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This paper studies equilibrium refinements in signaling games through an
examination of rationalizability in derived games obtained by replacing the equi-
librium path with a sure outcome that yields the equilibrium payoff to all players.
The informed player chooses between the sure payoff and sending an out-of-equi-
librium signal from the original game, Whether or not the strategy of choosing the
sure payoff is rationalizable is related to the iterated intuitive condition (divinity)
when the original game is viewed as having imperfect (incomplete) information.
Our results also demonstrate the significance of testing out-of-equilibrium signals as
a set rather than individually. Jowrnal of Economic Literature Classification
Numbers: 021, 022, 026. © 1990 Academic Press, Inc.

1. INTRODUCTION

In this paper we attempt to unify some recent work on equilibrium
refinements in signaling games by examining procedures which delete
strategies that are dominated relative to some reference payoffs. We present
three techniques, all of which are variations of rationalizability (Bernheim
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[37] and Pearce [15]), and relate them to the intuitive criterion (Cho and
Kreps [5]) and divinity (Banks and Sobel [1]). These techniques take the
original game and an equilibrium for that game, and derive a new signaling
game. In the new game we replace the equilibrium path with a sure out-
come that yields the equilibrium payoff of the original game to all players.
The informed player may choose the sure payoff or may send a signal that
was not used in the equilibrium of the original game. We then ask whether
the strategy of choosing the sure payoff survives iterative deletion of
dominated strategies.

Our different notions of rationalizability correspond to different ways of
looking at signaling games. When we require that equilibrium outcomes
survive iterative deletion of dominated strategies, it matters whether we
treat the signaling game as a two-player game of incomplete information or
an imperfect-information game in which there is a player for every type of
informed player.! In the first case types of the informed player have
common conjectures over strategy choices of the uninformed player. This
requirement deletes more strategies than the imperfect-information treat-
ment. It also matters whether we treat unreached information sets one at
a time or all at once. The refinement ideas of Banks and Sobel {17, Cho
[4], Cho and Kreps [5], Farrell [9], and Grossman and Perry [11]
analyze behavior at unreached information sets one at a time. However, the
existence of several possible unused signals may alter the way one of these
signals can be interpreted.

The next section describes signaling games and defines fixed-equilibrium
rationalizability. In Section 3, we show that fixed-equilibrium rationaliza-
hility for the imperfect-information game is equivalent to the iterated
version of the Cho-Kreps [5] intuitive criterion. Section 4 demonstrates
that fixed-equilibrium rationalizability for the incomplete-information game
(when unreached information sets are treated one by one) is equivalent to
co-divinity, which coarsens Banks and Sobel’s {17 concept of divinity. If
we apply rationalizability with respect to a fixed equilibrium, then we
obtain a set of outcomes that are generally larger than if we require the
rationalizability requirement to hold for each signal separately.

In Section'5 we look at what happens when we require outcomes of the
derived game to satisfy a more stringent requirement than rationalizability.
We relate the set of outcomes that survive a variation of Grossman and
Perry’s [11] test of Perfect Sequential Equilibrium due to van Damme [7]
to the Nash Equilibria of the derived game in which the Sender refuses the
sure cutcome with positive probability.

Section 6 compares our use of auxiliary games to related work of
Ben-Porath and Dekel [2] and van Damme [8].

! Fudenberg and Kreps [10] make a similar observation.

642/522-5
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2. THE MODEL AND FIXED-EQUILIBRIUM RATIONALIZABILITY

Throughout the paper we limit attention to simple signaling games. In
these games one player, the Sender, receives private information. We refer
to this information as the Sender’s type; we denote the type of the Sender
by #; ¢ is drawn from a finite set T (we also use T to refer to the cardinality
of the set of types). The Sender’s type is drawn according to a probability
distribution = over 7. We assume that = is common knowledge and that
7(t)>0 for all te T. After the Sender learns his type, he sends a signal m
to the other player, the Receiver. We denote the set of signals available to
a Sender of type ¢ by M(¢); T(m) denotes the set of types that are able to
send the signal m. The Receiver responds to the Sender’s signal m by
choosing an action, g, from a finite set of responses that we call A(m). The
players have von Neumann-Morgenstern utility functions defined over
type, signal, and action. The Sender’s payoff function is denoted u(¢, m, a)
and the Receiver’s payoff function is denoted v(z, m, a); we extend these
functions to the set of all mixed strategies by linearity and use «(-) and v(-)
to refer to these extensions. It is convenient to introduce notation for the
set of best responses of the Receiver. Let u be a probability distribution
over T(m). Let

