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This paper studies equilibrium refinements in signaling games through an 
examination of rationalizability in derived games obtained by replacing the equi- 
librium path with a sure outcome that yields the equilibrium payoff to ail players. 
The informed player chooses between the sure payoff and sending an out-of-equi- 
librium signal from the original game. Whether or not the strategy of choosing the 
sure payoff is rationalizable is related to the iterated intuitive condition (divinity) 
when the original game is viewed as having imperfect (incomplete) information. 
Our results also demonstrate the significance of testing out-of-equilibrium signals as 
a set rather than individually. Journal of Economic Literature Classification 
Numbers: 021, 022, 026. 0 1990 Academic PUS, hc. 

1. INTRODUCTION 

In this paper we attempt to unify some recent work on equilibrium 
refinements in signaling games by examining procedures which delete 
strategies that are dominated relative to some reference payoffs. We present 
three techniques, all of which are variations of rationalizability (Bernheim 
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[3] and Pearce [ 15)) and relate them to the intuitive criterion (Cho and 
reps [5]) and divinity (Banks and Sobel se techniques take t 

original game and an equilibrium for that g derive a new signaling 
game. In the new game we replace the equilib ath with a sure out- 
come that yields the equilibrium payoff of the ame to all players 
The informed player may choose the sure payo a sig that 
was not used in the equilibrium of the original ask tiler 
the strategy of choosing the sure payoff survives iterative deletion of 
dominated strategies. 

Our different notions of rationalizability correspond to different ways of 
looking at signaling games. When we require that equili 
survive iterative deletion of dominated strategies, it matters whether we 
treat the signaling game as a two-player game of ~~~orn~~ete informative or 

imperfect-information game in which there is a 
informed player.’ In the first case types of t 
common conjectures over strategy choices of th 
requirement deletes more strategies than the 
merit. It also matters whether we treat unreac 

t once. The refinement ideas of 
Kreps [5], Farrell [9], and 

analyze behavior at unreached information sets 
existence of several possible unused signals m 

als can be interpreted. 
The next section describes signaling games and 

~a~izabi~ity. In Section 3, we show that fixed rium ra~io~aIi~a~ 
y for the imperfect-information game is eq 

version of the Cho-Kreps [S] intuitive criterion. Section 
that axed-equilibrium rationalizability for the into 
(when unreached information se$s are treated one 

th respect to a h 
that are generally iar 

Iity requirement to hold for 
5 we look at what happens 

riation of Grossman 

sure outcome with positive probability. 
ares our use of auxiliary mes to relate WOFk of 
eke1 [2] and van ~arnrn~ f 

’ F-de&erg and Kreps [lo] make a similar observation 
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2. THE MODEL AND FIXED-EQUILIBRIUM RATIONALIZABILITY 

Throughout the paper we limit attention to simple signaling games. In 
these games one player, the Sender, receives private information. We refer 
to this information as the Sender’s type; we denote the type of the Sender 
by t; t is drawn from a finite set T (we also use T to refer to the cardinality 
of the set of types). The Sender’s type is drawn according to a probability 
distribution TC over T. We assume that 7~ is common knowledge and that 
n(t) > 0 for all t E T. After the Sender learns his type, he sends a signal m 
to the other player, the Receiver. We denote the set of signals available to 
a Sender of type t by M(t); T(m) denotes the set of types that are able to 
send the signal m. The Receiver responds to the Sender’s signal m by 
choosing an action, a, from a finite set of responses that we call A(m). The 
players have von Neumann-Morgenstern utility functions defined over 
type, signal, and action. The Sender’s payoff function is denoted u(t, m, a) 
and the Receiver’s payoff function is denoted v(t, m, a); we extend these 
functions to the set of all mixed strategies by linearity and use u( .) and v( .) 
to refer to these extensions. It is convenient to introduce notation for the 
set of best responses of the Receiver. Let ,u be a probability distribution 
over T(m). Let 

If the Receiver thinks that p(t) is the probability that the Sender is type t 
given the signal m, then BR(p, m) is the set of best responses to m. Let 
BR(S, m) denote the set of the Receiver’s best reponses to probabilities 
concentrated on a subset S of the set of all probability distributions 
on T(m), WS ml = Uip:PESj BR(,u, m); we write MBR(p, m) and 
MBR(S, m) for the sets of mixed best responses corresponding to BR(p, m) 
and BR(S, m), respectively. On occasion, we abuse notation and write 
BR(S, m) when S is a subset of tyes. At these times we identify S with the 
set of probability distributions on S; hence, when SC T(m), BR(S, m) = 
U {ti+~s)= 1) BRh m). 

We will investigate the effect of imposing rationalizability requirements 
on a fixed equilibrium outcome. We begin with a particular sequential 
equilibrium to a signaling game. The equilibrium consists of a behavior 
strategy for the Sender, denoted by a(m ( t), which specifies the probability 
that the Sender of type t sends the signal m E M(t); a behavior strategy for 
the Receiver, denoted by p(a 1 m), which specifies the probability that the 
Receiver takes the action a PA in response to the signal m; and 
assessments, denoted by ,u(t ) m), such that ,u( .I m) is a probability distribu- 
tion over T(m) for each m E M. A triple (F, p, ,u) is a sequential equilibrium 
(Kreps and Wilson [14]) to a signaling game if and only if 0 is a 
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best resp0nse to p (a(m’ 1 t) > 0 only if FE’ maximizes u(t, ,‘IYE, p(. ! rvy)) 
over all maim); the Receiver respsnds optimally to his assessment 
(p( .I m) E MBR(~(. / m),m) for all m E M); and the assessments are 
consistent with the equilibrium strategy of the Sender and the 

ossible (if Cf.ET( then p(tim)= [n(t)icr(m\t)]/ 
(,n) n(t’)o(m 1 t’)]). ies ((T, p), we can identify the 

equilibrium. payoffs of the players, 

24*(t)= C x ~(t~m,~~g(mit~p(~lm) 
mtM(t) UEA(rn) 

for the Sender of type 1, and 

for the Receiver. In addition, we can detine the set of unsent signals, 

iv*= mEM: 
1 

c ?t(t)o(mjt)=O i 3 
tt T(m) J 

and the equilibrium outcome, which is the robability 
a(m j t)p(a im)z(t) on the terminal nodes (t, m, a) of the game induced by 
the equilibrium strategies. 

Given a sequential equilibrium and a subset MO of the set of unsent 
signals M*, we define a new signaling game. The set of possible types of t 
Sender is T, as in the original game. The set of pure strategies available 
the type t Sender is {m* > u CM, n M(t)]. If the Sender’s signal is m*, then 

e Receiver’s action set A(m*) is a single point; call it ck*~ Otherwise, 
eceiver has precisely the same actions available as he had in the origi 

game. The preferences for the new game, denoted by a( .) for the Sen 
and a(. ) for the Receiver, satisfy 

qt, m, a) = u( t, M, a) for ~7 EM, and c E A(m), 

qt, m, a) = u( c, m, n) for ME 144, and a E A(W), 

qt, m*, a*) = u*(t), and G(t) ?a”, a*> = 0”. 

We denote the new game by G(o, p, M,). e refer to this ga 
without specifying the choices of CJ, p, an MO) as the deri 
Grossman and Perry [ 11, p. Ill] and van 
games of the form G(o, p, (m)) to study properties 
Equilibria. Grossman and Perry attribute the id 

The derived game replaces the equilibrium of the original. game with a 
signal WZ* that gives the players the payoff they would have received in the 
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original equilibrium. In the derived game, the Sender has the option of 
selecting the payoff to the original game or selecting a signal from a subset 
of the original signals. If the Sender decides not to send the signal m*, then 
the game continues as the original. 

