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1 Glossary

• Babbling Equilibrium: An equilibrium in which the sender’s strategy is independent
of type and the receiver’s strategy is independent of signal.

• Behavior Strategy: A strategy for an extensive-form game that specifies the prob-
ability of taking each action at each information set.

• Behavioral Type: A player in a game who is constrained to follow a given strategy.

• Cheap-Talk Game: A signaling game in which players’ preferences do not depend
directly on signals.

• Condition D1: An equilibrium refinement that requires out-of-equilibrium beliefs
to be supported on types that have the most to gain from deviating from a fixed
equilibrium.

• Divinity: An equilibrium refinement that requires out-of-equilibrium beliefs to place
relatively more weight on types that gain more from deviating from a fixed equi-
librium.

• Equilibrium Outcome: The probability distribution over terminal nodes in a game
determined by equilibrium strategy.

• Handicap Principle: The idea that animals communicate fitness through observable
characteristics that reduce fitness.

• incomplete Information Game: A game in which players lack information about
the strategy sets or payoff functions of their opponents.

• Intuitive Criterion: An equilibrium refinement that requires out-of-equilibrium be-
liefs to place zero weight on types that can never gain from deviating from a fixed
equilibrium outcome.

• Nash Equilibrium: A strategy profile in a game in which each player’s strategy is
a best response to the equilibrium strategies of the other players.

• Neologism-Proof Equilibrium: An equilibrium that admits no self-signaling set.

• Pooling Equilibrium: A signaling-game equilibrium in which each all sender types
send the same signal with probability one.

• Receiver: In a signaling game, the uninformed player.

• Self-Signaling Set: A set of types C with the property that precisely types in the
set C gain from inducing the best response to C relative to a fixed equilibrium.

• Sender: In a signaling game, the informed agent.

• Separating Equilibrium: A signaling-game equilibrium in which sender types sent
signals from disjoint subsets of the set of available signals.
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• Signaling Game: A two-player game of incomplete information in which one player
is informed and the other in not. The informed player’s strategy is a type-contingent
message and the uninformed player’s strategy is a message-continent action.

• Single-Crossing Condition: A condition that guarantees that indifferent curves from
a given family of preferences cross at most one.

• Spence-Mirrlees Condition: A differential condition that orders the slopes of level
sets of a function.

• Standard Signaling Game: A signaling game in which strategy sets and payoff
functions satisfy monotonicity properties.

• Type: In an incomplete information game, a variable that summarizes private
information.

• Verifiable Information Game: A signaling game with the property that each type
has a signal that can only be sent by that type.
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2 Definition

Signaling games refer narrowly to a class of two-player games of incomplete information
in which one player is informed and the other is not. The informed player’s strategy set
consists of signals contingent on information and the uninformed player’s strategy set
consists of actions contingent on signals. More generally, a signaling game includes any
strategic setting in which players can use the actions of their opponents to make inferences
about hidden information. The earliest work on signaling games was Spence [73]’s model
of educational signaling and Zahari [77]’s model of signaling by animals. During the
1980s researchers developed the formal model and identified conditions that permitted
the selection of unique equilibrium outcomes in leading models.

3 Introduction

The framed degree in your doctor’s office, the celebrity endorsement of a popular cos-
metic, and the telephone message from an old friend are all signals. The signals are
potentially valuable because they allow you to infer useful information. These signals
are indirect and require interpretation. They may be subject to manipulation. The doc-
tor’s diploma tells you something about the doctor’s qualifications, but knowing where
and when the doctor studied does not prove that she is a good doctor. The endorsement
identifies the product with a particular lifestyle, but what works for the celebrity may not
work for you. Besides, the celebrity was probably paid to endorse the product and may
not even use it. The phone message may tell you how to get in touch with your friend, but
is unlikely to contain all of the information you need to find him – or to evaluate whether
you’ll meet to discuss old times or to be asked a favor. While the examples share all
involve signaling, the nature of the signaling is different. The doctor faces large penalties
for misrepresenting her credentials. She is not required to display all of her diplomas,
but it is reasonable to assume that degrees are not forged. The celebrity endorsement is
costly – certainly to the manufacturer who pays for the celebrity’s services and possibly
to the celebrity himself, whose reputation may suffer if the product works badly. It is
reasonable to assume that it is easier to obtain an endorsement of a good product, but
there are also good reasons to be skeptical about the claims. In contrast, although a
dishonest or misleading message may lead to a bad outcome, leaving a message is not
expensive and the content of the message is not constrained by your friend’s information.
The theory of signaling games is a useful way to describe the essential features of all
three examples.

Opportunities to send and evaluate signals arise in many common natural and eco-
nomic settings. In the canonical example (due to Spence [73]), a high-ability worker
invests in education to distinguish herself from less skilled workers. The potential em-
ployer observers educational attainment, but not innate skill, and infers that a better
educated worker is more highly skilled and pays a higher wage. To make this story work,
there must be a reason that low-ability workers do not get the education expected of a
more highly skilled worker and hence obtain a higher wage. This property follows from
an assumption that the higher the ability the worker, the easier it is for her to produce
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a higher signal.
The same argument appears in many applications. For example, a risk-averse driver

will purchase a lower cost, partial insurance contract, leaving the riskier driver to pay a
higher rate for full insurance (Rothschild and Stiglitz [66] or Wilson [76]). A firm that
is able to produce high-quality goods signals this by offering a warranty for the goods
sold (Grossman [37]) or advertising extensively. A strong deer grows extra large antlers
to show that it can survive with this handicap and to signal its fitness to potential mates
(Zahavi [77]).

Game theory provides a formal language to study how one should send and interpret
signals in strategic environments. This article reviews the basic theory of signaling and
discusses some applications. It does not discuss related models of screening. Kreps and
Sobel [44] and Riley [65] review both signaling and screening.

Section 4 describes the basic model. Section 5 defines equilibrium for the basic model.
Section 6 limits attention to a special class of signaling game. I give conditions sufficient
for the existence of equilibria in which the informed agent’s signal fully reveals her private
information and argue that one equilibrium of this kind is prominent. The next three
sections study different signaling games. Section 7 discusses models of costless commu-
nication. Section 8 discusses the implications of the assumptions that some information
is verifiable. Section 9 briefly discusses the possibility of signaling intentions rather than
private information. Section 10 describes some applications and extensions of the basic
model. Section 11 speculates on directions for future research.

