although an optimal semi-stationary contract is meant to be renegotiated every period,

even if no deviation occurred previously, we do not claim that such “on-path renegotiation”

should be seen in reality. In fact, in an enriched model that allows the players to send a joint,

verifiable message in the negotiation phase, an optimal contract can include a provision that

renews the equivalent of c∗ if the players issue a joint statement of confirmation. For exam-

ple, many real contracts specify that terms can be renewed by mutual agreement.21 Then,

rather than having to renegotiate the entire contract, the players can negotiate to exercise the

joint renewal option and make an associated transfer.22 We have left renewal options out of

our model for simplicity, and to highlight the intertemporal changes in operative contract

terms that occur in equilibrium.

20Specifically, substituting for ω we see that zj(c) has a current-period component that reflects the players’
sharing of the bargaining surplus, and a next-period component that consists of the worst continuation value for
player 1, z1(c), plus a transfer from player 2 to player 1, ȳj(αj).

21One common phrasing is “subject to unlimited successive renewals upon mutual consent of the parties”
(see, for example, the Law Insider database of contracts from SEC filings). In law and economics, contract
renewal has mainly been viewed through the lens of the hold-up problem; see Blair and Lafontaine (2005) on
franchising, Dalen, Moen, and Riis (2006) on procurement, and Narasimhan (1989) for a legal perspective.

22If the players do not send the joint statement of confirmation, and if they do not renegotiate the contract
entirely, then the contract would implement the equivalent of c. Either party can trigger c by blocking any
joint action, such as in response to the other party’s refusal to agree to a transfer. An alternative enrichment
would involve adding a round of verifiable messages and verifiable voluntary transfers prior to negotiation in
each period, whereby coordinated messages and transfers would be interpreted as exercising joint options. We
conjecture that an optimal contract that avoids renegotiation would exist, but this is a topic for future study.
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lawinsider.com


3.2 Semi-stationarity with contingent transfers

Many settings allow for external enforcement of arbitrary budget-balanced transfers as a

function of verifiable outcomes. Our main result is that semi-stationary contracts are op-

timal in contractual settings with such contingent transfers (under some some technical

conditions sufficient for existence—namely, that Optimization Problems 11 and 12 have

solutions). The algorithm developed in the previous section can then be used to find an

optimal contract.

To see how we can describe external enforcement of contingent transfers, suppose the

players want to write a contract that augments stage game (A,X, λ, u, P ) ∈ Γ with a

budget-balanced, P -measurable transfer function b : X → R2
0 that requires player 2 to pay

player 1 a transfer of b1(x) when outcome x occurs. Let b(a) ≡ Ex[b(x) | x ∼ λ(a)] be

the expected transfer given action profile a ∈ A. The availability of this contingent transfer

is equivalent to assuming that the stage game (A,X, λ, u + b, P ) is included in Γ, where

u+ b : A→ R2 is the new payoff function that incorporates the transfers.

Definition 7. The contractual setting has externally enforced contingent transfers if for

every stage game (A,X, λ, u, P ) ∈ Γ and every P -measurable function b : X → R2
0, it is

the case that (A,X, λ, u+ b, P ) ∈ Γ as well.

Our main result is the following:

Theorem 1. Suppose the contractual setting has externally enforced contingent transfers. If

Optimization Problems 11 and 12 have solutions for all d ≥ 0 then contractual equilibrium

exists and there is a semi-stationary optimal contract c∗. The level is L∗ = Ξ(d∗), where

d∗ is the largest fixed point of Λ (which exists).

We provide an heuristic argument here, assuming the existence of a CEV collection

with certain properties. This argument expands on the logic described at the end of Sub-

section 2.4. The formal proof, in Appendix A, follows a different logical path that also

establishes the existence of a CEV collection.

Suppose there exists a contractual equilibrium and there is a contract c̃ whose value set

W ∗(c̃) has the greatest span in the maximal CEV collection W∗. By definition, there is

an optimal contract c∗∗ ∈ C, but it may not be semi-stationary. Using externally enforced

transfers, we will construct another optimal contract c∗ that is semi-stationary.

First, we will construct a stationary contract c from c̃, with the property that W ∗(c) =

W ∗(c̃). Let (A,X, λ, u, P ) = g(c̃) be the stage game specified by c̃. By definition of bar-

gaining self-generation, any continuation value w ∈W ∗(c̃) is the Nash bargaining solution
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relative to some disagreement point w that is c̃-supported relative to W∗. We construct a

contract c with the property that any c̃-supported disagreement point w is also supported by

c, where c uses contingent transfers rather than variations in continuation-value sets.

Because all continuation values are at the same level L∗, variations in convex sets of

continuation values act essentially as transfers. Therefore, if contract c̃ calls for the next-

period value set W ∗(c̃|x) to differ from W ∗(c̃) for some outcome x, we can construct c to

instead specify an externally enforced, budget balanced transfer b(x) = (1,−1) δ
1−δ
(
z11(c̃|x)−

z11(c̃)
)

in the current period and specify c|x = c̃, without disrupting any incentives in the

stage game. There are two key elements of this construction. First, because the con-

tinuation contract mapping c̃|· is P -measurable, so is the transfer function b. Second,

Span(W ∗(c̃)) ≥ Span(W ∗(c̃|x)), so self-enforcement is no more constrained by contract

c than by c̃.23 Further, because this construction implies W ∗(c) = W ∗(c̃), we can modify

c to specify c|x = c. We have thus constructed a stationary contract c with the desired

property.

Next we construct our semi-stationary contract c∗ from c∗∗. Using the same steps as

above, we now let (A,X, λ, u, P ) = g(c∗∗) and we let b(x) = δ
1−δ
(
z11(c∗∗|x) − z11(c̃)

)
.

Define c∗ to be the semi-stationary contract that specifies the stage game (A,X, λ, u+b, P )

in the current period and then transitions to c. Since it enforces the same actions as c∗∗ does,

c∗ also supports a continuation value at level L∗ and is thus optimal.

The theorem provides sufficient conditions for existence of a CEV collection in terms

of whether the optimization problems defining Λ(d) and Ξ(d) have solutions for all d ≥ 0.

Sufficient conditions for existence that can be expressed more directly on the primitives

have eluded us. Appendix B.2 illustrates some of the difficulties.24 We expect, however,

that the optimization problems defining Λ(d) and Ξ(d) can be evaluated for relevant appli-

cations, as the next section illustrates. In any case, constructing an optimal contract with

contingent transfers still involves computing d∗ from Λ(d) and then solving Ξ(d∗).

23Compared to the continuation function y that was used to c̃-supportw, to c-supportw we use continuation
function y′ given by y′(x) = y(x) +

(
z11(c̃|x) − z11(c̃)

)
(1,−1), where y′(x) ∈ coW ∗(c̃) follows from

y(x) ∈W ∗(z̃|x) and Span(W ∗(c̃)) ≥ Span(W ∗(c̃|x)).
24In Supplementary Appendix C.3 we prove that a CEV collection exists ifC and Γ are finite and every stage

game is finite, but these conditions rule out contingent transfers. One might speculate that a CEV collection
should exist if Γ were formed by starting with a finite number of finite stage games and then augmenting them
with arbitrary contingent transfers, but such speculation is unfounded. Indeed, the optimal stage game outcome
might be unenforceable, yet be “virtually enforceable” via an unbounded sequence of transfers, as we show
in Appendix B.2. One might further speculate that if a finite number of finite stage games were augmented
with uniformly bounded contingent transfers, then a CEV collection ought to exist, but a bound on transfers
can interfere with Theorem 1 in problematic cases. We do not view the lack of a general existence guarantee
as a practical problem, as one can work with a near-supremum level for a variant of the CEV definition (see
Supplementary Appendix C.2).
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3.3 Semi-stationarity with no verifiable information

Next consider settings in which the external enforcer cannot distinguish between any stage-

game outcomes.

Definition 8. The contractual setting has no verifiable information if for every stage game

γ = (A,X, λ, u, P ) ∈ Γ, the partition P is trivial: P = {X}.

Without verifiable information, a contract c can specify the sequence of stage games

to be played but cannot condition the sequence on the history of stage-game outcomes.

For instance, the initial example in Section 2 has no verifiable information, because the

external enforcer cannot verify the monitoring signal. The following result shows that semi-

stationarity is optimal in such settings.

Theorem 2. Suppose the contractual setting has no verifiable information. If Optimization

Problems 11 and 12 have solutions for all d ≥ 0 then contractual equilibrium exists and

there is an optimal contract c∗ that is semi-stationary. The level is L∗ = Ξ(d∗), where d∗

is the largest fixed point of Λ (which exists).

Proof. We prove this theorem by transforming the contracting environment into one to

which Theorem 1 applies. For any relational contract setting, augment Γ so that there are

externally enforced contingent transfers. This will change neither the CEV collections nor

Optimization Problems 11 and 12, because the absence of verifiable information means

that only a constant transfer can be specified in any period, and the players can already

achieve such a transfer in the course of bargaining. From Theorem 1, we know contractual

equilibrium exists and there is a semi-stationary optimal contract. If this contract specifies

selection of non-zero externally enforced transfers, simply replace these with transfers in

the bargaining phase and the equilibrium conditions remain satisfied.

3.4 Complementarity of external enforcement and self-enforcement

We conclude this section by observing that strengthening external enforcement implies a

higher welfare level in contractual equilibrium. External enforcement becomes stronger if,

for instance, the partition P in each stage game becomes finer (allowing c to be conditioned

on more information about the outcome) or if the set of enforceable production technologies

expands. Recalling that the contractual setting is described by (Γ, c0, π), we can relate two

contractual settings most simply by inclusion, holding fixed c0 and π: Setting (Γ̃, c0, π) is

stronger than setting (Γ, c0, π) if Γ ⊂ Γ̃. That is, to get a stronger contractual setting we
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enlarge the set of stage games (and thus the set of available contracts), so all of the items in

the weaker technology are retained.

Theorem 3. If contractual setting (Γ̃, c0, π) is stronger than (Γ, c0, π), and each setting

satisfies the conditions in Theorem 1 or Theorem 2, then the contractual-equilibrium wel-

fare level is weakly higher under (Γ̃, c0, π).25

Proof. The result follows from the observation that, in Optimization Problems 11 and 12,

the constraint set under (Γ, c0, π) is a subset of the constraint set under (Γ̃, c0, π).

This conclusion contrasts with some of the prior literature in relational contracts, which

has found that under specific assumptions on equilibrium selection, improving external en-

forcement can reduce welfare. The key assumption behind the prior literature’s result is

that (as in Baker, Gibbons, and Murphy 1994, 2002 and Schmidt and Schnitzer 1995), af-

ter any deviation the parties permanently discontinue self-enforced relational arrangements

and, instead, in all future periods they play a stage game equilibrium under an optimal ex-

ternal spot contract. In contrast, contractual equilibrium posits that the parties can always

renegotiate both the external contract and their self-enforced arrangements. Thus, when

they successfully renegotiate following any history, they agree to an optimal combination

of externally enforced and self-enforced elements.