BR(y, m)=argmax Y. v(t, m, a)u(t).

acdlm) e Tim)

If the Receiver thinks that u(t) is the probability that the Sender is type ¢
given the signal m, then BR(y, m) is the set of best responses to m. Let
BR(S, m) denote the set of the Receiver’s best reponses to probabilities
concentrated on a subset S of the set of all probability distributions
on T(m), BR(S,m)=U(...es; BR(, m); we write MBR(y,m) and
MBR(S, m) for the sets of mixed best responses corresponding to BR(u, m)
and BR(S, m), respectively. On occasion, we abuse notation and write
BR(S, m) when S is a subset of tyes. At these times we identify S with the
set of probability distributions on S; hence, when S< T(m), BR(S, m)=
U {p:n(S)=1} BR(y, m).

We will investigate the effect of imposing rationalizability requirements
on a fixed equilibrium outcome. We begin with a particular sequential
equilibrium to a signaling game. The equilibrium consists of a behavior
strategy for the Sender, denoted by a{(m|t), which specifies the probability
that the Sender of type 7 sends the signal m e M(¢); a behavior strategy for
the Receiver, denoted by p(a|m), which specifies the probability that the
Receiver takes the action ae 4(m) in response to the signal m; and
assessments, denoted by u(z|m), such that u(-|m) is a probability distribu-
tion over T(m) for each me M. A triple (o, p, u) is a sequential equilibrium
(Kreps and Wilson [14]) to a signaling game if and only if ¢ is a
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best response to p {(a{m'|t)>0 only if »' maximizes u(¢, m, p{-|m}}
over all me M(t}); the Receiver responds optimally to his assessment
(p(-|m)ye MBR(u(-1m),m) for all me M), and the assessments are
consistent with the equilibrium strategy of the Sender and the prior when-
ever possible (if 3, .7 2t )o(m|t)>0, then p(t|m)=[n(tio(m|t)}/
L2 crem Tt )o(m|t')]). Given the strategies (o, p), we can identify the
equilibrium payoffs of the players,

u¥(r)= Y Y ul(t,m, a)a(mt)p(alm}

me M{1) ae A(m}

for the Sender of type ¢, and

v¥ = z Z z U(ts m, a)a(m{t)o(aim)n(?}

teT meM(t) ae A(m)

for the Receiver. In addition, we can define the set of unsent signals,

M*={meM: Y n(t}a(mif)=0}s

te T{m)

and the equilibrium outcome, which is the probability distribution
o{m|t)pla|m)n{t) on the terminal nodes (z, m, a) of the game induced by
the equilibrium strategies.

Given a sequential equilibrium and a subset 3, of the set of unsent
signals M*, we define a new signaling game. The set of possibie types of the
Sender is 7, as in the original game. The set of pure strategies available to
the type # Sender is {m*} U [ M, M(¢)]. If the Sender’s signal is m*, then
the Receiver’s action set A(m*) is a single point; call it g*. Otherwise, the
Receiver has precisely the same actions available as he had in the original
game. The preferences for the new game, denoted by #{.) for the Sender
and (-} for the Receiver, satisfy

#{t, m, ay=ult, m, a) for meMM; and acA(m),
(e, m, a)y=v(1, m, a) for meM, and ae A(m),

a(t, m*, a*y=u*(1), and Bt m*, a*y=v*,

We denote the new game by Glg, p, My). We refer to this game {often
without specifying the choices of o, p, and M) as the derived game.
Grossman and Perry [11, p. 111] and van Damme {7, p. 2877 use derived
games of the form G(g, p, {m}) to study properties of Perfect Sequential
Equilibria. Grossman and Perry attribute the idea to David Kreps.

The derived game replaces the equilibrium of the original game with a
signal m¥ that gives the players the payoff they would have received in the
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original equilibrium. In the derived game, the Sender has the option of
selecting the payoff to the original game or selecting a signal from a subset
of the original signals. If the Sender decides not to send the signal m™*, then
the game continues as the original.