4 The Model

This section describes the basic signaling game. There are two players, called S (for
sender) and R (for receiver). S knows the value of some random variable t whose support
is a given set T . t is called the type of S. The prior beliefs of R are given by a probability
distribution π(·) over T ; these beliefs are common knowledge. When T is finite, π(t) is
the prior probability that the sender’s type is t. When T is uncountably infinite, π(·)
is a density function. Player S, learns t, sends to R a signal s, drawn from some set
M . Player R receives this signal, and then takes an action a drawn from a set A. (It
is possible to allow A to depend on s and S to depend on t.) This ends the game: The
payoff to i is given by a function ui : T ×M × A→ R.

This canonical game captures the essential features of the classic applications of mar-
ket signalling. In the labor-market signaling story due to Spence [73] a worker wishes to
signal his ability to a potential employer. The worker has information about ability that
the employer lacks. Direct communication about ability is not possible, but the worker
can acquire education. The employer can observe the worker’s level of education and use
this to form a judgment about the worker’s true level of ability. In this application, S
is a worker; R represents a potential employer (or a competitive labor market); t is the
student’s productivity; s is her level of education; and a is her wage.
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5 Equilibrium

Defining Nash equilibrium for the basic signaling game is completely straightforward
when T , S, and A are finite sets. In this case a behavior strategy for S is a function
µ : T ×M → [0, 1] such that

∑
s∈M µ(t, s) = 1 for all t. µ(t, s) is the probability that

sender-type t sends the signal s. A behavior strategy for R is a function α : M×A→ [0, 1]
where

∑
a∈A α(s, a) = 1 for all s. α(s, a) is the probability that R takes action a following

the signal s.

Proposition 1. Behavior strategies (α∗, µ∗) form a Nash Equilibrium if and only if for
all t ∈ T

µ(t, s) > 0 implies
∑
a∈A

US(t, s, a)α(s, a) = max
s′∈S

∑
a∈A

US(t, s′, a)α(s′, a) (1)

and, for each s ∈ S such that
∑

t∈T µ(t, s)π(t) > 0 and, if
∑

t∈T µ(t, s)π(t) > 0, then

α(s, a) > 0 implies
∑
t∈T

UR(t, s, a)β(t, a) = max
a′∈A

∑
t∈T

UR(t, s, a′)β(t, a′) (2)

where

β(t, s) =
µ(t, s)π(t)∑

t′∈T µ(t′, s)π(t′)
. (3)

Condition (1) states that the S places positive probability only on signals that maxi-
mize expected utility. This condition guarantees that S responds optimally to R’s strat-
egy. Condition (2) states that R places positive probability only on actions that maximize
expected utility, where is taken with respect to the distribution β(·, s) following the sig-
nal s. Condition (3) states that β(·, s) accurately reflects the pattern of play. It requires
that R’s beliefs be determined using S’s strategy and the prior distribution whenever
possible. Equilibrium refinements also require that R has beliefs following signals s that
satisfy ∑

t∈T

µ(t, s)π(t) = 0, (4)

that is are sent with probability zero in equilibrium. Specifically, sequential equilibrium
permits β(·,m) to be an arbitrary distribution when equation (4) holds, but requires
that equation (2) holds even for these values of s. This restriction rules out equilibria
in which certain signals are not sent because the receiver responds to the signal with an
action that is dominated.

The ability to signal creates the possibility that R will be able to draw inferences about
S’s type from the signal. Whether he is able to do so is a property of the equilibrium. It
is useful to define two extreme cases.

Definition 1. An equilibrium (α∗, µ∗) is called a separating equilibrium if each type t
sends different signals. That is, M can be partitioned into sets Mt such that for each t,
µs∈Mt(t, s) = 1. An equilibrium (α∗, µ∗) is called a pooling equilibrium if there is a single
signal s∗ that is sent by all types with probability one.
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In a separating equilibrium, R can infer S’s private information completely. In a
pooling equilibrium, R learns nothing from the sender’s signal. This definition excludes
other possible situations. For example, all sender types can randomize uniformly over a
set of two or more signals. In this case, the receiver will be able to draw no inference
beyond the prior from a signal received in equilibrium. More interesting is the possibility
that the equilibrium will be partially revealing, with some, but not all of the sender types
sending common signals.

It is not difficult to construct pooling equilibria for the basic signaling game. Take
the labor market model and assume S sends the message s∗ with probability one and
that the receiver responds to s∗ with his best response to the prior distribution and to
all other messages with the best response to the belief that t is the least skilled agent.
Provided that the least skilled agent prefers to send s∗ to sending the cheapest alternative
signal, this is a Nash Equilibrium outcome.

6 The Basic Model

The separating equilibrium is a benchmark outcome for signaling games. When a sepa-
rating equilibrium exists, then it is possible for the sender to share her information fully
with the receiver in spite of having a potential conflict of interest.

Existence of separating equilibria typically requires a systematic relationship between
types and signals. An appropriate condition, commonly referred to as the single-crossing
condition, plays a prominent role in signaling games and in models of asymmetric infor-
mation more generally.

In this section I limit attention to a special class of signaling game in which there is a
monotonic relationship between types and signals. In these models, separating equilibria
typically exist.

I begin by stating the assumption in the environment most commonly seen in appli-
cations. Assume that the sets T , S, and A are all real intervals.

Definition 2. US(·) satisfies the single-crossing condition if US(t, s, a) ≤ US(t, s′, a′) for
s′ > s implies that US(t′, s, a) < US(t′, s′, a′) for all t′ > t.

In a typical application, US(·) is strictly decreasing in its second argument (the signal)
and increasing in its third argument (R’s response) for all types. Consequently indiffer-
ence curves are well defined in M × A for all t. The single-crossing condition states
that indifference curves of different sender types cross once. If a lower type is indifferent
between type signal-action pairs, then a higher type strictly prefers to send the higher
signal. In this way, the single-crossing condition links signals to types in such a way as
to guarantee that higher types send weakly higher signals in equilibrium.