Theorem 3 is in line with empirical studies that find complementarity between the

strength of external enforcement and the efficacy of self-enforcement. For example, John-

son, McMillan, and Woodruff (2002) uses the transition of formerly planned economies in

Eastern Europe and the Soviet Union, where bureaucratic controls were replaced by more

market-oriented legal systems, to examine interactions between the courts and relational

contracting. The paper finds that informal arrangements (self-enforcement) are the main

basis for contracting by firms in the data set, and that improvements in legal institutions

(enabling better external enforcement) are associated with more effective relational con-

tracting and higher overall productivity. Further, recent studies of inter-firm contracting

in developed economies, including such as Beuve and Saussier (2012), Poppo and Zenger

(2002), and Ryall and Sampson (2009), report a positive relation between the extent of

“formal contracting” (complexity of the contract and its use of external enforcement) and

self-enforcement. In this context, Theorem 3 is directly relevant where empirical variation

entails improvements in production technology and monitoring.26

25A more general version of this result appears in Supplemental Appendix C.2.
26A more general theoretical connection between the use of external enforcement and self-enforcement

would require measures of degree in both of these categories and including in the model elements that influence
degree, such as contracting costs. Lazzarini, Miller, and Zenger (2004) reports evidence of complementarity in
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4 Option Contracts and the Allocation of Decision Rights

This section continues our analysis of a manager and a worker who can write long-term

contracts governing their monitoring technology, introduced in Section 2.2. Here we enrich

the contractual setting, allowing the parties to construct a menu of options for one of them to

verifiably select from, where each option specifies a monitoring level and an externally en-

forced monetary transfer. As in Section 2.2, the monitoring signal is not verifiable, although

both the manager and the worker observe it. In this environment with “option contracts” we

demonstrate the full power of Theorem 1,27 and provide insight regarding the optimal allo-

cation of decision rights. Specifically, we find that decision rights are optimally allocated

to the manager when the manager has high bargaining power, but to the worker when the

worker has high bargaining power. In both cases welfare is maximized by a semi-stationary

contract in which the stationary part offers two menu options, while the initial part offers

one menu option. Welfare is also higher than in the setting without options, illustrating the

complementarity between self-enforcement and external enforcement.

The contracting environment now provides an array of stage games, in which first one

party chooses from a menu of two monitoring/payment pairs, (µ1, p1) and (µ2, p2); then

the transfer pj is made from the manager to the worker; and finally the worker selects effort

a1 ∈ {0, 1} under the chosen monitoring technology µj .28 The contract specifies the menu

items (µ1, p1) and (µ2, p2) for each period, so the set of stage games is given by the feasible

two-option menus,
(
(µ1, p1), (µ2, p2)

)
∈
(
[0, 1]× R

)2.

Recall that if the worker exerts low effort then the monitoring signal is low with prob-

ability µ, but if the worker exerts high effort then the signal is high for sure; the worker’s

cost of high effort is β; and the manager incurs monitoring cost k(µ). Given µ and span d,

the worker can be induced to exert high effort if δµd ≥ (1− δ)β.

4.1 Allocating decision rights to the manager

We first consider the case in which decision rights are allocated to the manager. The man-

ager can use his discretion to treat the worker differently under disagreement when she is

to be rewarded versus when she is to be punished. By Theorem 1, the optimal contract is

an experiment that examines variations in contracting cost and the length of relationships.
27The example in Section 2.4 also applied Theorem 1, but there the monitoring signal was verifiable, so

in the optimal contract the worker’s incentives came entirely from contractual monetary bonuses. Here the
monitoring signal is not verifiable, so the worker must be motivated by relational incentives.

28Since the stage game is not simultaneous, technically we must expand the notion of a stage game to allow
for simple dynamics, and strengthen Definition 1 to require that an action profile is enforced if it is a subgame
perfect equilibrium of the relevant induced game, rather than merely a Nash equilibrium. Since this is intuitive,
we do not provide the strengthened formal definitions.
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semi-stationary, with the same menu
(
(µ1, p1), (µ2, p2)

)
specified for every future period.

For the current period, parties set a specific monitoring level µ and payment p (that is, a

menu
(
(µ, p), (µ, p)

)
), to maximize their attainable joint value. Theorem 1 instructs us to

compute the span by finding the largest fixed point d∗ of Λ (Optimization Problem 11), and

to compute the level by solving Ξ(d∗) (Optimization Problem 12). We focus on the case in

which high effort can be implemented, i.e., d∗ ≥ 1−δ
δ β.

We begin by identifying the stationary part of the optimal contract by finding the largest

fixed point of Λ. In optimization problem Λ(d), the objective to be maximized is the dif-

ference in normalized values ω1(γ, a
2, y2)−ω1(γ, a

1, y1), by choice of the game γ, action

profiles a1 and a2, and normalized continuation value mappings y1 and y2, subject to en-

forcement constraints. The constraints ensure that the manager’s selection of options and

the worker’s choice of efforts are incentive compatible. The largest fixed point of Λ will

be the span of the optimal contract. For this example, this is a straightforward problem, so

here we just state the result (see Supplementary Appendix C.6 for details).

Proposition 1. In the setting with options contracts selected by the manager, Optimization

Problem 11 has a solution for all d ≥ 0. If δ ≥ β then Λ has a largest fixed point d∗

satisfying d∗ ≥ 1−δ
δ β, and given by the largest solution to

d = 1− β + π2

(
k(1)− k

( (1−δ)β
δd

))
. (13)

This span is attained using a stage game with menu items featuring monitoring levels µ1 =

1 and µ2 = (1−δ)β
δd∗ ≤ 1, and payments p1 and p2 that satisfy

− p1 − k(1) = 1− p2 − k(µ2); (14)

and by directing the worker to exert high effort (a11 = a21 = 1) if the manager selects the

correct option (aj2 = (µj , pj), j = 1, 2), but low effort otherwise.

The stationary part (c) of the optimal contract thus specifies a stage game with menu

items (µ1, p1) = (1, p1) and (µ2, p2) = ( (1−δ)βδd∗ , p1 + 1 + k(1) − k(µ2)). The worker is

induced to exert effort both to generate her least favorable and her most favorable payoff

under disagreement. The worker’s least favored payoff is effectuated partly via a low con-

tractual payment (p1 < p2), and partly via a strict monitoring level (µ1 = 1) that prevents

the worker from earning any rents from effort. The difference between the payments in

the two options is made as large as possible, subject to the manager being willing to select

Option 2 when the worker is to be rewarded. In fact, Equation 14 is the manager’s binding

incentive constraint for choosing Option 2, reflecting that if the manager deviates, then the
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worker exerts low effort and the parties coordinate on z2(c) for any outcome. Moreover, to

maximize p2, the monitoring level under Option 2 is set to the minimal level µ2 that induces

the worker to exert effort, given the span d∗.

To explain the expression for d (Equation 13), note that under Option 2 the monitor-

ing level µ2 is already minimized, so the arrangement under Option 2 is already efficient.

Without any welfare improvement to negotiate over, the payoffs under agreement and dis-

agreement are the same (w2 = z2(c)). The worker’s payoff from the action phase when

exerting high effort is w2
1 = (1− δ)(p2 − β) + δz21(c), hence z21(c) = p2 − β.

Under Option 1 the cost of monitoring is maximized, so there is a welfare improvement

k(1)− k(µ2) to be gained by negotiating to the efficient monitoring level µ2. The worker’s

payoff from the action phase when exerting high effort under disagreement is w1
1 = (1 −

δ)(p1 − β) + δ
(
z11(c) + 1−δ

δ β
)
, and she gets her share of the negotiation surplus, so her

payoff after negotiating to an agreement from Option 1 is z11(c) = p1 + π1
(
k(1)− k(µ2)

)
.

The span is thus d = p2 − p1 − β − π1(k(1) − k(µ2)). Substituting for p2 − p1 from

Equation 14 yields Equation 13.

With the span d∗ in hand, now we identify the initial part of the optimal contract by solv-

ing optimization problem Ξ(d∗). The objective is to maximize the welfare level by choice

of the game γ, action profile a, and normalized continuation value mapping y, subject to

incentive compatibility constraints. Since we are focusing on the case in which d∗ ≥ 1−δ
δ β,

the solution to Ξ(d∗) is straightforward: The worker should exert high effort, and the cost of

the monitoring technology should be minimized subject to the worker’s incentive constraint.

This entails monitoring level µ∗ = µ2 and thus optimal welfare level

L∗ = 1− β − k
((1− δ)β

δd∗

)
.

There is no need for two distinct menu items, since the payment cannot be conditioned

on the monitoring outcome, so the optimal contract c∗ should specify a menu of the form(
(µ∗, p), (µ∗, p)

)
. The specific contractual payment p is of no importance, as the players

can use voluntary transfers to obtain any desired split of the joint value L∗ between them.29

One possibility is p = p2, which means that contract c∗ would specify the same terms as

Option 2 for the current period, and thus entail a temporary suspension of Option 1.

In fact, in this setting the optimal contract can be implemented by a stationary contract

29The foregoing analysis leaves both p1 and p as free parameters. As noted, p does not matter at all.
Somewhat in contrast, p1 determines where the value set of the optimal contract is located, although it does not
affect its level or span. Nonetheless, at the time the parties agree on their contract, they can use their voluntary
transfer during negotiation to offset any change in p1, if for any reason they select a p1 that generates a value
set that does not contain their desired continuation value.
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FIGURE 3. CONTRACTUAL EQUILIBRIUM WITH MANAGERIAL DECISION RIGHTS.
Figures in Section 4 are drawn to scale using the same parameters as in Fig. 1. Transfers not pinned
down in the analysis are chosen so that z11(c) = 0. Disagreement point w1 is attained by choosing
option (1, p1), playing a1 = 1, and continuing with promised utility z1(c) + (ρ,−ρ) if the signal
is x = 1, but z1 if x = 0. When w1 is the disagreement point, the parties renegotiate to z1(c).
Disagreement point w2 is attained by choosing (µ∗, p2), playing a1 = 1, and continuing with z2(c)
if x = 1; but with z1(c) if x = 0. Since w2 is efficient, z2(c) = w2.

with the two options
(
(µ1, p1), (µ2, p2)

)
specified for every period. This is possible since

Option 2 implements the optimal welfare level L∗ under disagreement. By choosing the

payment p2 such that the payoff z2(c) accords with their desired division of the surplus

L∗ (and adjusting p1 to maintain the optimal span), the parties can achieve their optimal

agreement outcome by agreeing each period to implement Option 2, and do this in the same

way as Option 2 is implemented under disagreement. In this setting a stationary contract

with two options is thus sufficient, where one option has mild monitoring and is selected

every period in equilibrium; and the other option has strict monitoring and is selected only

if disagreement arises after a low monitoring signal.

The contractual equilibrium is illustrated in Fig. 3. The manager’s decision rights enable

the parties to support a larger span than the contract from Section 2.2, where the contractual

setting did not allow for options. The span here is at least 1 − β, and even greater as the

manager’s bargaining power π2 increases, whereas the span without options was merely

π1(1 − β). The larger span gives the worker higher-powered incentives, which the parties

use to reduce their monitoring costs on the equilibrium path. When the manager has higher
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bargaining power, he takes a greater share of the surplus when renegotiating out of a situa-

tion (under disagreement after a low monitoring signal) in which Option 1 is to be chosen,

which shifts endpoint z1(c) toward a lower worker payoff and enlarges the span.

In practical terms, we can interpret p1 as the worker’s base salary; then she earns a small

bonus after low monitoring signals (awarded during renegotiations in return for agreeing to

reduce the monitoring level) and a large bonus after high monitoring signals. Only if a

disagreement arises after a low monitoring signal does the worker earn merely p1. While

the manager has decision rights, the menu of options constrains him to award either a zero

bonus or a large bonus (p2 − p1) under disagreement. The large difference between these

bonuses is a major contributor to the large span of the optimal contract; the difference is

constrained only by the manager’s incentive constraint for choosing the right option. This

incentive constraint is relatively mild because the zero bonus is paired with high monitoring

costs, and because the worker will shirk if the manager chooses the wrong option.

