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1. INTRODUCTION 

This paper identifies a class of signaling games in which a unique 
Universally Divine equilibrium outcome (Banks and Sobel [4]) exists and 
characterizes this outcome. The unique Universally Divine outcome 
involves separation of all but the highest types (those with the most attrac- 
tive information) of the informed signaler. Although Universal Divinity 
forces the informed signaler to reveal as much information as possible, a 
separating equilibrium need not always exist in the class of models that 
we analyze. However, if one exists, then the unique Universally Divine 
equilibrium outcome coincides with the Pareto dominating equilibrium 
outcome often studied in applications. 

This paper continues the approach, pioneered by Kreps [13] and 
developed by Cho and Kreps [6], of studying the refinement of equilibria 
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in signaling games by restriction of beliefs off the equilibrium path. The 
restriction that we use is related to the concept of Universal Divinity. We 
also use a theorem of Kohlberg and Mertens [12], which proves that the 
set of stable equilibrium outcomes is not empty. This result guarantees the 
existence of sequential equilibria satisfying our condition since any stable 
outcome in a generic signaling game must be Universally Divine. We find 
the restrictions imposed on the beliefs off the equilibrium path easier to 
understand and work with than the full implications of stability. Hence we 
base our uniqueness arguments on refinements of the sequential equi- 
librium concept rather than a direct appeal to strategic stability. Our paper 
identifies a class of models in which a simple restriction on beliefs off the 
equilibrium path is equivalent to strategic stability. 

Section 3 presents a condition under which the outcomes that satisfy our 
restriction coincide with the (generally smaller) set of strategically stable 
outcomes. The sufficient condition states that the informed player’s 
preferences over his opponent’s actions do not depend on his private infor- 
mation. In the Spence [22] signaling game, this property holds because, 
regardless of their productivity, all workers prefer higher wages to lower 
wages. 

The assumption needed to characterize stable outcomes in terms of our 
refinement concept does not guarantee uniqueness. In Section 4, we present 
additional conditions that, combined with our refinement ideas, lead to 
unique predictions in signaling games. We need to make two basic assump- 
tions. The first assumption ranks private information: Better information 
makes the Receiver take better actions. In labor market signaling models, 
this condition holds: The higher the productivity of a worker, the higher 
the wage an employer is willing to pay. The second assumption guarantees 
that the better the private information, the lower the costs associated with 
sending certain kinds of signals. Once again, this condition is satisfied in 
the Spence model: More productive workers have lower marginal dis- 
utilities of acquiring education than do less productive workers. Indepen- 
dently, Kohlberg [23] identified virtually same conditions for the existence 
of a unique stable equilibrium outcome. He focused on a subset of the 
signaling games analyzed in this paper where the sender’s payoff is 
additively separable with respect to the sender’s signal and the receiver’s 
response. We strongly recommend this readable paper to readers. Section 5 
analyzes an example that illustrates the construction of Section 4 and 
allows us to compare our results to those of Cho and Kreps [6]. Section 6 
reviews some signaling games that have been analyzed by others and 
discusses the limitations of our methods and results. Section 7 is a brief 
conclusion. 
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2. THE MODEL AND REFINEMENT CONCEPTS 

We deal with a subset of two-player signaling games. One player, the 
Sender, obtains private information. This information is the Sender’s type 
t, an element of a finite set. We take this set to be the first T positive 
integers; we also denote the set of types by T. The Sender’s type is drawn 
according to some probability distribution rr over T; II is common 
knowledge. After the Sender learns his type, he sends a signal m to the 
other player, the Receiver. The set of possible signals is M. The Receiver 
responds to the Sender’s signal by taking an action a from a set A. We con- 
sider both finite signaling games, where both M and A are finite sets, and 
those signaling games with A a compact real interval and M a product of 
compact intervals in [w”. The players have von Neumann-Morgenstern 
utility functions defined over type, signal, and action. The Sender’s payoff 
function is u( t, m, a) and the Receiver’s payoff function is v( t, m, a). 

We must introduce more notation to discuss the equilibria of these 
games. We represent a behavior strategy for the Sender by q( .); for each t, 
q(. 1 t) is a probability distribution over M. We represent a behavior 
strategy for the Receiver by r( .); for each m, Y(. 1 m), which we abbreviate 
r(m), is a probability distribution over A. We restrict attention to equilibria 
in which these distributions have finite support.’ Hence q(m 1 t) is the prob- 
ability that a type t Sender sends the signal m, and r(a 1 m) is the probabil- 
ity that the Receiver plays the pure strategy a in response to the signal m. 
We extend u( .) to behavior strategies of R by taking expected values; that 
is, if r is a probability distribution over A with finite support, then 
u(f, m, r)=CutA u(t, m, a) r(a). We denote the Receiver’s assessment of or 
beliefs about the type of the Sender after a signal m by a probability dis- 
tribution ,U = pL(. 1 m) over T. We let BR(p, nz) be the set of actions that are 
best responses to m given the assessment p. That is, 

BR(p, m)=argmax.., f ~(4 m3 a)P(t). 

Define 

BR(Z, m)= u BWL ml; 
:~:~(Il,n,=l} 

BR(Z, m) is the set of best responses by the Receiver to assessments concen- 
trated on the subset I of T. Let MBR(p, m) and MBR(Z, m) represent the 
corresponding sets of mixed-strategy best responses. We assume that 
MBR(p, m) is an upper hemi-continuous correspondence in p. This 
property follows if A is finite or if o(t, m, a) is a continuous function of a. 

’ In Section 4 we make assumptions which guarantee that the Receiver never randomizes in 
equilibrium. 
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A sequential equilibrium for a signaling game is a triple of strategies and 
assessments ((dm I t)htT, ((4~ I m))),,,, Mf I ml),,,) that satisfy 
sequential rationality and consistency. 

Sequential Rationality: For all t, if 4W’ I t)>O, then 
m’ E arg max, E M u(t, m, r(m)) and r(nz) E MBR(p(. 1 m), m) for all m E M. 

Consistency : If X 1 4s) dm I s) > 0, then At I PHI = 
4t) s(m I tYCCsT=, 4s) s(m I ~11. 

Consistency imposes no restrictions on the beliefs p(. I m) when 
ET= 1 X(S) q(m I s) = 0. Consequently, many qualitatively different sequen- 
tial equilibria exist. We reline the set of sequential equilibria by imposing 
conditions on p(. I m) for those signals sent with probability zero in equi- 
librium. We require the Receiver to assign zero weight to the types of the 
Sender that are “unlikely” to send the signal m. We propose three related 
criteria. First, we introduce more terminology. 

Any behavior strategies q and r induce a probability distribution over 
the endpoints of the game. This probability distribution over T x M x A is 
the outcome of the game associated with the strategies q and r. If q and r 
are sequential equilibrium strategies, then we call the corresponding out- 
come a sequential equilibrium outcome. We say that an assessment h sup- 
ports this equilibrium if (q, r, p) is a sequential equilibrium. Associated 
with equilibrium strategies is the equilibrium path, which we identify with 
the set of information sets arrived at with positive probability 
{m E M : CT= 1 n(t) q(m I t) > 0). We impose restrictions on p(. 1 m) for off- 
the-equilibrium-path signals, {m E M : CT=, n(t) q(m I t) = 0), and refer to 
the corresponding beliefs ,u(. 1 m) as off-the-equilibrium-path beliefs. 

Fix a sequential equilibrium (q, r, p). Let u*(t) be the equilibrium expec- 
ted utility of the type t Sender: u*(t)=C,EMCosA u(t, m, a)q(m I t) 
r(a I m). Choose an off-the-equilibrium-path signal m and define 

and 
P’(t/m)=(rEMBR(T,m):u*(t)=u(t,m,r)}. 

P(t I m) is the set of best responses of the Receiver to m that induce the 
type t Sender deviate from his equilibrium strategy. If R responds to the 
signal m with an action r E P”(t I m), then sending the signal m yields the 
same utility as following the equilibrium. Therefore, if the Receiver takes an 
action r E P(r ) m) u P”(t I m) in response to m, then the type t Sender has 
a weak incentive to deviate from his equilibrium strategy. 

We require that if the Receiver considers every type in a subset J of T 
unlikely to send the signal m, then following the signal m, he should have 
beliefs that place probability zero on types in J. In this case, we require 
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that ~(t 1 m) = 0 for all t E J (provided that J # T). We now discuss three 
ways to define the subset J of types unlikely to send m. Banks and Sobel 
[4] and Cho and Kreps [6] introduced these procedures. 

The first criterion for reasonable beliefs is based on the idea of Divinity 
(Banks and Sobel [4]). If the type t’ Sender has an incentive to deviate 
whenever the type t Sender has a weak incentive to deviate, then the beliefs 
of the Receiver should not assign positive weight to type t at the informa- 
tion set m. The criterion, which we call criterion Dl as in Cho and Kreps 
[6], eliminates strategy M of the type t Sender if there exists t’ such that 

P(t / m)uPO(t I m)cP(t’ / m). (1) 

We say that a sequential equilibrium survives criterion Dl if and only if, 
for all off-the-equilibrium-path signals M, ~(t 1 nz) = 0 whenever (1) holds 
for some t’ such that P(r’ 1 m) # 0.’ We call a sequential equilibrium 
(sequential equilibrium outcome) that survives this criterion a Dl equi- 
librium (Dl equilibrium outcome). Types t for which (1) does not hold are 
said to survive criterion Dl. 

It is more difficult for a type to survive the second criterion, Universal 
Divinity (Banks and Sobel [4]), than Dl. Universal Divinity eliminates 
strategy m of the type r Sender if 

P(t I m) u P”(r / m) c u P(t’ I m). (2) 
121’ 

Hence, the signal m for the type t is deleted if, whenever t has a weak 
incentive to deviate to m, there exists some other type of Sender that has 
a strong incentive to deviate to m. Dl further requires that the other type 
to be independent of the Receiver’s response to m. 

