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1. lntroduction 

One of the most important applications of game theory to micro-economics has 
been in the domain of market signalling. The standard story is a simple one: Two 
parties wish to engage in exchange; the owner of a used car, say, "wants to seil the 
car to a potential buyer. One party has information that the other lacks; e.g., the 
seller knows the quality of the particular car. (Think in terms of a situation where 
the quality of a car is outside of the control of the owner; quality depends on 
things done or undone at the factory when the car was assembled.) Under certain 
conditions, the first party wishes to convey that information to the second; e.g., if 
the car is in good condition, the seller wishes the buyer to learn this. But direct 
communication of the information is for some reason impossible, and the first 
party must engage in some activity that indicates to the second what the first 
knows; e.g., the owner of a good car will offer a limited warranty. The range of 
applications for this simple story is large: A worker wishes to signal his ability to 
a potential employer, and uses education as a signal [Spence (1974)]. An insuree 
who is relatively less risk prone signals this to an insurer by accepting a larger 
deductable or only partial insurance I-Rothschild and Stiglitz (1976), Wilson (1977)]. 
A firm that is able to produce high-quality goods signals this by offering a warranty 
for the goods sold [Grossman (1981)]. A plaintiff with a strong case demands a 
relatively high payment in order to settle out of court [Reinganum and Wilde 
(1986), Sobel (1989)]. The purchaser of a good who does not value the good too 
highly indicates this by rejecting a high offer or by delaying his own counteroffer 
I-Rubinstein (1985), Admati nd Perry (1987)]. A firm that is able to produce a 
good at a relatively low cost signals this ability to potential rivals by charging a 
low price for the good EMilgrom and Roberts (1982)]. A strong deer grows extra 
large antlers to show that it can survive with this handicap and to signal its fitness 
to potential mates [Zahavi (1975)]. 

The importance of signalling to the study of exchange is manifest, and so the 
original work on market signalling [Spence (1974), Rothschild and Stiglitz (1976), 
Wilson (1977)] received a great deal of attention. But the early work, which did 
not employ formal game theory, was inconclusive; different papers provided 
different and sometimes contradictory answers, and even within some of the papers, 
a weiter of possible equilibria was advanced. While authors could (and often did) 
select among the many equilibria they found with informal, intuitive arguments, 
the various analyses in the literature were ad hoc. Formal garne theoretic treatments 
of market signalling, which began to appear in the 1980s, added discipline to this 
study. It was found that the different and conflicting results in the early literature 
arose from (implicit) differences in the formulation of the situation as a game. And 
selections among equilibria that were previously based on intuitive arguments 
were rationalized with various refinements of Nash equilibrium, most especially 
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refinements related to Kohlberg and Merten's notion of a stable equilibrium (cf. 
the Chapter  on strategic stability in Volume III  of this Handbook)  and to 
out-of-equilibrium beliefs in the sense of a sequential equilibrium. This is not to 
say that garne theory showed that some one of the early analyses was correct and 
the others were wrong. Rather, garne theory has contributed a language with whieh 
those analyses can be compared and evaluated. 

In this chapter, we survey some of the main developments in the theory of 
market  signalling and its connection to noncooperative garne theory. Our  treatment 
is necessarily restricted in scope and in detail, and in some eoncluding remarks 
we point the reader toward the vast number of topics that we have omitted. 

2. Signalling garnes - the canonical garne and market signalling 

Throughout  this chapter, we work with the following canonical game. There are 
two players, called S (for sender) and R (for receiver). This is a garne of incomplete 
information: S starts oft knowing something that R does not know. We assume 
that S knows the value of some random variable t whose support is a given set 
T. The conventional language, used here, is to say that t is the type of S. The prior 
beliefs of R eoncerning t are given by a probability distribution p over T; these 
prior beliefs are common knowledge. Player S, knowing t, sends to R a signal s, 
drawn from some set S. (One could have the set of signals available to S depend 
on t.) Player R receives this signal, and then takes an action a drawn from a set 
A (whieh could depend on the signal s that is sent). This ends the garne: The payoff 
to S is given by a function u : T  x S x A - . R ,  and the payoff to R is given by 
v : T  x S x A - * R .  

This canonical garne captures some of the essential features of the classic 
applications of market  signalling. We think of S as the seller or buyer of some 
good: a used car, labor services, an insurance contract; R represents the other 
party to the transaction. S knows the quality of the car, or his own abilities, or 
his propensity towards risk; R is uncertain a priori, so t gives the value of quality 
or ability or risk propensity. S sends a signal r that might tell R something about 
t. And R responds - in market  signalling, this response could be simply acceptance/ 
rejection of the deal that S proposes, or it could be a bid (or ask) price at which 
R is willing to consummate the deal. 