Note two generalizations of Definition 2. First, the assumption that the domain
of US(·) is the product of intervals can be replaced by the assumption that these sets
are partially ordered. In this case, weak and strict order replace the weak and strict
inequalities comparing types and actions in the statement of the definition. Second,
it is sometimes necessary to extend the definition to mixed strategies. In this case, the
ordering of A induces a partial ordering of distributions of A through first-order stochastic
dominance.
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When one thinks of the single-crossing condition geometrically, it is apparent that
it implies a ranking of the slopes of the indifference curves of the Sender. Suppose
that US(·) is smooth, strictly increasing in actions and strictly decreasing in signals so
that indifference curves are well defined for each t. Writing the indifference curve as
{(s, ā(s; t))}, it must be that US(t, s, ā(s; t)) ≡ 0, so that the slope of the indifference
curve of a type t Sender is

ā1(s; t) = −U
S
2 (t, s, a)

US
3 (t, s, a)

, (5)

where ā1(s; t) is the partial derivative of ā(s; t) with respect to the first argument, and
US

k (·) denotes the partial derivative of US(·) with respect to its kth argument. Under
these conditions, the single-crossing condition is implied by the requirement that the
right-hand side of equation (5) is decreasing in t. The differentiable version of the single-
crossing condition is often referred to as the Spence-Mirrlees condition. Milgrom and
Shannon [58] contains general definitions of the single-crossing and Spence-Mirrlees
conditions and Edlin and Shannon [26] provide a precise statement of when the conditions
are equivalent.

To provide a simple construction of a separating equilibrium, limit attention to a
standard signaling game in which the following conditions hold.

1. T = {0, . . . , K} is finite.

2. A and M are real intervals.

3. Utility functions are continuous in action and signal.

4. US(·) is strictly increasing in action and strictly decreasing in signal.

5. The single-crossing property holds.

6. The Receiver’s best-response function, is uniquely defined, independent of the sig-
nal, and strictly increasing in t so that it can be written BR(t).

7. There exists s̄ ∈ S such that US(K, s̄, BR(K)) < US(K, s∗0, BR(0)).

Conditions 1 and 2 simplify exposition, but otherwise are not necessary. It is impor-
tant that T , M , and A be partially ordered so that some kind of single-crossing condition
applies. Conditions 4-6 impose a monotone structure on the problem so that higher types
are more able to send high signals, and that higher types induce higher (and uniformly
more attractive) actions. These conditions imply that in equilibrium higher types will
necessarily send weakly higher signals. Condition 7 is a boundary condition that makes
sending high signals unattractive. It states that the highest type of Sender would prefer
to be treated like the lowest type rather than use the signal s̄. These properties hold in
many standard applications and certainly would be satisfied if UR(t, s, a) = −(a− t)2.
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6.1 Separating Equilibrium

To illustrate these ideas, consider a construction of a separating equilibrium.

Proposition 2. The standard signaling game has a separating equilibrium.

One can prove the proposition by constructing a possible equilibrium path and con-
firming that the path can be part of a separating equilibrium.

Step 1. t0 selects the signal s∗0 that maximizes US(t0, s, BR(t0)).
Step 2. Suppose that s∗i have been specified for i = 0, . . . , k − 1 and let U∗(ti) =

US(ti, s
∗
i , BR(ti)) Define s∗k to solve:

maxUS(tk, s, BR(tk)) subject to US(tk−1, s, BR(tk)) ≤ U∗(tk−1).

Provided that the optimization problems in Steps 1 and 2 have solutions, the pro-
cess inductively produces a signaling strategy for the Sender and a response rule for the
Receiver defined on {s∗0, . . . , s∗K}. When BR(·) is strictly increasing, the single-crossing
condition implies that the signaling strategy is strictly increasing. To complete the de-
scription of strategies, assume that the Receiver takes the action BR(tk) in response to
signals in the interval [sk, sk+1), BR(t0) for s < s∗0, and BR(tK) for s > s∗K . By the
definition of the best-response function, the receiver is best responding to the sender’s
strategy. When the boundary condition fails, a fully separating equilibrium need not
exist, but when M is compact, one can follow the construction above to obtain an equi-
librium in which the lowest types separate and higher types pool at the maximum signal
in M (see Cho and Sobel [22] for details).

In the construction, the equilibrium involves inefficient levels of signaling. When
US(·) is decreasing in the signal, all but the lowest type of sender must make a wasteful
expenditure in the signal in order to avoid being treating as having a lower quality.
The result that expenditures on signals are greater than the levels optimal in a full-
information model continue to hold when US(·) is not monotonic in the signal. The
sender inevitably does no better in a separating equilibrium than she would do if R
had full information about t. Indeed, all but the lowest type will do strictly worse in
standard signaling games. On the other hand, the equilibrium constructed above has a
constrained efficiency property: Of all separating equilibria, it is Pareto dominant from
the standpoint of S. To confirm this claim argue inductively that in any separating
equilibrium if tj sends the signal sj, then sj ≥ s∗j , with equality only if all types i < j
send s∗i with probability one.

Mailath [50] provides a similar construction when T is a real interval. In this case,
the Spence-Mirrlees formulation of the single-crossing condition plays an important role
and the equilibrium is a solution to a differential equation.

6.2 Multiple Equilibria and Selection

Section 5 ended with the construction of a pooling equilibrium. A careful reconsideration
of the argument reveals that there typically are many pooling equilibrium outcomes. One
can construct a potential pooling outcome by assuming that all sender types send the
same signal, that the receiver best responds to this common signal, and responds to all

9



other signals with the least attractive action. Under the standard monotonicity assump-
tions, this strategy profile will be an equilibrium if the lowest sender type prefers pooling
to sending the cheapest available out-of-equilibrium message. Section 6.1 ended with
the construction of a separating equilibrium. There are also typically many separating
equilibrium outcomes. Assume that types t = 0, . . . , r−1 send signals s∗(t), type r sends
s̃(k) > s∗(k), and subsequent signals s̃∗(t) for t > r solve:

maxUS(tk, s, BR(tk)) subject to US(tk−1, s, BR(tk)) ≤ U(tk−1, s̃, BR(tk−1)).

In both of these cases, the multiplicity is typically profound, with a continuum of
distinct equilibrium outcomes (when M is an interval). The multiplicity of equilibria
means that, without refinement, equilibrium theory provides few clear predictions beyond
the observation that the lowest type of sender receives at least U∗(t0), the payoff it would
receive under complete information and the fact that the equilibrium signaling function
is weakly increasing in the sender’s type. The first property is a consequence of the
monotonicity of S’s payoff in a and of R’s best response function. The second property
is a consequence of the single-crossing condition.

This section describes techniques that refine the set of equilibria. Refinement argu-
ments that guarantee existence and select unique outcomes for standard signaling games
rely on the Kohlberg-Mertens [43] notion of strategic stability. The complete theory of
strategic stability is only available for finite games. Consequently the literature applies
weaker versions of strategic stability that are defined more easily for large games. Banks
and Sobel [8], Cho and Kreps [21], and Cho and Sobel [22] introduce these arguments.