4.2 Allocating decision rights to the worker

In a contractual setting that allows for options contracts, it ay be possible to allocate decision

rights to either party. In this section we show that it can be optimal to allocate decision rights

to the worker, if she has sufficient bargaining power.

The optimization problem Λ(d) with worker decision rights has the same objective

function and the worker’s effort incentive constraints as the case with manager decision

rights. In place of the manager’s incentive constraint, the worker now has an additional

incentive constraint for choosing the appropriate option from the menu. In Supplementary

Appendix C.6 we show the following.

Proposition 2. In the setting with options contracts selected by the worker, Optimization

Problem 11 has a solution for all d ≥ 0, and for δ ≥ β
π1(1−β)+β there is a largest fixed

point dW of Λ satisfying dW ≥ 1−δ
δ β. It is the largest solution to

d = π1

(
1− β + k(1)− k

((1− δ)β
δd

))
. (15)

This span is attained using a stage game with menu items featuring monitoring levels µ1 =
(1−δ)β
δdW

≤ 1, and µ2 = 1, and payments p1 and p2 that satisfy

p2 = p1 + β/µ1 − β; (16)

and by directing the worker to exert high effort (a11 = 1) if Option 1 is correctly selected,

31



but low effort (a21 = 0) if Option 2 is correctly selected or if the wrong option is selected.

The stationary part (c) of an optimal contract thus specifies a stage game with menu

items (µ1, p1) =
( (1−δ)β

δdW
, p1
)

and (µ2, p2) =
(
1, p1 + β

µ1
− β

)
.

Under contract c the worker is punished under disagreement by being induced to select

Option 1, earn payment p1, exert high effort, and receive continuation value z2(c) if the

monitoring signal is high. Since µ1 is the lowest monitoring level that induces high effort,

welfare is maximal (conditional on the span), leaving no welfare improvement to negotiate

over. The worker’s payoff under both disagreement and agreement is thus z11(c) = p1 +

β/µ1 − β, where the latter two terms constitute the worker’s rent.

In contrast, to reward the worker under contract c, in disagreement she is induced to

select Option 2, earn payment p2, exert low effort, and receive continuation value z2(c).

The payment p2 is set as large as possible relative to p1, subject to the constraint that the

worker is willing to select Option 1 when appropriate; Equation 16 expresses this constraint

in binding form.30 In addition, in this case the cost of monitoring is maximized (µ2 = 1) in

order to punish the manager.31 This yields a large welfare improvement to be shared when

the parties negotiate. The worker gets her share of this improvement, and thus, although

shirking, gets payoff z21(c) = p2 +π1(1−β− k(µ2) + k(1)). Accounting for Equation 16,

we then see that the span must satisfy Equation 15.

The contractual equilibrium is illustrated in Fig. 4. When the worker has a lot of bar-

gaining power, she takes a large share of the surplus when renegotiating out of a situation

(under disagreement after a high monitoring signal) in which Option 2 is to be chosen,

which shifts endpoint z2 toward a higher worker payoff and enlarges the span. In contrast,

there is no surplus to be negotiated over when Option 1 is to be chosen, so the worker’s

bargaining power has no effect on endpoint z1.

Comparing Equations 13 and 15, we see that dW > d∗ if π1 is sufficiently large. Thus

there will be a threshold π∗1 ∈ (0, 1) such that allocating decision rights to the worker

generates a larger span than allocating decision rights to the manager whenever the worker’s

bargaining power is sufficiently high (π1 > π∗1). The larger span yields higher-powered

incentives, enabling reduced monitoring costs and greater welfare.

Our analysis provides a new explanation for why a contract may optimally allocate

limited decision rights to the worker. When the worker has high bargaining power, she will

capture a large share of any renegotiation surplus, making it desirable to specify a contract
30The worker is deterred from selecting the wrong Option 2 by the threat that the parties will then coordi-

nating on her worst payoff z1(c) for any signal; this just suffices when payments satisfy Eq. (16).
31We assume that a high monitoring level µ2 can be enforced, even if it is intended that the worker should

shirk. This is in effect a way for the parties to ”burn money” in this setting. An alternative interpretation could
be that a third party, e.g., a supplier of monitoring equipment, is entitled to a payment k(µ2) under this option,
irrespective of whether the equipment is installed or not.
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FIGURE 4. CONTRACTUAL EQUILIBRIUM WITH WORKER DECISION RIGHTS. Disagreement
point w1 or any other point in W ∗ is attained by choosing option (µ1, p1), playing a1 = 1, and
continuing with promised utility z2(c) if the signal is x = 1, but with z1(c) if x = 0. Since w1 is
efficient, z1(c) = w1. Disagreement point w2 is attained by choosing (1, p2), playing a1 = 0, and
continuing with z2(c) regardless of x. When w2 is the disagreement point, the parties renegotiate
to z2(c).

in which the renegotiation surplus is large when the worker is to be rewarded but small when

she is to be punished. As we have shown, when decision rights are contractible, allocating

them to the worker facilitates such a contract.

5 Related Literature

The analysis of relational contracts was initiated by Klein and Leffler (1981), Shapiro and

Stiglitz (1984), Bull (1987), and MacLeod and Malcomson (1989).32 Levin (2003) showed

that with transfers, stationary contracts are optimal in time-invariant environments. Levin

also observed that optimal stationary contracts are “strongly optimal” in the sense that the

continuation contract at any feasible history is optimal from that point onward. Goldlücke

and Kranz (2013) showed that with transfers, perfect monitoring, and no external enforce-

ment, Pareto-optimal subgame perfect payoffs and “strongly optimal” payoffs can generally

be found by restricting attention to a simple class of stationary contracts.

Relative to renegotiation-proofness, contractual equilibrium entails a different approach

32While the formal literature starts with Klein and Leffler, the concept of relational contracts had was first
defined and explored by legal scholars (e.g., Macaulay 1963; Macneil 1978).
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to equilibrium selection. The contrasts are discussed in depth in Miller and Watson (2013).

Suffice it here to say that, unlike contractual equilibrium, renegotiation proofness rules out

renegotiation rather than modeling it explicitly, and thus does not account for the possibil-

ity of disagreement. Safronov and Strulovici (2018) also model renegotiation explicitly and

allow for disagreements in a repeated game setting, without external enforcement. Their

approach to bargaining is more permissive, allowing players to be punished for propos-

ing Pareto improvements, and hence their solution concept makes substantially less sharp

predictions than does contractual equilibrium.

The literature has shown that optimal relational contracts in time-invariant environ-

ments with limited external enforcement may be non-stationary due to one party’s limited

commitment to a long-term contract (Ray 2002), limited liability (Fong and Li 2017), or

persistent private information (Martimort, Semenov, and Stole 2017). No such features

are present in the model analyzed here; rather we show that limited external enforcement

alone may make the equilibrium contract non-stationary. As noted in the introduction, non-

stationarities arise also in the complementary model of Kostadinov (2019).

On the theme of external enforcement operating in concert with self-enforcement, Iossa

and Spagnolo (2011) have pointed out that it is common practice to write contracts that con-

tain inefficient clauses, but where these clauses are ignored in equilibrium. They explain

this practice by observing that such contracts can be used as a credible threat to sustain a

more efficient outcome. Bernheim and Whinston (1998) emphasize that, when some as-

pects of performance are unverifiable, it is often optimal to leave other verifiable aspects

of performance unspecified, so optimal contracts are less complete than they could have

been.33 In a contractual equilibrium, the optimal contract may entail such flexibility. Fur-

ther, flexibility in the form of options can be valuable, and then the allocation of decision

rights is relevant.

Baker, Gibbons, and Murphy (2011) also demonstrate how allocation of such rights

matters in relational contracting, but via a channel different from ours. They analyze how

governance structures (allocations of control) can facilitate relational contracts that improve

on spot transactions in settings where such transactions would produce inefficient adapta-

tion to changing circumstances. Relatedly, Barron, Gibbons, Gil, and Murphy (Forthcom-

ing) analyze self-enforced agreements that facilitate efficient adaptation and show how these

agreements, combined with an external contract, induce state-dependent decision-making

33Iossa and Spagnolo (2011) examine a repeated principal-agent model in which, in each period, players
have the option to trigger penalties specified by the contract. Long-term contracts are restricted to be stationary.
Renegotiation is costly and disagreement results in adherence to an inefficient external contract in all future
periods. Bernheim and Whinston (1998) examine a class of two-period contracting problems with both external
enforcement and self-enforcement.
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that improves upon the expected payoffs under either external contracting or relational con-

tracting alone. Their theoretical model assumes stationarity of equilibrium strategies and

Nash reversion (permanent punishment following any deviation).

Finally, a considerable literature has investigated the implications of renegotiation and

the “hold-up problem” in short-term trading relationships in which unverifiable investments

are followed by renegotiation and then verifiable trade.34 Researchers have shown that the

hold-up problem can be alleviated in some short-term trading relationships, in particular

in settings of “own-investment” (such as in Aghion, Dewatripont, and Rey 1994, Nold-

eke and Schmidt 1995, and Edlin and Reichelstein 1996). Results in this literature rely

on complementarities, specifically that investment decisions influence the value of trade.

In our model, as with most in the relational-contracting literature, all actions that affect

the surplus occur at the same time, meaning that production and delivery are integrated

or simultaneous. Thus, the conditions for achieving efficiency that are developed in the

hold-up literature are not present here. It would be interesting in future work to examine

settings with technological state variables, where the actions taken in one period influence

the payoffs received in future periods.

6 Conclusion

This paper makes four related contributions. First, we introduce a flexible model of long-

term contractual relationships with external enforcement. The contracting parties can write

an arbitrary non-stationary long-term contract that specifies a stage game for them to play

as a function of the verifiable history. The details of the contracting environment are rep-

resented by the collection of available stage games. We extend contractual equilibrium

(Miller and Watson 2013) to this environment, to allow for renegotiation, bargaining power,

and the possibility of disagreement.

Second, we show that semi-stationary contracts are optimal in two important classes of

contracting environments: those with no verifiable information, and those with externally

enforced contingent transfers. In a semi-stationary contract, there are special terms for

the present period, conducive to high payoffs; and there are stationary terms for all future

periods, inducing the greatest span of continuation values consistent with incentives. Unlike

34Prominent entries include Hart and Moore (1988), Hart and Moore (1999), Noldeke and Schmidt (1995),
Che and Hausch (1999), Segal (1999), and Maskin and Tirole (1999); see Bolton and Dewatripont (2005) for
a survey. Most closely related are models with individual trade actions, such as Watson (2007), Evans (2008),
and Buzard and Watson (2012). Because our theory treats renegotiation explicitly and incorporates bargaining
power, negotiations in a contractual equilibrium operate similarly to what is explored in the hold-up literature.
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arbitrary non-stationary long-term contracts, semi-stationary contracts are tractable, and we

provide a method for optimizing them.

Third, we show that, in contractual equilibrium, self-enforcement and external enforce-

ment are always complementary: if the external enforcement becomes stronger, the welfare

level in contractual equilibrium becomes higher.