We apply the concept of rationalizability in the extensive form to the
derived game. In the context of simple signaling games, the definition
below is equivalent to the definition introduced by Pearce [15]. Let co(X)
denote the convex hull of the set X. Let R%° be the pure strategy set of
the Sender and R%° be the pure strategy set of the Receiver. Consider the
iterative procedure that determines R&**! and R#**! given R¥* and
R %" using the following steps:

RO. RJ*={me M :3se RF* such that s(t)=m for some e T(m)}.

Rl. R¥*"!'={seR¥*:3peco(RE") such that s is a best response
to p}.

R2. R#Z**! = {re RA* :Ym e RI**! 3o € co(R¥**!) such that
o(m|t)>0 for some ¢, and r(m) is a best response to o }.

The sets R¥* and R %* represent admissible strategies at the kth step of
the process. A strategy s of the Sender is included in R&**! if and only
if it is a best response to an element of the convex hull of the pure
strategies of the Receiver. If it is common knowledge that the Receiver uses
only the strategies in R#*, then elements of co(R%*) represent possible
conjectures that the Sender could have. R1 restricts attention to strategies
that respond optimally to some conjecture over the Receiver’s admissible
set of pure strategies.” If it is common knowledge that the Receiver uses
only the strategies in R4%¥, then it is sensible to restrict the Sender to
strategies in R&#** 1.

The condition that defines R#Z**! is a bit more complicated. RJ***
consists of the set of signals that can be sent using strategies in R#** 1 R2
states that strategies in R#**! are optimal responses to a conjecture that
the Receiver can hold over the possible strategies of the Sender. R2 allows
the Receiver to have a different conjecture depending on what signal is
sent: The conjecture ¢ could depend upon m. If there exists a strategy in
R%**1 in which at least one type of Sender uses the signal m, then R2
requires that the Receiver’s reply to m must be an optimal response to a
conjecture that the Sender uses m with positive probability. That is, the
conjecture should explain why the Receiver hears the signal m. Without
this restriction, R2 would never delete any strategies since any strategy of

2 Pearce [ 15] shows that any conjecture over a subset S of a player’s mixed strategy set can
be represented as a point in co(S). Since we can identify the set of mixtures of pure strategies
in a set X with co(X), allowing conjectures over sets of mixed strategies does not change the
analysis.
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the Receiver is an optimal response to the conjecture that the Sender uses
m* with probability one. If m¢ RJ***, then there is no strategy in R&*+!
that uses the signal with positive probability. R2 deletes no further
responses to .

Form the sets R¥* =20 RI* and RAE*=(),.,RE" of ratio-
nalizable strategies for the Sender and Receiver respectively.® Because R.%°
and R#° are nonempty and finite, R ¥* and R %* are nonempty for all k.

£

Let s* denote the strategy in which s*(¢)=m* for all 1.

DermiTion. The equilibrium (o, p) determines a fixed-equilibrium
rationalizable outcome (FERQ) of the original game if s* e R¥*

That is, (o, p) determines a FERO if it is a rationalizable strategy in
G{o, p, M*) for every Sender type to use m*.

RO, R1, and R2 describe a particular way in which to delete a subset of
the set of weakly dominated strategies in the derived game. Deleting strictly
dominated strategies has no cutting power in the derived game because all
of the Receiver’s strategies are best responses to s*; consequently none are
strictly dominated. We require, if the Receiver hears the signal m, that he
respond optimally to some conjecture over the Sender’s strategies. This
requirement prevents the Receiver from using a behavior strategy that is
strictly dominated given m. In fact we shall see that it is even more
restrictive. Nevertheless, our procedure does not rule out strategies which
specify that the Receiver take an action that is weakly dominated given a
signal. We present a variety of iterative procedures in the paper. The
procedures differ in how they describe the strategies of the Sender and what
criterion is used to delete these strategies. The intuitive criterion restricts
the set of Sender types that use a particular message, which corresponds

> Our definition differs from Pearce’s in two ways. First, an iteration of Pearce’s procedure
simultaneously deletes strategies of all players. Gur procedures alternates between deleting the
Sender’s strategies and the Receiver’s strategies. When weakly dominated strategies are
deleted, this difference could lead to a different set of rationalizable strategies. However, it
does rot affect whether s* e R&* The second difference in the definitions is that Pearce
requires that in order to be an element in, say, R.&*", a strategy § need only satisfy