Multiple equilibria arise in signaling games because Nash equilibrium does not con-
strain the Receiver’s response to signals sent with zero probability in equilibrium. Spec-
ifying that R’s response to these unsent signals is unattractive leads to the largest set of
equilibrium outcomes. (In standard signaling games, S’s preferences over actions does
not depend on type, so the least attractive action is well defined.) The equilibrium set
shrinks if one restricts the meaning of unsent signals. An effective restriction is condition
D1, introduced in Cho and Kreps [21]. This condition is less restrictive than the notion
of universal divinity introduced by Banks and Sobel [8], which in finite games is less
restrictive than Kohlberg and Mertens’s notion of strategic stability.

Given an equilibrium (α∗, µ∗), let U∗(t) be the equilibrium expected payoff of a type
t sender and let D(s, t) = {a : u(t, s, a) ≥ U∗(t)} be the set of pure-strategy responses
to s that lead to payoffs at least as great as the equilibrium payoff for player t. Given a
collection of sets, X(t), t ∈ T , X(t∗) is maximal if it not a proper subset of any X(t).

Definition 3. Behavior strategies (α∗, µ∗) together with beliefs β∗ satisfy D1 if for any
unsent message s, β(·, s) is supported on those t for which D(s, t) is maximal.

In standard signaling games, D(s, t) is an interval: all actions greater than or equal
to a particular action will be attractive relative to the equilibrium. Hence these sets are
nested. If D(s, t) is not maximal, then there is another type t′ that is “more likely to
deviate” in the sense that there exists out-of-equilibrium responses that are attractive to
t′ but not t. Condition D1 requires that the receiver place no weight on type t making
a deviation in this case. Notice if D(s, t) is empty for all t, then D1 does not restrict
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beliefs given s (and any choice of action will support the putative equilibrium). Condition
D1 is strong. One can imagine weaker restrictions. The intuitive condition (Cho and
Kreps [21]) requires that β(t, s) = 0 when D(t, s) = φ and at least one other D(t′, s) is
non empty. Divinity (Banks and Sobel [8]) requires that if D(t, s) is strictly contained
in D(t′, s), then β(t′, s)/β(t, s) ≥ π(t′)/π(t), so that the relative probability of the types
more likely to deviate increases.

Proposition 3. The standard signaling game has a unique separating equilibrium out-
come that satisfies Condition D1.

In standard signaling games, the only equilibrium outcome that satisfies Condition
D1 is the separating outcome described in the previous section. Details of the argument
appear in Cho and Sobel. The argument relies on two insights. First, types cannot be
pooled in equilibrium because slightly higher signals will be interpreted as coming from
the highest type in the pool. Second, in any separating equilibrium in which a sender
type fails to solve Step 2, deviation to a slightly lower signal will not lower R’s beliefs.

The refinement argument is powerful and the separating outcome selected receives
prominent attention in the literature. It is worth pointing out that the outcome has one
unreasonable property. The separating outcome described above depends only on the
support of types, and not on the details of the distribution. Further, all types but the
lowest type must make inefficient (compared to the full-information case) investments
in signal in order to distinguish themselves from lower types. The efficient separating
equilibrium for a sequence of games in which the probability of the lowest type con-
verges to zero does not converge to the separating equilibrium of the game in which the
probability of the lowest type is zero. In the special case of only two types, the (effi-
cient) pooling outcome may be a more plausible outcome when the probability of the
lower type shrinks to zero. Grossman and Perry [38] and Mailath, Okuno-Fujiwara, and
Postlewaite [51] introduce equilibrium refinements that select the pooling equilibrium
in this setting. These concepts share many of the same motivations of the refinements
introduced by Banks and Sobel and Cho and Kreps. They are qualitatively different
from the intuitive criterion, divinity, and Condition D1, because they are not based on
dominance arguments and lack general existence properties.

7 Cheap Talk

Models in which preferences satisfy the single-crossing property are central in the liter-
ature, but the assumption is not appropriate in some interesting settings. This section
describes an extreme case in which there is no direct cost of signaling.

In general, a cheap-talk model is a signaling model in which ui(t, s, a) is independent of
s for all (t, a). Two facts about this model are immediate. First, if equilibrium exists, then
there always exists an equilibrium in which no information is communicated. To construct
this “babbling” equilibrium, assume that β(t, s) is equal to the prior independent of the
signal s. R’s best response will be to take an action that is optimal conditional only on
his prior information. Hence R’s action can be taken to be constant. In this case, it
is also a best response for S to send a signal that is independent of type, which makes
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β(t, s) the appropriate beliefs. Hence, even if the interests of S and R are identical,
so that it there are strong incentives to communicate, there is a possibility of complete
communication break down.

Second, it is clear that non-trivial communication requires that different types of S
have different preferences over R’s actions. If it is the case that whenever some type t
prefers action a to action a′ then so do all other types, then (ruling out indifference),
it must be the case that in equilibrium the receiver takes only one action with positive
probability. To see this, note that otherwise one type of sender is not selecting a best
response. The second observation shows that cheap talk is not effective in games, like
the standard labor-market story, in which the sender’s preferences are monotonic in the
action of the receiver. With cheap communication, the potential employee in the labor
market will always select a signal that leads to the higher possible wage and consequently,
in equilibrium, all types of workers will receive the same wage.

7.1 A Simple Cheap-Talk Game

There are natural settings in which cheap talk is meaningful in equilibrium. To describe
examples, I follow the development of Crawford and Sobel [24] (Green and Stokey [35]
independently introduced a similar game in an article circulated in 1981). In this pa-
per, A and T are the unit interval and M can be taken to be the unit interval without
loss of generality. The sender’s private information or type, t, is drawn from a differen-
tiable probability distribution function, F (·), with density f(·), supported on [0, 1]. S
and R have twice continuously differentiable von Neumann-Morgenstern utility functions
U i(a, t) that are strictly concave in a and have a strictly positive mixed partial derivative.
Let i = R, S, ai(t) denotes the unique solution to maxa U

i(a, t) and further assume that
aS(t) > aR(t) for all t. (The assumptions on U i(·) guarantee that U i(·) is well defined
and strictly increasing.)

In this model, the interests of the sender and receiver are partially aligned because
both would like to take a higher action with a higher t. The interests are different
because S would always like the action to be a bit higher than R’s ideal action. In a
typical application, t represents the idea action for R, such as the appropriate expenditure
on a public project. Both R and S want actual expenditure to be close to the target
value, but S has a bias in favor of additional expenditure.