We apply the concept of rationalizability in the extensive form to the 
derived game. In the context of simple signaling games, the definition 
below is equivalent to the definition introduced by Pearce [15]. Let co(X) 
denote the convex hull of the set X. Let RY” be the pure strategy set of 
the Sender and RW” be the pure strategy set of the Receiver. Consider the 
iterative procedure that determines R Yk -f ’ and RB?‘+ 1 given RYk and 
R.%?’ using the following steps: 

RO. RJ“ = (m E M : 3s E RYk such that s(t) = m for some t E T(m)). 

Rl. RYk+’ = (s E RYk : 3p E co(RB?) such that s is a best response 
to P>. 

R2. RB’+’ = (r E R.!Z’” : Vm E RJkfl 3a E co(RYk+‘) such that 
a(m 1 t) > 0 for some t, and r(m) is a best response to cj. 

The sets RYk and R9’ represent admissible strategies at the kth step of 
the process. A strategy s of the Sender is included in RYk+i if and only 
if it is a best response to an element of the convex hull of the pure 
strategies of the Receiver. If it is common knowledge that the Receiver uses 
only the strategies in RB’, then elements of co(RWk) represent possible 
conjectures that the Sender could have. Rl restricts attention to strategies 
that respond optimally to some conjecture over the Receiver’s admissible 
set of pure strategies.2 If it is common knowledge that the Receiver uses 
only the strategies in Rgk, then it is sensible to restrict the Sender to 
strategies in RYkfl. 

The condition that defines R99’+’ is a bit more complicated. RJk+’ 
consists of the set of signals that can be sent using strategies in RYkt ‘. R2 
states that strategies in R Wk + ’ are optimal responses to a conjecture that 
the Receiver can hold over the possible strategies of the Sender. R2 allows 
the Receiver to have a different conjecture depending on what signal is 
sent: The conjecture c could depend upon nz. If there exists a strategy in 
RYk + ’ in which at least one type of Sender uses the signal m, then R2 
requires that the Receiver’s reply to m must be an optimal response to a 
conjecture that the Sender uses m with positive probability. That is, the 
conjecture should explain why the Receiver hears the signal m. Without 
this restriction, R2 would never delete any strategies since any strategy of 

’ Pearce [ 151 shows that any conjecture oyer a subset S of a player’s mixed strategy set can 
be represented as a point in co(S). Since we can identify the set of mixtures of pure strategies 
in a set X with co(X), allowing conjectures over sets of mixed strategies does not change the 
analysis. 
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eceiver is an optimal response to the conjecture that the 
ith probability one. If m $ RJk+ I, then there i 

that uses the signal with positive probability. 
responses to m. 

Form the sets RY* = nkaoRYk and 
nali strategies for the Sender and Receiver respectively.3 
and are nonempty and finite, RYk and RRk are none 
Let s* denote the strategy in which s*(t) = IYZ* for all 1. 

EFINITIQN . The equilibrium (a, p) determines a 
r~~~ona~izable outcome (FERQ) of the original game if s* 

That is, (a, p) determines a FERB if it is a rat~Q~al~~ab~e strategy in 
*) for every Sender type to use m*. 
and R2 describe a particular way in which 
eakly dominated strategies in the derived g 

dominated strategies has no cutting power in t 
ceiver’s strategies are best responses t 
minated. We require, if the Receiver 

respond optimally to some conjecture over the 
requirement prevents the Receiver from using a 
strictly dominated given m. In fact we shall see that it is even 
restrictive. Nevertheless, our procedure does 
specify t the Receiver take an action that 
signal. e present a variety of iterative p 

cedures differ in how they describe the strategies of the 
erion is used to delete these strategies. The intuitive 

e set of Sender types that use a particular message, which c~rres~~~~s 

3 Our definition differs from Pearce’s in two ways. First, an iteration of Pearce’s procedure 
simultaneously deletes strategies of all players. Our procedures alternates between deleting the 
Sender’s strategies and the Receiver’s strategies. When weakly dominated strategies arc 
deleted, this difference could lead to a different set of rationalizable strategies. However, it 
does zot alfec? whether s* ERY*. The second difference in the definitions is that Pearce 
requires that in order to be an element in, say, RYk+‘: a strategy S need only satisfy 

That is, S need only be a best response in RYk. We require that strategies in RYk+I be best 
responses in the larger set RY” (that is, the maximum above is taken over s E 9). A simple 
induction argument shows that the two approaches are equivalent in OS context. Hcwever, 
the approaches lead to different answers if one uses closely related equilibrium concepts. See 
the discussion of the “Never a Weak Best Response” Criterion in Cho and Kreps [5, p. 2071. 
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directly to deleting a set of the Sender’s strategies. Co-divinity and divinity 
restrict the set of beliefs that the Receiver may hold. Since each set of 
admissible strategies for the Sender gives rise to a set of beliefs for the 
Receiver, fixed-equilibrium rationalizability and the intuitive criterion can 
be viewed as techniques that restrict the Receiver’s set of admissible beliefs. 

We construct G(o, p, M*) using only the equilibrium path and payoffs 
induced by (c, p). The equilibrium (a, p) determines the payoff for choos- 
ing m* and a set of unexpected signals (for which C,, T(m) z(t)o(m 1 t) = 0) 
that are not available in the derived game. Consequently G(o, p, M*) does 
not depend upon the responses of the Receiver to unexpected signals, In 
this way, the equilibrium path plays a different role in our construction 
than the specification of off-the-equilibrium-path behavior. We do not have 
formal justification for this asymmetric treatment of reached and unreached 
information sets. However, the approach has been useful in providing an 
intuitive framework for the Kohlberg-Mertens [ 131 notion of forward 
induction. It has been used in a number of places to define equilibrium 
refinements or restrict outcomes in extensive games (see, for example, 
Banks and Sobel [l], Cho [4], Cho and Kreps [S], Cho and Sobel [6], 
Farrell [9], and Grossman and Pery [ll, 121). 

Analyzing a derived game assumes a particular view of off-the-equi- 
librium-path behavior. According to this approach, when the Receiver 
hears an unexpected signal, he acts as if he is playing a new game. The new 
game contains only a subset of the strategies of the original game, and our 
analysis hinges on the idea that the Sender only “chooses” to play this 
game when he does not expect to lose (relative to reference payoffs deter- 
mined by an equilibrium) by doing so. The work of Fudenberg and Kreps 
[lo] provides a dynamic motivation for studying fixed-equilibrium 
rationalizability. If players arrive at equilibrium behavior following a 
period of learning and experimentation, it may be that a player learns 
about the equilibrium path earlier (or in more detail) than about his 
opponents’ out-of-equilibrium behavior. In this case, a player may make 
comparisons between a “sure” equilibrium payoff and a conjecture about 
what would happen if he strayed from the equilibrium path. The analysis 
of Fudenberg and Kreps [lo] is quite different from ours. They present a 
complete theory of play in the sense that all actions are taken with positive 
probability and therefore beliefs are not specified arbitrarily. The 
experimentation that takes place in the Fudenberg and Kreps framework 
contrasts with the behavior in our model, which we justify using 
rationalizability. Nevertheless, our approaches complement one another 
because the limits of the Fudenberg-Kreps dynamics satisfy fixed- 
equilibrium rationalizability. 

We need to introduce two variations of our definition. One variation 
involves testing unsent signals one at time. 
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EFINITION . The equilibrium strategies (a, p) determine a j&e&-e@- 
librium signai-by-signal rationaIizable outcom (FESSO”) of elle original 
game if s* is a rationalizable strategy in G(o, ) {m)) fsr all rnE?vP. 