Y2 a5, ayplals(e)m(e)

teT acA(m)

zmasz 2 i, s(t),a)p(a]s(t))n(z):SGREML
teT age A(m) )

That is, § need only be a best response in R 5% We require that strategies in R ¥#**! be best

responses in the larger set R &° (that is, the maximum above is taken over s € R#°). A simple

induction argument shows that the two approaches are equivalent in our coniext. However,

the approaches lead to different answers if one uses closely related equilibrium concepts. See

the discussion of the “Never a Weak Best Response™ Criterion in Cho and Kreps [3, p. 207].
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directly to deleting a set of the Sender’s strategies. Co-divinity and divinity
restrict the set of beliefs that the Receiver may hold. Since each set of
admissible strategies for the Sender gives rise to a set of beliefs for the
Receiver, fixed-equilibrium rationalizability and the intuitive criterion can
be viewed as techniques that restrict the Receiver’s set of admissible beliefs.

We construct G(o, p, M*) using only the equilibrium path and payoffs
induced by (o, p). The equilibrium (o, p) determines the payoff for choos-
ing m* and a set of unexpected signals (for which 3, . 1, n(t)o(m|1)=0)
that are not available in the derived game. Consequently G(o, p, M *) does
not depend upon the responses of the Receiver to unexpected signals. In
this way, the equilibrium path plays a different role in our construction
than the specification of off-the-equilibrium-path behavior. We do not have
formal justification for this asymmetric treatment of reached and unreached
information sets. However, the approach has been useful in providing an
intuitive framework for the Kohlberg-Mertens [13] notion of forward
induction. It has been used in a number of places to define equilibrium
refinements or restrict outcomes in extensive games (see, for example,
Banks and Sobel [1], Cho [4], Cho and Kreps [5], Cho and Sobel [6],
Farrell [9], and Grossman and Pery [11, 12]).

Analyzing a derived game assumes a particular view of off-the-equi-
librium-path behavior. According to this approach, when the Receiver
hears an unexpected signal, he acts as if he is playing a new game. The new
game contains only a subset of the strategies of the original game, and our
analysis hinges on the idea that the Sender only “chooses” to play this
game when he does not expect to lose (relative to reference payoffs deter-
mined by an equilibrium) by doing so. The work of Fudenberg and Kreps
[107 provides a dynamic motivation for studying fixed-equilibrium
rationalizability. If players arrive at equilibrium behavior following a
period of learning and experimentation, it may be that a player learns
about the equilibrium path earlier (or in more detail) than about his
opponents’ out-of-equilibrium behavior. In this case, a player may make
comparisons between a “sure” equilibrium payoff and a conjecture about
what would happen if he strayed from the equilibrium path. The analysis
of Fudenberg and Kreps [107] is quite different from ours. They present a
complete theory of play in the sense that all actions are taken with positive
probability and therefore beliefs are not specified arbitrarily. The
experimentation that takes place in the Fudenberg and Kreps framework
contrasts with the behavior in our model, which we justify using
rationalizability. Nevertheless, our approaches complement one another
because the limits of the Fudenberg-Kreps dynamics satisfy fixed-
equilibrium rationalizability.

We need to introduce two variations of our definition. One variation
involves testing unsent signals one at time.
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DerFiniTiON.  The equilibrium  strategies (o, p) determine a fixed-equi-
fibrium signal-by-signal rationalizable outcome (FESSO*) of the original
game if s* is a rationalizable strategy in G(o, p, {m}) for all me M*.

Section 4 contains an example that demonstrates that a FERO need not
be a FESSO.

Our definition of fixed-equilibrium rationalizability treats signaling
games as two-player games of incomplete information. One can also think
of signaling games as {7+ 1)-player games in which there is a player
for each type of Sender. This distinction modifies the definition of
rationalizability. If Sender types are treated as separaie players, then
rationalizability does not require different types to have the same conjec-
ture about the strategy choice of the Receiver. The difference makes it more
difficult to rule out strategies and provides another way to test outcomes
in signaling games.