To take a concrete example, imagine that S is trying to sell a used car to R. 
The car is either a lemon or a peach; so that T = {lemon, peach}. Write t o for 
"lemon" and tl for "peach". S knows which it is; R is unsure, assessing probability 
p(t l)  that the car is a peach. S cannot provide direct evidence as to the quality of 
the car, but S can offer a w a r r a n t y -  for simplicity, we assume that S can offer 
to cover all repair expenses for a length of time s that is one of: zero, one, two, 
three or four months. We wish to think of the market  in automobiles as being 
competitive in the sense rhat there are many buyers; to accommodate this within 
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the framework of our two-person game is nontrivial, however. Two ways typically 
used to do this are: (1) Imagine that there are (at least) two identical buyers, called 
R 1 and R 2. The game is then structured so that S =  {0,1,2,3,4} (the possible 
warranties that could be offered); S announces one of these warranty lengths. The 
R1 and R 2 respond by simultaneously and independently naming a price ai~[0, ~ )  
(i = 1, 2) that they are willing to pay for the car, with the car (with warranty) going 
to the high bidder at that bid. In the usual fashion of Bertrand competition or 
competitive bidding when bidders have precisely the same information, in equili- 
brium a~ = a 2 and each is equal to the (subjective) valuation placed on the car 
(given the signal s) by the two buyers. If we wished to follow this general 
construction but keep precisely to our original two-player game formulation, we 
could artificially adopt a utility function for R that causes him to bid his subjective 
valuation for the car. For  example, we could suppose that his utility function is 
minus the square of the difference between his bid and the value he places on the 
car. (2) Alternatively, we can imagine that S = {0, 1, 2, 3, 4} × [0, ~).  The interpreta- 
tion is that S makes a take-it-or-leave-it offer of the form: a length of warranty 
(from {0,1,2,3,4}) and a price for the car (from [0, ~)). And R either accepts 
or rejects this offer. Since S has all the bargaining power in this case, he will 
extract all the surplus. We hereafter call this the take-it-or-leave-it formulation of 
signalling. 

Either of these two games captures market signalling institutional details in a 
manner consistent with our canonical game. But there are other forms of institutions 
that give a very different game-theoretic flavor to things. For  example, we could 
imagine that R (or many identical Rs) offer a menu of contracts to S; that is, a 
set of pairs from {0, 1, 2, 3, 4} × [0, ~) ,  and then S chooses that contract that he 
likes the most. Models of this sort, where the uninformed party has the leading 
role in setting the terms of the contract, are often referred to as examples of market 
screening instead of signalling, to distinguish them from institutions where the 
informed party has the leading role. We will return later to the case of market 
screening. 

3. Nash equilibrium 

We describe a Nash equilibrium for the canonical signalling game in terms of 
behavior strategies for S and R. First take the case where the sets T, S and A are 
all finite. Then a behavior strategy for S is given by a function a:T x S ~ [ 0 ,  1], 
such that Y~s a(t, s) = 1 for each t. The interpretation is that a(t, s) is the probability 
that S sends message s if S is of type t. A behavior strategy for R is a function 
e:S x A ~ [0, 1] where Xae(S, a )=  1 for each s. The interpretation is that R takes 
action a with probability e(s, a) if signal s is received. 

Proposition 1. Behavior strategies ~ for R and a for S form a Nash equilibrium 
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if and only if 

a(t ,s)>Oimplies~(s ,a)u( t ,s ,a)=max(~(s ' ,a)u( t ,s ' ,a)) ,a  s,~s 

and, for each s such that ~ t  a(t, s)p(t) > 0, 

ct(s, a) > 0 implies ~/~(t; s)v(t, s, a) = max ~ #(t; s)v(t, s, a'), 
! a '  t 

(3.1) 

(3.2a) 

where we define 

p( t ; s ) -  a(t,s)p(t) if ~a( t ,s)p( t )  > O. (3.2b) 
Z, '  ~(t ' ,s)p(t ') , 

Condition (3.1) says that a is a best response to a, while (3.2) says (in two 
steps) that ct is a best response to a; (3.2b) uses Bayes' rule and ct to compute R's 
posterior beliefs #(.;s) over T upon hearing signal s (if s is sent with positive 
probability), and (3.2a) then states that ~(s,-) is a conditional best response (given 
s). Note well that the use of Bayes' rule when applicable [in the fashion of (3.2b)] 
and (3.2a) is equivalent to ~ being a best response to tr in terms of the ex ante 
expected payoffs of R in the associated strategic-form game. 

All this is for the case where the sets T, S and A are finite. In many applications, 
any or all of these sets (but especially S and A) are taken to be infinite. In that 
case the definition of a Nash equilibrium is a straightforward adaptation of what 
is given above: One might assume that the spaces are sufficiently nice (i.e., Borel) 
so that a version of regular conditional probability for t given s can be fixed (where 
the joint probabilities are given by p and a), and then (3.2a) would use conditional 
expectations computed using that fixed version. 

We characterize some equilibria as follows: 

Definition. An equilibrium (a, ~) is called a separating equilibrium if each type t 
sends different signals; i.e., the set S can be partitioned into (disjoint) sets {St; t~S} 
such that a(t, S,) = 1. An equilibrium (a, ~) is called a pooling equilibrium if there 
is a single signal s* that is sent by all types; i.e., a(t, s*) = 1 for all t ~ T. 

Note that we have not precluded the possibility that, in a separating equilibrium, 
one or more types of S would use mixed strategies. In most applications, the term 
is used for equilibria in which each type sends a single signal, which we might 
term a pure separating equilibrium. On the other hand, we have followed 
convention in using the unmodified expression pooling equilibrium for equilibria 
in which all types use the same pure behavior strategy. One can imagine definitions 
of pooling equilibria in which S uses a behaviorally mixed strategy (to some extent), 
but by virtue of Proposition 2 following, this possibility would not come up in 
standard formulations. Of course, these two categories do not exhaust all possibili- 
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ties. We can have equilibria in which some types pool and some separate, in which 
all types pool with at least one other type but in more than one pool, or even in 
which some types randomize between signals that separate them from other types 
and signals that pool them with 6ther types. 

4. Single-crossing 

In many of the early applications, a "single-crossing" property held. The sets T, 
S and A each were simply ordered, with ~> used to denote the simple order in 
each case. (By a simple order, we mean a complete, transitive and antisymmetric 
binary relation. The single-crossing property has been generalized to cases where 
S is multi-dimensional; references will be provided later.) We will speak as if T, S 
and A are each subsets of the real line, and ~> will be the usual "greater than or 
equal to" relationship. Also, we let d denote the set of probability distributions 
on A and, for each seS and T' _ T, we let d(s, T') be the set of mixed strategies 
that are best responses by R to s for some probability distribution with support 
T'. Finally, for « e d ,  we write u(t,s,«) for ~'a~A U(t, S, O~)~(O). 