Section 4 contains an example that demonstrates that a FE need not 
be a FESSO. 

Our definition of fixed-equilibrium ratio~a~izabil~y treats si~~a~~~~ 
games as two-player games of incomplete information. One can also think 
of signaling games as (Tf I)-player games in which there is a player 
for each type of Sender. This distinction edifies the definition oi 
rationalizability. If Sender types are tre as separate players then 
rationalizability does not require different s to have the same conjec- 
ture about the strategy choice of the Recei e difference makes it more 
difficult to rule out strategies and provides another way to test ~~t~~~~$ 
in signaling games. 

DEFINITION. The equilibrium (a, p) determines a f~~e~-e~~~~i~~~~~rn 
~aiiQ~a~i~~~le outcome for the imperfect inf#rrn~t~~~ game (FE 
is a rationalizable strategy in G(o, p: M*) viewed as a (T + H)- 

Formally, denote the set of admissible strategies for the 
eiver at tbe k th stage of the process by 19’ and I@, respectively. If we 
ace step Rl in the definition of rationalizability for (incomplete 

information) signaling games with 

1’. pP”E f (s E IY” : Vt 3p, E co(MF) such that s(Z) is a best response 
to PO> 

then we obtain the definition of ratio~a~izabi~~y for signaling games treated 
as (7+ !)-player games. (We construct the set of admissible strategies for 
the Receiver at stage k + 1, HP+ ‘, from HYk’ i using IQ.) If we write 

kgO fYk and I%?* = flksO XBk, then an outcome is a FERI 

cedure places fewer restrictions on a 
deletion process than t 

0s do not require that each type of 
‘s responses. Our first resut 

’ Soltano le persone the conoscono l’italiano e la teoria dei gixhi possono valutare se 

questa terminologia C appropriata. 

5 A separate argument, similar to the one we Llse to proof Proposition 5, is needed :o prove 

Proposition 1 when the FERO procedure reaches a step in which ali strategies that send 

m E M* are deleted. 
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While Pearce shows that the set of rationalizable strategies is nonempty 
in every finite game, this result does not guarantee that fixed-equilibrium 
rationalizable outcomes exist in signaling games. However, existence 
of FEROs follows from the relationship between fixed-equilibrium 
rationalizability and divinity that we establish in Section 4. In Section 4 we 
show that any FESS0 must be a FERO and that FESS0 is equivalent to 
an equilibrium concept called co-divinity. The set of divine outcomes is a 
subset of the set of co-divine outcomes. Since Banks and Sobel [l] show 
that every signaling game has a divine outcome, every signaling game has 
a FESS0 and a FERO. Section 3 demonstrates that the set of FERIMOs 
coincides with the set of outcomes that survive the iterated intuitive 
criterion. Therefore, results of Cho and Kreps [5] show that any signaling 
game has a FERIMO. 

3. THE ITERATED INTUITIVE CRITERION 

In this section we treat the signaling game as a (T + 1 )-player game of 
imperfect information. We show that a sequential equilibrium outcome 
passes the iterative intuitive criterion of Cho and Kreps [S, p. 2021 if and 
only if it is a fixed equilibrium rationalizable outcome in the imperfect- 
information game. 

The intuitive criterion of Cho and Kreps is a procedure by which 
signal-action pairs (r, m) are deleted from the game if the Sender of type 
t prefers his equilibrium utility to sending m no matter what admissible 
response the Receiver takes when he hears m. The iterative version of the 
text strikes signal-action pairs as above, restricts the set of admissible 
responses of the Receiver to optimal responses to beliefs concentrated on 
the remaining Sender types, and then repeats the process. Formally, fix a 
sequential equilibrium that yields expected utility u*(t) to the type t 
Sender, and let m be a signal that is sent with probability zero in the 
equilibrium. The iterated intuitive criterion takes ICY’(m) = T(m) and 
IC9?“(m)=A(m). TCl and IC2 use ICY’(m) and IC%‘k(m) to determine 
ICFk”(m) and IC9fkf’(m). 