Finally, we analyze a principal-agent model with moral hazard, where the manager and

the worker can contractually specify their monitoring technology. In the simplest case, with

no verifiable information, we show that the optimal contract specifies mild monitoring for

the current period and intense monitoring for all future periods. In each period, the parties

renegotiate back to this same contract, so on the equilibrium path they always operate under

mild monitoring. The intense monitoring specified for the future facilitates incentives for

the worker. We analyze several extensions of this model, most notably by allowing the

parties’ contract to allocate decision rights over the monitoring technology. The fact that

the decision (one party’s choice from a menu of monitoring and payment combinations) is

verifiable enhances the power of incentives. Depending on their relative bargaining power,

it can be optimal to allocate decision rights to either the manager or the worker.

We hope these contributions have laid the groundwork for continued research on long-

term contracts and the interaction between external enforcement and self-enforcement.

While our results on semi-stationarity may apply to many interesting cases, there are many

others which may require more complicated non-stationary contracts—for instance, if there

are limited-liability constraints or if the technological environment itself is non-stationary.

A Proof of the Main Result

This section proves Theorem 1. The proof proceeds with a series of lemmas, interspersed

with some guiding comments and statements about notation.

Lemma 2. Λ has a maximal fixed point, denoted d∗.

Proof of Lemma 2. Recall that ω(γ, α, y) denotes the normalized continuation value if in

the current period α is played in stage game γ = (A,X, λ, u, P ) and the continuation value

in the next period is given by y : X → R2
0. This was defined in Subsection 3.1. For a given

span d, let γ, y1, y2, α1, and α2 solve Optimization Problem 11 to determine Λ(d), and let

u be the payoff function for stage game γ. From the definition of ω we have that

Λ(d) = (1− δ)u1(α2) + δy21(α
2)− π1(1− δ)(u1(α2) + u2(α

2))

−
[
(1− δ)u1(α1) + δy11(α

1)
]

+ π1(1− δ)(u1(α1) + u2(α
1))

.
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Recall that we assumed joint payoffs in stage games are bounded uniformly below by −ϑ
and above by ϑ. Therefore u1(α2) +u2(α

2) ≥ −ϑ and u1(α1) +u2(α
1) ≤ ϑ, and we have

Λ(d) ≤ (1− δ)u1(α2) + δy21(α
2)−

[
(1− δ)u1(α1) + δy11(α

1)
]

+ 2π1(1− δ)ϑ. (17)

The following four inequalities, in order, follow from enforcement of α1 (in particular that

player 1 cannot gain by deviating to α2
1), that the joint stage-game payoff exceeds −ϑ,

enforcement of α2 (in particular that player 2 cannot gain by deviating to α1
2), and that the

joint stage-game payoff is no greater than ϑ:

−
[
(1− δ)u1(α1) + δy11(α

1)
]
≤ −(1− δ)u1(α2

1, α
1
2)− δy11(α2

1, α
1
2)

0 ≤ (1− δ)u1(α2
1, α

1
2) + (1− δ)u2(α2

1, α
1
2) + (1− δ)ϑ

0 ≤ (1− δ)u2(α2) + δy22(α
2)

−(1− δ)u2(α2
1, α

1
2)− δy22(α2

1, α
1
2)

0 ≤ −(1− δ)u2(α2)− (1− δ)u1(α2) + (1− δ)ϑ.

Summing these inequalities yields

−
[
(1− δ)u1(α1) + δy11(α

1)
]
≤

− δy11(α2
1, α

1
2)− δy22(α2

1, α
1
2) + δy22(α

2)− (1− δ)u1(α2) + 2(1− δ)ϑ.

Substituting the bracketed left-side terms into Equation 17 and simplifying, we obtain

Λ(d) ≤ 2(1 + π1)(1− δ)ϑ− δy11(α2
1, α

1
2)− δy22(α2

1, α
1
2).

Because y11(α
2
1, α

1
2) ∈ [0, d] and y22(α

2
1, α

1
2) ∈ [−d, 0], we conclude that

Λ(d) ≤ 2(1 + π1)(1− δ)ϑ+ δd. (18)

In words, Λ(d) is bounded above by a line with slope δ < 1. We thus know that Λ(d) < d

for all d > d where d solves d = 2(1 + π1)(1 − δ)ϑ + δd. Clearly Λ is increasing, and

since Λ(0) ≥ 0 we know that the restriction of Λ to subdomain [0, d] maps to the same set,

and thus Λ has a maximal fixed point d∗ by Tarski’s fixed-point theorem.

As noted in Section 3.1, let γ = (A,X, λ, u, P ), y1, y2, α1, and α2 denote any solution

to Optimization Problem 11 for Λ evaluated at d∗. Let γ∗ = (A∗, X∗, λ∗, u∗, P ∗), y∗, and

α∗ denote any solution to Optimization Problem 12 for Ξ evaluated at d∗. Define c to be

the stationary external contract that specifies stage game γ in every period, and define c∗ to
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be the semi-stationary contract that specifies stage game γ∗ for the current period and then

transitions to c. We will eventually demonstrate that c∗ is optimal.

For any stage game γ = (A,X, λ, u, P ), let Z(γ, d) denote the set of normalized con-

tinuation values that can be achieved in the induced game where players engage in γ and

then coordinate on continuation values in the set R2
0(d), for a given span d:

Z(γ, d) ≡ {ω(γ, α, y) | y : X → R2
0(d); α is enforced relative to γ and y}.

By definition of γ, we have Span(Z(γ, d∗)) = d∗ and Z(γ, d∗) attains its span.

Lemma 3. For any L ∈ R, take as given a collectionW = {W (c′)}c′∈C with at least one

nonempty set and satisfying w1 + w2 = L for every w ∈ W (c′) and c′ ∈ C. Let d be any

number satisfying d ≥ sup{Span(W (c′)) | c′ ∈ C}. Consider any c ∈ C and w ∈ R2

such that w is c-supported relative toW . It is the case that w1 + w2 ≤ (1− δ)Ξ(d) + δL.

Proof of Lemma 3. Let (A,X, λ, u, P ) = g(c). From the definition of c-support, there

exists α ∈ ∆A and y : X → R2 such that y(x) ∈ coW (c|x) for all x ∈ X , α is enforced

relative to g(c) and y, and w = (1− δ)u(α) + δy(α). Because d ≥ Span(W (c|x)), every

point in W (c|x) has joint value L for all x ∈ X , and c|· is P -measurable, we can find a

P -measurable function b : X → R2
0 such that

coW (c|x) ⊂ R2
0(d) +

1− δ
δ

b(x) + πL (19)

for every x ∈ X . The corresponding expected transfer function b : A → R2
0 is given by

b(a) ≡ Ex[b(x) | x ∼ λ(a)] for every a ∈ A. Let γ′ ≡ (A,X, λ, u + b, P ). Because

stage game γ′ merely adds P -measurable transfers to stage game γ, we know γ′ ∈ Γ by the

assumption of externally enforced contingent transfers.

Let us define y′ : X → R2 by

y′(x) ≡ y(x)− πL(W)− 1− δ
δ

b(x) (20)

for every x ∈ X . Expressions 19 and 20 imply that y′ is a function from X to R2
0(d).

Substituting for y′, we see that the induced game

〈
A, (1− δ)u(·) + (1− δ)b(·) + δy′(·)

〉
(21)

is equivalent to induced game
〈
A, (1 − δ)u(·) + δy(·)

〉
up to the constant πδL(W) in the

payoff function, which establishes that α is enforced relative to γ′ and y′. Because γ′ and y′
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are feasible in Optimization Problem 12 for Ξ(d), we conclude that u1(α)+b1(α)+u2(α)+

b2(α) ≤ Ξ(d). Since b1(α) + b2(α) = 0, this means u1(α) +u2(α) ≤ Ξ(d). Recalling that

w = (1− δ)u(α) + δy(α), we have thus established w1 + w2 ≤ (1− δ)Ξ(d) + δL.

Hereafter, it is useful to represent bargaining self-generation with the operator

B(ĉ,W) ≡
{
w + π

(
L(W)− w1 − w2

) ∣∣ w is ĉ-supported relative toW
}
, (22)

assuming L(W) exists and there exists a ĉ-supported value; otherwise, let B(ĉ,W) ≡ ∅.
Then a collection W is BSG if W (c) ⊂ B(c,W) for every c ∈ C. The next lemma

identifies the collection described at the end of Section 3.1.

Lemma 4. There is a BSG collection W = {W (c)}c∈C for which Span(W (c)) = d∗,

W (c) attains its span, L(W) = Ξ(d∗), and W (c0) 6= ∅.

Proof of Lemma 4. First, any action profileα that is enforced relative to γ and some y : X →
R2
0(d
∗) is also enforced relative to γ and y(·) + (k,Ξ(d∗) − k), for any constant k ∈ R,

because the two induced games are equivalent up to a constant in the payoffs. Suppose that

W (c) = (k,Ξ(d∗)− k) + {(0, 0), (d∗,−d∗)} (23)

and let us presume for now that L(W) = Ξ(d∗). By writing the resulting payoff in the

induced game for any enforced α and comparing the definitions of operators B and Z, a

little algebra reveals that z ∈ Z(γ, d∗) if and only if z+Ξ(d∗)π+δ(k−Ξ(d∗)π1)(1,−1) ∈
B(c,W). In other words,

B(c,W) = Z(γ, d∗) + Ξ(d∗)π + δ(k − Ξ(d∗)π1)(1,−1). (24)

Since B(c,W) is a translation of Z(γ, d∗), it attains its span d∗. We have presumed that the

level ofW is Ξ(d∗), so w1 +w2 = Ξ(d∗) for every w ∈ B(c,W). Therefore, the endpoints

of B(c,W) can be written as a set

(k′,Ξ(d∗)− k′) + {(0, 0), (d∗,−d∗)} (25)

for some k′ ∈ R. An implication is that Equation 24 implicitly defines a mapping from k to

k′ (compare Expressions 23 and 25). Clearly it is a contraction mapping and its fixed point

is k∗ = Ξ(d∗)π1 + ω1(γ, α
1, y1)/(1 − δ), where α1 and y1 are given by the solution of

Optimization Problem 11 (noting that ω1(γ, α
1, y1) is the endpoint of Z(γ, d∗) that favors
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player 2). Setting

W (c) ≡ (k∗,Ξ(d∗)− k∗) + {(0, 0), (d∗,−d∗)},

we thus have W (c) ⊂ B(c,W) regardless of how we define W (c) for c 6= c.

Next we specify W (c0). Let γ0 = (A0, X0, λ0, u0, P 0) denote the stage game that

default contract c0 specifies for every period, and let α0 be a Nash equilibrium of this stage

game (which we have assumed exists). Let W (c0) be the singleton set specified as follows:

W (c0) ≡
{
u0(α0) + π

(
Ξ(d∗)− u01(α0)− u02(α0)

)}
.

It is evident that W (c0) ⊂ B(c0,W) under our presumption that the level ofW is Ξ(d∗).

So far we have specifiedW (c) andW (c0). For every other contract c 6∈ {c, c0}, specify

W (c) = ∅, which completes the construction ofW . As verified above, the BSG conditions

hold, presuming that the level ofW is Ξ(d∗).

Finally, we justify our presumption that L(W) = Ξ(d∗). Recall that γ∗, y∗, and α∗

solve Optimization Problem 12 for Ξ evaluated at d∗. This means y∗ maps to R2
0(d
∗), α∗

is enforced relative to γ∗ and y∗, and Ξ(d∗) = u∗1(α
∗) + u∗2(α

∗). Because Span(W (c)) =

Span(Z(γ, d∗)) = d∗, we know that y∗(x) + (k∗,Ξ(d∗)− k∗) ∈ W (c) for every x ∈ X∗.
Therefore, noting that α∗ is enforced relative to γ∗ and y∗ + (k∗,Ξ(d∗) − k∗), we have

that continuation value w = (1− δ)u∗(α∗) + δy∗(α∗) + δ(k∗,Ξ(d∗)− k∗) is c∗-supported

relative toW . It is clearly the case that w1 + w2 = Ξ(d∗).

