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SIMPLE COMMUNICATION MODEL

I Two agents.

I One (Sender) has private information, t. The other (Receiver)
takes action, a.

I Nature picks t ∈ [0, 1] from prior, F (·).

I Sender learns t. Receiver does not.

I Sender sends message m ∈ M to Receiver.

I Receiver takes action a ∈ R.
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Preferences

U i (t, a), i = R,S .
Note (important): U i does not depend on m.
Talk is cheap.
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ASIDE: OTHER POSSIBLE ASSUMPTIONS

I Standard “Spence” signaling: U i (·) depends on m.
Normally assume single crossing.

I Verifiable information. M(t) set of messages available to t.
(M(t) = t, truth required. M(t) = M, cheap talk.)
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WHAT IS THIS MODEL ABOUT?

1. Communication in everyday settings.

2. Avoiding inefficiency caused by incomplete information.

3. Advertising

4. Expert Advise

5. Legislative Decision Making
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ASSUMPTIONS

ai (t) solves: max U i (t, a).

ā(t ′, t ′′) be the unique solution to maxa

∫ t′′

t′ UR(a, t)dF (t).
Leading example:
UR(t, a) = −(a− t)2 and US(a, t) = −(a− t − b)2, b > 0.
Uniform prior.
More generally: U i concave in a and with positive mixed partial so
that ai is increasing.
Assume: aS(t) > aR(t).
So there is ε > 0 such that aS(t)− aR(t) ≥ ε.
(In quadratic example, aS(t) = t + b and aR(t) = t.)
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CONFLICT OF INTEREST

I S and R have similar interests: ai (t) increases in t.

I S and R have different interests: aS(t) > aR(t).

I Sometimes add parameter b, intuitively decreasing b decreases
conflict.
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STRATEGIES

Three elements:

1. Message for each type: µ : [0, 1]→ M for S .

2. Action for each message: α : M → R for R.

3. Interpretation of message: β(t | m).
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EQUILIBRIUM CONDITIONS

1.
for each t ∈ [0, 1], µ(t) solves max

m
US(α(m), t), (1)

2.

for each m ∈ M, α(m) solves max
a

∫ 1

0
UR(a, t)β(t | m)dt,

(2)

3. β(t | m) is derived from µ and F from Bayes’s Rule.

An equilibrium with strategies (µ∗, α∗) induces action a if
{t : α∗(µ∗(t)) = a} has positive prior probability.
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SIMPLIFICATIONS

I R uses a pure strategy by concavity.

I M is finite and S ’s strategy pure.

Finiteness is a conclusion.
Most S types will have unique best response.
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ON FINITENESS

Assume that a < a′ induced in equilibrium. Then

1. There exists t such that US(t, a) = US(t, a′).

2. aS(t) ∈ (a, a′).

3. No t ′ > t induces a.

4. a ≤ yR(t)

5. No t ′ < t induces a′.

6. a′ ≥ yR(t)

7. aR(t), aS(t) ∈ [a, a′].

8. a′ − a ≥ ε.
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NECESSARY CONDITION FOR MEANINGFUL
CHEAP-TALK

Senders must differ in preferences over Receiver actions.
Why?

Otherwise all Sender types induce the same action.

This rules out:

1. Cheap Talk in Labor Market

2. Cheap Talk about Quality
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ANOTHER NECESSARY CONDITION

Receivers and Senders have some common interest.
That is, R can learn t only if there exists a, such that
U i (aR(t), t,m) ≤ U i (a, t,m) for i = R,S (aR(t) is R’s best
response to t).
Naively this rules out: Communication with Enemies
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CHARACTERIZATION

Proposition

There exists N∗ such that for every N with 1 ≤ N ≤ N∗, there
exists an equilibrium in which the set of induced actions has
cardinality N and there is no equilibrium which induces more than
N∗ actions. Equilibria are described by a partition
t(N) = (t0(N), . . . , tN(N)) with
0 = t0(N) < t1(N) < . . . < tN(N) = 1, and signals mi ,
i = 1, . . . ,N, such that for all i = 1, . . .N − 1