ICl. IC~-k+‘(m)=(t~IC~-k(m):u*(t)d max aEIC.k(,) u(ty m2 a)} 

IC2. IC%? + ‘(m) = 
{ 

0-k + l(m), m) 
~~~k~~, 

if IC.P+‘(m)#@ 
if ICFk+‘(m) = 0. 

ICl deletes those types that do worse than their equilibrium payoff if the 
Receiver responds to m by taking actions in ICWk(m). IC2 limits attention 
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to actions in A(m) that respond optimally to some conjecture placin 
probability one on types in ICTk(m). 

Let ICY*(m) = fikao ICY’(m) and I@.%‘*(m) = fik 2O ICZ~?‘(VM). FC2 
guarantees that I@*(m) is not empty. 

r)EFPzTnow. An equilibrium outcome satisfies the iterated ~~t~~t~~)e 
criferion with respect to the signal m E M*‘, if and only if for all ?ET(Mj 
there exists hl~IC.B*(rn) such that u(l, k~, a) d u*(t). An ~~~~~~~~~~ 

rated intuitive criterion if and only if it satisfies the criterion 

~ixe~~~~uiIibriurn rationalizability in the im~erfect~i~formatio~ game is 
little more than a restatement of the iterated intuitive criterion. Condition 
ICl in the definition of the intuitive criterion serves ts 
who prefer their equilibrium payoff to sending another s 
iion is then used to limit Receiver responses in ICZ. The same process of 
deletion is carried out by rst deleting Sender strategies in condition 

definition of FERIM 
efore we prove that tcomes that pass the iterated intuitive criterion 

coincide with the set of FERlMOs, we introduce some notation: Let 
M’(m)= (aEA(m): a=r(m) for so rE wj; k@(m) is the set of 
actions that are admissible for the eceiver at the kth stage of he 
FE procedure. Similarly, we use I.%* to define I.%*(m). It is also 
useful to observe that if A c A(m), then 

u”(c) II=- u( t, m, r) foor all r E co(A) (1) 

is equivalent to 

u*(f)> u(t, m, r) for all 8-E w  @i 

ed that Ac Wcco(A). 

~R~~OS~T~Q~ 2. A sequential-equilibrium outcome satisfies the iterated 
intuitive criterion if and only if it is a ~~~e~-eq~~l~~ri~rn r~t~~~~~~~~~~e 
outcome in the imperfect information game. 

P~oolf: We show by induction that if the outcome either passes the 
iterated intuitive criterion or is a FERIMO, then 

IBk(m) = TC3P(m) (31 

(3) holds for k = 0 from the definitions of L@‘(m) an 

6 We have modified t2e definition of Cho and Kreps in order to guarantee that ICPjm) 
is nonempty. This change. is not significant. If there exists a stage k at which IC&(m) = 0, 
then the outcome will always satisfy the iterated intuitive criterion with respect to tn. 
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Assume that (3) holds for all k = 0, 1, . . . . IZ - 1. We claim that 

( t : s(t) = m for some s E 19”) = ICY”(m). (4) 

To establish (4) note that if s(t) = m for some s E I9”, then Rl’ implies that 

u*(t) d 2.44 m, a) for some cI E co(IkP-l(m)). (5) 

By (1) and (2), (5) is equivalent to 

u*(t) d u(t, m, a) for some a E I~,n-‘(m) = IC9-2n-1(m). (6) 

(6) implies that f E ICY”(m). It follows that the left-hand side of (4) is con- 
tained in the right-hand-side of (4). Moreover, it follows from the induction 
hypothesis and the assumption that the outcome either is a FERIMO or 
satisfies the iterated intuitive criterion that for all m’ E M(t) n M*, 

u*(t) > u(t, m’, a’(m’)) for some a’(m’) e 19? ‘(m’) = IChP-‘(m’). 

(7) 

Hence, if (7) holds, then s(t) = m for some SE I!? because the Sender 
can conjecture that the response to m’ will be a’(m’) for all m’ fm. 
Consequently, claim (4) follows from ICl. 

If ICP(m) = 0, then, by (4), m $IJ” and so R2 implies that 
I%?- l(m) = 19i?(m). Also, it follows from IC2 that IGP- ‘(m) = IC&?(m). 
So in this case (3) holds for k = n. To show that (3) holds for k = n when 
ICY”(m) # 0, it suffices to show that 

I&?*(m).= BR( ( t : s(t) = m for some s E UP}, m). 

When ICY-“(m) # 0, it follows from the definition of MY(m) that 
19P(m)= BR(S, m), where S is the set of probability distributions 
over T(m) induced by strategies in 19”. In symbols S= (p : ,u(t) = 
C4tb(m I t)lICCrrE T(m) n(t’)o(mI t’)] for some o~co(ZY) such that 
a(ml -)#O). S is contained in the set of probabilities on {t : s(t) = m for 
some s E IY” ). Therefore, the left-hand side of (8) is contained in the right- 
hand side. (7) implies that for each I there exists a pt~co(IS?-‘(m)) such 
that s(t) = m* is a best response to pr in the derived game. Consequently, 
19” contains all strategies of the form sL, where 

if t$L 
if tEL 

and Lisasubsetof{t:s(t)=mforsEIY” 

It follows that R2 implies that the left-hand side of (8) contains the 
right-hand side of (8). 



From (4) and (8) we conclude that if the outcome satisfies the iterated 
intuitive criterion or is a FERIMO and ICP(m) # 0, then 

M?(m) = BR(Iwym), m) for ail m E lu*. (9) 

By IC2, fG,%“(m) = BR(ICF(m), m). Consequently, (9) implies that (3 4 is 
for k = I?. It follows by induction that HC%*(m) = W?*(m) for all 

meM*, which suffices to complete the proof. 

reps [S, p. 2041 propose the eq~~i~ibrium dominance test, a 
slight variation on the intuitive criterion. To pass the test of eqnil~bri~m 
dominance, an outcome must be a sequential eq~~lib~~rn outcome with 
beliefs ~~~cent~ated on IC(.F*(in) for a but-of-eq~~ibri~rn signals m. 

h the test of equilibrium dominance an the iterated intuitive criterion 
ire that there be some justification fo e Sender to use in* when the 

eiver believes that only types in I 
for an equilibrium to pass 
intuitive criterion because 

to consider more possible responses to m (and therefore a 
ibility of finding some justification for avoiding the signal). An 
difference is that equilibrium dominance requires all types 

Sender to hold a common conjec 
(see @ and Kreps [ 5, p. 1971). In the next section, we view signaling 
games two-player games of incomplete information. As a result, all types 
of Sender will hold common beliefs about the eceiver’s behavior. 

This section relates FEROs to divine and co-divine outcomes. First, we 
define divinity. Fix a sequential equilibrium to the signaling game. 
usual, let la*(r) be the equilibrium expected utility of the Sender of type 1 
and let * be the set of unsent signals in the equilibrium. The mo:ivation 

for the concept is the following. In equ~Iibr~~rn~ the Receiver forms a 
probability assessment about which types of Sender use a partisular signal. 

ignals that are sent with positive proba 
ermines this assessment. Divinity atte 
e assessments are when the Receiver hears an unexg 

compute these beliefs, which we 
at all types of the Sender have a 
ceiver will respond to a signal, an 

Sender would not use an unanticipated signal unless the Sender expects to 
ly) gain utility (relative to the equilibrium payoff) by doing so. 
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For each behavior strategy LX that the Receiver can take in response to 
m, let 

P(cr,m)=(tET(m):u*(t)<u(t,m,a)) 

be the set of types that strictly prefer the response CI to their equilibrium 
payoff, 

I(a, m)= {tE T(m) : u*(t)=u(t, m, a)) 

be the set of types for which sending m and inducing the response CI yields 
the same payoff as the equilibrium, and, for nonempty subsets K of T, 
denote by rcK the conditional distribution of n given that t E K. That is, 

7?(t) = 
NtK.K ds) if tEK 
o 

if t$K. 

If P(a, m) u I(a, m) # a, then let r(‘(a, m) = co(rnK: P(a, m) c K c 
P(cc, m) u 1(a, m)}; otherwise, set F(:(a, m) = @.’ Finally, if A is a subset of 
MBR(T(m), m), then let fi(A, m) = CO[~,,~ F(;(a, m)]. If it were common 
knowledge that the Receiver would respond to the signal m with the 
behavior strategy a, then the set K of Sender types who would prefer to 
send m rather than to follow the equilibrium path would necessarily satisfy 

P(a, m) c Kc P(cx, m) u I(@, m). (10) 

Hence, the set F((c1, m) describes the beliefs that the Receiver might hold 
after hearing the signal m. F(‘(A, m) describes those beliefs when the set of 
actions that the Receiver may take in response to m is the set A. 

Now consider the iterative process that begins with the set DLB’(m) of all 
probability distributions on T(m) and Di2°(m)=co(A(m)), the set of 
responses the Receiver can take given m. Given DB!“(m) and DWk(m), we 
define DB’+l(rn) and D92k+‘(m) by 

Dl. DBk+‘(m) = 7(DS?‘(m), m) and 

D2. D9?k+‘(m) = (iit$ 
k+l(m), m) if D&Yk+l(m) # @ 

if DBk+‘(m) = /zr. 

We set D@*(m) = nkao DBk(m) and D&?*(m) = nkro DWk(m). 

DEFINITION. An equilibrium outcome is divine if for each m E M* there 
exists r E D&I?*(m) such that u*(t) 2 u(t, m, r) for all t E T(m). 

’ Banks and Sobel [l] write the definition of T(G(, m) in a different, but equivalent, form. 
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FIGURE 1 

anks and Sobel [ 1 ] show that there exists a divine equihbriurs! 
outcome in all finite signaling games. 

In ratisnahzabihty the Sender forms conjectures over the set of possible 
pure-strategy best responses of the Receiver. Consequently the convex h&l 
of the set of pure-strategy responses possible for the iver determines 
the strategies that the Sender may use. In contrast, di y computes the 
set of allowable beliefs for the Receiver using a set of possible mixed- 
strategy best responses of the Receiver. Since the set of mixed strategy 
responses may be strictly smaller than the convex hull of pure-strategy 
responses, divinity may be a harder test to pass than ~xed~e~~~~~~r~~rn 
~ati~~a~~~ab~~ity. 

Consider the example in Fig. l,* which is based on a si 
Fudenberg and Kreps [lo]. Let us test the e~uil~~ri~m in 
plays strategy fplr with probability one, and the 
with cez. It is straightforward to check that IM’(m) 
the set of probability distributions on ( t, , f.,). Th 

nse set of the Receiver to IX&(m) contains all 
ah mixtures of a2 and a3. a result, we have KW(mf = 

4: Jj), (0, I)}, since any action i B?!‘(m) that yields a nonnegative 
utility to t, yields a positive utility to t,. T .B2(m) is equal to 

>. Direct applications of Dl and D2 &OW that DB*(P-/I) = { (4. 4)) and 
*(ml = (aI $, and therefore the outcome is not divine. However, 5xed- 

equihbrium rationalizability deletes no strategies, and therefore the 
outcome is a FERO. Ts see that ~xed-e~~i~~b~~~ rationalizability deletes 
no strategies, argue as follows. The strategy s” is a best response for the 

a in all of the examples the Sender’s payoffs are w&en above the Receiver’s. 

642/52/2-6 
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Sender provided he conjectures that the Receiver responds to m with a*. 
The strategy (s(tl), s(tz)) = (m, m) is an optimal response to the conjecture 
that the Receiver responds to m with a,. If the Sender conjectures that the 
Receiver will respond to m with equal mixtures of the pure strategies a, 
and as, then he responds optimally by using m if t, and m* if t,. 
Alternatively, if the Sender conjectures that the Receiver will respond to m 
with a (.3, .7) mixture of the pure strategies a, and a2, then he responds 
optimally by using m* if t, and m if t,. Consequently, RY1 = RY’. It is 
straightforward to verify that R2 deletes none of the Receiver’s strategies. 
In particular, a2 is a best response to the conjecture that the Sender is 
equally likely to play (m*, m) and (m, m*). 

The difference between divinity and rationalizability in the example 
arises because the convex hull of the set of pure-strategy best responses and 
the set of mixed-strategy best responses are not the same. Divinity is a 
refinement of sequential equilibrium obtained by imposing additional 
conditions on beliefs held off the equilibrium path. Hence, in a divine 
outcome it must be common knowledge that the Receiver responds to each 