By the construction ofW we have sup{Span(W (c′)) | c′ ∈ C} = Span(W (c)) = d∗.

Letting L = Ξ(d∗) and d = d∗, Lemma 3 implies that no contract can support, relative to

W , a joint value in excess of Ξ(d∗). Therefore

max{w1 + w2 | c ∈ C and w is c-supported relative toW} = Ξ(d∗).

We have thus constructed a BSG collection with the required properties.

The BSG collection constructed in Lemma 4 is our candidate CEV collection. To

demonstrate that it is, in fact, a CEV collection, we must show that there is no other BSG

collection that has a strictly higher level. We will do this by showing that the maximal span

of BSG sets is d∗ and then by showing that Ξ(d∗) obtains the maximal joint value. Let

d̂ ≡ sup
{

Span(W (c)) | W = {W (c′)}c′∈C is a BSG collection and c ∈ C
}
.
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We will compare d̂ to d∗. The next lemma is the key step, where externally enforced con-

tingent transfers are used to limit the range of y to a single set of continuation values.

Lemma 5. For every BSG collectionW = {W (c′)}c′∈C and for every c ∈ C, there exists

γ′ ∈ Γ such that W (c) ⊂ Z(γ′, d̂) + πL(W).

Proof of Lemma 5. Take as given a BSG collection W and a contract c ∈ C, and let

(A,X, λ, u, P ) = g(c). Because d̂ ≥ Span(W (c|x)), every point in W (c|x) has joint

value L(W) for all x ∈ X , and c|· is P -measurable, we can find a P -measurable function

b : X → R2
0 such that

coW (c|x) ⊂ R2
0(d̂) +

1− δ
δ

b(x) + πL(W). (26)

for every x ∈ X . Let γ′ ≡ (A,X, λ, u + b, P ). Because stage game γ′ merely adds P -

measurable transfers to stage game γ, we know that γ′ ∈ Γ by the assumption of externally

enforced contingent transfers.

Consider any w ∈W (c). From the BSG condition, there exists a c-supported continua-

tion value w such that w = w+ π
(
L(W)−w1 −w2

)
. From the definition of c-supported,

there exists α ∈ ∆A and y : X → R2 such that y(x) ∈ coW (c|x) for all x ∈ X , α is

enforced relative to g(c) and y, and w = (1 − δ)u(α) + δy(α). Following steps in the

proof of Lemma 3, we define y′ : X → R2 by Equation 20 and observe that, from this

and Expression 26, y′ is a function from X to R2
0(d̂). Substituting for y′, we see that In-

duced Game 21 is equivalent to induced game 〈A, (1− δ)u(·) + δy(·) 〉 up to the constant

πδL(W) in the payoff function, which establishes that α is enforced relative to γ′ and y′,

and therefore ω(α, γ′, y′) ∈ Z(γ′, d̂).

We conclude by comparing w and ω(α, γ′, y′). From w = w + π
(
L(W)− w1 − w2

)
,

substituting for w and using the fact that y1(α) + y2(α) = L(W), a little algebra yields

w = (1− δ) (π2u1(α)− π1u2(α)) (1,−1) + (1− δ)πL(W) + δy(α).

Substituting for y using the expectation of Equation 20, b1(α)+b2(α) = 0, and π1+π2 = 1,

we rearrange terms to get

w = (1− δ)
(
π2
(
u1(α) + b1(α)

)
− π1

(
u2(α) + b2(α)

))
(1,−1) + δy′(α) + πL(W),

which is ω(α, γ′, y′)+πL(W). We have thus established that w ∈ Z(γ′, d̂)+πL(W).

Lemma 6. d̂ = d∗.
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Proof of Lemma 6. Consider any BSG collectionW = {W (c′)}c′∈C and any c ∈ C. From

Lemma 5, there exists γ′ ∈ Γ such that W (c) ⊂ Z(γ′, d̂) + πL(W), which implies that

Span(W (c)) ≤ Span(Z(γ′, d̂)). We also know that Span(Z(γ′, d̂)) ≤ Λ(d̂) because Λ

optimizes over the stage game in addition to the enforced action profile. Therefore we have

Span(W (c)) ≤ Λ(d̂). Because this weak inequality holds for every external contract and

every BSG collection, it also holds at the supremum value, so d̂ ≤ Λ(d̂). Because Λ is

increasing, satisfies Λ(d) < d for all d > d, and its restriction to subdomain [0, d] maps to

the same set, it must have a fixed point that weakly exceeds d̂, implying that d̂ ≤ d∗. From

Lemma 4, a BSG collection exists in which the span d∗ is attained, so d̂ = d∗.

Lemma 7. Every BSG collectionW has the property that L(W) ≤ Ξ(d∗).

Proof of Lemma 7. Suppose to the contrary there is a BSG collectionW such that L(W) >

Ξ(d∗). Then there must exist a contract c ∈ C and a value w that is c-supported rel-

ative to W , such that w1 + w2 = L(W) > Ξ(d∗). From Lemma 6, we have d∗ ≥
sup{Span(W (c′)) | c′ ∈ C}. Applying Lemma 3 with d = d∗ and L = L(W) then

yields w1 + w2 ≤ (1− δ)Ξ(d) + δL(W) < L(W), a contradiction.

To complete the proof of Theorem 1, simply combine Lemmas 4 and 7. Lemma 7

implies that the level of the BSG collectionW identified by Lemma 4 is maximal among the

set of BSG collections, and thereforeW is a CEV collection. The maximal CEV collection

contains all of the continuation values inW , so the semi-stationary contract c∗ identified by

Lemma 4 is optimal.

B Foundations and Technical Notes

This section begins with a description of contractual equilibrium in terms of strategies in a

hybrid game in which stage-game actions are modeled noncooperatively and interaction in

the negotiation phase is modeled cooperatively. In subsection B.2 we discuss technical is-

sues regarding existence and properties of equilibrium, and in Subsection B.3 we comment

on the connection between the hybrid model and fully noncooperative models.

B.1 Contractual equilibrium in terms of strategies

Our hybrid model requires a generalized notion of strategy, called a regime, specifying both

individual actions in the action phase and joint decisions in the negotiation phase, condi-

tional on the public history. We develop conditions for a contractual equilibrium regime
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that correspond exactly to the conditions for a CEV collection in Section 1. Variations and

related results are provided in Supplemental Appendix C.2.

Recall that play in a single period t consists of the negotiated external contract ct and

transfer mt (equal to ĉt and zero in disagreement), the action profile at, the outcome xt,

and the unverifiable random draw of the randomization device, which we denote φt. Let

ψ =
(
ctmtxtφt

)T
t=1

denote the public history of interaction through any given period T .

The history to the action phase of a given period t can be expressed as ψcm, where ψ is

the history to the end of period t − 1 (the null history if t = 1) and c and m are jointly

chosen in the negotiation phase of period t. Likewise, for a T -period history ψ we write

ψcmxφ as the T + 1-period history that appends ψ with joint decision c and m, outcome x,

and random draw φ in period T + 1. Define κ(ψ) to be the external contract inherited in

the period following history ψ. That is, for ψ = ψ′cmxφ, we have κ(ψ′cmxφ) ≡ c|x,

and if ψ is the null history then κ(ψ) = c0. Note that in the period following history ψ,

disagreement is represented by selection of c = κ(ψ) and m = 0.35

The joint selection of ct and mt is given by functions rc and rm of the public history ψ.

The mixed action profile is specified by a function ra of the history to the action phase

ψcm. Thus a regime is given by r = (rc, rm, ra).

For any contract c, let us write (A(c), X(c), λ(·; c), u(·; c), P (·; c)) = g(c) so that we

can refer to elements of the stage game in reference to c. Given a T -period history ψ,

let v(ψ; r) denote the continuation value following ψ, conditional on the players behaving

according to r from this point. That is, v(ψ; r) is the expected value of
∑∞

t=T+1 δ
t−T−1(1−

δ)
(
mt + u(at; ct)

)
, with the expectation taken over the infinite history that begins with ψ.

Let va(ψcm,α; r) denote the continuation value from the action phase of a period following

history ψcm, conditional on action profile α played in the current period and the players

behaving according to r from the next period. From these definitions we have

va(ψcm,α; r) = (1− δ)u(α; c) + δEx,φ [v(ψcmxφ; r) |x ∼ λ(α; c), φ ∼ U [0, 1]] .

Further, define v(ψ; r) = va(ψκ(ψ)0, ra(ψκ(ψ)0); r) as the disagreement point for nego-

tiation in the period following ψ.

For any T -period public history ψ, let r|ψ denote the continuation regime following ψ;

this is a function of the histories from period T + 1. Finally, let us call a public history ψ

negotiation-consistent with regime r if for each period in this history, play in the negotiation

phase was either as prescribed by rc and rm or it was the disagreement outcome. That is, for

35It does not matter for our analysis that our accounting of histories does not differentiate between disagree-
ment and an agreement to keep the inherited external contract and make no transfer.
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any sub-history ψ′cm (a truncation of ψ), it must be that either c = rc(ψ′) andm = rm(ψ′),

or c = κ(ψ′) and m = 0. Note that ψ may entail deviations from ra in the action phase.

Call a history ψcm to the action phase negotiation-consistent if it has the same property.

The conditions described next will be applied to only the subset of histories that are

negotiation-consistent with the regime being evaluated. The reason is technical and re-

lates to existence of equilibrium, which we discuss in Appendix B.2.36 Call a regime

r incentive compatible in the action phase if for every history ψcm that is negotiation-

consistent with r, neither player would gain by unilaterally deviating from ra in the action

phase that follows. That is, for each player i and any action a′i ∈ Ai(c), it is the case that

vai (ψcm, r
a(ψcm); r) ≥ vai (ψcm, (a′i, ra−i(ψcm)); r).

Because the hybrid model accounts for behavior in the negotiation phase cooperatively,

the equilibrium conditions for this phase are expressed in terms of a bargaining solution,

namely the generalized Nash solution with fixed bargaining weights π = (π1, π2). We

assume that the players negotiate over both the external contract and the self-enforced ar-

rangements. Internal consistency captures the idea that the players may consider altering

their regime to select any contractual arrangement for the current period that, from the

start of the next period, reverts back to specifications of their current regime (continuing as

though the history were some other that is negotiation-consistent with this regime).

To be precise, for a given regime r and after any history ψ, the players contemplate

choosing any contract c, transfer m, and action profile α ∈ ∆A(c), and then continuing

from the next period as though in some other regime r′. Call (c,m, α, r′) comparable with

r following ψ if two conditions hold. First, vai (ψcm,α; r′) ≥ vai (ψcm, (a
′
i, α−i); r

′) for

a′i ∈ Ai(c) and i = 1, 2, so behavior in the current period is incentive-compatible. Second,

for every x ∈ X(c) and φ ∈ [0, 1], there is a history ψ′ that is negotiation-consistent with

r such that κ(ψ′) = c|x and r′|ψcmxφ = r|ψ′. That is, in regime r′ after history ψcmxφ,

the parties behave as if they were in regime r after history ψ′.