Definition. The data of the game are said to satisfy the single-crossing property 
if the following holds: If teT, (s,e)eS x d and (s',Œ')eS x d are such that 
«cd(s,  T),«'ed(s', T),s>s' and u(t,s,«)>~u(t,s',«'), then for all t 'eT such that 
t' > t, u(t', s, «) > u(t', s', «'). 

In order to understand this property, it is helpful to make some further 
assumptions that hold in many examples. Suppose that S and A are compact 
subsets of the real line and that u is defined for all of T x co(S) x co(A), where 
co(X) denotes the convex hull of X. Suppose that u is continuous in its second 
two arguments, strictly decreasing in the second argument and strictly increasing 
in the third. In terms of out example, think of peach > lemon, and then the 
monotonicity assumptions are that longer warranities are worse for the seller (if 
seS is the length of the warranty) and a higher price is better for the seller (il aeA 
is the purchase price). 

Then we can draw in the space co(S) x co(A) indifference curves for each .type 
t. The monotonicity and continuity assumptions will guarantee that these indifference 
curves are continuous and increasing. And the single-crossing property will imply 
that if indifference curves for types t and t' cross, for t' > t, then they cross once, 
with the indifference curve of the higher type t' crossing from "above on the left" 
to "below on the right". The reader may wish to draw this picture. Of course, the 
single-crossing property says something more, because it is not necessarily restricted 
to pure strategy responses. But in many standard examples, either u is linear in 
the third argument [i.e., u(t, s, a)= u'(t, s)+ a] or v is strictly concave in a and A 
is convex [so that d (s ,  T') consists of degenerate distributions for all s], in which 
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case single-crossing indifference curves will imply the single-crossing property given 
above. 

The single-crossing property can be used to begin to characterize the range of 
equilibrium outcomes. 

Proposition 2. Suppose that the single-crossing property holds and, in a given 
equilibrium (a, «), «(t, s) > 0 and a(t', s') > 0 for t' > t. Then s' ~> s. 

That is, the supports of the signals sent by the various types are "increasing" 
in the type. This does not preclude pooling, but a pool must be an interval of 
types pooling on a single signal, with any type in the interior of the interval sending 
only the pooling signal (and with the largest type in the pool possibly sending 
signals larger than the pooling signal and the smallest type possibly sending signals 
smaller than the pooling signal). 

While the single-crossing property holds in many examples in the literature, it 
does not hold universally. For  example, this property may not hold in the entry 
deterrence model of Milgrom and Roberts (1982) [see Cho (1987)], nor it is natural 
in models of litigation [see Reinganum and Wilde (1986) and Sobel (1989)]. 

More importantly to what follows, this entire approach is not weU suited to 
some variations on the standard models. Consider the example of selling a used 
car with the warranty as signal, but in the variation where S offers to R a complete 
set of terms (both duration of the warranty and the purchase price), and R's 
response is either to accept or reject these terms. In this game form, S is not simply 
ordered, and so the single-crossing property as given above makes no sense at all. 

Because we will work with this sort of variation of the signalling model in the 
next section, we adapt the single-crossing property to it. First we give the set-up. 

Definition. A signalling game has the basic take-it-or-leave-it setup iß (a) T is 
finite and simply ordered; (b) S = M x ( - ~ ,  ~ )  for M an interval of the real line 
[we write s = (m,d)]; (c) A = {yes, no}; (d) u(t,(m,d),a)= U(t ,m)+ d if a = yes and 
u(t, (m, d), a) = 0 if a = no; and (e) v(t, (m, d), a) = V(t, m) - d if a = yes and = 0 if 
a = no; where U, W and V are continuous in m; V is strictly increasing in t and 
nondecreasing in m; and U is strictly decreasing in m. 

The interpretation is that m is the message part of the signal s (such as the length 
of the warranty on a used car) and d gives the proposed "dollar price" for the 
exchange. Note that we assume proposed dollar prices are unconstrained. For  
expositional simplicity, we have assumed that the reservation values to S and to 
R if there is no deal are constants set equal to zero. 

Definition. In a signalling garne with the basic take-it-or-leave-it setup, the 
sin9le-crossin9 property holds if t' > t, m' > m and U(t, m') + d' ~> U(t, m) + d, then 
U(t', m') + d' > U(t', m) + d. 
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Proposition 2'. Fix a signalling game with the basic take-it-or-leave-it setup for 
which the single-crossing property holds. In any equilibrium in which type t 
proposes (m, d), which is aecepted with probability p, and type t' proposes (m', d'), 
which is accepted with probability p', t' > t and p'/> p imply m' ~> m. 

5. Refinements and the Pareto-eflicient separating equilibrium 

Proposition 2 (and 2') begins to eharacterize the range of Nash equilibria possible 
in the standard applications, but still there are typieally many Nash equilibria in 
a given signalling game. This multiplicity of equilibria arises in part because the 
response of R to messages that have zero prior probability under a are not 
constrained by the Nash criterion; i.e., (3.2a) restricts «(s,') only for s such that 
Zt a(t, s)p(t) > 0. However the response of R to so-called out-of-equiIibrium messages 
can strongly color the equilibrium, sinee the value of sending out-of-equilibrium 
messages by S depends on the equilibrium response to those messages. That is, S 
may not send a particular message s ° because R threatens to blow up the world 
in response to this message; since (therefore) S will not send s °, the threatened 
response is not disallowed by (3.2a). This is clearly a problem coming under the 
general heading of "perfection", as discussed in the Chapters on "Strategie 
Equilibrium" and "Conceptual Foundations of Strategic Equilibrium" in volume 
III of this Handbook. And one naturally attacks this problem by refining the Nash 
criterion. The first step in the usual attack is to look for sequential equilibria. 
Hereafter, /~ will denote a full set of beliefs for R; i.e., for each s~S, 14",s) is a 
probability distribution on T. 