The criterion of Never Weak Best Response (NWBR) (Kohlberg and 
Mertens [12] and Cho and Kreps [6]) goes beyond (2) by relaxing the 
conditions under which a particular signal m can be eliminated. This test 
eliminates strategy M of the type t Sender if 

P”(t) m)c u P(t’ I m). 
,#I’ 

(3) 

In words, NWBR requires that the Receiver place positive probability on 
the type t Sender if there exists a response to the signal m that supports the 
equilibrium outcome and yields expected utility u*(t). That is, if (3) holds 
for the type t and the signal m, then in every sequential equilibrium that 
induces the same equilibrium path as the given equilibrium, it is never a 
weak best response for t to send m. We say that type t survives NWBR for 

’ By requiring that p(/ 1 m) = 0 only when (1) holds for some t’ such that P(t’ ( m) # 0, the 
upper hemi-continuity of BR(. , m) guarantees that criterion Dl never requires p( t 1 nt) = 0 for 
all f. If P(t ( m) = $3 for all I = 1.2, _.., T. then no Sender type would prefer sending M to 
obtaining u*(r). Therefore. any specification of /i(. 1 m) supports a sequential equilibrium. 
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the signal m if (3) does not hold. An equilibrium is said to survive NWBR 
if it can be supported by beliefs concentrated on types that survive NWBR 
or if no type survives NWBR. 

Kohlberg and Mertens [ 121 demonstrate that equilibria satisfying these 
criteria exist in finite signaling games. For the remainder of the section we 
review those results of Kohlberg and Mertens needed for our analysis. 

Fix a finite l-player game G in normal form. Let r~* = (o:, . . . . a:), where 
a: is a completely mixed strategy for player i in G. For 6 > 0, consider 
the set of all games G’ having the same strategy space as G and for 
which there exist S,E (0, 6), i= 1, . . . . 1, such that if the strategy vector 
(a,, . . . . c,) is played in G’, then the payoffs are the same as when each 
player i plays (1 - hi)cr,+ 6;o: in G. Call any game in this set a (o*, 6) per- 
turbation of G. A set of Nash equilibria of G is said to be stable if it is mini- 
mal in the set of all N with the property: N is a closed set of Nash equi- 
libria of G such that for each E > 0 there exists 6 > 0 for which any (cJ*, 6) 
perturbation of G has a Nash equilibrium less than E in distance to N.3 If 
every strategy combination in a stable set gives rise to the same outcome, 
then the common outcome is a stable outcome. We refer the reader to 
Kohlberg and Mertens [ 121 for further discussion of these definitions. 

The theory of Kohlberg and Mertens is most useful to us in games that 
have a stable outcome. In a precise sense, this result holds for “most” 
games. Let IKl denote the cardinality of the set K. We can identify any 
finite signaling game with a point in Iw’ lTx A ’ MI that determines payoffs. A 
property of a signaling game is generic if there exists D c [w2 lTx ,4 x MI such 
that the property holds for all signaling games in D and the closure of 
Iw2 lTx .4 x ““‘\D is a set of Lebesgue measure zero. If a property of a 
signaling game is generic, we say that it holds for generic signaling games. 

With this background, we state the results of Kohlberg and Mertens 
[12] that we use in this paper. 

PROPOSITION 2.1. ( 1) A generic set of signaling games has a stable out- 
come (Kohlberg and Mertens [ 12, p. 10271). 

(2) A stable set contains a stable set of any game obtained by deleting 
a strategy that is Neuer a Weak Best Response to all the equilibria of the set 
(Kohlberg and Mertens [ 12, p. 1029)). 

Proposition 2.1 implies that there exist outcomes that survive our criteria 
in generic finite signaling games. In Section 3 we identify an assumption 
under which conditions (1). (2) and (3) are equivalent to each other and, 
for generic finite signaling games, equivalent to stability in the sense that 
any Dl outcome is also a stable outcome. 

3 The distance is standard Euclidean distance; since the game is finite. a vector of strategies 
is a point in some Euclidean space. 



UNIQUENESS IN SIGNALING GAMES 387 

In Section 4 we deal only with infinite signaling games. When we do so, 
we are no longer able to use the theorem of Kohlberg and Mertens to 
guarantee existence. However, for the class of games discussed in Section 4, 
we construct a Dl equilibrium. 

3. MONOTONIC SIGNALING GAMES 

Banks and Sobel [4], Cho and Kreps 161, and Grossman and Perry 
[lo] present examples to show that equilibria satisfying criterion Dl need 
not be Universally Divine, that Universally Divine outcomes need not sur- 
vive the NWBR criterion, and that outcomes which satisfy the NWBR 
criterion need not be stable. However, we show in this section that Dl is 
equivalent to NWBR for a class of signaling models that satisfy a natural 
monotonicity property. Further, for generic finite games in this class, we 
show that Dl is equivalent to strategic stability. Al states the monotonicity 
property that we use in this section. 

Al. For all m E A4 and r and r’ E MBR( T, m), if 

u(s, m, r) > u(s, m, r’) for some s E T, 

then 

u( t, m, r) > u( t, m, r’) for all t E T. 

We call a signaling game in which Al holds a monotonic signaling game. 
Note that Al may not hold even if all Sender types have identical 

preferences over the Receiver’s pure strategy best responses; they must have 
the same preferences over mixed best responses as well. Thus, even if a 
Receiver’s action represents a monetary payment to the Sender and all 
Sender types prefer more money to less, Al need not hold without making 
further assumptions on the risk preferences of the Sender. 

There are special cases where agreement of all the Sender types on the 
ranking of the Receiver’s pure strategies implies A 1. If A is an interval and 
the Receiver has a strictly quasi-concave utility function, then it is never 
optimal for the Receiver to randomize. In this case, Al holds without any 
reference to the Sender’s risk preferences. If A is finite, and Al holds for all 
pure-strategy best responses to m, it is possible to order these responses so 
that u(t, m, ai) d u( t, m, a,, ,) f or all t and i= 1, . . . . I.4 - 1. If the Receiver’s 
set of mixed best responses contains only randomizations between 
“adjacent” pure strategies (that is, the randomizations are supported on 
two-point sets of the form {ai, ai+ , }), then Al holds. To see this, let r 
and r’ be behavior strategies supported on (a;, a,+ 1 ,\ and {a,, ai+, 1, 
respectively, and observe that ZI( t, nz, r) > u(t, m, r’) if and only if i >.j or 



388 CHO AND SOBEL 

i=i and r’(ai) > r(a,), independent of t. When the Receiver has only two 
pure-strategy best responses, the Receiver’s set of mixed best responses 
necessarily contains only randomizations between adjacent pure strategies. 
Therefore, Al holds in this case whenever all the Sender types agree on 
their ranking of the pure-strategy best responses of the Receiver. 

We now can state the first result of this section. 

PROPOSITION 3.1. In monotonic signaling games criterion Dl is equiv- 
alent to Universal Divinity and the NWBR criterion. 

Proposition 3.1 is a consequence of Lemma 3.1, which we state and 
prove later in the section. The proposition demonstrates that Dl and 
NWBR are equivalent for monotonic signaling games. Hence, whenever Al 
holds, Dl is as powerful as the generally stronger NWBR criterion. This 
result is reassuring in light of examples constructed to show that NWBR 
may eliminate some equilibria for counterintuitive reasons. We find one 
feature of NWBR particularly unattractive. Suppose that a refinement 
criterion (either Dl, Universal Divinity, or NWBR) requires that the 
Receiver’s beliefs be supported on a subset K of types following the signal 
m. One could ask: In order to pass the refinement test, is it sufficient that 
the original sequential equilibrium outcome is still a sequential equilibrium 
outcome in a game in which only types in K are able to send the signal m? 
The answer to this equation is “yes” for the criteria of Dl and Universal 
Divinity. However, Cho and Kreps [6, p. 2071 present an example in 
which an equilibrium outcome that fails the test of NWBR does so because 
a previously eliminated type (and no other type) wishes to defect when the 
Receiver’s beliefs are restricted to exclude that type. Proposition 3.1 implies 
that this problem does not arise in monotonic signaling games. 

We must introduce more notation in order to prove the proposition. For 
each off-the-equilibrium-path signal m define 

J, = {t E T : there does not exist t’ such that 

P(t 1 m)uPO(t I m)cP(t’ ( m)}. 

J, is precisely the set of types that survive criterion Dl. Also, let li/, be 
given by 

$, = {(p, S) : 3r E MBR(p, m) such that u*(t) = u(t, m, r) for t E S, 

and u*(t) > u(t, m, r) for t $ S>. 

It is possible to support a sequential equilibrium outcome with beliefs p 
given m if and only if (p, S) E II/,,, for some S. We can describe NWBR in 
terms of the set $m. Recall that m is never a weak best response for type 
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t exactly when there is no optimal response to m that supports the equi- 
librium and yields utility u*(t) to type t. Consequently, the signal m is 
NWBR for the type t if and only if there is no S c T with t E S such that 
(p, S) e (i, for some p. 

In order to demonstrate that Dl and NWBR are equivalent, it suffices 
to show that any type that survives Dl also survives NWBR. Lemma 3.1 
contains this result. 

LEMMA 3.1. Assume that Al holds. For all (p. S) E IC/,,,, if S# a, then 
J, c S. 

Proof of Lemma 3.1. If S= T, then there is nothing to prove. If there 
exists t I$ S, then there exists r E MBR(p, nz) such that 

u(t, m, r) < u*(t) and u(s, m, r) = u*(s) for all s E S. 

Ifr’~P(t~m)uP”(t~m), then zr(t,m,r)<u*(t)~u(t,m,r’). 

(4) 

Therefore, by Al and (4), r’ E P(s 1 m) for all SE S. Consequently, 
P(t I m)uP’(t I m)cP(s I m) for all YES. Since S#@, t$J,,. 

Proof of Proposition 3.1. Since any equilibrium that survives NWBR is 
Universally Divine and Universal Divinity is more restrictive than Dl, we 
need only show that any Dl equilibrium satisfies NWBR. Fix a Dl equi- 
librium and a signal M that is sent with probability zero in the equilibrium. 
If no type survives NWBR, then any beliefs given m support the equi- 
librium. Hence the equilibrium satisfies NWBR. If type t survives NWBR, 
then there exists (p, S) E $, with t E S. Lemma 3.1 implies that S contains 
all of J,. Therefore, every element of J, survives NWBR. Since J, is 
the set of types not eliminated by criterion Dl and we started with a Dl 
equilibrium, it follows that the equilibrium survives NWBR. 