out-of-equilibrium signal with a best response to some belief. When the 
convex hull of the set of pure-strategy best responses is strictly larger than 
the set of mixed-strategy best responses, fixed-equilibrium rationalizable 
outcomes can be supported by conjectures that do not correspond to an 
optimal response to beliefs. The same distinction can be made between the 
test of equilibrium dominance and the intuitive criterion: The equilibrium 
dominance test requires that the response to an unexpected signal is known 
to be a best response to beliefs; the intuitive criterion does not. The distinc- 
tion between the sets of mixed-strategy best responses and the convex hull 
of pute-strategy best responses did not play a role in Section 3 because 
an outcome fails the iterated intuitive criterion if and only if there is 
t E T(m) such that u*(t) < u(t, m, a) for all pure strategy responses 
a E BR(ICF*(m), m). As we have noted ((1) and (2)), this condition is 
equivalent to u*(t) < u(t, m, r) for all rE MBR(ICF*(m), m) or for all 
r E co(BR(ICF*(m), m)). 

A minor variation of divinity does correspond to (a form of) tixed- 
equilibrium rationalizability. 

Begin with the set CSY’(m) of all probability distributions on T(m) and 
C.%?“(m) = A(m), the set of responses the Receiver can take given m. Given 
CBk(m) and C.Sk(m), we define CiBkf’(m) and C9@“(m) by 

Cl. C9#k+1(m) = F(co(CB”(m)), m) and 

C2. k+l(m), m) CWk+ l(m) = (~~\~~) 
if CiBk+‘(m)#(2( 
if C9iJk+‘(m) = a. 

We set C9l*(m)= nkro Cgk(m) and C%?*(m) = flkro CLJt”(m). 



EFINITIQN . An equilibrium outcome is co-divine if for each m E M* 
there exists p(m) ~co(CW*(m)) such that u*(t) 3 u(t, m, p(m)) for all 
1 E T(m).’ 

Co-divinity differs from divinity in two respects. Co- vinity treats the set 
of possible actions of the Receiver, C.94Tk(m), as a s of pure strategies. 

ore importantly, the set of allowable beliefs, C.@(m), is deri 
of probability assessments available to the Receiver if the Se 
o~t~rna~~y to arbitrary conjectures on the (pure) strategies in M?‘(m), 
instead of the smaller set of mixed-strategy best responses. 

Bt is a simple matter to check that DBk(m) c C&?(m) for ah k 2 0. 
Consequently, we have the next result. 

ROPOSITION 3. Any divine outcome is co-divine. 

Next we compare FESS0 to co-divinity. W enote by S@(m) and 
S&?*(m) (SYk(m) and SY*(m)) the sets of a sible strategies for the 

eceiver (Sender) obtained by applying RO, 
Divinity and co-divinity differ from rationalizability because the first 
concepts compute the Receiver’s possible responses as a set of best 
responses to beliefs, while rationalizability constructs S&Tk(m) by allowSng 
the eiver to best respond to arbitrary conjectures over the strategies 
in k(~). To facilitate a comparison between co-divinity and 
~at~onali~ab~lity, we will represent S%‘(m) as the set of best responses to a 
collection of probability distributions over T(M). If s E SY”(m) 
K(s, m) = {t : s(t) = m} is the subset of types that send m when the Se 
uses s, then the Receiver’s set of optimal responses to s is equal to 
BR(nK(~‘,“‘), m). More generally, responding optimally to a conjecture over 
strategies in a set SYk(m) is equivalent to making an optimal response to 
a probability distribution in 

CO(ZT” : 3s E SYk(m) such that K= (11) 

PROPOSITION 4. An equilibrium outcome is co-divine if and o&y $ it is a 
faked-equi~~bri~rn signal-by-signal rationalizable outcome. 

ProoJ Both co-divinity and fixed-equilibrium signal-by-signal rat%- 

nalizability treat unsent signals one at a time. Therefore, we can fix a 
m E M* and show that the Receiver’s set of admissible actions at eat 
of the iterative process for co-divinity agrees with the set of ad 
actions for the Receiver defined for FESSO. That is, we will show 

@93k(m) = SBk(m) forall k30. (12) 

9 Fudenberg and Kreps Cl@] independently develop and analyze a related concept. 
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Condition (12) holds for k = 0 by the delinition of the two sets. Assume 
that (12) holds for k-0, 1, ..,, n - 1. We prove that it holds for k =n. 
Notice that it is sufficient to show that 

{Kc T(m) : K # 0 and 3s E Wn(m) such that K = K(s, m)> 

= (Kc T(m) : K#QI and 

3a E co(CL3?-1(m)) such that P(a, m) c Kc P(a, m) u Z(cc, m)>. 

(13) 

By (ll), S&Y(m) is the set of best responses to probability measures 
determined by the first set in (13). The second set in (13) determines 
C~*(m) in the same way. However, SE SLY(m) if and only if it is an 
optimal response to a conjecture over strategies in SBnpl(m). Since 
C~%~-‘(rn)=S~%“-~(rn) by the induction hypothesis, Rl implies that 
s E SF’(m) if and only if 3a E co(C%?‘“- ‘(m)) such that s is a best response 
to CI. However, s is a best response to CI if and only if 

P(a, m) c K(s, m) c P(M, m) u I(a, m). (14) 

Equation (13) follows from (14). Therefore, we have established that (12) 
holds for k = IZ. By induction, we can conclude that 

CLJP(m) = SiJff*(m). (15) 

In order to have a FESSO, we must have that m* ~SLf*(rn), or, 
equivalently, that for all TV T(m), 

32 e co(S92*(m)) such that u*(t) > u(t, m, a). (16) 

In view of (15), (16) is equivalent to the outcome being co-divine (relative 
to the unsent signal m). 

Co-divinity, divinity, and fixed-equilibrium, signal-by-signal rationaliza- 
bility treat unreached information sets one at a time. Implicit in this 
approach is an assumption that whatever causes a particular “unexpected” 
signal to be sent is independent of the other available unsent signals. The 
assumption that deviations are independent across signals is restrictive, as 
the next example shows. 

Figure 2 describes a signaling game.” The outcome in which both types 
of Sender send m3 with probability one is a sequential equilibrium outcome 
since the Receiver could respond to ml with a3 (a3 is a best response to 
~(t, /ml) E [$, $1). Similarly, the Receiver could have ,~(t~ ( m2) E [$, $1 and 

lo Eric van Damme has told us of a similar example constructed by Georg Noldeke. 
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respond to m2 with r3. Kowever, the outcome fails to be co-divine. To see 
this, note that u(tZ, m2, rj) > u( t,, m2, vi) for j = 1, 2, an 
prefers WZ~ to m3 whenever tl prefers m2 to m3. Since m2 
for either player in the first round of deletion, co-divinity requires that 
p(t,/m,) >z(t,). Consequently, the Receiver must respond to mz with Ye, 
and both types of Sender wouid deviate from their ~q~~~~~~~urn strategy. 
Moreover, a similar analysis applies to the out-of-equilibrium play of nal ) 
giving us an alternative basis for co-divinity to reject 

The argument for rejecting the equilibrium depends 
of one out-of-equilibrium signal at a time while ign 
other unsent signals. In particular, the test we des 
(and FESSCB) looked at the play of m, by (at leas 
while ignoring the possibility that another type of 
m, with positive probability. We can use the exam 
requiring the players to treat deviations one sign 
equilibria in an unreasonable way. 

Consider the game derived from the equilibrium in whit 
always uses m3~ The strategies (s(t,), s(t2))= (vni, m*) 
dominated for i= 1 and 2 (for example by a ($, 5) mixture of (m*, m*) and 
(m*, mi)) because any conjecture that makes m* optimal for tz must make 
m* uniquely optimal for t,, but no other strategies for the Sender a 
dominated in the derived game. Furthermore, when only (era,, m*) an 
(m,, ri*) are deleted from the Sender’s str egy set, all of the eceiver’s 
strategies in the derived game remain un minated. ~~~s~q~e~tIy~ the 
outcome is a FERO even though it fails the test of ~xe~-~q~il~~~~~~ 
rationalizability when either message is taken alone. 

Co-divinity does not allow the Receiver to believe that t, is likely to send 
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mz. However, the discussion above provides a context in which there is 
some justification for this belief. If the Sender conjectures that a, is the 
response to m, and r1 is the response to rnz, then t, would send m2 and 
t, would send ml. Hence, t, can use the signal ml; t,‘s best response to a 
conjecture about the Receiver’s strategy need not be m2 whenever t,‘s best 
response to the same conjecture is m2. When all unsent signals are taken 
into account, it may be inappropriate to conclude that “tl is less likely than 
t, to defect to rn>” The same type of argument demonstrates that we 
cannot conclude that “tl is less likely than t, to defect to mz” even though 
co-divinity requires that p( t, 1 m,) 2.75. 

The example demonstrates that a FERO need not be a FESSO. The next 
proposition shows that the set of FEROs is always as large as the set of 
FESSOs. 

PROPOSITION 5. Any FESS0 is a FERO. 

A proof of Proposition 5 is in the appendix. Here is an informal argu- 
ment. The strategies of a signal-by-signal (FESSO) game are a subset of the 
strategies for a multiple-signal (FERO) derived game: Any strategy for the 
multiple-signal game in which the Sender uses only one signal other than 
m* with positive probability is also a strategy for a signal-by-signal game. 
We can show that for any FESSO, the set of strategies for the Sender that 
remain after k iterations of RO, Rl, and R2 for the signal-by-signal game 
is always contained in the set of strategies that remain for the multiple- 
signal game. Therefore, if the strategy of sending only m* is rationalizable 
in all of the signal-by-signal games, then it is rationalizable in the multiple- 
signal game. To see this, suppose that the strategy s remains after k 
iterations in the signal-by-signal game. If s(t) E {m*, m’) for all t, and s(t) 
is also an optimal response to a conjecture a(m’), then let the Sender 
conjecture that the Receiver will make a response a(m) that satisfies 
u*(t)>u(t, m, cr(m)) for all t and for all mEM*\{m’}. If the Sender’s 
conjectures over all m E M* are given by a( - ), then s is an optimal response 
in the multiple-signal game. The only detail missing in this argument is a 
verification that the Sender’s conjectures are made over strategies that 
remain in the Receiver’s possible response set at the kth step of the iterative 
process. The verification is straightforward provided that for each mEM* 
there remains a strategy s E SY’(m) such that s(t) = m for some t E T(m). 
In this case one can show that any behavior strategy of the Receiver that 
the multiple-signal procedure deletes must also be deleted by the signal-by- 
signal procedure. Therefore, any conjecture feasible for the signal-by-signal 
procedure is feasible for the multiple-signal procedure also. The argument 
is more complicated if there is a step in the signal-by-signal procedure at 
which all strategies that send m E M” are deleted. At that point the signal- 
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by-signal procedure does not delete any more of t eceiver’s responses to 
wr. The multiple-signal procedure may continue to de1 
To show that a FESS0 is a FERO we must show tha 
procedure does not delete all actions that are worse n WE* for Some 
Sender type. The appendix contains the details of an 
there always remains a strategy for the Receiver that yields a payoff that 
no Sender prefers to the fixed-equilibrium payotT. 

Banks and Sobel [1] demonstrate that all finite signaIi~g games have at 
one divine outcome and that divine outcomes survive the eq brinm 

inance and iterated intuitive criteria. Therefore, the first five oposi- 
tions imply the following existence result. 

eOROLLARY. Every finite signaling game has a FESSO, a 
~~~~~~. 