The bargaining solution requires that r solves the problem of maximizing the joint value

over all such comparable arrangements, the bargaining surplus is defined relative to the

disagreement point, and the surplus is divided according to the bargaining weights. That

is, letting ` denote the maximum of va1(ψcm,α; r) + va2(ψcm,α; r) over all (c,m, α, r′)

that are comparable with r following ψ, we require v(ψ; r) = v(ψ; r) + π(` − v1(ψ; r) −
v2(ψ; r)). Call regime r internally bargain-consistent if this condition holds for every ψ

36One could use a stronger notion of equilibrium that requires incentive-compatibility and internal bargain-
consistency after all histories, not just those that are negotiation-consistent; this would correspond to a stronger
version of CEV that requires W (c) 6= ∅ for all c. Existence would not be assured for as many contractual
settings, and the modified CEV conditions would be less convenient to apply, but otherwise the difference is
inconsequential for applications.
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that is negotiation-consistent with r. Clearly ` is independent of ψ, so every internally

bargain-consistent regime has a single value of ` which we call the regime’s level.

A regime is called a contractual equilibrium (CE) if it is incentive compatible in the

action phase and internally bargain-consistent, and its level is maximal among the set of

regimes with these properties. To relate the CE definition in terms of strategies to the

recursive formulation of CEV collections, let us define for any regime r a collection V(r) =

{V (c; r)}c∈C by V (ĉ; r) ≡ {v(ψ; r) | ψ is negotiation-consistent with r and κ(ψ) = ĉ}
for every ĉ ∈ C. Supplemental Appendix C.1 establishes the following result.

Lemma 8. If r is a contractual equilibrium then V(r) is a CEV collection. IfW is a CEV

collection then there exists a contractual equilibrium regime r satisfying V (c; r) ⊂ W (c)

for every c ∈ C.

B.2 Technical issues regarding existence

Two technical issues have arisen in our analysis: W (c) = ∅ is possible for some c in a

CEV collection, and it is difficult to find primitive conditions that guarantee existence. We

elaborate with two examples.

Consider first a principal-agent setting in which the agent (player 1) must choose effort

a1 ≥ 0 at increasing cost, effort is verifiable, and contingent transfers are externally en-

forced. Consider a contract that, for some threshold a1 > 0, specifies a bonus if a1 > a1

and no bonus otherwise. For a large enough bonus, this contract puts the agent in the posi-

tion of having no best response in the effort subgame. This issue arises naturally in many

standard contracting and mechanism-design models, where the typical remedy is to disre-

gard such contracts/mechanisms. In our study, such a problematic contract c has W (c) = ∅
and correspondingly we do not include c in the incentive-compatibility check (also c would

not arise as an inherited contract in negotiation-consistent histories of the hybrid model).

We can rule out examples like the one just described by limiting attention to finite stage

games, but existence issues remain. The second example features a class of stage games

with externally enforced contingent transfers τ and τ ′, given by the following payoff matrix:

Left Right Out

Up 0 + τ ′, 1− τ ′ 1 + τ, 0− τ 0 + τ ′, 0− τ ′
Down 2 + τ ′, 0− τ ′ 0 + τ ′, 1− τ ′ 0 + τ ′, 0− τ ′

Out 0 + τ ′, 0− τ ′ 0 + τ ′, 0− τ ′ 0 + τ ′, 0− τ ′

The partition P is as illustrated by the cell boundaries: the enforcer can verify whether
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(Up, Right) is played but cannot distinguish among any of the other action profiles. Thus a

different transfer τ can be enforced for (Up,Right), but all other action profiles share the

same transfer τ ′.

Suppose for the moment that δ = 0. The profile (Down, Left) gives the highest joint

value but is not a Nash equilibrium for any τ and τ ′. For τ − τ ′ > −1 there is a mixed-

strategy equilibrium in which player 1 chooses Up with probability 1/(2 + τ − τ ′) and

player 2 chooses Left with probability (1 + τ − τ ′)/(3 + τ − τ ′). In this equilibrium,

(Down, Left) is played with a probability that is increasing in τ − τ ′. There is no maximum

equilibrium joint value by choice of τ, τ ′ ∈ R and therefore we cannot guarantee exis-

tence without restricting the class of stage games, such as bounding transfers. The problem

extends to the setting with δ > 0.

Overall, bounding transfers may help secure equilibrium existence but, for stage games

like the one above, bounds interfere with our main result. This is due to a trade-off between

using constant transfers to provide incentives in previous periods and using differential

transfers to provide incentives in the current period. For example, suppose τ and τ ′ must

be in [−4, 4] and assume δ is strictly positive but small enough so that cooperation still

requires a mixed action profile. The players, in agreement, want an external contract that

specifies τ = 4 and τ ′ = −4 in the current period, for this gives the best incentives for

the stage game. They would also like to pick a continuation external contract from the next

period with a continuation value that favors player 1 in the event of (Up, Right) and favors

player 2 otherwise. But to do this, the players would want τ ′ in the next period to be larger

than −4 following (Up, Right) in the current period. This would generally not maximize

the span from the next period, however, and the current-period transfer constraints do not

allow an adjustment to utilize the maximal-span continuation contract.

B.3 Noncooperative foundations

Our hybrid cooperative/non-cooperative model is tightly connected to a fully noncooper-

ative account of the contractual setting in which the negotiation phase is described as a

bargaining protocol, such as random-proposer ultimatum-offer. Watson (2013) and Miller

and Watson (2013) develop a refinement of perfect public equilibrium based on axioms that

relate statements and voluntary transfers in the bargaining phase to a selection of continua-

tion play from the action phase in the current period.37 The refinement, called contractual

37In Miller and Watson (2013), an internal agreement axiom requires that if the players agree to a con-
tinuation that is incentive-compatible and consistent with their current equilibrium from the next period, then
they will play as agreed. A no-fault disagreement condition requires that, in a disagreement outcome of the
bargaining process, continuation play does not depend on how disagreement occurred, and failing to make a
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equilibrium in the fully noncooperative game, is equivalent to the recursive formulation of

contractual-equilibrium continuation values.

Miller and Watson’s analysis extends with minimal modification to our setting with ex-

ternal enforcement. An offer includes (i) a contract c, (ii) an immediate transfer, and (iii) a

specification of future behavior summarized by continuation values. Acceptance of an offer

causes c to be externally enforced and causes the immediate transfer to be automatically

enforced as well (not necessarily by the same authority that enforces c). Axioms relate the

third part of the offer to the coordinated play in the continuation of the game.38 External

enforcement adds one new technicality, related to the existence issue described in Subsec-

tion B.1: It is feasible for the players to enter the action phase of a period with a contract c

(by default or by agreement) for which there is no equilibrium action profile. To deal with

this problem in general, one can ignore the equilibrium conditions for such contingencies

or limit Γ to finite stage games (where the problem would not arise). A failure of joint-

value maximization, as in the second example described in Subsection B.2, would lead to

nonexistence, just as in the hybrid model.
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C Supplementary Appendix

This supplemental appendix contains additional notes on contractual equilibrium and ap-

plications. In the first subsection we give a proof of Lemma 8 in Appendix B.1. The next

subsection discusses useful variants of the equilibrium definition and provides some tech-

nical results, including on how external enforcement and self-enforcement are complemen-

tary. The third states and proves an existence result for finite settings. The following two

subsections provide an additional illustration and some details for the example in Section 2.

The final subsection provides details for the application in Section 4.

C.1 Additional analysis for the hybrid model

Proof of Lemma 8. The proof has two main steps. First we show that for any regime r that

is incentive compatible in the action phase and internally bargain-consistent, V(r) is BSG.

We then establish a claim in the opposite direction.

Consider any regime r that is incentive compatible in the action phase and internally

bargain-consistent. It is clear from the definitions that if (c,m, α, r′) is comparable with

r following ψ then vai (ψcm,α; r′) is c-supported relative to V(r). Note that m plays no

role in the definition of “comparable” and is arbitrary. Likewise, if w is c-supported relative

to V(r) then there exists a tuple (c,m, α, r′) that is comparable with r following ψ and

satisfies vai (ψcm,α; r′) = w. This implies that the regime’s level is L(V(r)). Because

r is internally bargain-consistent and v(ψ; r) is κ(ψ)-supported, a further implication is

that v(ψ; r) ∈ B(κ(ψ),V(r)). Taking the union over negotiation-consistent ψ satisfying

κ(ψ) = ĉ for a given ĉ, we have V (ĉ; r) ⊂ B(κ(ψ),V(r)). Recalling that V (ĉ; r) is empty

for any ĉ that does not arise as an inherited contract in any negotiation-consistent history,

we conclude that V(r) is BSG.

We next show that for every BSG collection W there is a regime r that is incentive

compatible in the action phase, internally bargain-consistent, and satisfies V (c; r) ⊂ W (c)

for every c ∈ C. This step follows standard arguments, along the lines of the construction

detailed in Miller and Watson (2013). We construct the regime by specifying the behavior

identified in the self-generation conditions, for histories that will be negotiation-consistent.

Start with the null history ψ0, note that κ(ψ0) = c0, and pick any element w ∈ W (c0)
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to be the equilibrium continuation value from the beginning of the game. From the self-

generation conditions, w ∈ B(c0,W) and so we can find an external contract c, a c-

supported (relative to W) value w, and a c0-supported disagreement value w such that

L(W) = w1 + w2 and w = w + π(L(W)− w1 − w2).

Prescribe rc(ψ0) = c and let rm(ψ0) to be the corresponding transfer that achieves w

as the continuation value from the beginning of period 1 when w is the continuation value

from the action phase, so that w = (1 − δ)rm(ψ0) + w. Then prescribe ra(ψ0c00) to be

the mixed action α that is identified by self-generation to c0-support w. Likewise, prescribe

ra(ψ0rc(ψ0)rm(ψ0)) to be the mixed action identified to c-support w. For other values

of (c1,m1), the prescribed action profile ra(h0c1m1) can be arbitrary because such a joint

deviation would lead to histories that are not negotiation-consistent with r and thus not

subject to the equilibrium conditions.

The construction continues by considering all one-period histories that are negotiation-

consistent given the specification of behavior for the first period (the joint actions specified

in the previous paragraph, all of the possible action profiles inA(c0) andA(c), and every φ).

For each such history ψ, a specific continuation value from W (κ(ψ)) is required to provide

the incentives and continuation payoffs specified in period 1. We simply repeat the steps in

the previous paragraph to specify behavior in period 2 following history ψ. For one-period

histories that are not negotiation-consistent, the specification of behavior is arbitrary. The

process continues for period 3, 4, and so on, which inductively yields a fully specified

regime.

By construction from the self-generation conditions, the regime’s continuation values

have the desired properties and the regime is incentive compatible in the action phase and

internally bargain-consistent. For every negotiation-consistent history ψ the continuation

value v(ψ; r) is an element of W (κ(ψ)). Thus, V (c; r) ⊂ W (c) for every c ∈ C. (We are

using the fact that V (c; r) = ∅ for every c for which no negotiation-consistent history ψ has

κ(ψ) = c.)

To finish the proof, take any contractual equilibrium regime r and let ` be its level. We

have shown that V(r) is BSG. We have shown also that every BSG collection corresponds

to a regime that is incentive compatible in the action phase, is internally bargain-consistent,

and has the same level as does the BSG collection. Therefore, if there were a BSG collection

with a level `′ > `, there would exist a corresponding incentive compatible, internally

bargain-consistent regime with level `′, contradicting that r is a contractual equilibrium.