For 0 ≤ t′ < t′′ ≤ 1, let ā(t′, t′′) be the unique solution to maxa

∫ t′′

t′
UR(a, t)dF (t). By

convention, ā(t, t) = aR(t).
Without loss of generality, limit attention to pure-strategy equilibria. The concavity

assumption guarantees that R’s best responses will be unique, so R will not randomize in
equilibrium. An equilibrium with strategies (µ∗, α∗) induces action a if {t : α∗(µ∗(t)) =
a} has positive prior probability. Crawford and Sobel [24] characterize equilibrium
outcomes.

Proposition 4. There exists a positive integer N∗ such that for every integer N with
1 ≤ N ≤ N∗, there exists at least one equilibrium in which the set of induced actions
has cardinality N , and moreover, there is no equilibrium which induces more than N∗

actions. An equilibrium can be characterized by a partition of the set of types, t(N) =
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(t0(N), . . . , tN(N)) with 0 = t0(N) < t1(N) < . . . < tN(N) = 1, and signals mi, i =
1, . . . , N , such that for all i = 1, . . . N − 1

US(ā(ti, ti+1), ti))− US(ā(ti−1, ti), ti)) = 0, (6)

µ(t) = mi for t ∈ (ti−1, ti], (7)

and
α(mi) = ā(ti−1, ti). (8)

Furthermore, essentially all equilibrium outcomes can be described in this way.

In an equilibrium, adjacent types pool together and send a common message. Con-
dition 6 states that sender types on the boundary of a partition element are indifferent
between pooling with types immediately below or immediately above. Condition 7 states
that types in a common element of the partition send the same message. Condition 8
states that R best responds to the information in S’s message.

Crawford and Sobel make another monotonicity assumption, which they call condition
(M). (M) is satisfied in leading examples and implies that there is a unique equilibrium
partition for each N = 1, . . . , N∗, the ex-ante equilibrium expected utility for both S and
R is increasing in N , and N∗ increases if the preferences of S and R become more aligned.
These conclusions provide justification for the view that with fixed preferences “more”
communication (in the sense of more actions induced) is better for both players and that
the closer are the interests of the players the greater the possibilities for communication.

As in the case of models with costly signaling, there are multiple equilibria in the
cheap-talk model. The multiplicity is qualitatively different. Costly signaling models
have a continuum of Nash Equilibrium outcomes. Cheap-talk models have only finitely
many. Refinements that impose restrictions on off-the-equilibrium path signals work well
to identify a single outcome in costly signaling models. These refinements have no cutting
power in cheap-talk models because any equilibrium distribution on type-action pairs can
arise from signaling strategies in which all messages are sent with positive probability.To
prove this claim, observe that if message m′ is unused in equilibrium, while message m
is unused, then one can construct a new equilibrium in which R interprets m′ the same
way as m and sender types previously sending m randomize equally between m and m′.

In the basic model messages take on meaning only through their use in an equilib-
rium. Unlike natural language, they have no external meaning. There have been several
attempts to formalize the notion that messages have meanings that, if consistent with
strategic aspects of the interaction, should be their interpretation inside the game. The
first formulation of this idea is due to Farrell [28].

Definition 4. Given an equilibrium (α∗, σ∗) with sender expected payoffs u∗(·), the subset
G ⊂ T is self signaling if G = {t : US(t, BR(G)) > u∗(t)}.

That is, G is self signaling if precisely the types in G gain by making a statement
that induces the action that is a best response to the information that t ∈ G. (When
BR(t) is not single valued it is necessary to refine the definition somewhat and the
possibility that US(t, BR(G)) = u∗(t) for some t.) See Matthews, Okuno-Fujiwara, and
Postlewaite [52].) Farrell argues that the existence of a self-signaling set would destroy
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an equilibrium. If a subset G had available a message that meant “my type is in G,”
then relative to the equilibrium R could infer that if he were to interpret the message
literally, then it would be sent only by those types in G (and hence the literal meaning
would be accurate). With this motivation, Farrell proposes a refinement.

Definition 5. An equilibrium (α∗, σ∗) is neologism proof if there exist no self-signaling
sets relative to the equilibrium.

Rabin [63] argues convincingly that Farrell’s definition rules out too many equilib-
rium outcomes. Indeed, for leading examples of the basic cheap-talk game, there are no
neologism-proof equilibria. Specifically, in the Crawford-Sobel model in which S has a
bias towards higher actions, there exist self signaling sets of the form [t, 1]. On the other
hand, Chen, Kartik, and Sobel [20] demonstrate that if one limits attention to equilibria
(µ∗, α∗) that the N∗-step equilibrium always satisfies the no incentive to separate (NITS)
condition:

US(α∗(µ∗(0)), 0) ≥ US(aR(0), 0), (9)

and that under condition (M) this is the only equilibrium that satisfies condition (9).
NITS states that the lowest type of Sender prefers her equilibrium payoff to the

payoff she would receive if the Receiver knew her type (and responded optimally). [41]
introduced and named this condition. The NITS condition can be shown to rule equilibria
that admit if self-signaling sets of the form [0, t]. Chen [19] and Kartik [41] show that
the condition holds in the limits of perturbed versions of the basic cheap-talk game.

Inequality (9) holds automatically in any perfect bayesian equilibrium of the standard
signaling model. This follows because when R’s actions are monotonic in type and S’s
preferences are monotonic in action, the worst outcome for S is to be viewed as the lowest
type. This observation would not be true in Nash Equilibrium, where it is possible for
R to respond to an out-of-equilibirum message with an action a < BR(0).

7.2 Variations on Cheap Talk

In standard signaling models, there is typically an equilibrium that is fully revealing.
This is not the case in the basic cheap-talk model. This leads to the question of whether
it is possible to obtain more revelation in different environments.

One possibility is to consider the possibility of signaling over many dimensions.
Chakraborty and Harbaugh [18] consider a model in with T and A are multidimensional.
A special case of their model is one in which the components of T are independent draws
from the same distribution and A involves taking a real-valued action for each component
of T . If preferences are additively separable across types and actions, Charkraborty and
Harbaugh provide conditions under which categorical information transmission, in which
the S transmits the order of the components of T , is credible in equilibrium even when
it would not be possible to transmit information across if the dimensions were treated in
isolation. It may be credible for S to say “t1 > t2,” even if she could not credibly provide
information about the absolute value of either component of t.