We now limit discussion to monotonic signaling games with a finite 
number of pure strategies. We do so in order to compare Dl with strategic 
stability, which Kohlberg and Mertens [ 121 define just for finite games. 
Also, the characterization theorem that we use (Lemma 3.2) only applies to 
finite games. 

We show that for generic, finite, monotonic signaling games, Dl is 
equivalent to strategic stability. This result is (generically) stronger than 
Proposition 3.1 because when Al does not hold, there exist generic finite 
signaling games in which there are unstable equilibria that survive NWBR. 

Our proposition follows from Lemma 3.1 and the next result, which 
appears in Banks and Sobel [4] and Cho and Kreps [6]. For SC T, let 
d(S) be the set of all probability distributions over S, and let co(y, Z) 
denote the convex hull of a point y and a set Z. (We let d(D) = @, and 
let co(y, @)=y.) 
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LEMMA 3.2. For generic finite signaling games, an equiiihrium outcome is 
strategically stable tf and only tf for all unsent signals m, and all 8 E A( T), 
there exists (p, S) E $“, such that u E co(0, A(S)). 

The appendix of Banks and Sobel [4] sketches a proof of Lemma 3.2. 
Here we will only provide intuition for the result. The condition 
,UECO(& A(S)) states that one can move from the perturbation 0 to ,u by 
“adding” probabilities from t E S. Given the perturbation 0, we construct a 
“nearby” equilibrium in which only types in S send m with positive prob- 
ability. In the equilibrium of the perturbed game, the Receiver believes that 
~1 is the probability distribution over types given M and takes an action 
rE MBR(p, m) such that for ail t, u*(t) > u(t, m, r) with equality if and only 
if t E S. Since (p, S) E $,, such an action exists. 

PROPOSITION 3.2. In a generic monotonic finite signaling game, an equi- 
librium outcome is strategically stable tf and only if the outcome survives 
criterion D 1. 

Notice that Al holds for a subset of finite signaling games that has non- 
empty interior in the set of all finite signaling games. Therefore, it makes 
sense to talk about generic properties of monotonic, finite signaling games. 

Proof of Proposition 3.2. Fix an equilibrium outcome that survives Dl 
and a signal m that is sent with probability zero in equilibrium. Fix 
8 E A(T) and let proj, $, denote the projection map onto the first compo- 
nent of $,. We show that there exists (p, S) E $m such that p E co(0, A(S)). 
Therefore, Lemma 3.2 implies that in generic finite signaling games the 
equilibrium outcome is strategically stable. Since any strategically stable 
outcome survives Dl, this result establishes that Dl is equivalent to 
strategic stability for generic monotonic signaling games. 

First, assume that 0 E proj, II/,. In this case, we know that there exists an 
S c T such that (0, S) E $m. Since 8 E co(8, A(S)), Lemma 3.2 implies that 
the Dl equilibrium is strategically stable. 

Now, assume that 0 $ proj, $m. In this case, for all r E MBR(B, m), there 
exists t’ such that 

u*( t’) < u( t’, m, r). (5) 

Consequently P(t’ 1 m) # fa. Since the equilibrium outcome survives 
criterion Dl, there exist p E A(J,) and FE MBR(p, m) such that 

u*(t) 2 u(t, m, ?) for all t. (6) 
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We claim that there exists t? E (0, 1 ] such that 

&p+(l -Z)BEproj, $,,,. 

Define 

.d = (a E [IO, 1] : +E MBR(@ + (1 - a)Q, nz) such that 

u*(t) 3 zc(t, m, r) for all t), 

391 

(7) 

and let Cr = inf .d. We know that 0 $ .d from (5) and 1 E& from (6). 
Moreover. .d is closed since MBR(p, m) is upper hemi-continuous in p. 
Therefore E > 0 and CUE .rd. Condition (7) holds because MBR(p, m) is 
upper hemi-continuous in p. 

We have shown that if p* = Eii + (1 - ji)e, then there exists S # a, S c T 
such that 

t/J*> S) E G,. (8) 

Lemma 3.1 implies that d(J,) c A(S). Thus, p E A(J,) implies that 

p* ECO(@ A(J,)) c co(H, A(S)). (9) 

By Lemma 3.2, (8) and (9) imply that the outcome is stable. 

4. UNIQUENESS 

This section gives conditions under which signaling games have unique 
outcomes that survive criterion Dl. We only examine the case in which A 
is a compact interval and M is the product of compact intervals. Without 
further loss of generality, we take A = [0, I] and M= [0, c]” with c > 0. 
We denote an element of M by a vector m = (m,, . . . . mN) and we write 
C= (c, . . . . c). We maintain the assumption that the set of possible Sender 
types is finite. Ramey [ 191 obtains a similar uniqueness result when types 
are drawn from a real interval. We must assume that the strategy spaces 
are intervals in order to obtain our uniqueness results. This section con- 
cludes with examples illustrating that multiple equilibria could arise if 
either M or A (or both) are finite sets. The arguments below demonstrate 
that the compactness of the strategy spaces ensures the existence of out- 
comes surviving Dl. We now state our main assumptions. 

AO. The utility function u(t, m, a) is a continuous function of (m, a) 
for each t. 

Al’. If a > b, then u( t, m, a) > u( t, m, b) for all t and m. 

A2. The utility function v(t, m, a) is a continuous function of (m, a) 
for each t and a strictly quasiconcave differentiable function of a. 

A3. au/au is a strictly increasing function of t. 
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A4. If t < t’ and m < m’,“ then u(t, m, a) d u(t, m’, a’) implies that 
u( t’, m a) < u( t’, m’, a’). 

After an appropriate relabeling of t an m, our analysis applies if 
“monotonic” replaces “increasing” in A3. If &~/au is strictly decreasing in t, 
but AO, Al’, A2, and A4 hold, then all five assumptions hold under the 
change of variables, say s = --t and I = -m. Similarly, if either or both of 
the first two inequalities in A4 are reversed, then all assumptions hold after 
a reordering of types and/or signals. 

The first condition is a standard regularity assumption. The next 
assumption, Al’, modifies Al by labeling the Receiver’s actions in a 
manner consistent with the (ordinal) preferences of the Sender. However, 
Al’ is less restrictive than Al in the sense that Al’ requires each type of the 
Sender to have the same preferences only over the pure-strategy responses 
of the Receiver. A2 is the reason that we can relax Al. A2 guarantees that 
the best response correspondence of the Receiver, BR(p, m), is a con- 
tinuous function of p and m. Because we assume that the Receiver’s best 
response is always a pure strategy, we need not impose monotonicity on 
arbitrary mixtures. A3 implies that BR(p, m) is increasing in p (in the sense 
that if i. #,u and if 1* first-order stochastically dominates p, then 
BR(1., m) > BR(p, m)). For our analysis, the only implications of A2 and 
A3 which we use are that BR(p, m) is a continuous function of ~1 and m 
and that BR(p, m) is increasing in p. Taken together, A2 and A3 imply that 
high Sender types are stronger than low ones: The higher t is, the more R 
is willing to pay. Consequently, Al ’ implies that any Sender type t would 
like R to believe that t = T. 

A4 is crucial to our analysis. It states that if two signal&action pairs yield 
the same utility to some type of Sender, and one signal is greater (com- 
ponentwise) than the other, then all higher types prefer to send the greater 
signal. Hence, the assumption guarantees that higher types are more willing 
to send higher signals than lower types. 

When M is one dimensional, A4 is frequently derived from a condition 
which guarantees that the indifference curves of different Sender types 
through a fixed signal-action pair intersect only once. This single-crossing 
condition combines with Al’ to yield A4. Indeed, one can guarantee that 
indifference curves cross at most once (in the one dimensional case) by 
assuming that they are connected and that their slope -(du/dm)/(au/au) is 
strictly decreasing in t. In the multidimensional setting, we must ensure 
that if any two indifference surfaces cross at some signal m, then they 
intersect at no r?z’> m. It suffices to assume that (ih/dmi)/(&/i3u) is 
strictly increasing in t for all i (Engers [S] and Ramey [ 191 use a weaker 
condition), and that if u(t, m, a) = u(t, m’, a’), then there is a path 

’ We write nz <m’ for m and m’ E [0, 11” if m # m’ and m, < rn: for i = 1, _._, N. 
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P = (PI > . . . . P,,,): [0, l] + RN such that p(O)=m, p(l) =m’, and p:(r) >O 
for each i. To see this, let y(t, P(T)) identically satisfy u(t, p(r), y(t, p(r))) E 
u(t, m, a) for all r E [0, 11. Differentiation and the fact that -(&/am,)/ 
(&j&z) is decreasing in t shows that u(t’, p(r), y( t, p(r))) is strictly increasing 
in t for I’ > t. Consequently, A4 follows from Al ‘. 

Figure 1 provides a geometric description of our assumptions on the 
Sender’s preferences. We have drawn indifference curves for two types of 
Sender. Al’ implies that higher values of a increase utility, independent of 
t. In Fig. 1, u(t, m,, ai) = u(t, nz2, a,), and t’ > t. A4 requires that the indif- 
ference curve of t’ through (m, ~ a,) must lie below t’s indifference curve 
through (m,, a,) for all m > m, . Note that the indifference curves in Fig. 1 
are upward sloping, suggesting that increasing m with the action a fixed 
lowers the Sender’s utility. This property holds in certain applications (for 
example labor market signaling where higher values of m represent larger 
investments in education), but is not needed in our analysis. 

Lemma 4.1 describes some of the implications that our assumptions have 
for equilibria. 