DermvitioN.  The equilibrium (o, p) determines a  fixed-equilibrium
rationalizable outcome for the imperfect information game (FERIMO) if s*
is a rationalizable strategy in G(o, p, M*) viewed as a (T + 1)-player game.

Formally, denote the set of admissible strategies for the Sender and
Receiver at the kth stage of the process by 1% and 1%, respectively. If we
replace step R1 in the definition of rationalizability for (incomplete
information} signaling games with

RY. 1% = {sel¥* :Vt3p,eco(I#*) such that s(¢} is a best response
to g},

then we obtain the definition of rationalizability for signaling games treated
as (T + 1)-player games. (We construct the set of admissible strategies for
the Receiver at stage £+ 1, 12", from 1 *' using R2.) If we write
LF* = V50 1% and 12% = . o 1%, then an outcome is a FERIMO if
and only if s* e LF*,

The FERIMO procedure places fewer restrictions on admissible beliefs
at each stage of the deletion process than the FERG procedure because
FERIMOs do not require that each type of Sender have the same conjec-
ture over the Receiver’s responses. Our first result follows for this reason.®

PROPOSITION 1. Adny FERO is a FERIMO.

4 Soltano le persone che conoscono litaliano e la teoria dei giochi possono valufare se
questa terminologia ¢ appropriata.

® A separate argument, similar to the one we use to proof Propositien 5, is needed to prove
Proposition 1 when the FERO procedure reaches a step in which all strategies that send
me M* are deleted.
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While Pearce shows that the set of rationalizable strategies is nonempty
in every finite game, this result does not guarantee that fixed-equilibrium
rationalizable outcomes exist in signaling games. However, existence
of FEROs follows from the relationship between fixed-equilibrium
rationalizability and divinity that we establish in Section 4. In Section 4 we
show that any FESSO must be a FERO and that FESSO is equivalent to
an equilibrium concept called co-divinity. The set of divine outcomes is a
subset of the set of co-divine outcomes. Since Banks and Sobel [1] show
that every signaling game has a divine outcome, every signaling game has
a FESSO and a FERO. Section 3 demonstrates that the set of FERIMOs
coincides with the set of outcomes that survive the iterated intuitive
criterion. Therefore, results of Cho and Kreps [ 5] show that any signaling
game has a FERIMO.

3. THE ITERATED INTUITIVE CRITERION

In this section we treat the signaling game as a (T + 1)-player game of
imperfect information. We show that a sequential equilibrium outcome
passes the iterative intuitive criterion of Cho and Kreps [5, p. 202] if and
only if it is a fixed equilibrium rationalizable outcome in the imperfect-
information game.

The intuitive criterion of Cho and Kreps is a procedure by which
signal-action pairs (1, m) are deleted from the game if the Sender of type
t prefers his equilibrium utility to sending m no matter what admissible
response the Receiver takes when he hears m. The iterative version of the
text strikes signal-action pairs as above, restricts the set of admissible
responses of the Receiver to optimal responses to beliefs concentrated on
the remaining Sender types, and then repeats the process. Formally, fix a
sequential equilibrium that yields expected utility u*(¢) to the type 7
Sender, and let m be a signal that is sent with probability zero in the
equilibrium. The iterated intuitive criterion takes ICJ °(m)= T(m) and
IC#°(m) = A(m). IC1 and IC2 use ICT *(m) and IC#*(m) to determine
ICT**Y(m) and ICE** }(m).

ICl. ICT* Y m)= {teICT*(m) : u*(t) < max u(t, m, a)}
ac ICH*(m)
BRUCT“+(m),m)  if 1CT*+'(m)#Q

k+ 1 =
IC2. ICZ (m)-{lcgk(m) if ICT**(m)=¢.

IC1 deletes those types that do worse than their equilibrium payoff if the
Receiver responds to m by taking actions in IC#*(m). IC2 limits attention
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to actions in A{m) that respond optimally to some conjecture placing
probability one on types in ICT “(m).

Let ICT *¥(m)= {150 1CT*(m) and 1CH*(m)= 5, ICR (m). 1C2
guarantees that IC#*(m) 1s not empty.