Effective communication requires that different types of preferences have different
preferences over outcomes. In standard signaling models, the heterogeneity arises because

14



different sender types have different costs of sending messages. In cheap-talk models, the
heterogeneity arises with one-dimensional actions if different sender types have different
ideal actions. With multi-dimensional actions, heterogeneity could come simply from
different sender types having different preferences over the relative importance of the
different issues. Another simple variation is to assume the existence of more than one
sender. In the two-sender game, nature picks t as before, both Senders learn t and
simultaneously send a message to the receiver, who makes a decision based on the two
messages. The second sender has preferences that depend on type and the receiver’s
action, but not directly on the message sent. In this environment, assume that M = T ,
so that the set of available messages (this is essentially without loss of generality). One
can look for equilibria in which the senders report honestly. Denote by a∗(t, t′) R’s
response to the pair of messages (t, t′). If an equilibrium in which both senders report
honestly exists, then R’s response to identical messages, a∗(t, t) = aR(t), and it must be
the case that there exists a specification of a(t, t′) for t 6= t′ such that for all i = 1 and 2
and t 6= t′,

USi(t, a∗(t, t)) ≥ USi(t, a∗(t, t′)). (10)

It is possible to satisfy Condition (10) if the biases of the senders are small relative to the
set of possible best responses. Krishna and Morgan [46] studies a one-dimensional model
of information transmission with two informed players. Ambrus and Takahashi [1] and
Battiglini [9] provide conditions under which full revelation is possible when there are
two informed players and possibly multiple dimensions of information.

In many circumstances, enriching the communication structure either by allowing
more rounds of communication (Aumann and Hart [2] and Forges [29]), mediation
(Ben-Porath [10] ), or exogenous uncertainty (Blume and Board [16] or Kawamura [42])
enlarges the set of equilibrium outcomes.

8 Verifiable Information

Until now, the focus has been on situations in which the set of signals available does
not depend on the true state. There are situations in which this assumption is not
appropriate. There may be laws that ban false advertisement. The sender may be able
to document details about the value of t. Models of this kind were first studied by
Grossman [37] and Milgrom [57]. For example, if t is the sender’s skill at playing the
piano, then if there is a piano available t could demonstrate that she has skill at least
as great as t (by performing at her true ability), but she may not be able to prove that
her skill is no more than t (the receiver may think that she deliberately played the piano
badly).

To model these possibilities, suppose that the set of possible messages is the set of all
subsets of T . In this case, messages have “literal” meanings: When the sender uses the
message s = C ∈ T , this can be interpreted as a statement of the form: “my type is in
C.” If senders cannot lie, then M(t) must be the set of subsets of T that contain t. If type
t is verifiable, then {t} ∈ M(t′) if and only if t′ = t. If there are no additional costs of
sending signals, this model can be viewed as a variation of cheap talk models in which the
message space depends on t. In general, one can treat verifiable information models as a
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special case of the general signaling game in which the cost of sending certain signals is so
large that these signals can be ruled out. Lying is impossible if M(t) = {C ⊂ 2T : t ∈ C}.
In this setting, it is appropriate to require equilibria to be consistent with the signaling
structure.

Definition 6. The equilibrium (σ∗, α∗) is rationalizable if

α(C, a) > 0 implies
∑
t∈T

UR(t, s, a)β(t, a) = max
a′∈A

∑
t∈T

UR(t, s, a′)β(t, a′), (11)

where β(t, a) = 0 if t /∈ C.

Compared to (2), (11) requires that beliefs place positive probability only on types
capable of sending the message “my type is an element of C.”

Proposition 5. Suppose that A and T are linearly ordered, that the Receiver’s best
response function is increasing in type, and that all Sender types prefer higher actions.
If lying is not possible, then any rationalizable equilibrium (σ∗, α∗), .

Grossman [37] and Milgrom [57] present versions of this proposition. Seidman and
Winter [69] generalize the result.

Provided that the Receiver responds to the signal {t} with BR(t), each type can
guarantee a payoff of BR(t). On the other hand, if any type receives a payoff greater
than BR(t), then some higher type must be doing worse. Another way to make the same
point is to notice that the highest type {t̄} has a weakly dominant strategy to reveal
her type by announcing {t̄}. Once this type is revealed, the next highest type will want
to reveal herself and so on. Hence verifiable information will be revealed voluntarily
in an environment where cheap talk leads to no revealing and costly signaling will be
compatible with full revelation, but at the cost of dissipative signaling.

The full-revelation result depends on the assumption that the sender and receiver
share a linear ranking over the quality of information. Giovannini and Seidmann [31]
discuss more general settings in which the ability to provide verifiable information need
not lead to full revelation.

9 Communication About Intentions

In a simple signaling game, signals potentially provide information about private infor-
mation. Another possibilities is to add a round of pre-play communication to a given
game. Even if the game has complete information, there is the possibility that commu-
nication would serve to select equilibria or permit correlation that would otherwise be
infeasible. Farrell and Rabin [64]’s review article discusses this literature in more detail.

Aumann [3] argues that one cannot rely on pre-play communication to select a
Pareto-efficient equilibrium. He considers a simple two-player game with Pareto-ranked
equilibria and argues that no “cheap” pre-play signal would be credible.

Ben-Porath and Dekel [11] show that adding a stage of “money burning” (a signal
that reduces all future payoffs by the same amount) when combined with an equilibrium
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refinement can select equilibria in a complete information game. Although no money is
burned in the selected equilibrium outcome, the potential to send costly signals creates
dominance relationships that lead to a selection.

Vida [75] synthesizes a literature that compares the set of equilibrium outcomes
available when communication possibilities are added to a game to the theoretically
larger set available if there is a reliable mediator available to collect information and
recommend actions to the players.

10 Applications

10.1 Economic Applications

There is an enormous literature that uses signaling models in applications. Riley’s [65]
survey contains extended discussion of some of the most important applications. What
follows is a brief discussion of some central ideas.

In a simple signaling game, one informed agent sends a single signal to one uninformed
decision maker. This setting is reach enough to illustrate many important aspects of
signaling, but it plainly limited. Interesting new issues arise if there are many informed
agents, if there are many decision makers, and if the interaction is repeated. Several of
the models below add some or all of these novel features to the basic model.