LEMMA 4.1. Fix u sequential equilibrium in which the Sender of type t’ 
sends the signal m with positive probability and receives utility 
u*(t’) = u( t’, m, a). Assume that A2 and A4 hold. If m <ml, then ,for all 
t < t’, 

(a) u( t, m, a) < u( t, m’, a’) implies that u*( t’) < u(t’, m’, a’); 

01 m 

FIG. 1. The single-crossing property. 
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(b) P(t I m’)u P”(t 1 m’)c P(t’ ) m’); 

(c) t sends the signal m’ with probability zero in equilibrium; and 

(d) if the equilibrium survives criterion Dl, then it can be supported by 
belit@ that satisjjl p( t 1 m’) = 0 for- all t < t’ and m’ > m. 

Proof Since u*( t’) = u(t’, m, a), part (a) follows directly from A4. 
To prove part (b) it suffices to show that 

u*(t) < u( t, m’. a’) implies that u*( t’) < u(t’, m’, a’) (10) 

because A2 implies that the Receiver’s best-response set contains only pure 
strategies. However, since the Receiver responds to the signal m with the 
action a, t could obtain u(t, m, a) by sending m. It follows that u*(t) > 
u(t, m, a). Hence (10) follows from part (a). 

If the equilibrium response to signal m’ is a’, then it must be true that 
u*(t’) > u(t’, m’, a’). The contrapositive of part (a) then implies that 
td*(t) 2 u( t, m, a) > u( t, nz’, a’). This inequality establishes part (c). 

Finally, if P(t’ 1 m’) # a, then part (b) implies that any Dl equilibrium 
can be supported by beliefs such that p(t / m’) = 0 for all t < t’. If 
P(t’ 1 m’) = a, then part (b) implies that P(t 1 m’) u P”(t 1 m’) = 0 for all 
t < t’. Therefore, if P(s 1 m’) # 0 for some S, then s > t’, and any Dl equi- 
librium can be supported by beliefs such that ~(t 1 m’) = 0 for all t < t’. 
Otherwise, if P(s ) m’) = @ for all s, then any beliefs given nz’ support 
the equilibrium. Thus, part (d) follows from part (b), and the proof is 
complete. 

Lemma 4.1 guarantees that in any sequential equilibrium, if type t’ uses 
the signal m with positive probability, then all types t < t’ never send 
signals m’> m. Thus, the set of signals used in equilibrium does not 
decrease with respect to t. In particular, if t’ uses m in equilibrium and 
nz’ > m is some signal used in equilibrium, then it must be true that 
,~(t / m’) = 0 for all t < t’. The only implication of criterion Dl that we need 
for our uniqueness result is that this monotonicity property holds off the 
equilibrium path as well. That is, if t’ sends m with positive probability in 
equilibrium and m’> m is any other signal (not necessarily sent with 
positive probability), then we can support the equilibrium with beliefs that 
satisfy p(t 1 m’) = 0 for all t < t’. Observe that Lemma 4.1 holds without 
assuming Al’. Consequently, it identifies qualitative properties of equilibria 
in games where Al ’ fails. Banks [ 1, 2, 33 provides interesting examples of 
non-monotonic signaling games in which Lemma 4.1 may be used to 
describe equilibria that survive refinements, even though the game in Banks 
[3] need not have a unique equilibrium outcome that survives Dl. 

Assumptions AO, Al’, A2-A4 are common to many general treatments of 
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signaling models (see Riley [21]). We discuss models in which these 
assumptions fail in Section 6. 

Fix a sequential equilibrium. We say that m is a pooled signal if more 
than one type of Sender uses m with positive probability. We use 
Lemma 4.1 to show that in any Dl equilibrium outcome, the highest type 
of the Sender in a pool could reveal his type if it were possible to increase 
his signal from the equilibrium level. Consequently, Al’ and A3 imply that 
pooling is possible only at C = (c, . . . . c). 

PROPOSITION 4.1. If AO, Al’, and A2-A4 hold, then C is the only possible 
pooled signal in a Dl equilibrium. 

Prooj: Fix a Dl equilibrium outcome in which type t receives utility 
u*(t) and assume that there exists a signal m < C that more than one type 
of Sender sends with positive probability in equilibrium. We argue to 
a contradiction. Let t’ be the highest type that sends m with positive 
probability. Since there is pooling at m, Al’ and A3 imply that 

u*(t’) < u(t’, m, a(t’, m)), (11) 

where a(t’, m) solves max,, A u(t’, m, a). Lemma 4.1 (d) implies that we can 
support the equilibrium with beliefs p that satisfy p( t 1 m’) = 0 for all t < t’ 
and m’> m. Therefore, the Receiver’s equilibrium response to m’, call it 
a*(m’), satisfies a*(m’) 3 a(t’, m’) for all m’ > m by A3. It follows from Al’ 
that the utility to t’ of sending m’ > m is at least u(t’, nr’, a(t’, m’)). Conse- 
quently, we need 

u*( t’) 3 u(t’, m’, a(t’, m’)) for m’ > m (12) 

in order for t’ to be responding optimally. Since A0 and A2 imply that 
u( t’, m’, a( t’, m’)) is continuous in m’, ( 12) contradicts ( 11). 

We now construct the candidate Dl equilibrium. First, we find the 
associated equilibrium payoff for the Sender. The construction is done 
inductively beginning with the lowest type t = 1. We ask: Does type t = 1 
prefer the highest level of utility given that he reveals his type to being 
pooled with all higher types at the signal C? If the answer to this question 
is “no,” then all types pool at C. If the answer is “yes,” then t = 1 separates 
and sends a signal that maximizes his utility assuming that the Receiver 
believes the signal reveals the Sender’s type to be t = 1. If all types s < t 
separate, then we ask: Does t prefer the highest level of utility given that 
he reveals his type and no lower type wants to imitate him to being pooled 
with all higher types at C? Type t separates if and only if the answer to this 
question is “yes.” 

In order to develop this argument, we give explicit formulas for the 
Sender’s utility level in a Dl equilibrium outcome. We denote these utility 
levels by ii*(t). We let a(t, m) denote the Receiver’s best response to the 
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signal m if the Sender’s type is t. That is, a(& m) is BR(p, m) where p is 
concentrated on t. Also. we write n 1, a ; for the prior rr conditioned on t 2 i. 
That is, 

Note that nl,,, = rr. For the construction, it is useful to note that AO, Al’, 
and A3 imply that u(t, C, BR(~K~,.~,+~ +(1 -cc)~(,.~,, C)) is acontinuous 
strictly increasing function of c( for all a E [0, 1 ] and all t. 

Now we begin the formal construction. Define U( 1) = 
max mE ,[u( 1, HZ, a( 1, m))]; U( 1) is the maximum utility available to t = 1 if 
he separates and the Receiver responds optimally to his signal. If U( 1) < 
u( 1, C, BR(rr, C)), then t = 1 prefers to pool at m = C than to separate; we 
set u*(t) = u(t, C, BR(n, C)) for all t = 1, . . . . T. If u( 1, C, BR(rr, C)) < U( 1) < 
41, C W4,,.2> C)), then there is a unique convex combination ,U of rr 

and nlt,az satisfying U( 1) = u( 1, C, BR(p, C)). In this case, t = 1 sends 
m = C with positive probability in equilibrium, the posterior probability of 
t given /n = C will be p, and all Sender types t > 1 send m = C with 
probability one. Thus, set u*(t) = u(t, C, BR(p, C)) for t= 1, . . . . T. But if 
41, C, BR(zI,..z, C)) < U( 1 ), then t = 1 prefers to separate rather than to 
pool at the highest signal. In this case, set U*( 1) = U( 1). We have now 
completed the first step of the construction. 

We continue inductively. Suppose that { U*( 1 ), . . . . ti*(t - 1 )$ have been 
defined for t > 1, but that u*(t) has not yet been defined. Let E(t) be the 
maximum value of the problem 

max meM 44 m, a(& ml) 
(Q(f)) 

subject to ii*(s) 2 u(s, m, 44 m)) for s= 1, . . . . t- 1. 

Thus, u(t) is the greatest level of utility available to type t if he separates, 
the Receiver responds optimally by choosing a( t, m), and all s < f would 
rather receive ii*(s) than imitate t’s signal. There are three possible ways to 
continue. If U(t) < u( t, C, BR( rc I ,, a ,, C)), then type t would rather pool 
with all higher types than separate; we set zi*(s) = U(S, C, BR(zI,.>,, C)) 
for s=t ,..., T. If u(t, C,BR(XI,,~~, C))Qtl(t)<u(t,C,BR(711,,~,+,, C)), 
then there is a unique convex combination p of rc I ,, ~, and rc I,, >, + I such 
that G(t) = u(t, C, BR(p, C)). In this case, type t sends m = C with positive 
probability and all higher types pool at m= C. We define G*(s) = 
U(S, C, BR(p, C)) for s = t, . . . . T. Finally, if u(t, C, BR(rr I ,za,+, , C)) < U(t), 
then t prefers to separate rather than pool with all higher types. We set 



UNIQUENESS IN SIGNALING GAMES 397 

u*(t) = u(t), and continue the induction argument in order to compute 
u*(t+ 1). 

We need to confirm that the constraint set in the problem Q(t) is non- 
empty whenever u(t- 1, C, BR(TcI,,~,, C)) d ti( I - I ) = U*( t - 1). Otherwise 
we could not define c(t) when necessary. Lemma 4.2 establishes that m = C 
is feasible for Q(r), when type t - 1 chooses to separate. 

LEMMA 4.2. Assume Al’ and A22A4 hold. ff { u*( 1 ), . . . . fi*( t - 1)) have 
been constructed as above and u(t- 1, C, BR(nI,,>,, C))<G(t- l)= 
ii*(f - 1 ), fhen u(s, C, a(t, C}) 6 E*(s)for all s < f. 

Proof: A3 implies that BR(rrl ,,aI, C) > a(t, C). Hence, from Al ’ and 
the given inequality, 

u(t- 1, C, a(?, C))<u(t- 1, C, BR(rc(,.>,, C))<zi*(t- 1). (13) 

If m(t - 1) is a signal that solves Q(t - 1 ), then we have m(t - 1) d C and 
U*(s) 3 ZI(S, m( t - 1 ), a( t - 1, m( t - I))) for s = 1, . . . . t - 1. Consequently the 
lemma follows from the contrapositive of A4. 