We can now position our concepts within the current re~neme~t 
hierarchy. Propositions 1 and 2 demonstrate that the set of FERIM 
precisely the outcomes that satisfy the iterated intuitive criterion, 
contains the set of FEROs. In turn, the set of FEROs contains the FESSOs 
bY osition 5. FESSOs coincide with the set 
(Pr tion 4). We cannot place outcomes that s 
dominance test inside this hierarchy. Although any 

equilibrium dominance test and anything that passes equili 
is a FERIMO, there is no general relationship between F 

s and the outcomes that pass equilibrium dorni~a~c~. The test of 
uilibrium dominance can be harder to pass than F OF 

cause it requires all types of the Sender to conjecture the 
oose an element in the set of mixed strategy best responses rat 

sibly larger convex hull of pure strategy best responses. The equi- 
minance test may be easier to pass be se it does not require 
types to hold the same beliefs over the ceiver’s response. It is 

not difficult to construct examples in wh 
of ~q~ili~ri~rn dominance is not a FER 

les in which an outcome that is a 
to pass the equilibrium dominance test. 

The choice of which fixed-equilibrium re~neme~t to select (F 
FERO, or FESSO) is determined by an evaluation of wh 
economic environment is best modeled as a (T + I )-player game of 
feet information or a two-player game of incomplete i~format~o 
ranges from the iterated intuitive criterion to co-d~vi~ity~ If one is trou 

at treat unreached information sets indepen 
ay be too strong. 
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5. PERFECT SEQUENTIAL EQUILIBRIA 

Thus far we have focused on the set of outcomes to signaling games that 
are rationalizable in a derived game. One could also ask what would 
happen if we required our outcomes to satisfy another game-theoretical 
restriction in the derived game. A natural approach is to replace 
rationalizability with Nash Equilibrium. In this section, we discuss one way 
to do this. 