10.1.1 Advertising

Advertisements are signals. Models similar to the standard model can explain situations
in which higher levels of advertisement can lead consumers to believe the quality of the
good is higher. In a separating equilibrium, advertising expenditures fully reveal quality.
As in all costly signaling models, it is not important that there be a direct relationship
between quality and signal, it is only necessary that firms with higher quality have lower
marginal costs of advertising. Hence simply “burning money” or sending a signal that
lowers utility by an amount independent of quality and response can be informative.
The consumer may obtain full information in equilibrium, but someone must pay the
cost of advertising. There are other situations where it is natural for the signal to be
linked to the quality of the item. Models of verifiable information are appropriate in
this case. When the assumptions of Proposition 5 hold, one would expect consumers
to obtain all relevant information through disclosures without wasteful expenditures on
signaling. Finally, cheap talk plays a role in some markets. One would expect costless
communication to be informative in environments where heterogeneous consumers would
like to identify the best product. Cheap talk can create more efficient matching of product
to consumer. Here communication is free although will in leading models separating
equilibria do not exist.

10.1.2 Limit Pricing

Signaling models offer one explanation for the phenomenon of limit pricing. An incum-
bent firm have private information about its cost. Potential entrants use the pricing
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behavior of the firm to draw inferences about the incumbent’s cost, which determines
profitability of entry. Milgrom and Roberts [55] construct an equilibrium in which
the existence of incomplete information distorts prices: Relative to the full information
model, the incumbent charges lower prices in order to signal that the market is relatively
unprofitable. This behavior has the flavor of classical models of limit pricing, with one
important qualification. In a separating equilibrium the entrant can infer the true cost
of the incumbent and therefore the low prices charged by the incumbent firm fails to
change the entry decision.

10.1.3 Bargaining

Several authors have proposed bargaining models with incomplete information to study
the existence and duration of strikes (Fudenberg and Tirole [30], Sobel and Taka-
hashi [72]). If a firm with private information about its profitability makes a take-
it-or-leave it offer to a union, then the strategic interaction is a simple signaling model
in which the magnitude of the offer may serve as a signal of the firm’s profitability.
Firms with low profits are better able to make low wage offers to the union because the
threat of a strike is less costly to a firm with low profits than one with high profits.
Consequently settlement offers may reveal information. Natural extensions of this model
permit counter offers. The variation of the model in which the uninformed agent makes
offers and the uninformed agent accepts and rejects is formally almost identical to the
canonical model of price discrimination by a durable-goods monopolist ( Ausubel and
Deneckere [4] and Gul, Sonnenschein, and Wilson [39]).

10.1.4 Finance

Simple signaling arguments provide potential explanations for firms’ choices of financial
structure. Classic arguments due to Modigliani and Miller [59] and imply that firms’ prof-
itability should not depend on their choice of capital structure. Hence this theory cannot
organize empirical regularities about firm’s capital structure. The Modigliani-Miller the-
orem assumes that the firm’s managers, shareholders, and potential shareholders all have
access to the same information. An enormous literature assumes instead that the firm’s
managers have superior information and use corporate structure to signal profitability.

Leland and Pyle [48] assume that insiders are risk averse they would prefer to diversify
their personal holdings rather than maintain large investments in their firm. The value
of diversification is greater the lower the quality of the firm. Hence when insiders have
superior information than investors, there will be an incentive for the insiders of highly
profitable firms to hold maintain inefficiently large investments in their firm in order to
signal profitability to investors.

Dividends are taxed twice under the United States tax code, which raises the question
of why firms would issue dividends when capital gains are taxed at a lower rate. A
potential explanation for this behavior comes from a model in which investors have
imperfect information about the future profitability of the firm and profitable firms are
more able than less profitable firms to distribute profits in the form of dividends (see
Bhattachrya [14]).
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10.1.5 Reputation

Dynamic models of incomplete information create the opportunity for the receiver to
draw inferences about the sender’s private information while engaging in an extended
interaction. Kreps and Wilson [45] and Milgrom and Roberts [56] provided the original
treatments of reputation formation in games of incomplete information. Motivated by
the limit pricing, their models examined the interaction of a single long-lived incumbent
facing a sequence of potential entrants. The entrants lack information about the will-
ingness of the incumbent to tolerate entry. Pricing decisions of the incumbent provide
information to the entrants about the profitability of the market.

In these models, signals have implications for both current and future utility. The
current cost is determined by the effect the signal has on current payoffs. In Kreps-
Wilson and Milgrom-Roberts, this cost is the decrease in current profits associated with
charging a low price. In other models (for example Morris [60] or Sobel [71]) the
actual signal is costless, but it has immediate payoff implications because of the response
it induces. Signals also have implications for future utility because inferences about
the sender’s private information will influence the behavior of the opponents in future
periods. Adding concern for reputation to a signaling game will influence behavior, but
whether it leads to more or less informative signaling depends on the application.

10.2 Signaling in Biology

Signaling is important in biology. In independent and almost contemporaneous work,
Zahavi [77] proposed a signaling model that shared the essential features of Spence [73]’s
model of labor-market signaling. Zahavi observed that there are many examples in nature
of animals apparently excessive physical displays. It takes energy to produce colorful
plumage, large antlers, or loud cries. Having a large tail may actually make it harder
for peacocks to flea predators. If a baby bird makes a loud sound to get his mother’s
attention, he may attract a dangerous predator. Zahavi argued that costly signals could
play a role in sexual selection. In Zahavi’s basic model, the sender is a male and the
receiver is a female of the same species. Females who are able to mate with healthier
males are more likely to have stronger children, but often the quality of a potential mate
cannot be observed directly. Zahavi argued that if healthier males could produce visible
displays more cheaply than less healthy males, then females would be induced to use
the signals when deciding upon a mate. Displays may impose costs that “handicap” a
signaler, but displays would persist when additional reproductive success compensates
for their costs. Zahavi identifies a single-crossing condition as a necessary condition for
the existence of costly signals.

The development of signaling in biology parallels that in economics, but there are
important differences. Biology replaces the assumption of utility maximization and equi-
librium with fitness maximization and evolutionary stability. That is, their models do
not assume that animals consciously select their signal to maximize a payoff. Instead,
the biological models assume that the process of natural selection will lead to strat-
egy profiles in which mutant behavior has lower reproductive fitness than equilibrium
behavior. This notion leads to static and dynamic solution concepts similar to Nash
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Equilibrium and its refinements. Fitness in biological models depends on contributions
from both parents. Consequently, a full treatment of signaling must take into account
population genetics. Grafen [34] discusses these issues and Grafen [33] and Siller [70]
provide further theoretical development of the handicap theory. Finally, one must be
careful in interpreting heterogeneous quality in biological models. Presumably natural
selection will act to eliminate the least fit individuals. Natural selection should operate
to eliminate the least fit genes in a population. To the extent that this arises, there is
pressure for quality variation within a population to decrease over time. The existence of
unobserved quality variations needed for signaling may be the result of relatively small
variations about a population norm.