Lemma 4.2 guarantees that our procedure is well defined. The next result 
demonstrates that [27*(t)) are the only possible Sender utilities in a Dl 
equilibrium. 

PROPOSITION 4.2. If AO, Al ‘, arzd A2-A4 hold, then in any Dl equi- 
librium the equilibrium expected utility for the type t Sender is G*(t). 

The appendix contains a proof of Proposition 4.2. This proposition 
specifies what the payoff to the Sender must be in a Dl equilibrium. It 
remains to show that we can actually construct an equilibrium that sur- 
vives Dl. We begin by presenting strategies for the Sender and responses 
and beliefs for the Receiver on the equilibrium path. Later, in Proposi- 
tion 4.3, we demonstrate that there exist off-the-equilibrium-path strategies 
and beliefs that satisfy criterion Dl and support the equilibrium path. 

Let i be the highest type for which z?(l) is defined. If t < < let m*(t) be 
a value of m that solves Q(t). If t > i, let m*(z) = C. Let m*(i, be the prob- 
ability distribution that places weight CI on a solution to Q(0 and weight 
1 - t( on )M = C. Set c( = 0 if i pools with probability one, and otherwise let 
x be the unique solution to 

$O=u(i C, BR(m/,.2,+, +(l -a)~~l,.~~, C)). (14) 

These strategies are unique if and only if Q(t) has a unique solution when- 
ever t separates with positive probability. The construction guarantees that 
the only signal sent by more than one type of Sender is C because if type 
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s sends m # C with positive probability, then m is not feasible for Q(t) for 
any t > s. Thus, if m = m*(s) < C for s < i, or if i sends m < C with positive 
probability, then we can unambiguously define 

if m*(t) = m with positive probability 
otherwise, 

and a*(m) = BR(p*(t / m), m). If m = C is on the equilibrium path, then 
pL*(t 1 C)=cm~ r’~r+l(t)+(l-CI)nl,..i (t), where CI is defined implicitly in 
(14), and a*(C) = BR(p*(t 1 C), C). 

We have constructed the Receiver’s on-the-equilibrium-path strategies as 
best responses to beliefs that are consistent with the Sender’s strategy. It 
remains to construct the off-the-equilibrium-path strategies and beliefs of 
the Receiver, and to show that the Sender’s strategy is actually an optimal 
response to the Receiver. Fix a signal m such that m*(t) fm for all t and 
let r(t, m) solve 

ii*(t) = u( t, m, r(t, m)) (15) 

if u(t, m, a( 1, m)) d 17*(t) < u(t, m, u(t, m)). If u(t, m, ~(1, m)) > U*(t), then 
let r(t,m)=u(l,m) and if u(t,m,u(t,m))<C*(t), then let r(t,m)=a(t,m). 
A3 implies that a( 1, m) < a( t, m). Therefore, by Al’ there is at most one 
solution to (15) and therefore Y( t, m) is well defined. Next, let 

if t=?(m) 

if t # i(m)’ 
and u*(m) = u(i(m), m). 

We claim that these beliefs and actions satisfy criterion Dl and support the 
equilibrium path. Let us interpret the construction. For each I and m, 
v(t, m) is the response (if one exists) to m that yields utility U*(t) for type 
t. If r(t, m) = ~(1, m), then t would never settle for ii*(t) and if r(t, m) = 
a(& m), then t would never send m when he could obtain G*(t). When Al’ 
holds, Dl requires that the off-the-equilibrium-path beliefs concentrate 
mass on those types most willing to send m-that is, on those types for 
which r(t, m) is least. 

PROPOSITION 4.3. If  AO, Al’, and A2-A4 hold, then there exists an equi- 
librium that survives criterion Dl. 

The proof of Proposition 4.3 is in the appendix. The complexity of the 
proof derives primarily from the possibility that signals are multidimen- 
sional. When M = [0, c], it is straightforward to check that A4 implies that 
m*(s) <m*(t) for s < t with equality if and only if m*(s) = c, and that Dl 
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allows the Receiver to believe that the Sender is type t given m E (m*(t), 
m*(t+ 1)). (If u*(f) > u(t, m*(t + l), a*(t + l)), then other specifications of 
beliefs are consistent with Dl.) Therefore, a one dimensional message space 
allows an easy characterization of the beliefs that satisfy Dl and support 
the equilibrium path. The example of Section 5 demonstrates that when M 
is multidimensional, the equilibrium signals need not be increasing in type. 
It is this possibility that complicates the proof of Proposition 4.3. 

Proposition 4.2 characterizes the Sender’s utility in any Dl equilibrium. 
However, it does not guarantee a unique outcome. In order to ensure 
uniqueness, there must be exactly one signal that solves Q(t) for any t that 
separates with positive probability in equilibrium. Otherwise, the Receiver’s 
equilibrium payoff need not be unique. When M is one dimensional, it is 
sufficient to assume the following as in Mailath [16]. 

A5. For each t, u(t, m. a( t, m)) is a strictly quasi-concave function 
of m. 

Proposition 4.4 states the result. 

PROPOSITION 4.4. If AO, Al’, and A2-A5 hold and M = [0, c], then there 
is a unique Dl equilibrium outcome. 

We do not have a simple condition that guarantees uniqueness in the 
multidimensional case; A5 does not appear to be sufficient. However, when 
v( t, m, cc) is independent of m, then the Receiver’s payoff does not depend 
upon which solution to Q(t) that the Sender selects. In this case, criterion 
Dl uniquely determines the equilibrium utility levels of both Sender and 
Receiver. 

In order to guarantee that only separating equilibria survive Dl, we need 
only assume that sufficiently costly signals exist. One such condition is A6. 

A6. There exists a message m such that u(T- 1, m, a( 1, m)) > 
u(T- 1, c, a( T, C)). 

If condition A6 holds, then t = T- 1 (and hence, by A4, all t < T) would 
prefer to send m and be treated like the lowest type rather than imitate T 
at the highest signal m = C. Hence, there will be no pooling. 

PROPOSITION 4.5. If AO, A 1’) A22A4, and A6 hold, then only separating 
equilibria survive criterion D 1. 

No separating Nash equilibrium can yield type t more than z?*(t). This 
observation follows because ii(t) is an upper bound for the payoff of the 
type t Sender in any separating equilibrium; indeed, the constraints in Q(t) 
must hold in any equilibrium. Thus, criterion Dl selects the Pareto- 
dominating separating equilibrium. 
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In this section we assumed that A was a compact interval and that M 
was a product of compact intervals. We now give examples to show that 
multiple equilibria with qualitatively different properties could exist when 
either M or A is finite. 

Suppose that there are two types, 3 = f< i= 1, with utility functions 
u(t, m, a) = a - m/2 and u(im, a) = a -m/4. Let the Receiver’s utility func- 
tion be u(t, 111, a) = -(a- t)’ and let n(t) = rc(i)= i. 

First, observe that if M= A = [0, 11, then there is a unique equilibrium 
outcome that survives criterion Dl. In this outcome the low type sends 
m = 0, the high type sends m = 3, the Receiver’s beliefs satisfy p(t 1 m) = 1 
when tn E [O, f), p(t 1 3) = 0, and ~(t 1 m) is arbitrary for m E [f, 11. In 
order to respond optimally to these beliefs, the Receiver’s equilibrium 
strategy a(m) must satisfy a(m) = 4 if m E [0, 3) and a($) = 1. Dl places no 
restrictions on a(m) when nz E ($ 11. In order to support the equilibrium 
outcome, let a(m) 15 [ $, I] for m E ($, I]. 

Now restrict attention to A4 = (0, 1 j. Since the utility functions satisfy 
AO, Al’, and A2-A6 for M = [0, 11, one might hope that the uniqueness 
result of this section would apply. However, the example has three sequen- 
tial equilibria, all of which survive Dl. In the first equilibrium both types 
of Sender send m = 0 with probability one. The Receiver’s beliefs are 
~(f 1 0) = p( i 1 0) = i and ~(f 1 1) = 0, and the Receiver’s strategy is a(0) = 2 
and a( 1) = 1. The Receiver’s beliefs satisfy Dl. There is pooling at the low 
signal because the cost of sending the high signal is so great that idoes not 
want to send it even if he can reveal himself by so doing. The second equi- 
librium in this example is partially separating. This time, t sends m = 0 with 
probability one; i sends m = 1 with probability $, and m = 0 with probability 
i. Since both messages are sent with positive probability, Bayes’ Rule 
determines p and Dl places no restrictions on beliefs. We find that 
~(r~O)=~,~(i~O)=$,~(~I l)=O,p(iI l)=O,andp(iI l)=l.Asaresult, 
the Receiver’s responses are a(0) = 2 and a( 1) = 1. The third equilibrium is 
a separating equilibrium in which i sends m = 1 with probability one, and 
t sends m = 0 with probability one. The Receiver’s responses are a(0) = i 
and a( 1) = 1. Again, Dl does not constrain beliefs. 

This example does not require A to be an interval. If A = (f, i, 2, 1 }, 
then all equilibria described above remain. (i need not randomize exactly 
as specified above in the hybrid equilibrium.) All three equilibria are (as 
singletons) strategically stable sets. Thus, this variation of the example 
demonstrates that the equivalence of Dl and strategic stability presented in 
Section 3 may hold even when equilibrium outcomes are not unique. 

The Sender’s payoffs are different in the three equilibria. In the 
pooling equilibrium u*(t) = u*(i) = I, in the semi-pooling equilibrium 
u*(f) = U*(T) = i, and in the separating equilibrium u*(t) = 5 and u*(i) = a. 
While the fact that both types of Sender prefer the pooling equilibrium may 
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argue in its favor, note that when M= [0, I] the pooling outcome no 
longer survives criterion Dl. In this case, the unique Dl equilibrium yields 
u*(t) = $ and u*(I) = 2. 