Thus, V(r) is a CEV collection. The same argument works in reverse to establish the

second claim of the lemma.
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C.2 A CE variant and general enforcement complementarity

Our definition of contractual equilibrium (CEV collection in Section 1 and the correspond-

ing CE regime in Appendix B) generalizes that of Miller and Watson (2013) to relationships

with external enforcement, so it coincides if Γ is a singleton. We describe here a variant

of BSG that, by being more permissive, helps establish additional results regarding general

complementarity of external enforcement and self-enforcement, existence, and computation

of a CEV collection. It is straightforward to write the corresponding definition for regimes.

The variant BSG′ expresses self-generation in reference to two collections: a col-

lection W of continuation values from the negotiation phase and a “paired collection”

W = {W (c)}c∈C of continuation values from the action phase. With inherited contract

ĉ in a period, the disagreement point must be in W (ĉ) and the players negotiate over the

values in ∪c∈CW (c). The difference between BSG′ and BSG is that, with the former,W (c)

need not contain all values that are c-supported relative toW .

For any W , define M(W) ≡ maxc∈C,w∈W (c)(w1 + w2) if this maximum exists. Let

us say that W is supported relative to W if, for all c ∈ C, every element of W (c) is c-

supported relative toW . A collectionW is a BSG′ collection if there is a collectionW that

is supported relative toW and has the following property: For every ĉ ∈ C and w ∈W (ĉ),

there exists a value w ∈ W (ĉ) such that w = w + π
(
M(W) − w1 − w2

)
. The level is

M(W), which equals M(W). Clearly every BSG collection is a BSG′ collection, and the

latter may exist when the former does not. Let us call a collectionW a CEV′ collection if it

is BSG′ and its level is maximal among the set of BSG′ collections.

It is easy to show that the union of CEV′ collections is also a CEV′ collection; the same

is true for BSG′. Additionally, we have a general version of Theorem 3 in Section 3.4,

regarding the complementarity of self-enforcement and external enforcement:

Theorem 3′. If contractual setting (Γ̃, c0, π) is stronger than (Γ, c0, π), and if a CEV′

collection exists under both technologies, then the contractual-equilibrium welfare level is

weakly higher under (Γ̃, c0, π).

Proof of Theorem 3′. Suppose Γ ⊂ Γ̃, let C and C̃ be the sets of contracts for Γ and Γ̃,

and take any collectionW that is BSG′ in setting (Γ, c0). The collectionW that is used to

establish thatW is BSG′ can be extended by specifying W (c) = ∅ for c ∈ C̃ \ C, and this

makesW a BSG′ collection in setting (Γ̃, c̃0). So, if (Γ̃, c̃0) is stronger than (Γ, c0) and if

a CEV′ collection exists under both technologies, then the welfare level is weakly higher

under (Γ̃, c̃0).
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We continue by describing another variant of BSG that helps us establish a connection

between CEV and CEV′. For a collectionW , any number K, and a contract ĉ, define

BK(ĉ,W) ≡
{
w + π

(
K − w1 − w2

)
| w is ĉ-supported relative toW

}
.

This normalizes to level K and ignores whether K ≥ w1 + w2 (the opposite inequality

would be nonsensical for a bargaining solution) but it is no matter. ClearlyBK is monotone

inW andBK(ĉ,W) ≡ B0(ĉ,W)+πK. Therefore,W is a fixed point ofBK , meaning that

W (c) ⊂ BK(c,W) for every c ∈ C (that is, it is self-generating), if and only ifW − πK
is a fixed point of B0. Because B0 is monotone, the component-wise union of fixed points,

which we callW0, is also a fixed point.

Note that W is BSG′ with paired collection W if and only if W is a fixed point of

BM(W) and W is supported relative to W , and in this case M(W) = M(W). Further,

W is BSG if and only of it is a fixed point of BL(W) and L(W) exists.

Lemma 9. If max{w1 + w2 | c ∈ C, w is c-supported relative toW0} ≡ θ exists then

W0 + πθ/(1− δ) is both a CEV ′ collection and a CEV collection, and it equalsW∗.

Proof of Lemma 9. To prove this result, first note that becauseW0 is a fixed point ofB0, we

know thatW0 + πθ/(1− δ) is a fixed point of Bθ/(1−δ). By definition of θ, the maximum

joint value that can be c-supported relative toW0 + πθ/(1 − δ) (maximizing over c ∈ C)

is θ + δθ/(1− δ) = θ/(1− δ). Therefore we have L(W0 + πθ/(1− δ)) = θ/(1− δ) and

soW0 + πθ/(1− δ) is BSG.

Now presume that there is a BSG′ collection W̃ with level K > θ/(1 − δ) and we

will find a contradiction. Note that W̃ is a fixed point of BK , and there exists c̃ ∈ C

and a value w̃ that is c̃-supported relative to W̃ such that w̃1 + w̃2 = K. Importantly,

w̃ = (1 − δ)ũ + δỹ, where ũ is the expected current-period payoff and ỹ is the expected

continuation value from the next period. Because ỹ1 + ỹ2 = K, we know that ũ1 + ũ2 = K

as well. Shifting the collection by πK, we likewise have that W̃ − πK is a fixed point

of B0. By definition ofW0, we know W̃ (c) − πK ⊂ W 0(c) for every c ∈ C. Therefore,

(1−δ)ũ+δ(ỹ−πK) is c̃-supported relative to W̃−πK. Noting that (1−δ)ũ+δ(ỹ−πK) =

w̃ − δπK, the joint value achieved is (1− δ)K, which strictly exceeds θ, contradicting the

definition of θ.

We have thus shown that there is no BSG′ collection with level higher than θ/(1 − δ),

proving thatW0 + πθ/(1− δ) is CEV′. BecauseW0 + πθ/(1− δ) is also BSG, and every

BSG collection is also BSG′, we conclude thatW0 + πθ/(1 − δ) is CEV. BecauseW0 is

maximal and every BSG collection corresponds, by subtracting πθ/(1− δ), to a fixed point
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of B0, we conclude thatW =W0 + πθ/(1− δ).

Thus, under the maximum existence condition of Lemma 9 we have existence of a

CEV collection, one can calculate the maximal CEV collection by determining W0, and

the complementarity result holds. The maximum exists under the conditions of Theorem 1

and Theorem 2, and we show in the next subsection that the same is true in another wide

class of settings.

C.3 Existence in finite settings

In this subsection, we provide an existence result for settings with finite stage games and

a finite set C. Here the other aspects of the relational contracting games are fully general.

We can drop the assumption that c0 specifies the same stage game for every history and we

make no assumptions regarding verifiability or external enforcement.

Theorem 4. For any relational-contract setting in which C is finite and every game in Γ

is finite, the maximization problem described in Lemma 9 has a solution and therefore a

contractual equilibrium exists.

Proof of Theorem 4. We start by proving that B0 has a (nonempty) fixed point (a self-

generating collection), so the feasible set in Lemma 9’s optimization problem is nonempty.

For any point ν = (wc)c∈C ∈ R|C|, let W(ν) be defined as the collection given by

W (c) = {wc} for all c ∈ C. Note that wc1 + wc2 = 0 for all c ∈ C. Also, let f(ν) ≡∏
c∈c coB0(c,W(ν)). Because (i) the stage games are finite, (ii) the bargaining solution

maps supported values to the zero-value line along the ray π, and (iii) continuation val-

ues are discounted, we can find a bound ξ such that wc ∈ [−ξ, ξ]2 for all c ∈ C implies

that B0(c,W(ν)) ⊂ [−ξ, ξ]2. Further, because each stage game is finite and the Nash

correspondence is nonempty and upper hemi-continuous in payoff vectors, B0(c,W(ν))

is nonempty valued and upper hemi-continuous as a function of ν. Thus, f is a corre-

spondence from a compact set to itself, it is nonempty and convex-valued, and it is upper-

hemicontinuous. By Kakutani’s theorem, f has a fixed point ν∗ = (wc∗)c∈C .

The fixed point property for f means that wc∗ ⊂ coB0(c,W(ν∗)) for all c ∈ C, but

it is not necessarily the case that wc∗ ⊂ B0(c,W(ν∗)) for all c ∈ C, as is required to

have a fixed point of B0. However, if this latter condition fails, then we can find two

points wc∗′, wc∗′′ ∈ B0(c,W(ν∗)) such that wc∗ is on the line between wc∗′ and wc∗′′. We

then redefineW(ν∗) so that W (c) = {wc∗′, wc∗′′}, which weakly enlarges B0(c,W(ν∗))

because, in the definition of c-support, continuation values are allowed to be in the convex

hull of the value collection. We thus have thatW(ν∗) is a fixed point of B0.
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We complete the proof by establishing that the maximization problem described in

Lemma 9 has a solution. Because B0 is upper hemi-continuous and W0 is a fixed point,

we know that the closure of W0 is also a fixed point and so W0 must be a collection of

closed sets. Thus, for each c ∈ C, the problem of maximizing u1(α; c) + u2(α; c) over all

c-enforced action profiles α ∈ ∆A(c), relative to W , has a solution. Because there are a

finite number of external contracts, the overall maximum exists.

C.4 Graphical depiction of the example with verifiable signal
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FIGURE 5. CONTRACTUAL EQUILIBRIUM WITH VERIFIABLE SIGNAL, BUT NO CONTINGENT
TRANSFERS. This figure illustrates a non-semi-stationary contract of the kind described in Sec-
tion 2.3, drawn to scale using the same parameters as the figures in Section 2. Contract c (with
monitoring level µ = 1) supports a higher maximum utility z21(c) > z21(c̃) for the worker, while
contract c̃ (with monitoring level µ̃ ≈ 0.82) supports a higher maximum utility z12(c̃) > z12(c) for
the manager. On the equilibrium path, the parties agree on a contract c (with monitoring level µ̂)
that specifies continuing with contract c and continuation utility z2(c) if x = 1, but contract c̃ and
continuation utility z1(c̃) if x = 0. While this arrangement is better than using semi-stationary con-
tract c∗ (described in Section 2.3), we do not claim that it is optimal, which is why we do not place
the figure in the main text.
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C.5 Notes on the example with contingent transfers

Here are a few analytical details for the example in Section 2.4.

First, averaging over x for a given action profile a, we compute the expected payoff

function:

u(a) = (−βa1, a1 − k(µ))+

(1,−1) [(1− a2)εb1(0) + (1− (1− a2)ε)(b1(1)− µ(1− a1)(b1(1)− b1(0)))]

Next, the logic of using current-period contingent transfers to substitute for differences in

continuation contracts implies that we can focus on stationary contracts to determine c. To

enforce a = (1, 1) in the disagreement point associated with z1(c), the worker’s incentive

constraint is

(1− δ)β ≤ µ(1− δ)r + µδρ (27)

and the manager’s incentive constraint is

(1− δ)εr ≤ δ(d∗ − ρ), (28)

where r = b1(1) − b1(0), ρ is the bonus in continuation value to the worker for x1 = 1,

and d∗ is the maximal span. The span appears here because after play of a2 = 0 the

manager is punished by having the players coordinate on the continuation value that most

favors the worker. As in the initial example, the worker’s incentive condition should bind.

Using this condition to substitute for ρ, the manager’s incentive condition becomes β/µ ≤
δd∗/(1− δ) + r(1− ε). In the expression for z1 that we derive, the terms with r cancel and

we find that z1 and z2 are characterized as in the initial example. The requirement ρ ≥ 0

simplifies to β ≥ rµ, so we optimally set r = β/µ and ρ = 0. Finally, raising µ both

relaxes the incentive condition and increases the span, so µ = 1 is best in contract c.