Proposition 3. Behavior strategies («,Œ) and beliefs # for a signalling game 
eonstitute a sequential equilibrium if (3.1) holds, (3.2a) holds for every s~S, and 
(3.2b) holds as a eondition instead of a definition. 

(The only thing that needs proving is that strategies and beliefs are consistent in 
the sense of sequential equilibrium, but in this very simple setting this is true 
automatically. The formal notion of a sequential equilibrium does not apply when 
T, S, or A is infinite; in such cases is it typical to use the eonditions of Proposition 
3 as a definition.) 

Restricting attention to sequential equilibria does reduce the number of equi- 
libria, in that threats to "blow up the world" are no longer credible. But multiple 
equilibria remain in interesting situations. For  example, in applications where the 
types t~ T and the responses a~A are simply ordered, u is increasing in the response 
a, and the responses by R at eaeh signal s inerease with stochastie increases in R's 
assessment as to the type of S, we can construct many sequential equilibrium 
outcomes where R "threatens with beliefs"- for out-of-equilibrium messages s, R 
holds beliefs that put probability one on the message coming from the worst 
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(smallest) type te T, and R takes the worst (smallest) action consistent with those 
beliefs and with the message. This, in general, will tend to keep S from sending 
those out-of-equilibrium messages. 

Accordingly, much of the attention in refinements applied to signalling games 
has been along the lines: At a given equilibrium (outcome), certain out-of- 
equilibrium signals are "unlikely" to have come from types of low index. These 
out-of-equilibrium signals should therefore engender out-of-equilibrium beliefs that 
put relatively high probability on high index types. This then causes R to respond 
to those signals with relatively high index responses. And this, in many cases, will 
cause the equilibrium to fail. 

There a r e a  number of formalizations of this line of argument in the literature, 
and we will sketch only the simplest one here, which works weil in the basic 
take-it-or-leave-it setup. (For more complete analysis, see Banks and Sobel (1987) 
and Cho and Kreps (1987). See also Farrell (1993) and Grossman and Perry (1987) 
for refinements that are similar in motivation.) 

The ¢riterion we use is the so-called intuitive criterion, which was introduced 
informally in Grossman (1981), used in other examples subsequently, and was then 
codified in Cho and Kreps (1987). 

Definition. For a given signalling game, fix a sequential equilibrium (a, «, #). Let 
u*(t) be the equilibrium expected payoff to type t in this equilibrium. Define 
B(s) = {te  T : u(t, s, ~) < u*(t) for every ~E~(s, T)}. The fixed sequential equilibrium 
fails the intuitive criterion if there exist sE S and t* E T \B(s) such that u(t*, s, «) > u*(t*) 
for all otEd(s, T\B(s)). 

The intuition runs as follows. If teB(s), then, relative to following the equilibrium, 
type t has no incentive to send signal s; no matter what R makes of s, R's response 
leaves t worse oft than if t follows the equilibrium. Hence, if R receives the signal 
s, R should infer that this signal comes from a type of S drawn from T\B(s). But 
if R makes this inference and acts accordingly [taking some response from 
d ( s ,  T\B(s))],  type t* is sure to do better than in the equilibrium. Hence, type t* 
will defect, trusting R to reason as above. 

This criterion (and others from the class of which it is representative) puts very 
great stress on the equilibrium outcome as a sort of status quo, against which 
defections are measured. The argument is that players can "have" their equilibrium 
values, and defections are to be thought of as a reasoned attempt to do better. 
This aspect of these criteria has been subject to much criticism: If a particular 
equilibrium is indeed suspect, then its values cannot be taken for granted. See, for 
example, Mailath et al. (1993). Nonetheless, this criterion can be justified on 
theoretical grounds. 

Proposition 4. [Banks and Sobel (1987), Cho and Kreps (1987)]. If T, S and A are 
all finite, then for generically chosen payoffs any equilibrium that fails the intuitive 
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criterion gives an outcome that is not strategically stable in the sense of Kohlberg 
and Mertens (1986). 

This criterion is very strong in the case of basic take-it-or-leave-it games that 
satisfy the single-crossing property and that are otherwise weil behaved. Please 
note the conflict with the hypothesis of Proposition 4. In the take-it-or-leave-it 
games, S is uncountably infinite. Hence, the theoretical justification for the intuition 
criterion provided by Proposition 4 only applies "in spirit" to the following results. 
Of course, the intuitive criterion itself does not rely on the finiteness of S. 

The result that we are headed for is that, under further conditions to be specified, 
there is a single equilibrium outcome in the basic take-it-or-leave-it game that 
satisfies the intuitive criterion. This equilibrium outcome is pure separating, and 
can be loosely characterized as the first-best equilibrium for S subject to the 
separation constraints. This result is derived in three steps. First, it is shown that 
pooling is impossible except at the largest possible value of m. Then, more or less 
by assumption, pooling at that extreme value is ruled out. This implies that the 
equilibrium outcome is separating, and the unique separating equilibrium outcome 
that satisfies the intuitive criterion is characterized. 