In order to demonstrate that our uniqueness results do not apply when 
A is discrete but M= [0, 11, consider the example with A = {i, 1 ). Here 
there is a continuum of pooling equilibria that survive Dl. Fix m* > 0 and 
let ~(f 1 m) = 1 and I = 0 for m <m* and let ,u(( I m) = ~(f / m) = i for 
~IIE [rtz*, 11. It is a Dl equilibrium for both Sender types to pool at m* 
and for the Recejver to respond to 111 <m* with a = i and to no 3 m* with 
a = 1. When m* = 1, f may randomize arbitrarily over nz = 0 and 1. (There 
are also sequential equilibria in which i randomizes, but these equilibria do 
not survive Dl.) 

The class of examples described above have multiple Dl equilibria 
because Proposition 4.1 does not hold. None of our other arguments 
depends on the continuous structure of strategy spaces in an essential way. 
When A is discrete, Proposition 4.1 may fail because A3 is false as stated; 
with a discrete action space, a small increase in p (in the sense of first-order 
stochastic dominance) typically leaves the Receiver’s best response 
unchanged. Consequently, a high type may have nothing to gain by 
separating from a pool with lower types. When M is discrete, the cost of 
sending the “next highest” signal may be so great that a Sender type would 
prefer to pool with lower types even if he could reveal his characteristic by 
sending a higher signal. 

5. EXAMPLE 

Cho and Kreps [6] present a detailed discussion of how equilibrium 
refinements select outcomes in a game-theoretic version of the Spence [223 
labor-market signaling model. Our analysis generalizes theirs in at least 
two ways. We allow signals to be multidimensional and we allow models 
in which pooling may occur in the (refined) equilibrium. This section con- 
tains an example that illustrates the more general features of our analysis 
and clarifies the construction of Section 4. 

M= [IO, l]‘, A = [0, lo], and there are three Sender types, which we 
represent as f = 1, 2, and k. These types are equally likely. The preferences 
are: u(l,m,a)=a-m,-m,, u(2,m,a)=a-m,/2-m2/4, u(k,m,a)= 
a-m,/lO-m,/5, and v(t,m,a)= -(t-u)‘. We use k as a parameter to 
describe several possible cases; we assume 2 <k < 10. Provided that k > 2, 
AO, Al ‘, and A2-A4 hold. The Receiver’s preferences have the convenient 
property that for all m, BR(p, m) is equal to the expected value of t with 
respect to p. 

Let us characterize the outcomes that survive criterion Dl. First, note 
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that U( 1) = 1; type t = 1 attains this utility by sending m, = m, = 0. The 
lowest type separates with probability zero if ii( 1) < u( 1, C, BR(rr, C)), 
where rt is the (Rat) prior and C= (1, 1) is the highest possible signal. 
Therefore, t = 1 always pools when 1 < (1 + 2 + k)/3 - 2 or k > 6. So when 
k > 6 the Dl equilibrium requires all types to send the message (1, 1); the 
Receiver’s optimal response to this signal is (1 + 2 + k)/3. It is 
straightforward to check that the only off-the-equilibrium-path beliefs that 
satisfy criterion Di are p*(t 1 m)= d,(t), where 

s,(t)= ; 
i 

t = s 

t # s. 

Hence, the Receiver’s equilibrium strategy, u*(m), is equal to one for all 
n7#(1, 1). 

The second case occurs when t = 1 pools with a positive probability less 
than one. For the lowest type to pool, it must be that k d 6 and U( 1) < 
41, C, Wnl,,.,, C)) = (2 + k)/2 -2. Consequently, if k>4, then t = 1 
must randomize between (0,O) and (1, 1). A straightforward computation 
reveals that these two signals yield the same utility to t = 1 exactly when 
the Receiver responses to C with a*(C) = 3. This action is an optimal 
response for the Receiver provided that types t = 2 and k play m = C with 
probability one, and t = 1 plays m = (0,O) with probability (6 - k)/2 and 
t~z = C with probability (k - 4)/2. As in the first case, p*( t 1 m) = d,(t) are 
the only beliefs that satisfy criterion Dl when m # C. 

When k < 4, f = 1 separates with probability one. In order to compute 
the rest of the outcome we must find U(2), which is the value of 

max 2 - m, /2 - m,/4 

subject to 

u*(l)= 1 22-ml-m, 

OGm,, m,< 1. 

This optimization problem has its unique solution at (m,, mz) = (0, 1) and 
U(2) = i. The value of k determines whether or not t=2 pools with the 
highest type. Since u( 2, C, BR(n I ,, a ?, C))=(2+k)/2-3/4, t=2 will pool 
at C with probability one whenever (2 + k)/2 - 314 > l/4 or k > 3. Conse- 
quently, when k E (3, 41, a third distinct type of equilibrium exists. In the 
corresponding outcome, t = 1 sends m = (0, 0) with probability one, t = 2 
and k send m = (1, 1) with probability one, and a*(O, 0) = 1, a*(l, 1) = 
(2 + k)/2. The off-the-equilibrium-path beliefs are more complicated than 
before. Since the two highest types pool at nr = C, Dl (combined with A4) 
implies that p*(k I m) = 0 for m # C. However, whether p* places positive 
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probability on t = 2 depends on m. We need to compute r(t 1 nr), the value 
of the Receiver’s action a that satisfies u*(t) = u(t, m, a). Since u*( 1) = 1 
and u*(2)= (2+k)/2-3/4, we obtain r(1 1 m)= 1 +m, +IPZ~ and 
r(2 1 m) = i/4 + k/2 + m,/2 + m2/4. When r( 1 1 m) < v(2 /I m), Dl requires 
that p*(t 1 r?z)=LI,(t). When r(1 I m)>r(2 I m), Dl requires that 
p*(t I m) = s,(t). If Y( 1 I m) = r(2 I m), then Dl requires only that p*(t I nr) 
place zero weight on t = k. Thus, beliefs consistent with criterion Dl have 

~*(f I m) = a,(t) if nz~ ((m,,IY17):2m,+3m2<2k-3)-, 

p*tt I m)&(t) if mEI(m,,m,):2nz,+3m,>2k-3)\~(1, l)j, 

and 

The Receiver’s equilibrium strategy responds optimally to these beliefs. 
When k < 3, t = 2 separates with positive probability. Separation occurs 

with probability strictly less than one if U(2) = $ < ~(2, C, BR(rc / li z 3, C)) = 
k - f. Thus, if k E (2,3], then t = 1 sends m = (0,O) with probability one; 
t = 2 sends m = (0, 1) with probability 6 - 2k and sends m = (1, 1) with 
probability 2k - 5; and t = k sends m = (1, 1) with probability one. We 
specified the strategy of type t = 2 so that 

i 

0 if t=l 

P*([ I(1, I))= (2k-5VM-2)1 if t=2 

l/C%‘-2)l if t=k. 

In this way, BR(p*(. 1 (1, l)), (1, 1)) is equal to $. As a result, t= 2 is indif- 
ferent between the two signals he sends with positive probability in equi- 
librium. We can find off-the-equilibrium-path beliefs that satisfy criterion 
Dl as we did when k E (3,4]. Computation reveals that 

~*(t I m)= d,(t) if 2m,+3m,<3, 

and 

~*(f I m) = b(f) if 2m,+3m,>3. 

If 2m, + 3% = 3 and Cm,, m,) # (0, 1 ), then ,u*(k I m) = 0, but otherwise 
P* is arbitrary along this line. If (m,, m,)= (0, l), then p*(t I m)=d,(t) 
since (0, 1) is on the equilibrium path. 

Finally, when 2 <k d f, the equilibrium is completely revealing. Type 
t= 1 sends m = (0,O) with probability one; t = 2 sends m = (0, 1) with 
probability one; and t = k sends the signal that solves 

max k-m,/lO-mZ/5, 
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subject to 

1 =u*(l)=u(1)3k-m,-m,, 

7/4=u*(2)=ii(l)>k-m,/2-m,/4, and Odm,, m,d 1. 

If k 2 3, then the constraint involving u*( 1) does not bind at the optimum; 
t = k sends M = (1,4k -9). If k < G, then the constraint involving u*(2) 
does not bind at the optimum; t = k sends m = (1, k - 2). A tedious com- 
putation reveals that for m$D= {(m,,m?): Odm,, ~2~~1, m,+tiz,> 
k- 1, and 2m, +m,>4k-71, 

~*(l I m) = 
d,(t) whenever 2m, + mz < 3 

s,(t) whenever 2m, + mz > 3. 

If 2m, + 3mz = 3 and (m, , m2) # (0, 1 ), then any probability distribution 
p*(. I m) with p*(k 1 m) = 0 is allowed by Dl. Dl places no restrictions on 
beliefs for m E D because in this event all Sender types prefer their equi- 
librium payoff to the best possible response given m (a*(m) = k). 

Notice that in the separating equilibrium t = k sends a signal that is not 
larger than the equilibrium signal of t = 2. Type t = 2 invests more heavily 
in the second component of the signal than t = k because t = 2 has a com- 
parative advantage in signal two. Also observe that when k E (2, 3) the con- 
straint that guarantees that type t = i does not want to imitate type t = k 
binds when i = 1 but not when i = 2. Thus, in multidimensional signaling 
problems it is insufficient to check only that a type does not want to send 
the signal of the next higher type; verifying only these “local” constraints 
is sufficient when A4 holds and the signaling space is one dimensional. 

The example has multiple equilibria that survive the “intuitive criterion” 
of Cho and Kreps [6]. In monotonic signaling games, this condition 
requires that p*(t 1 m) = 0 for any unsent signal m and type t for which 
P(t 1 m) u P”(t I m) = @ (provided that P( t’ I m) u P”(t’ ) m) # 0 for some 
2’). The intuitive criterion is less restrictive than Dl. Indeed, it is 
straightforward to check that the intuitive criterion places no restrictions 
on off-the-equilibrium-path beliefs whenever k 3 p. For k b g, the outcome 
in which all Sender types send the same signal m can be supported as a 
sequential equilibrium that survives the intuitive criterion provided that 
m, + m, <k/3 (if m, + m2 > k/3, then the t = 1 Sender would prefer to send 
(0, 0)). Multiple equilibria that survive the intuitive criterion exist for all 
values of k. 