While most of the literature on signaling in biology focuses on the use of costly
signals, there are also situations in which cheap talk is effective. A leading example is
the “Sir Philip Sidney Game,” originally developed by John Maynard Smith [54] to
illustrate the value of costly communication between a mother and child. The child has
private information about its level of hunger and the mother must decide to feed the
child or keep the food for itself. Since the players are related, survival of one positively
influences the fitness of the other. This creates a common interest needed for cheap-talk
communication. There are two ways to model communication in this environment. The
first is to assume that signaling is costly, with hungrier babies better able to communicate
their hunger. This could be because the sound of a hungry baby is hard for sated babies
to imitate or it could be that crying for food increases the risk of predation and that
this risk is relatively more dangerous to well fed chicks than to starving ones (because
the starving chicks have nothing to lose). This game has multiple equilibria in which
signals fully reveal the state of the baby over a range of values (see Maynard Smith [54]
and Lachmann and Bergstrom [47]). These papers look a model in which both mother
and child have private information. Alternatively, Bergstrom and Lachmann [13] study
a cheap-talk version of the game. Here there may be an equilibrium outcome in which
the baby bird credibly signals whether or not he is hungry. Those who signal hunger get
fed. The others do not. Well fed baby birds may wish to signal that they are not hungry
in order to permit the mother to keep food for herself. Such an equilibrium exists if the
fraction of genes that mother and child share is large and the baby is already well fed.

10.3 Political Science

Signaling games have played an important role in formal models of political science.
Banks [7] reviews models of agenda control, political rhetoric, voting, and electoral
competition. Several important models in this area are formally interesting because they
violate the standard assumptions frequently satisfied in economic models. I describe two
such models in this subsection.

Banks [6] studies a model of agenda setting in which the informed sender proposes
a policy to a receiver (decision-maker), who can either accept or reject the proposal. If
the proposal is accepted, it becomes the outcome. If not, then the outcome is a fall-
back policy. The fall-back policy is known only to the sender. In this environment, the
sender’s strategy may convey information to the decision maker. Signaling is costly, but,
because the receiver’s set of actions in binary, fully revealing equilibria need not exist.
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Refinements limit the set of predictions in this model to a class of outcomes in which
only one proposal is accepted in equilibrium (and that this proposal is accepted with
probability one), but there are typically a continuum of possible equilibrium outcomes.

Matthews [53] develops a cheap-talk model of veto threats. There are two players,
a Chooser (C), who plays the role of receiver, and a Proposer (P ), who plays the role
of sender. The players have preferences that are represented by single-peaked utility
functions which depend on the real-valued outcome of the game and an ideal point. P ’s
ideal point is common knowledge. C’s ideal point is her private information, drawn
from a prior distribution that has a smooth positive density on a compact interval, [t, t̄].
The game form is simple: C learns her type, then sends a cheap-talk signal to P , who
responds with a proposal. C then either accepts or rejects the proposal. Accepted
proposals become the outcome of the game. If C rejects the proposal, then the outcome
is the status quo point.

As usual in cheap-talk games, this game has a babbling outcome in which C’s message
contains no information and P makes a single, take-it-or-leave-it offer that is accepted
with probability strictly between 0 and 1. Matthews shows there may be equilibria in
which two outcomes are induced with positive probability (size-two equilibria), but size
n > 2 (perfect Bayesian) equilibria never exist. In a size-two equilibrium, P offers his
ideal outcome to those types of C whose message indicates that their ideal point is low;
this offer is always accepted in equilibrium. If C indicated that his ideal point is high, P
makes a compromise offer that is sometimes accepted and sometimes rejected.

11 Future Directions

The most exciting developments in signaling games in the future are likely to come from
interaction between economics and other disciplines.

Over the last ten years the influence of behavioral economists have led the profession
to rethink many of its fundamental models. An explosion of experimental studies have
already influenced the interpretation of signaling models and have led to a re-examination
of basic assumptions. There is evidence that economic actors lack the strategic sophis-
tication assumed in equilibrium models. Further, economic agents may be motivated
by more than their material well being. Existing experimental evidence provides broad
support for many of the qualitative predictions of the theory (Banks, Camerer, and
Porter [5] and Brandts and Holt [17]), but also suggests ways in which the theory may
be inadequate.

The driving assumption of signaling models is that when informational asymmetries
exist, senders will attempt to lie for strategic advantage and that sophisticated receivers
will discount statements. These assumptions may be reconsidered in light of experimen-
tal evidence that some agents will behave honestly in spite of strategic incentives to lie.
For example, Gneezy [32] and Hurkens and Kartik [40] present experimental evidence
that some agents are reluctant to lie even when there is a financial gain from doing so.
There is evidence from other disciplines that some agents are unwilling or unable to ma-
nipulate information for strategic advantage and that people may be well equipped to
detect these manipulations in ways that are not captured in standard models (see, for
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example, Ekman [27] or Trivers [74]). Experimental evidence and, possibly, results from
neuroscience may demonstrate that the standard assumption that some agents cannot
manipulate information for their strategic advantage (or that other agents have ability to
see through deception) will inform the development of novel models of communication in
that include behavioral types. Several papers study the implications of including behav-
ioral types into the standard paradigm. The reputation models of Kreps and Wilson [45]
and Milgrom and Roberts [55] are two early examples. Recent papers on communication
by Chen [19], Crawford [23], Kartik [41], and Olszewski [62] are more recent examples.
New developments in behavioral economics will inform future theoretical studies.

There is substantial interest in signaling in philosophy. Indeed, the philosopher David
Lewis [49] (first published in 1969) introduced signaling games prior to the contributions
of Spence and Zahavi. Recently linguists have been paying more attention to game-
theoretic ideas. Benz, Jäger and Van Rooij [12] collects recent work that attempts to
formalize ideas from linguistic philosophy due to Grice [36]. While there have been a
small number of contributions by economists in this area (Rubinstein [67] and Sally [68]
are examples), there is likely to be more active interaction in the future.

Finally, future work may connect strategic aspects of communication to the ac-
tual structure of language. Blume [15], Cucker, Smale, Zhou [25], and Nowak and
Krakauer [61] present dramatically different models on how structured communication
may result from learning processes. Synthesizing these approaches may lead to funda-
mental insights on how the ability to send and receive signals develops.
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