Proposition 5. Fix a basic take-it-or-leave-it garne satisfying the single-crossing 
property. Then any equilibrium in which more than one type sends a given signal 
(m, d) with positive probability to which the response is yes with positive probability 
ean satisfy the intuitive criterion only if m equals its highest possible value. 

A sketch of the proof runs as follows: Suppose that, in an equilibrium, more 
than one type pooled at the signal (m, d) with m strictly less than its highest possible 
value, the response to which is yes with positive probability. Let t* be the highest 
type in the pool. Then it is claimed that for any e > 0, there is an unsent (m', d') 
with (a) m < m' < m + e and d < d' < d + e, (b) U(t*, m') + d' > U(t*, m) + d, and (c), 
for all t < t*, U(t, m') + d' < U(t, m) + d. (The demonstration of this is left to the 
reader. The single-crossing property is crucial to this result.) 

Suppose that type t* proposes (m', d'). By (c), tEß(s) for all t < t*. Hence, R in 
the face of this deviation must hold beliefs that place probability one on types 
t* or greater. Since V is strictly inereasing in t, for e sufficiently small, if R was 
willing to accept (m, d) with positive probability at the pool, with beliefs restricted 
to types t* or greater, S must accept (m', d') with probability one. But then (b) 
ensures that t* would deviate; i.e., the intuitive criterion fails. 

Proposition 5 does not preclude the possibility that pooling occurs at the greatest 
possible level of ra. To rule this possibility out, the next step is to make assumptions 
sufficient to ensure that this cannot happen. The simplest way is to assume that 
M is unbounded above, and we proceed for now on that basis. Hence by 
Proposition 5, attention can be restricted to equilibria where types either separate 
or do not trade with positive probability. 
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Proposition 6. Fix a basic take-it-or-leave-it game that satisfies the following three 
supplementary assumptions. (a) For all t, max,ù U(t, m) + V(to, m) > 0, where to is 
the type with lowest index. (b) For all t, U(t, m) + V(t, m) is strictly quasi-concave 
in m. (c) For each type t, ift '  is the next-lowest type, then the problem max,ù U(t, m) + 
V(t, m) subject to U(t', m) + V(t, m) <~ u has a solution for every value of u. (If t is 
the lowest type, ignore the constraint.) Then there is a unique equilibrium outcome 
for sequential equilibria that satisfy the intuitive criterion and in which types either 
separate or do not trade. 

We sketch the argument (and show how to construct this unique equilibrium 
outcome). Fix a sequential equilibrium that survives the intuitive criterion and 
that is separating (or where some types trade with probability zero). Let m o solve 
maxm U(to, m)+ V(t o, m), where t o is the lowest index type. [By supplementary 
assumption (b), this solution is unique.] By proposing (mo, V(to, mo) - e) for e > 0, 
type to can be sure of acceptance, because R's beliefs can be no worse than that 
this proposal comes from t o with certainty. Hence, t o can be sure to get utility 
u*(to):= U(to, mo)+ V(to, mo) in any sequential equilibrium. [Moreover, a similar 
argument using supplementary assumption (a) ensures that the no-trade outcome 
will not be part of the equilibrium.] Since the equilibrium is separating, this is 
also an upper bound on what to can get; so we know that the equilibrium outcome 
for to in the equilibrium gives u*(to) to to, and (hence) to, in this equilibrium, must 
propose precisely (mo, V(to, mo)), which is accepted with probability one. Let t 1 be 
the type of second-lowest index. By use of the intuitive criterion, it can be shown 
that this type can be certain of utility max,ù{ U(tl, m) + V(t 1, m): U(t o, m) + V(tl, m) 
~< u*(to)}, since by proposing the (unique) maximizing m and a payment a bit less 
than V(tl, m) for this m, acceptance is guaranteed; since t o receives strictly less than 
u*(to) whether or not R accepts the proposal, toeB((m, V(ti, m)-). This is also an 
upper bound for tl'S payoff in any separating equilibrium in which t o gets u*(to), 
and so this gives the outcome for ta in the equilibrium. And so on. We can build 
up the equilibrium outcome by, for each type, maximizing its payoff, assuming it 
is separated and that it is constrained to send a signal that the next-lower type 
would not (given its equilibrium value, determined a stage earlier). 

Remarks. (1) This particular equilibrium, the optimal equilibrium for S subject 
to a separation constraint, goes back in the literature to weil before its "justification" 
by stability-related refinements. The notion that, in equilibrium, there will be 
overinvestment in signals for purposes of separation can be found in the very first 
work on market signalling, by Spence (1974) and by Rothschild and Stiglitz (1976). 
This precise equilibrium is singled out by Riley (1979) on other grounds (see Section 
6 following). 

(2) Supplementary assumption (a) in Proposition 6 can be paraphrased as "trade 
is beneficial", even at terms appropriate for the lowest index type. It is rather 
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strong and should (and can) be relaxed, however there is no general treatment of 
this written down yet. 

(3) We avoided equilibria in which there is pooling at the highest value of m by 
fiat, by assuming that M is unbounded. But then we needed to assume that U 
and V are sufficiently well-behaved so that supplementary assumption (c) holds. 
Alternatively, we could assume that M is compact [so that (c) is no longer required] 
and either make assumptions sufficient to guarantee that there is no pooling at 
the "top" or deal with the possibility of such a pool. For a careful treatment of 
this, see Cho and Sobel (1990). 