Regarding the manager’s incentive to not jam the signal when the worker is supposed to

choose high effort, recall that the players coordinate on the manager’s favorite continuation

value z1(c) if x2 = 1 (no jamming), and they coordinate on z2(c) if x2 = 0. Both incentive

conditions 28 and 28 must bind to minimize the monitoring cost while achieving high effort.

Combining them yields (1− δ)βε = µδd∗ and the conclusions described in the text follow.

The sufficient condition for cooperation is weaker than in the initial example, implying that

L∗ is higher since µ can be set lower.
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C.6 Options and allocation of decision rights

Proof of Proposition 1. In optimization problem Λ(d), the objective is to be maximized is

ω1(γ, a
2, y2)− ω1(γ, a

1, y1), where

ω1(γ, a
j , yj) = (1− δ)

(
u1(a

j)− π1
(
u1(a

j) + u2(a
j)
))

+ δȳj1(a
j)

by choice of the game γ, action profiles a1 and a2, and normalized continuation value

mappings y1 and y2, subject to incentive compatibility constraints. Recall that that ȳj(a)

is the expectation of the normalized continuation value when the parties choose action

profile a, and all normalized continuation values must lie within the normalized span:

y1, y2 : X → R2
0(d) =

{
m ∈ R2 | m1 +m2 = 0 and m1 ∈ [0, d]

}
. The largest fixed

point of Λ, written as d∗, will be the span of the optimal contract.

The worker’s effort is enforced by the following IC constraints: for j = 1, 2:

(1− δ)(pj − βaj1) + δȳj1(a
j) ≥ (1− δ)(pj − βa′1) + δȳj1(a

′
1, a

j
2),

for any a′1 ∈ {0, 1}.39

The manager must have incentives to select the appropriate option. If he complies

and selects the intended option aj2 = (µj , pj), the worker will choose aj1. If the manager

deviates, he can be maximally punished by having the worker shirk and then continuing

with his worst continuation payoff (here−d) for any outcome.40 Thus the manager’s option

selection is enforced by the following IC constraints: for j, j′ ∈ {1, 2} and j 6= j′,

(1− δ)
(
aj1 − pj − k(µj)

)
+ δȳj2(a

j) ≥ (1− δ)(−pj′ − k(µj
′
))− δd. (29)

We will prove the proposition by showing the following:

• For δd < (1− δ)β only low effort can be enforced, and we have

Λ(d) = (1− δ)π2
(
k(1)− k(0)

)
+ δd. (30)

• For δd ≥ (1− δ)β we have

Λ(d) = (1− δ)
(

1− β + π2

(
k(1)− k

( (1−δ)β
δd

)))
+ δd. (31)

39We abuse notation here by using aj1 to indicate the worker’s equilibrium effort if the manager does not
deviate, with the understanding that the worker should simply exert low effort if the manager does deviate, as
explained below.

40Shirking is optimal for the worker when the continuation payoff is independent of the signal outcome.
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The value in Eq. (31) is attained using a stage game with menu items featuring monitoring

levels µ1 = 1 and µ2 = (1−δ)β
δd ≤ 1 and payments p1 and p2 that satisfy Eq. (14), and by

directing the worker to exert high effort (a11 = a21 = 1) if the manager does not deviate.

It follows from this that if δ ≥ β, then Λ has a largest fixed point d∗ satisfying δd∗ ≥
(1 − δ)β, and given by the largest solution to Eq. (13).41 The proof is thus complete if we

verify Eq. (30) and Eq. (31). We do so in two steps.

Step 1 The objective ω1(γ, a
2, y2)− ω1(γ, a

1, y1) to be maximized is no larger than

(1− δ)(a21 + π1(a
1
1 − a21)(1− β) + (k(µ1)− k(µ2))π2) + δd− δȳ11(a21, a

1
2)

This upper bound is attained when two enforcement constraints bind: (i) the worker’s IC

for preferring a11 to a21 when the manager has complied and chosen (µ1, p1), and (ii) the

manager’s IC for preferring (µ2, p2) to (µ1, p1).

The displayed formula in Step 1 follows by substituting directly from the two IC con-

straints in the objective. To see this, let l(aj1, µ
j) = (1 − β)aj1 − k(µj). The objective

ω1(γ, a
2, y2)− ω1(γ, a

1, y1) can then be written as

(1− δ)(p2 − βa21 − π1l(a21, µ2)− p1 + βa11 + π1l(a
1
1, µ

1)) + δȳ21(a2)− δȳ11(a1) (32)

From the worker’s IC for preferring a11 to a21 when the manager has complied and chosen

(µ1, p1) we see that the above expression is no larger than

(1− δ)(−p1 + p2 + π1(l(a
1
1, µ

1)− l(a21, µ2))) + δȳ21(a2)− δȳ11(a21, a
1
2)

Using the manager’s IC constraint for selecting Option 2, ie.

(1− δ)(a21 − p2 − k(µ2) + δȳ22(a2) ≥ (1− δ)(−p1 − k(µ1))− δd,

plus the fact that ȳ21(a2) + ȳ22(a2) = 0, then verifies Step 1.

Observe that it follows from the formula in Step 1 that if δd < (1−δ)β and thus no effort

can be implemented, then the objective is maximal for µ1 = 1, µ2 = 0 and ȳ11(0, a12) = 0;

proving Eq. (30).

In the following assume δd ≥ (1 − δ)β. Consider ȳ11(a1, a
1
2) = E(y11(x)

∣∣ a1, a12),

where y11(x) ∈ [0, d] is the continuation value depending on monitor signal x ∈ {0, 1}.
41If instead δ < β, then the unique fixed point of Λ is d = π2

(
k(1) − k(0)

)
, which is obtained by

using contractual payments to induce the manager to choose different monitoring levels in different states, even
though the worker always exerts low effort.
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Step 2 The objective ω1(γ, a
2, y2)− ω1(γ, a

1, y1) to be maximized is no larger than

(1− δ)(a21 + (a11 − a21) [π1(1− β) + β] + (k(1)− k(µ2))π2) + δd− δρa11,

where ρ = y11(1) ∈ [0, d]. This upper bound is attained when y11(0) = 0, µ1 = 1, and the

enforcement constraints (i) and (ii) stated in Step 1 bind.

To verify Step 2, observe first that we have

ȳ11(a21, a
1
2) = y11(1)− µ1

[
y11(1)− y11(0)

]
(1− a21)

It follows that the expression in Step 1 is decreasing in y11(0) and increasing in µ1, hence it

is no larger than

(1− δ)(a21 + π1(a
1
1 − a21)(1− β) + (k(1)− k(µ2))π2) + δd− δρa21,

where ρ = y11(1) ∈ [0, d] and we have set y11(0) = 0 and µ1 = 1.

Now consider the binding worker’s IC for preferring a11 to a21 when the manager has

complied and chosen (µ1, p1), with µ1 = 1 (perfect monitoring):

(1− δ)(p1 − βa11) + δρa11 = (1− δ)(p1 − βa21) + δρa21

Substituting this into the previous displayed expression we obtain the formula displayed in

Step 2.

Finally we show that the expression in Step 2 is maximal for a11 = a21 = 1. First, it

is larger for a11 = 1 than for a11 = 0. For a11 = 1 the minimal required bonus ρ is (when

µ1 = 1) given by δρ = (1 − δ)β. The terms involving a11 then yield (1 − δ)π1(1 − β)a11,

hence a11 = 1 strictly dominates a11 = 0.

Secondly, the expression in Step 2 is larger for a21 = 1 than for a21 = 0. The terms

involving a21 can be written as

(1− δ)(a21π2(1− β)− k(µ2)a21π2),

where the required monitor level µ2 to implement a21 = 1 is given by δdµ2 = (1 − δ)β.

This expression is maximal for a21 = 1, since by assumption 1− β − k(1) > −k(0).

Substituting these values for a11, a
2
1, ρ and µ2 in the displayed expression in Step 2 yields

the expression for Λ(d) given in Eq. (31). It can be checked that no enforcement constraints

are violated by this solution, hence it is indeed optimal.
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This completes the verification of Eq. (31), and hence the proof of Proposition 1.

Proof of Proposition 2. As noted at the beginning of Section 4.2, the problem with worker

decision rights is similar to the case with manager decision rights. Specifically, the objec-

tive function and the worker’s effort incentive constraints are the same, but in place of the

manager’s incentive constraint, the worker now has an additional incentive constraint for

choosing the appropriate option from the menu. If she selects the appropriate option, her

effort incentive constraint ensures that she will exert the intended effort. If she deviates and

selects the other option, however, she can be maximally punished by receiving her worst

continuation value regardless of the monitoring signal, and then she will be willing to exert

only low effort. Accordingly, her option incentive constraints are, for j, j′ ∈ {1, 2} and

j 6= j′:

(1− δ)(−βaj1 + pj) + δȳj1(a
j) ≥ (1− δ)pj′ .

We will now show the following: For δd < (1 − δ)β, where only low effort can be

enforced, we have

ΛW(d) = (1− δ)π1
(
k(1)− k(0)

)
+ δd, (33)

where the “W” superscript signifies that decision rights are allocated to the worker. For

δd ≥ (1− δ)β we have

ΛW(d) = (1− δ)π1
(

1− β + k(1)− k
(

(1− δ)β
δd

))
+ δd, (34)

Moreover, the latter value is attained using a stage game with menu items featuring moni-

toring levels µ1 = (1−δ)β
δd ≤ 1 and µ2 = 1; payments p1 and p2 that satisfy Eq. (16); and

by directing the worker to exert high effort (a11 = 1) if Option 1 is correctly selected, but

low effort if Option 2 is correctly selected or if the wrong option is selected.

These facts imply that if δ ≥ β
π1(1−β)+β , then Λ has a largest fixed point dW satisfying

δdW ≥ (1− δ)β, given by the largest solution to Eq. (15) in the text; as asserted there.

It thus remains to verify Eq. (33) and Eq. (34) stated here, plus Eq. (16) given in the text.

To this we now turn. The objective ω1(γ, a
2, y2)− ω1(γ, a

1, y1) to be maximized is again

given by Eq. (32). Using the worker’s IC constraint for preferring Option 1 to Option 2,

(1− δ)(−βa11 + p1) + δȳ11(a1) ≥ (1− δ)p2,
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we see that the objective Eq. (32) is no larger than

(1− δ)(−βa21 + π1(l(a
1
1, µ

1)− l(a21, µ2)) + δȳ21(a2)

= (1− δ)(−βa21 + π1(a
1
1 − a21)(1− β)− (k(µ1)− k(µ2))π1) + δȳ21(a2)

This uppper bound is attained when the constraint binds.

For the terms involving Option 2 in the last expression, we obtain a maximal value by

setting a21 = 0, µ2 = 1 and y21(1) = y21(0) = d so that ȳ21(a2) = d.

The terms involving a11 are π1(a11(1 − β) − k(µ1)). If δd < (1 − δ)β and therefore

only a11 = 0 is feasible, the expression is maximal for µ1 = 0, proving Eq. (33). If

δd ≥ (1 − δ)β, then the expression is maximal for a11 = 1 and µ1 being the minimal

monitor level that induces effort, i.e. µ1 given by δdµ1 = (1− δ)β. This yields value

(1− δ)
(

1− β + k(1)− k
(

(1− δ)β
δd

))
π1 + δd,

and thus verifies Eq. (34). The option payments in the latter case are given by the binding

option constraint with a11 = 1, thus

(1− δ)(−p1 + p2) = (1− δ)(−β) + δȳ11(1, a12) = −(1− δ)β + δd,

where by definition of µ1 we have δd = (1 − δ)β/µ1. This verifies Eq. (16) given in the

text.
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