US(ā(ti , ti+1), ti ))− US(ā(ti−1, ti ), ti )) = 0, (3)

µ(t) = mi for t ∈ (ti−1, ti ], (4)

and
α(mi ) = ā(ti−1, ti ). (5)
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PROPERTIES OF EQUILIBRIA

1. Unit interval partitioned.

2. Types in each partition element send the same message.

3. R best responds.

4. Incentive constraints determine edges of partition.

5. “Babbling” equilibrium always exists.

6. Typically multiple equilibria.
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REGULARITY CONDITION

Definition
The cheap-talk game satisfies the Monotonicity (M) Condition
if for any two solutions to (3), t̂ and t̃ with t̂0 = t̃0 and t̂1 > t̃1,
then t̂i > t̃i for all i ≥ 2.

I Exactly one equilibrium partition for each N = 1, . . . ,N∗.

I Ex-ante equilibrium expected utility for both S and R is
increasing in N.

I N∗ decreasing in b.

I Ex-ante equilibrium expected utility for both S and R is
decreasing in b for fixed N.
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NITS

Definition
An equilibrium (µ∗, α∗) satisfies the No Incentive to Separate
(NITS) Condition if US(α∗(µ∗(0)), 0) ≥ US(aR(0), 0).

NITS states that the lowest type of Sender prefers her
equilibrium payoff to the payoff she would receive if the
Receiver knew her type (and responded optimally).
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NITS EXISTS

Proposition

If an N-step equilibrium fails to satisfy NITS, then there exists an
(N + 1)-step equilibrium. Moreover, if an equilibrium satisfies
NITS, then so will any equilibrium with a shorter first segment.
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NITS MEANS MORE ACTIONS INDUCED

Proposition

If there is only one equilibrium partition with N induced actions for
any N ∈ {1, . . . ,N∗}, then there exists N̂ ∈ {1, . . . ,N∗} such that
an equilibrium with N actions satisfies NITS if and only if N ≥ N̂.
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NITS AND Condition (M)

Proposition

If a cheap-talk game satisfies (M), then only the equilibrium
partition with the maximum number of induced actions satisfies
NITS.
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NITS in Single-Crossing Models

1. S ’s preferences are monotonic in R’s actions.

2. R’s action is monotonically increasing in S ’s type.

3. Costly signals.

t = 0 satisfies NITS in any perfect bayesian equilibrium.
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Restriction on Belief

Proposition

If there exists a message m∗ such that R’s beliefs given m∗ are
supported within [0, t∗] where t∗ = 1 if
US(ā(0, t), 0) > US(aR(0), 0) for all t ∈ (0, 1) and t∗ is the unique
positive solution to US(ā(0, t∗), 0) = US(aR(0), 0), then NITS
must hold because type 0 can always send m∗.

The restriction is a weak relative to Farrell’s Credible
Neologism.
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Credible Neologisms

Definition
A credible neologism relative to a fixed equilibrium exists if
there exists a set of types, T , such that precisely types in T
prefer R’s optimal response to T than the equilibrium payoff.

If NITS fails, then there is a credible neologism
containing t = 0.
The problem with Credible Neologisms is that they
typically destroy all equilibria.
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Downward Verifiable Information

I Assume: Each type of S can prove that her type is no greater
than her true type.

I Conclude:

1. No equilibria created.
2. NITS holds (so equilibria typically destroyed).

I The ability to avoid being pooled with higher types is typically
unattractive.
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Upward Verifiable Information

I Assume: Each type of S can prove that her type is no less
that her true type.

I Conclude:

1. New equilibria created.
2. Unique outcome: separation due to unraveling at the top.
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Chen

CS with perturbations (some S and R follow fixed
strategies):

I M = [0, 1]

I Some S must send m = t.

I Some R must set a = aR(m).