(4) This argument is finely tuned to the take-it-or-leave-it game form, since in 
this game form, any type of S, having the ability to propose an entire "deal ' ,  has 
very fine ability to distinguish himself from lower types. In the more standard 
garne form, S proposes only m (this becomes the signal), and R (or more than one 
R) responds with a proposed price d (which becomes a). When there are more 
than two types of S, the intuitive criterion is generally not strong enough to imply 
full separation. In such cases, stronger restrictions than the intuitive criteria such 
as universal divinity [Banks and Sobel (1987)] are required. The basic idea is that 
for each signal s, the set B(s) is enlarged to include any type t for which there is 
some other type t' with: If u(t, s, a) >i u*(t) for «~~¢(s, T), then u(t', s, «) > u*(t'). [This 
is not quite universal divinity, but instead is the slightly weaker D1 restriction of 
Cho and Kreps (1987).] Of, in words, teß(s) if for any response to s that would 
cause t to defect, t' would defect. Using this enlarged B(s) amounts to an assumption 
that R, faced with s, infers that there is no chance that s came from t; if type t of 
S were going to send s instead of sticking to the equilibrium, than type t' would 
certainly do so. Although less intuitive than the intuitive criterion, this is still an 
implication (in generic finite signalling garnes) of strategic stability. Together with 
the single-crossing property (and some technical conditions), it implies that 
Proposition 2 can be extended to out-of-equilibrium signals: If type t' sends signal 
s with positive probability, then for all t < t' and s' > s, we must be able to support 
the equilibrium with beliefs that have 14t, s')= 0. With further monotonicity 
conditions, it then gives results similar to Propositions 5 and 6 above. See Cho 
and Sobel (1990) and Ramey (1988) for details. 

(5) Perhaps the intuitively least appealing aspect of these results is that a very 
small probability of bad types can exert nonvanishing negative externality on good 
types. That is, if ninety-nine percent of all the cars in the world are peaches and 
only one percent are lemons, still the peach owners must offer large warranties to 
distinguish their cars from the lemons. You can see this mathematically by the 
fact that if to is a lemon and tl a peach, then the peach owners taust choose an 
m 1 satisfying U(to, ml)+ V(tl, ml)<~ u*(to), this constraint is independent of the 
number of peaches and lemons, it is there as long as there is a single lemon in the 
world. But if there are no lemons, then this constraint vanishes. Pooling equilibria, 
in which the lemon owners exert a negative externality on the peach owners that 
vanishes at the fraction of lemons goes to zero, seem intuitively more reasonable. 
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Mailath et al. (1993) require that the receiver-interpret an out-of-equilibrium 
message as an attempt by some types of sender to shift to another, preferred 
equilibrium whenever such an interpretation is possible. This leads to what they 
call undefeated equilibria; in the current context, this selects a pooling outcome. 

(6) The argument given depends on m being one-dimensional; more generally, 
the single-crossing condition developed in the previous section is formulated for 
the case of a one-dimensional signal. Engers (1987) generalizes the single-crossing 
condition to multi-dimensional signals, following earlier specific examples. Although 
Engers works with a screening model (see the next section), Cho and Sobel 
(1990) and Ramey (1988) use versions of single-crossing conditions for multi- 
dimensional signals to characterize equillibrium outcomes in the canonical signal- 
ling game. 

Humans are not the only animals that communicate through indirect signals. 
The songs or plumage of birds, the antlers of deer, and the colors of fish may be 
viewed as signals designed to inform a potential mate about reproductive fitness. 
Zahavi (1975, 1977) argues that meaningful signals arise in biological settings when 
they can be reliably interpreted by their intended audience, and he informally 
proposes that a single-crossing property holds. Grafen (1990) provides a game 
theoretic treatment of Zahavi's ideas. Grafen's model is virtually identical with the 
basic Spence model with a continuum of types. He argues that the same pure 
separating equilibrium outcome given prominence in the economics literature is 
the unique evolutionarily stable outcome. 

(7) The construction of the unique equilibrium outcome that survives the intuitive 
criterion made use of the assumption that T is a finite set. (The argument that no 
equilibrium with pooling would survive the intuitive criterion, on the other hand, 
did not require this assumption.) Many of the early examples, however, assumed 
that T is an interval, so it is useful to provide extensions in this direction. Mailath 
(1987) provides an analysis of separating equilibria when there is an interval of 
types, giving useful characterizations and an existence result. Ramey's (1988) 
analysis is posed in this sort of setting. 

(8) It is also desirable to extend this sort of analysis to cases where types of the 
sender are drawn from a set which is multi-dimensional (i.e., only partially ordered). 
Not much has been done along these lines, although Kohlleppel (1983) and Quinzii 
and Rochet (1985) provide interesting analyses of specific cases. 

6. Screening 

In the canonical signalling game of Sections 2 and 3 and in the variations on this 
game described above, the party with private information takes the lead in deciding 
which signals will be sent. That is to say, the set of signals that can be sent is 
given exogenously, as part of the description of the game, and the uninformed 
party reacts to the signal that is chosen by the informed party. 
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In many applications to market signalling, it may seem more appropriate to 
model things with the uninformed party taking the lead. The simplest game form 
that one can imagine for this, specialized to the very concrete model of the 
take-it-or-leave-it setup, has a number ( > 1) of identical buyers (the uninformed 
side to a transaction) simultaneously and independently proposing a set of 
contracts, each contract taking the form (m, d). (Assume T is finite and that buyers 
are restricted to proposing a finite set of pairs.) Sellers (or the single seller, the 
informed side) look over the set of contracts on offer and choose at most one - the 
deal is then consummated at the terms chosen. Since the choice of a contract is 
a "signal", this formulation falls under the general rubric of signalling, although 
in the literature this sort of formulation, where the uninformed take the lead, is 
referred to as screening [Stiglitz and Weiss (1990)]. 