6. RELATED MODELS 

This section discusses several papers that analyze signaling models. We 
describe situations where the refinement concepts of this paper select an 
equilibrium similar to ourseven if our assumptions do not hold-and 
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where our results do not apply. We do not provide a comprehensive survey 
of signaling games used in applications. 

A4 is a strong assumption. Some form of this condition is necessary in 
order to obtain separating equilibria (see Mailath [ 161); however, in cer- 
tain economic applications, the assumption holds for only part of the 
parameter space. An example is the limit-pricing model of Milgrom and 
Roberts [ 173. In this model, an incumbent monopolist with private infor- 
mation about its cost of production chooses an output level. This choice 
signals the value of the market to a potential entrant who, after observing 
the monopolist’s output, decides whether or not to enter. There is a second 
period in which the incumbent earns duopoly or monopoly profit depend- 
ing on whether there was entry. Milgrom and Roberts assume that the 
incumbent is uncertain about the potential entrant’s costs. Payoffs depend 
on particular assumptions about the information revealed in the post-entry 
game and the nature of competition in the second period. However, if the 
incumbent knows the probability of entry, then it can compute the expec- 
ted second-period profit. This formulation is more complicated than the 
games discussed in this paper but the model can be analyzed as a signaling 
game in which the incumbent firm’s payoff depends upon its cost (type), its 
first-period output (signal), and the probability of entry. Under the 
Milgrom-Roberts assumption that private information is truthfully 
revealed in the post-entry game, A4 may fail at outputs higher than the 
complete information monopoly level. Consequently, Dl does not select a 
separating equilibrium in general. In fact, one can construct an example in 
which the unique Dl equilibrium is a pooling equilibrium that strictly 
Pareto dominates every separating equilibrium from the incumbent’s point 
of view. Cho [S] drops the assumption that private information is revealed 
in the post-entry game. He shows that in this case A4 holds at outputs 
higher than the monopoly level, and uses arguments similar to those in 
Section 4 to demonstrate that Dl selects the Pareto-efficient separating 
equilibrium. 

Unique stable outcomes may exist in signaling games when A4 holds 
only in the economically relevant portion of the strategy space. Yet some- 
times A4 fails globally. Crawford and Sobel [7] analyze a model in which 
u(t, m, a) is independent of m. Hence, A4 does not hold. Crawford and 
Sobel further restricted attention to a class of single-peaked utility func- 
tions for which Al’ does not hold. The Crawford-Sobel model generally 
has multiple sequential equilibria all of which involve partial pooling. The 
equilibrium refinement ideas discussed in this paper do not reduce the 
equilibrium set. 

Dl may be used to select equilibria in signaling models in which A 1’ 
fails. Here, as in the limit pricing model, economic considerations may 
guarantee that monotonicity holds on the equilibrium path even if it fails 
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globally. One instance of such a global failure occurs in the widely studied 
models of settlement and litigation. For example, in Reinganum and Wilde 
[20] a plaintiff knows the value of damages that a court would award if 
there were a trial. The plaintiff makes a take-it-or-leave-it settlement 
demand to the defendant. If the offer is rejected, then the dispute goes to 
trial. Trial is costly to both litigants. The court requires the defendant to 
pay the true damages to the plaintiff.5 The litigants seek to maximize their 
net total payment minus court costs. In this model, the plaintiff prefers that 
the defendant accept the settlement demand provided that it exceeds the 
value of going to trial. Therefore, Al does not hold for all offers. Further- 
more, the defendant has only two actions. Still there exists a unique out- 
come that survives criterion Dl. This outcome is similar to the one charac- 
terized in Section 4. Since the analysis of these models is so close to our 
own, it is worthwhile to give conditions under which our results hold. 

Let A = {a, ti>, M= [0, c]. and the set of types be { 1, 2, . . . . T}. Make the 
following assumptions. 

BO. The utility function u(t, m, a) is continuous in m. 

Bl. There exist d(l)<d(2)6 ... <d(T)< 1 such that u(t, m, ii- 
u(t,m,g)$O for m$d(t) 

B2. The utility function O(C, m, a) is continuous in m and v(t, m, ii) - 
v( t, m, a) = 0 for finitely many t and m. 

B3. D( t, m, 2) - v( t, nz, a) is a strictly increasing function of t. 

B4. If t < t’, n(t’) < m’, and m < m', then u( t, m, a) d u( t, m', a') 
implies that ~(t’, m, a)< u(t', m', a'). 

B5. For all m < c and r > 1, there exists m’ > m such that m’ > d(t) 
and u( t, m', a’) > u( t, m, a) for all a’ E MBR(S,, m’) and a E MBR(p, m) 
where p # 6, and p(s) = 0 for s > t. 

Condition Bl weakens Al. It states that all types eventually prefer ti to 
a and that u(t, m, a) - u( t, m, a) changes signs at most once. It also requires 
that if u(t, m, 5) > u(t, M, a), then U(S, m, ti) > u(s, m, a) for all s d f. B2 and 
B3 modify A2 and A3 to a two-point action space. The second restriction 
in B2 rules out degenerate cases in which the Receiver is indifferent 
between both pure strategies for an interval of signals. B4 weakens A4 by 
requiring that it hold for only a subset of signals. Finally, B5 guarantees 
that the highest type in a pool would prefer to send a higher signal 
provided that signal reveals his type. It is straightforward to verify that B5 
holds if Al ’ and A2-A4 hold and that Bl-B5 hold in the ligitation model. 

’ Reinganum and Wilde 1201 assume that there is a positive probability. independent of 
damages and the settlement demand, that the court will rule that no payment is needed. This 
modification does not alter the formal analysis. 
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Moreover, the arguments of Section 4 apply with minor modifications to 
characterize equilibria that survive D 1. 

There is no pooling except possibly at the highest signal. The utility ii(t) 
of the type t Sender in a separating equilibrium satisfies z?(t) = 
max{u(t,m,a):uEBR(6,,m), u(t-l,m,a)<ti(t-1)), and type t 
separates if he prefers U(t) to being pooled with all higher types. If t > 1, 
then I never uses signals less than d(t) in a DI equilibrium. 

We should note another model in which Al need not hold. Laffont and 
Maskin [ 151 study a model where a monopolist provides goods of uncer- 
tain quality. The seller has private information about quality and sends a 
signal (price) to the buyers. The number of purchases places the role of the 
Receiver’s action in this model. Laffont and Maskin assume that the 
monopolist values unsold products. Translating into our notation the 
seller’s preferences can be written u( t, m, a) = ma +f( t, 1 - CI), where m is 
price, u is the fraction of output purchased, and J’( .) is the value of the 
unsold product. If the price is low enough (or marginal value of the first 
bit of unsold product sufficiently high), then u( .) need not be increasing in 
a. Therefore, Al ’ does not hold in this model. Laffont and Maskin provide 
conditions under which separating equilibria exist in their model, and carry 
out a construction similar to ours. The single-crossing property A3 holds 
in their model and plays a crucial role in the construction. In addition, they 
provide arguments that select the equilibrium outcome which maximizes 
the ex ante profit of the seller. This outcome need not survive criterion Dl. 

Our analysis allows the possibility that there is an upper bound to 
signals. This restriction arises naturally in some economic models. Hoshi 
[ 111 presents a model in which the government’s choice of current infla- 
tion rate influences people’s expectations about future inflation. He assumes 
that the government cannot set an inflation rate lower than the level that 
makes the social cost of money equal to zero. For certain parameter values, 
his model’s unique Dl equilibrium outcome involves pooling at the lowest 
allowed level of inflation. Ramey [18] presents a limit-pricing model in 
which no separating equilibrium exists for a range of parameter values. In 
this model the incumbent firm cannot charge negative prices. 

7. CONCLUDING REMARKS 

The refinement concept that we use is very powerful. One can construct 
convincing examples to demonstrate how sensible outcomes fail to be stable 
outcomes. It is certainly true that our equilibria are particularly sensitive to 
the details of the extensive form. For example, separating equilibrium 
strategies depend only on the support of the distribution of the Sender 
types. Therefore, the equilibria that we select may change dramatically if 
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one perturbs the game by including a small probability that there is some 
other type of Sender. Fudenberg, Kreps, and Levine [9] demonstrate a 
related point in a more general setting. They show that the set of outcomes 
which are limits of nice equilibrium outcomes of nea& games may be very 
large. If these nearhJ> games are accurate descriptions of the underlying 
economic situation, then the modeler should not be confident in predic- 
tions obtained by examining refinements of equilibria of a fixed game. 

Nevertheless, we feel that we have a stronger intuition about the out- 
comes surviving criterion Dl than the typically smaller set of stable out- 
comes. Identifying a situation in which the full power of stability is not 
necessary to identify outcomes may be useful in applications. Moreover, 
the results in Section 4 provide a coherent justification for outcomes that 
often receive prominence in applications. 

APPENDIX 

We prove three preliminary facts before we establish Proposition 4.2. Fix 
a Dl equilibrium in which the Sender of type f obtains utility u*(r). 

Fact 1. If there exists a type t who is pooled with other types, then 
every t’ > t must use m = C with probability one. 

Proof of Fact 1. Proposition 4.1 states that if t is pooled with other 
types, then he must send m = C with positive probability. It follows from 
Lemma 4.1 (c) that if t’ > t, then t’ sends m = C with probability one. 

Fact 2. Type t < T separates with probability one if and only if 

u*(t)>46 C, Wnl,‘.,, 1, Cl). 

Proof of Facf 2. If type t < T pools with positive probability, then from 
Fact 1 it follows that all higher types send m = C with probability one, and 
from Proposition 4.1 that t sends m = C with positive probability. Conse- 
quently, u*(r) = u(t, C, BR(p, C)), where p is strictly first-order stochasti- 
tally dominated by XI,,.,+, . Hence, Al’ and A3 imply that u*(t)< 
46 C, BR(n Ir’? f + , t Cl). 