NITS holds if there is positive probability of non-strategic
types and strategic Senders use non-decreasing
strategies. So limiting equilibria make selection in CS.
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INTUITION

A proof by contradiction: Assume NITS fails.

1. Dishonest low Senders pool at m = 0.
(Otherwise attractive deviation to 0.)

2. There exists a “small” positive message that is attractive to
t = 0.
(Any low message induces a nice response from non-strategic
R. A simple argument also shows that one such message must
also induce an attractive response from strategic R.)
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Kartik

Kartik perturbs CS:
Sender payoffs: US(a, t)− kC (m, t), for k > 0.
Assume:

I C is twice continuously differentiable.

I C1(t, t) = 0.

I C11(m, t) > 0 > C12(m, t).

I C (t, t) = 0.

Example: C (m, t) = −(m − t)2.
Model approaches CS as k goes to zero.
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Properties

I Look at pure-strategy equilibria in which S and R use weakly
increasing strategies.

I Result: Limiting equilibria must satisfy NITS.
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Intuition

A proof by contradiction: Assume NITS fails.

1. Low Senders pools at m = 0.
(Otherwise attractive deviation to 0 - better action and less
cost.)

2. There exists a “small” positive message that is attractive to
t = 0.
(Any low message induces a nice response from non-strategic
R. A simple argument also shows that one such message must
also induce an attractive response from strategic R.)

3. High types not in the pool.
(t = 1 can deviate to m = 1 and receive a better action at
less cost.)

4. The existence of another “on-path” action (step 3) and lying
costs implies that pool must be small.
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ELIMINATION OF BABBLING

In Chen and Kartik, m = 1 must be used in equilibrium.
(Otherwise, t = 1 deviates.)

I Pooling Equilibria Must Pool at m = 1.

I m = 0 is a profitable deviation if NITS fails.
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Veto Threats: Model

I Players: Chooser (C ) and a Proposer (P).

I Quadratic Preferences.
C ’s ideal point t.
P’s ideal point 0.

I t is private information.
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Veto Threats: Game

I Chooser learns her type

I Chooser sends (cheap) message to Proposer.

I Proposer proposes a.

I Chooser rejects (final outcome 1) or accepts final outcome a.

I t is supported on [t, t̄] with
t < 1 and t̄ > 1

2 .
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Veto Threats: Equilibria

I Always Babbling.

I Sometimes size 2: C induces P’s ideal or a compromise.

I Never more than two serious messages in equilibrium.

Cheap Talk Sobel



Veto Threats: NITS

NITS: t does at least as well in equilibrium as by
revealing.

I 2 step satisfies NITS.

I If 1 step fails NITS, then 2 step exists.

I Both 1 and 2 step may satisfy NITS.
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Sir Philip Sidney

I Preferences: US(a, t) = (1− a)(1 + ky) + a(t + r)
UR(a, t) = a(1 + kt) + (1− a)(y + r).

I k degree of relationship.

I y fitness of “mother.”

I Like CS, but not smooth and Sender likes lower value of a.

I Apply NITS at t = 1.

I Conflict of interest: self interest dominates.

I Common interest: if k is large and t is large, then both sides
want a to be low.
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Equilibrium

1. At most two actions induced in equilibrium.

2. Babbling Equilibrium Exists

3.

y∗ :=
y

k
+ 1− 1

k
. (6)

The Receiver finds it uniquely optimal to set a = 0 if
E[t|m] < y∗, uniquely optimal to set a = 1 if E[t|m] > y∗,
and is indifferent over all a otherwise.
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Results

I The babbling equilibrium satisfies NITS if and only if
E[t] ≥ y∗.

I A two-step equilibrium exists if and only if

E[t|t < 1− k(1− y)] ≤ y∗. (7)

I If a two-step equilibrium exists, it satisfies NITS.

I If the one-step equilibrium fails NITS, then a two-step
equilibrium exists.

I If the one-step equilibrium satisfies NITS, a two-step
equilibrium may or may not exist.
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