For this garne form, the only possible pure-strategy e, quilibrium outcome is the 
separating outcome sketched in the previous section. The argument is very similar 
to the argument given in previous section, except that one starts with the 
observation that, by the usual Bertrand argument, each contract that is taken with 
positive probability must just "break even', and then think of a uninformed party 
making the sorts of offers that we had the informed parties making in the argument 
to break any other pure-strategy equilibrium. But, as observed first by Rothschild 
and Stiglitz (1976) and as refined by Riley (1979), this separating outcome is (often) 
not an equilibrium outcome either; it is orten possible for an uninformed party to 
propose a pooling a contract which attracts a number of types and which is 
profitable. 

By general existence results [Dasgupta and Maskin (1986)], we know an 
equilibrium exists for this game (under certain regularity conditions that hold in 
many applications). Hence, the only equilibria are in mixed strategies. This lacks 
appeal in many of the economic contexts which this is meant to model. Hence 
early authors were moved to modify the equilibrium concept employed. 

There are two basic modifications that have been studied. The first basic 
modification is Wilson's (1977) E2 equilibrium. Here, roughly put, an outcome is 
an equilibrium if there is no contract that can be added to the set of contracts 
that are offered that will be profitable after all contracts which then sustain losses 
are removed from the set on offer. Wilson shows that an E2 equilibrium always 
exists (under standard conditions), that pooling can be an E2 equilibrium, and 
that there are robust examples with multiple E2 equilibria. 

The second is Riley's (1979) reactive equilibrium. Again roughly put, an outcome 
is a reactive equilibrium if no additional contract added to the set on offer would 
make a profit if other firms are given the opportunity to react and add still more 
offers. Engers and Fernandez (1987) study this equilibrium notion in substantial 
generality, showing that under standard conditions, the only reactive equilibrium 
is the separating equilibrium of Section 5. 

Both Wilson and Riley advance notions of equilibrium that are meant to be 
reduced form solution concepts for an unspecified dynamic process of competition. 
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The linkages to noncooperative (Nash) equilibrium of completely well-specified 
game forms came later. Hellwig (1986) studies the game form where buyers make 
offers simultaneously, sellers choose contraets, but then buyers have the right to 
refuse any seller. This game admits many Nash (and even sequential) equilibria, 
but Hellwig announces the result that the only stable equilibrium outcome is the 
pooling contract whieh is most favorable to the highest type, at least for the case 
where there are only two types. Engers and Fernandez (1987), on the other hand, 
study a garne form where buyers simultaneously name contracts; their contraet 
ehoices are revealed, and then buyers are given the opportunity to add to the set 
of eontracts offered; if any additions are made, buyers are given another opportunity 
to add contracts; and so on, until on some given round buyers all "pass" on the 
opportunity to add contracts, at which point sellers (or the single seller) ehooses 
his most preferred contract. Any reaetive equilibrium of the original game is a 
Nash equilibrium for this game, but there are many other Nash equilibria; and 
Engers and Fernandez do not explore whether any of the standard refinements 
will help pin things down. 

A further variation on market screening concerns the case of a single uninformed 
party who offers the informed party a menu of contracts on a take-it-or-leave-it 
basis. That  is, all the bargaining power is given to the uninformed party. The 
seminal reference to this sort of analysis is Stiglitz (1977), who shows that this 
reduces formally to a problem of a monopolist supplier who is able to offer 
nonlinear prices. He therefore conducts analysis analogous to that in the literature 
on optimal income taxation [-Mirrlees (1971)] to charaeterize the monopolist's 
optimal set of eontracts. Complications due to strategie interactions disappear and 
there is no problem guaranteeing the existence of equilibrium. In eontrast to the 
outcomes obtained in signalling games or in competitive screening models, the 
monopolist's optimal set of contracts need not be fully separating (when there are 
at least three types of informed party). 

7. Costless signalling and neologisms 

We next specialize to the case where messages are costless; i.e., where u(t, s, a) = u(t, a) 
and v(t, s, a )=  v(t, a). In this case, even though "talk is cheap", signalling may be 
of use, insofar as there is some commonality of interests between S and R. 

Green and Stokey (1980) and Crawford and Sobel (1982) provide the first analyses 
of this case. Crawford and Sobel assume: (a) T = [0, 1], and the prior distribution 
of t on T is absolutely continuous. (b) The space A is a conneeted interval from 
the real line, for every t, u(t, ") and v(t, .) are concave, and, denoting partials of u 
and v by subscripts in the usual fashion, u2(t,.) = 0 and v2(t,.) = 0 have solutions 
in A. (c) u12 > 0 and v12 > 0, so that the solutions of u2( t  , ")  = 0 and v2 ( t  , ' )  = 0 as 
functions of t both increase with t. (d) Finally, if we write aù(t) for the solution of 
u2(t, .) = 0 and av(t) for the solution of v2(t, ") = 0, then aù(t) ~ av(t) for all t. With 
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these assumptions, they show that all equilibria are essentially of the following 
form: There is a finite partition of T into intervals, and $'s signal indicates which 
of the cells of the partition contains the true value of t, with R responding according 
to the posterior so generated. The strong monotonicity assumptions guarantee 
that the response taken "increases" with increases in the cell of the partition. 
Moreover, with a further monotonicity assumption, there are (essentially) finitely 
many of these equilibria; one for a partition which is trivial (no information is 
communicated), and one for partitions of each integer size up to some largest-sized 
partition. Further, the expected utility of both S and R increases as the number 
of cells in the partition increases. Finally, they give a sense in which one can say 
that preferences of S and R a r e  more closely aligned, and they establish that the 
more closely aligned are these preferences, the greater the cardinality of the maximal 
partition. 