Conversely, if t < T separates with probability one, then Lemma 4.1(c) 
implies that r sends m = C with probability zero and, since t could always 
send m = C, 

u*(t) 3 4~ C, BWL, Cl), (16) 

where p is the Receiver’s belief given m = C. However, if the Sender sends 
m = C with positive probability in equilibrium, then Fact 1 implies 
that p weakly first-order stochastically dominates rt / ,, >, , + , ; if the Sender 
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sends m = C with probability zero, then Lemma 4.1(d) implies that 

P=Tl ,,> ,+ , can support the equilibrium. In either case, u*(r) 3 
46 C, W4,,>,+1, C)) follows from Al’, A3, and (16). 

Fact 3. If i is the lowest type that pools with positive probability, then 
u*(t) 3 max{u(l, m, a(t, m)) : U*(S) 3 u(s, m, a(t, m)) for s < t} E ii(t) for all 
t 6 1. If t separates with positive probability, then 14*(t) = 17(t). 

Proof qf Fact 3. If t separates with positive probability, then 
u*(t) < ii(t) follows because no type s # t can gain from imitating type t in 
equilibrium, and if t sends a separating signal m with positive probability, 
then the Receiver’s equilibrium response must be a(r, m). 

It remains to show that u*(t)>b(t) for t < 1. If u*(r)<E(t), then there 
exists a signal nz such that 

u*(s) 3 u(s, m, a( t, m)) for all s < t (17) 

and 

I(*( t) < u( t, m, a( t, m)). (18) 

Now, no Sender of type s such that s < t < i sends m with positive probabil- 
ity because this type separates with probability one and thus would receive 
U(S, WZ, a(s, m)) which, by Al’, A3, and (17), is strictly less than U*(S). 
Furthermore, Al’, (17) and (18) imply that P(s 1 m) u P”(s 1 m) c P(t 1 m) 
for s < t. Therefore, in any Dl equilibrium ~(s I m) = 0 for s < t. Hence A I ’ 
and A3 imply that if u*(m) is the Receiver’s equilibrium response to nz, 
then 

u(t, 4 a(t, m)) 6 zd(t, m, u*(m)). (19) 

Since the type t Sender is optimizing in equilibrium, 

~(2, m, a*(m)) d u*(t). (20) 

However (19) and (20) contradict (18). Thus, u*(t)>l?(t) for td i as 
claimed. 

Proyf of Proposition 4.2. Let i be the lowest type that pools with 
positive probability (if there is no pooling, then put i= T). If t < i, then t 
separates with probability one. First, we will use induction to show that 
u*(t)=G*(t) for t<i and G(t)=u(t) for t>i. Since ii(l)=U(l), Fact3 
implies that ii( 1) = u*( 1) if 1 < i. It follows from Fact 2 that zi*( 1) = U( 1) 
and therefore U*( 1) = u*( 1) if 1 < i. Moreover, if U*(S) = c*(s) = U(s) = z?(s) 
for all s < t d i, then fi( t) = U(t) from the definition of these values, and 
Fact 3 implies that ii(t) = u*(t) if t < Z. Therefore, u*(t) = G(t) for r < i. It 
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follows from Fact 2 and the construction of c*(t) that u*(t) = u*(t). This 
completes the induction. 

If I separates with positive probability, then 

u*(l) = ii(j) = u(j, C, BR(p, C)) (21) 

and 

u*(t) = 42, C, WP, C)) for t > 1, (22 1 

where the Receiver’s beliefs given m = C are p. The first equality of (21) 
follows from Fact 3; the second equality holds since 1 must be indifferent 
between pooling and separating if he randomizes in equilibrium; and (22) 
follows from Fact 1. If i= T, then fi*( 7) = u(Z) and we are done. Otherwise, 
u*(l)<u(i, C, BR(~cI,,,~+~, C)) by Fact 2 and ii(i) = U(l), (21), (22), and 
the definition of G*(l)‘imply that u*(t)=G*(t) for t3 i when ? separates 
with positive probability. 

It remains to show that u*(t) = G*(t) for t > i when i pools with prob- 
ability one. In this case, u*(t) = u(t, C, BR(n: 1 ,Z2-i7 C)) for t 3 7 by Fact 1. 
Consequently, since Fact 3 guarantees that u(t, C, BR(n 1 l.a i, C)) 3 E(i), 
the result follows from ii(i) = U(i) and the definition of ii*(t). 

Proof qf Proposition 4.3. We prove that the candidate equilibrium 
(m*(r), u*(m), /l*(t 1 m)) defined in the text really is an equilibrium that~ 
survives criterion Dl. We have constructed a* to respond optimally to ,M*, 
and p* to be consistent with m*. We now show that ,u* satisfies criterion 
Dl, and that the Sender responds optimally to a* by using the strategy m*. 

When r(i(m), IIZ) = a(?, m), P( t 1 m) = @ for all t and therefore Dl places 
no restrictions on p*(. 1 nz). Otherwise, Dl requires only that p*(t I m) = 0 
if r(t, m) > r( i(m), m). Hence, I”* satisfies Dl since p*(t 1 m) = 0 for all 
t # i(m). 

We now demonstrate that the Sender optimally responds to a* when 
constrained to signals on the equilibrium path. That is, we verify that for 
all s # t, 

U*(t) 2 u(t, m*(s), u*(m*(s))). (IC(s, f)) 

Let i be the lowest type that pools with positive probability. When 
t < s < i, IC(s, r) follows from the constraints in Q(Z). When i separates 
with positive probability and s 3 i> t, the construction guarantees that 
IC(i, t) holds and U*(r) = u(i, C, u*(C)) = U(i) = u(i, m, a(i, m)) for some 
nz < C, and u*(t) > u(t, m, a(i, m)). Thus, the contrapositive of A4 implies 
that G*(t) > u(t, C, u*(C)) = u(t, m*(s), u*(m*(s))) for s> i, and therefore 
IC(s, t) holds. When i> 1 pools with probability one, then for s > i, 
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IC(s, i- 1) holds by construction, and IC(s, t) holds for s 2 i> i- 1 > t by 
the contrapositive of A4, since both IC(s, i- 1) and IC(i- 1, t) hold. 
Finally, when s > t > i, s and t pool, so IC(s, t) holds trivially. 

Next, we show that IC(s, t) holds when s < t. As a preliminary step, we 
claim that for all s < t 6 i, there exists /I E (0, 1 ] such that if 

m’ = (1 - fl) m*(s) + fit, 

then 

and 

U*( t’) 3 u( t’, m’, a( t, m’)) for all t’ < t, 

U*( t”) = u( t”, m’, a( t, m’)) for some t” < t. 

Recall from Lemma 4.2 that if t’ < t d i, then 

u*( t’) 3 u( t’, c, a( t, C)). 

Also, s < t < i implies that 

U*(s) = u(s, m*(s), a(.~, m*(s))) < u(s, m*(s), a(t, m*(s))), 

(23) 

(24) 

(25) 

(26) 

(27) 

where the inequality follows from Al’ because a(s, m*(s)) < a(t, m*(s)) by 
A3. Consequently, the claim follows from (26), (27), and the continuity of 
~(t’, m, a(t, m)) in wz (the latter is a consequence of A0 and A2). 

The claim allows us to show that IC(s, t) holds for s < r. There is nothing 
to show when t = 1. Assume that IC(s, t’) holds for s < t’ < t d i. Now we 
show that IC(s, t) holds. Find m’ to satisfy (24) and (25). By (24), m’ is 
feasible for Q(t). Thus, 

ii*(t)> t.?(t) b u(t, m’, a(t, m’)). (28) 

Furthermore, there exists t” < t such that 

u(t”, m*(s), u*(m*(s))) d ii*(F) = u(t”, m’, u(t, m’)). (29) 

The inequality in (29) is IC(s, t”), which holds by the induction hypothesis 
if s < t” (since t” < t), and by earlier arguments if s 2 2”. Since m’ > m*(s) 
by (23), it follows from A4, (28), and (29) that IC(s, t) holds for s < t < i. 
If s < i< t, then IC(s, t) follows from A4. And if t > s > i, then s and t pool, 
trivially implying IC(s, t). 

Finally, we check that for all m and t, 

u*(t) 3 u(r, m, u*(m)). 

642 50 ?-I2 

(30) 
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By the definition of r(t, m) and Al’, (30) holds if and only if 
r(t, m)>a*(m) for all f. Thus, we need only show that r(i(m), m) aa* 
for all m off the equilibrium path. 

If t^(m)=l, then U*(l)>U(l)~U(l,m,a(l,m)) by the definition of u(l). 
Thus, Y( 1, m) >a*(m). If 1 <i(m) < i and if m satisfies the constraints 
of Q(i(m)), then ii*(i(m))>ii(i(m))>u(i(m), m, a(i, m)) and hence 
r(i(m), m) >,a(f(m), m). In order to obtain a contradiction assume that 
there exists s < i(m) such that 

u*(s) < u(s, m, a(i(m), m)). (31) 

There exists /? E (0, 1 ] such that if m’ = (1 - j3)m + DC, then 

u*(t) b u(t’, m’, a(r^(m), m’)) for all t’ < i(m) (32) 

and 

u*(t) = u( t, m’, a( i(m), m’)) for some t < i(m). (33) 

Such a /? exists by Lemma 4.2 and (31) since u( t’, m, a(t’, m)) is continuous 
in m by A0 and A2. By (32), m’ is feasible for Q(f(m)). Therefore, 

u(i(m), m, r(i(m), m)) = ii*(i(m)) 2 27(?(m))> u(i(m), m’, a(i(m), m’)). (34) 

However, by (33) there exists r < i(m) such that 

~(t,m,r(i(m),m))~u(t,m,r(t,m))=~*(t)=u(t,rn’,a(i(m),m’)). (35) 

The inequality follows from Al’ since r(t, m) > r(i(m), m) by the definition 
of i(m) and the first equality follows from the definition of r(t, m). Since 
t< i(m) and m cm’, (34) and (35) contradict A4. Therefore, a*(m) < 
r(i(m), m) for i(m) < t. To conclude the proof, we need only note that A4 
guarantees that r(t, m) 3 r(f, m) for all t > i Hence, a*(m) < r(i(m), m) for 
all i(m). 
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