One possible question to ask is: Under what conditions will s* be a 
Nash Equilibrium strategy for the Sender in the derived game? This is not 
an interesting question because (s*, p) is always a Nash Equilibrium 
strategy profile for the derived game G(a, p, M,) for M, c M*. Next, we 
could ask whether s* is still a Nash Equilibrium strategy after we have 
deleted strategies from the derived game using one of the procedures intro- 
duced earlier. For example, we could find conditions under which s* is a 
Nash Equilibrium strategy for the Sender when strategies outside of RY* 
and R&!?* are deleted. Here the requirement that s* be a Nash Equilibrium 
strategy is equivalent to the outcome being fixed-equilibrium rationalizable. 
This follows because if s* E RY*, then there exists a conjecture p* over 
R%?* such that s* is an optimal response to p*. Since all strategies in RJ%?* 
are optimal responses to s*, (s*, p*) is a Nash Equilibrium. 

One other interpretation of the derived game leads to a refinement of 
Grossman and Perry’s [11] (see also Farrell [9] who introduced a related 
concept) idea of Perfect Sequantial Equilibrium (PSE). In this section we 
introduce PSE and PSE*, a refinement of PSE due to van Damme [7]. We 
then provide an interpretation of the derived game that provides a charac- 
terization of PSE*. Finally, we use the derived game to interpret the 
solution concepts. 

We now define PSE. Fix a sequential equilibrium (a, p) to the original 
signaling game. Let m E M* be a signal that is not used by the Sender in 
equilibrium. Recall from Section 4 that for any behavior strategy c1 that the 
Receiver may take in response to the signal m, T(;(a, m) is the set of beliefs 
that the Receiver may hold if the Sender of type t chooses between u*(t) 
and u(t, m, CX). Grossman and Perry call the belief p consistent if there 
exists a behavior strategy a E MBR(p, m) such that p E r(?(a, m). Let CB(m) 
be the set of consistent beliefs given the signal m. A Perfect Sequantial 
Equilibrium is a sequential equilibrium in which off-the-equilibrium path 
beliefs are consistent whenever possible. Hence, the Nash Equilibrium 
(B, p) gives rise to a PSE outcome if and only if for all m E M" such 
that CB(m) # a, there exists pe CB(m) and LX E MBR(p, m) such that 
u*(t) 3 u(t, m, a) for all t E T(m). Van Damme [7] introduces a refinement 
of PSE, which he calls PSE*. Van Damme calls a behavior strategy c1 
consistent with an equilibrium given the signal m if there exists p E p((a, m) 



such that 01 E MBR(p, m). Denote by CBS(m) the set of consistent behavior 
strategies given m. A sequential equilibrium is a P E* if and only if the 

the-eqni~ibrium actions are consistent whenever possible. 
sh Equilibrium (0, p) gives rise to a PSE” outcome if and 

all rnE * such that CBS(m) # $3, there exists o! EC 
u*(t) 2 u(t, rra, U) for all TV T(m). Note that for any c 
strategy of the Receiver there exists a consistent belief. 
outcome is a PSE outcome. However, there may be a 

is an optimal response to a consistent belief? ut fails to be a consis 
vior strategy. So the PSE* test is logically ore dif~c~~t to pass t 

e PSE test. Indeed, van Damme shows by an example that there exist 
perfect s equilibria that fail to be PSE”. 

PSE” s can be described using derived games. elete 
strategy .Y* in which all types of the informed yer use m* nom t 
G(G> p, {m>)~ For notational convenience we not refer to (a, p) 
call this game G’( (m 1). In G’( (m > ) at least o type of Sender uses 
positive provability. Consider the set E(m) of Nash Equilibria (a’> 2’) to 
6’ ecause we have deleted the pure strategy s” 
Se se s* with positive probability, I?(W) may be e 
for al1 (a’, LX’) E E(m), 

u*(t) d u(t, o’(t), a’) for all t. (17) 

If (17) failed to hold for some type t’, then t’ cou 
increasing the probability he sends m* (provided 
the probability to one). 

OPOSITION 6. A sequential-equilibrium strategy prqfii.le (c, p) deter- 
SE* outcome if and only iffor all rn~ *1 either E(m)= @ oi’ 

there exists (a’, a’) E E(m) such that 

u*(t)>u(t, m, a’) forail tET(m). (18) 

In view of (i7), (18) is equivalent to u*(t)= u(?, O’(L), G:‘) for all t. 
To prove the proposition, one need only check that a is a consistent 

ehavior strategy if and only if there exists a CT’ sue that (a’, ci) E E(M). 
ently E(m) = @ if and only if C 

forward verification. 
e Farrell, Grossman and Perry, and van 

to motivate PSE, Proposition 6 provides a di 
Receiver hears the unexpected signal m, he 
game G”( (WZ} ), since every type of Sender c 

robability one in this case. If the Se 
than to play as specified by the e 
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to assume that he expects to gain (weakly) relative to the equilibrium. 
According to Proposition 6, PSE* requires that the players coordinate on 
a Nash Equilibrium of G’( {ml) that is at least as good as the original equi- 
librium for each type. (If no such an equilibrium exists, then the outcome 
is a PSE*.) Consequently, an outcome fails to be a PSE* if every Nash 
Equilibrium of G’( (m} ) is better for at least one Sender type than the 
original outcome. 

Proposition 6 suggests that PSE* requires a higher level of coordination 
than does co-divinity. Both concepts depend on the assumption that 
unexpected signals are treated independently,and that the Sender only 
sends them if he does not expect to lose relative to his equilibrium expected 
utility. However, beyond these restrictions, co-divinity demands only that 
there be a rationalizable outcome of G’( {m)) that is no better than the 
equilibrium outcome for each type of Sender; PSE* goes further by asking 
that there be a Nash Equilibrium outcome of G/((m)) that is no better 
than the equilibrium outcome for each type of Sender. The additional 
restriction helps to explain why there exist signaling games with no PSE” 
(Grossman and Perry [ 11, p. 1121 give an example, due to Joseph Farrell 
and Eric Maskin, of a signaling game without a PSE). 

6. AN ALTERNATE INTERPRETATION OF THE DERIVED GAME 

This paper studies equilibrium refinements for signaling games by 
examining the outcomes that survive iterated deletion of weakly dominated 
strategies in an auxiliary game. Ben-Porath and Dekel [2] and van 
Damme [8] do a similar exercise. These two papers add to a given game 
a stage in which one of the players may publicly burn money before they 
play the original game. This strategy lowers the burner’s payoffs uniformly. 
When weakly dominated strategies are iteratively deleted (or the more 
restrictive strategic stability of Kohlberg and Mertens [l5] is applied), the 
new game may have a unique outcome, which is an equilibrium outcome 
of the original game, even if the original game has multiple equilibria.” 
The framework of these papers is quite different from ours. Not only do 
they treat a different class of games, but the derived games of Ben-Porath 
and Dekel and van Damme can be defined without reference_ to an 
equilibrium outcome in the original game. 