All cheap-talk games have a no-communication or babbling equilibrium in 
which S's signal is not informative, and R responds to all signals (on the equilibrium 
path) with the action that is optimal given a posterior that is equal to the prior. 
[-To be precise, this is so if the game with no possibility of communication has an 
equilibrium; cf. Seidman (1992) and Van Damme (1987).] There may be other 
equilibria. In particular, if the preferences of S and R coincide, there exists a 
separating equilibrium. Yet the refinements discussed in Section 5, which depend 
on different signals being more costly for some types of S than for others, do not 
help at all to reduce the set of sequential equilibria. Nothing prevents R from 
interpreting an out-of-equilibrium signal s in exactly the same way as a signal s' 
that is sent with positive probability. When signalling is costless, this sort of 
response establishes that the signal s is not "bad" for any type that sends s'. Hence 
no sequential equilibrium can fail the intuitive criterion (or any more restrictive 
refinements derived from strategic stability). Put another way, in cheap-talk garnes 
signals have no natural meaning at all, so no interpretation ofthem can be ruled out. 

It is possible to refine the equilibrium set for costless signalling games by 
requiring that R believe what S says if it is in S's interest to speak the truth. Farrell 
(1993) allows S to invent a new signal, called a neologism, which is credible if and 
only if there exists a nonempty set J of T such that precisely the types in J prefer 
the neologism to candidate equilibrium payoffs when R responds optimally to the 
literal meaning of the new signal (that is, "tEJ"). Formally, take a sequential 
equilibrium (a, ~, #), and let u*(t) be the equilibrium payoff of type t. J ~ T can 
send a credible neologism if and only if J = {t:u(t, et(J))> u*(t)}, where et(J) is R's 
(assumed unique, for simplicity) optimal response to the prior distribution conditioned 
on tEJ. (When p is not nonatomic, things a r ea  bit more complex than this, since 
some types may be indifferent between their equilibrium payoff and the payoff 
from the neologism.) If R interprets a credible neologism literally, then some types 
would send the neologism and destroy the candidate equilibrium. Accordingly, 
Farrell emphasizes sequential equilibria for which no subset of T can send a 
credible neologism. These neologism proofequilibria do not exist in all cheap-talk 
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games, including the game analyzed in Crawford and Sobel (1982) for some 
specification of preferences. 

Rabin (1990) defined credibility without reference to a candidate equilibrium. 
He assumed that a statement of the form "t is an element of J"  is credible if (a) all 
types in J obtain their best possible payoff when R interprets the statement literally, 
and (b) R's optimal response to "t is an element of J"  does not change when he 
takes into account that certain types outside of J might also make the statement. 
Roughly, a sequential equilibrium is a credible message equilibrium if no type of 
S can increase his payoff by sending a credible message. He proves that credible 
message equilibria exist in all finite, costless signalling games, and that "no 
communication" need not be a credible message equilibrium in some cases. 

Dynamic arguments may force cheap talk to take on meaning in certain 
situations. Wärneryd (1993) shows that in a subset of cheap-talk games in which 
the interests of the players coincide, only full communication is evolutionarily 
stable. Aumann and Hart  (1990) and Forges (1990) show that allowing many 
rounds of communication can enlarge the set of equilibrium outcomes. 

8. Concluding remarks 

In this chapter, we have stayed close to topics concerned with applications to 
market signalling. Even this brief introduction to the basic concepts and results 
from this application has exhausted the allotment of space that was given. In a 
more complete treatment, it would be natural to discuss at least the following 
further ideas: (1) In the models discussed, the set of possible signals (or, more 
generally, contracts) is given exogenously. A natural question to ask is whether 
there might be some way to identify a broader or even universal class of possible 
contracts and to look for contracts that are optimal among all those that are 
possible. The literature on mechanism design and the revelation principle should 
be consulted; see Chapter 24. It is typical in this literature to give the leading role 
to the uninformed party, so that this literature is more similar to screening than 
to signalling, as these terms are used above. When mechanism design is undertaken 
by an informed party, the process of mechanism design by itself may be a signal. 
Work hefe is less weil advanced; see Myerson (1985) and Crawford (1985) for 
pioneering efforts, and see Maskin and Tirole (1990, 1992) for recent work done 
more in the spirit of noncooperative garne theory. (2) We have discussed cases 
where individuals wish to have information communicated, at least partially. One 
can easily think of situations in which one party would want to stop or garble 
information that would otherwise flow to a second party, or even where one party 
might wish to stop or garble the information that would otherwise flow to himself. 
For  an introduction to this topic, see Tirole (1988). (3) Except for a bare mention 
of multistage cheaptalk, we have not touched at all on applications where 
information may be communicated in stages or where two or more parties have 
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private information which they may wish to signal to orte another. There are far 
too many interesting analyses of specific models to single any out for mention - this 
is a broad area in which unifying theory has not yet taken shape. (4) The act of 
signalling may itself be a signal. This can cut in (at least) two ways. When the 
signal is noisy, say, it consists of a physical examination which is subject to 
measurement error, then the willingness to take the exam may be a superior signal. 
But then it becomes "no signal" at all. Secondly, if the signal is costly and develops 
in stages, then once one party begins to send the signal, the other may propose a 
Pareto-superior arrangement where the signal is cut oft in midstream. But this 
then can destroy the signal's separating characteristics. For  some analyses of these 
points, see Hillas (1987). 

All this is only for the case where the information being signalled is information 
about some exogenously specified type, and it does not come close to exhausting 
that topic. The general notion of signalling also applies to signalling past actions 
or, as a means of equilibrium selection, in signalling future intentions. We cannot 
begin even to recount the many developments along these lines, and so we end 
with a warning to the reader that the fange of application of non-cooperative 
game theory in the general direction of signallng is both immense and rich. 
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