‘I Ben-Porath and Dekel study finite games which contain an outcome that every player 
prefers to all other outcomes. For this class of games, they show that only the preferred 
outcome of the original game survives deletion of weakly dominated strategies in an auxiliary 
game in which one player has the option to bum money (in sufliciently small denominations). 
No money is burned in the undominated outcome of the auxiliary game. 
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1% reinterpretation of our auxiliary game brings it closer to these papers. 
View a signaling game as a decision problem for the Sender. Let the subjec- 
tive expected utility of the Sender of type t be u*(t). Now consider an 
auxiliary game, call it G”, in which a Sender of type t may send the signal 
m” in addition to the strategies in M. If he uses m*, then he receives P(t); 
otherwise, G” is no different from the original game. me, in the 
game the nder has an opportunity to collect w  
claims is) e value of the original game. Under wha 
value of the auxihary game equal to the value of the original game? If one 

quires s~~~tio~s to survive the iterative deletion ~ro~~d~res that we have 
scussed, then our paper comes close to answering this question. 

s game differs from the derived games considered in the paper 
se the signal m* does not replace the e¶~~~~~~~~~ path. However, the 

concepts are related. Let u*(t), t = 1,2, . . . . T, be ex ected utilities from a 

sequential equilibrium to the original game. It is easy to check that kn* is 
al rationalizable strategy for the ~~rres~o~d~ng 
only if the original equilibrium outcome is a FES 

if the original equilibrium outcome is a FE 
in G”. The converse is not true, as 

der the sequential equilibrium outc 
probability one and the Receiver 

robability one. This outcome can be 
hbrium provided that ~(1~ /m,) < f, so that eceiver can respond to rflZ 

ying r2 with enough probability to di AQge the Sender from using 
wever, since u(tl, m2, ~~)~~(t~,rn~,r,j, u(t19m2~ r2f=u(t2,m2, r2j, 

u*jt,) = I* = 0, co-divinity requires that p(tI / mz) > 4. Therefore, 
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the outcome is not co-divine. (Equivalently, note that the outcome is not 
a FERO since the strategy (s(t,), S(Q) = (m*, m2) is deleted in the first 
iteration.) Nevertheless, if the strategy m* were added to the game without 
deleting the signal m,, we could delete only the strategy (m*, mJ of the 
Sender. In particular, the strategy (m,, m2) would survive because the 
Sender could conjecture that the Receiver would respond to m, with a, and 
respond to m2 with rl. Consequently, the set of values that are 
rationalizable in G” is strictly larger that the set of values that can be 
obtained through FEROs. 

APPENDIX 

This appendix contains a proof of Proposition 5. We start with some 
definitions. 

Define RJk and SJk by RJk = {m : 3s E RYk such that s(t) = m for some 
tET(m)) and SJk={ m : 3s~ SYk(m) such that s(t) = m for some 
t E T(m)). RJk and SJk are the sets of signals that are reached by strategies 
in RYk and SYk; we say that a conjecture g on the Sender’s strategy set 
reaches m if there exists t E T(m) such that o(m ( t) > 0. 

Next, we define a procedure that iteratively defines the artificial sets 
AYk(m) and A.Bk(m). Set AY”(m) = &Y’(m) and A%?(m) = S9?0(m) and 
let AJk, AYk+‘(m), and A&?+‘(m) be determined from AYk(m) and 
AB’(m) using the following steps. 

AO. AJk = (m EM* : 3s E AYk(m) such that s(t) = m for some 
t E T(m)). 

Al. AYk+‘(m) = (s : 3 a~co(A&(m)) such that s is a best response 
to lx). 

A2. A92’+l(m) = { a E AB’(m): 3a E co(AYkf’(m)) such that 
o(m 1 t) > 0 for some t, and a is a best response to o}, if m E AJk+ ’ and 

ABk+l(m)= {aeA(m) :3r~RB~+r such that r(m)=a) if m$AJk+‘. 

The artificial sets differ from the rationalizable signal-by-signal sets only 
in the way in which A9!‘(m) is defined when no strategy in AYk(m) 
reaches m. In this case, the set of admissible strategies for the Receiver is 
defined to be the projection of RBk onto the signal m. So if there is ever 
a step when the signal-by-signal iterative process fails to reach m, then we 
artificially enlarge the set of allowable responses to m to include any action 
permitted by the fixed-equilibrium deletion procedure. We do not require 
that ASok+’ c AY’(m). Th’ IS containment need not hold if Ask(m) is 
not equal to SWk(m). 



We show in the proof of ProposiEion 5 that if m E SS”, then 
%2)“(m) c B?‘“(m). If m $SJk, then we use artificial sets to establish t 
result. 

Proposition 5. Note that the strat s fix- the Sender ir, 
gnal garue are naturally included in Sender’s strategy set 

e will view AYk(rn) as a subset of the Sender’s strategy space for 

to prove the proposition we will use induction to show that if 
we start with a FESSO, then for all k 3 0 

s* E AYk(m) for all m f A&*, (19, 

(20) 

Agk(rn) c Ht&. (21 j 
mtlw* 

ecall that s* is the strategy of the Sender for w  ich .Lqt)=m* for all t. 
(19), (28), and (21) hold for k = 0 from the definitions of t 
Assume that (19), (20), and (21) hold for k =O, 1, ..-, n- I. We claim that 
s* is an element of AT(m) for all m E M*. If AY”jm) = SY’(m), then t&e 
claim foIlows from the definition of a FESSO. herwise, m 4 SJ” for some 

and therefore SY*(m) = is*>. Let h be largest value of k 
m $ AJ”. Such an h exists because m $SJ” for some k<n, 

i~d~ctiou hypothesis, s* is an eletnent of A.Y”(m). Now construct the sets 
AYk(m), A94Tk(m), ,&V*(m), and Aa* foor k>h u 
starting with AY’(m) = AYh(m) and &%fh(m) = A&(m). 
of h and Al and A2, we have WYk(m)=AsPk(m) an ABk(m) = AW”(m) 
for h < k < n. Therefore, s* E KY(m) implies that s* 
(19) for k = n, it suffices to show that s* E: A.Y**(m). In 
we show that 

if s* $ AY*(m), then AY*(m) c %7*(m). (22j 

Y*(m) # 0, (22) contradicts is*) = Y*(m) and establishes (19) 
e (22) by induction. Plainly, 

89*(m) c &P(m) and (23) 

AB?*(m) c S.Bk(m) (24) 

hold when k=Q. If (24) holds when k =j- 1, tkesl (23) s for k=j by 
RI, since every element in AS@*(m) responds o~ti~a~Iy to a conjecture 
over strategies in AL%*(m), and hence responds 0pt~~aII~ to a conjecture 
over strategies in the larger set SL?~~ l(m). Similarly, if (23) 
then (24) holds for k=j. This claim follows from 



330 SOBEL, STOLE, AND ZAPATBR 

s* #AisP*(m), then every strategy in AY*(m) reaches m. Consequently 
every strategy in A%*(m) responds optimally to a conjecture over 
strategies in AsP*(m) that reach m. If (23) holds forj = k, then this conjec- 
ture is also over strategies in SYk(m). Hence (24) must hold for j= k. 
Therefore, (22) follows by induction, and by our remarks, (19) holds when 
k = n. 

Next we show that (20) holds when k=n. If s~AY”(rn’)), then 

s is an optimal response to CI E co(AR”- ‘(ml)). (25) 

It follows from (19) that for all m E M *, there exist conjectures p*(m)e 
co(AW”-l(m)) such that 

u*(f) > 4t, m, p*(m)) for all t E T(m). (26) 

Therefore, (21) implies that for k = n - 1 the conjecture b defined by 

P(m) = 
{ 
p*(m) if mEM*\{m’} 
a if m=m’ 

is an element of co(R%?!“-‘). Together, (25) and (26) imply that s is an 
optimal response to the conjecture p in the game G(M*). Hence (20) holds 
for k = n. 

We must also show that (21) holds for k = n. It suffices to show, for all 
m E RJ”, 

if a(m) E AW”(m), then 30, E co(RY”) such that 

em reaches m and a(m) is an optimal response to gm. (27) 

If m E AJ”, then there exists em E co(AY”(m)) such that cr, reaches m and 
a(m) is an optimal response to orn. (27) now follows from (20). If m qi AJ”, 
then (27) is an immediate consequence ofA2. 

We have shown that (19), (20), and (21) hold for all k 2 0. Therefore, 
s* E RY* and the proof is complete. 

Note added in proof: After completing this paper we learned that Peter DeMarzo has 
applied similar techniques to study the relationship between Perfect Sequential Equilibria and 
Divine Equilibria. 
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