DerINITION.  An equilibrium outcome satisfies the irerated intuitive
criterion with respect to the signal me M*, if and only if for all reT(m)
there exists aelC#*(m) such that u{r, m, a)<u*(r). An equilibrium
satisfies the iterated intuitive criterion if and only if it satisfies the criterion
for all me M*.°

Fixed-equilibrium rationalizability in the imperfect-information game is
little more than a restatement of the iterated intuitive criterion. Condition
IC1 in the definition of the intuitive criterion serves to delete Sender types
who prefer their equilibrium payoff to sending another signal. This restric-
tion is then used to limit Receiver responses in IC2. The same process of
deletion is carried out by first deleting Sender strategies in condition R1" of
the definition of FERIMO.

Before we prove that outcomes that pass the iterated intuitive criterion
coincide with the set of FERIMOs, we introduce some notation: Let
IR (m)={ac A(m):a=r(m) for some rel®*}, I#*(m) is the set of
actions that are admissible for the Receiver at the kth stage of the
FERIMO procedure. Similarly, we use IZ* to define I#£*(m). 1t is also
useful to observe that if 4 — A(m), then

u*(8) > ult, m, r) forali reco(A) {

[oe
-

is cquivalent to

() > ult, m, r) forall re W (23
provided that A c W< co(A4).
PrOPOSITION 2. A sequential-equilibrium outcome satisfies the iterated

intuitive criterion if and only if it is a fixed-equilibrium rationalizable
outcome in the imperfect information game,

Proof. We show by induction that if the outcome either passes the
iterated intuitive criterion or is 2 FERIMO, then

IR (m)=1C#"(m) forali k andall meM* (3}
(3) holds for k =0 from the definitions of 12°%(m) and IC#°(m).
® We have modified the definition of Cho and Kreps in order to guarantee that 1C#*(m)

is nonempty. This change is not significant. If there exists a stage & at which IC%#*(m) = 4,
then the outcome will always satisfy the iterated intuitive criterion with respect to .
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Assume that (3) holds for all k=0, 1, ..., n— 1. We claim that
{t:5(¢)=mfor some s 1"} =ICT "(m). 4)
To establish (4) note that if 5(¢) = m for some s 19", then R1’ implies that
w*(1)<u(t,m,a)  forsome oeco(IZ" '(m)). (5)
By (1) and (2), (5) is equivalent to
u*(t)<u(t,mya)  forsome aelB” '(m)=ICR" ‘(m). (6)

(6) implies that 1 e ICT "(m). Tt follows that the left-hand side of (4) is con-
tained in the right-hand-side of (4). Moreover, it follows from the induction
hypothesis and the assumption that the outcome either is a FERIMO or
satisfies the iterated intuitive criterion that for all m’e M(¢) ~ M*,

u*(tyzu(t,m’,a'(m’))  forsome a'(m')elR" '(m')=I1CR" '(m’).

(7

Hence, if (7) holds, then s(¢z)=m for some sel¥” because the Sender
can conjecture that the response to m' will be a’'(m’) for all m’#m.
Consequently, claim (4) follows from IC1.

If ICT"(m)=¢, then, by (4), m¢1}” and so R2 implies that
12"~ Y(m) = 1#"(m). Also, it follows from IC2 that IC#"~ (m) = IC#"(m).
So in this case (3) holds for k£ =n. To show that (3) holds for £ =#n when
ICT7"(m) # J, it suffices to show that

12" (m)=BR({¢ : s(¢) = m for some s 1L¥"}, m). (8)

When ICT"(m)# 3, it follows from the definition of I#"(m) that
12" (m)=BR(S, m), where S is the set of probability distributions
over T(m) induced by strategies in 15" In symbols S={u:u(?)=
[n()o(m| )1/[Xscrom n(t')o(m|[1t')] for some ogeco(l¥”) such that
o(m|-)#0}. S is contained in the set of probabilities on {¢:s(z)=m for
some s €15 }. Therefore, the left-hand side of (8) is contained in the right-
hand side. (7) implies that for each ¢ there exists a p, e co(I£”~ (m)) such
that s(¢) =m™ is a best response to p, in the derived game. Consequently,
1" contains all strategies of the form s,, where

m* if t¢L . "
sL(t)—{m _— and Lisasubsetof {r:s(t)=mforsels }

It follows that R2 implies that the left-hand side of (8) contains the
right-hand side of (8).
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From (4) and (8) we conclude that if the outcome satisfies the iterated
intuitive criterion or is a FERIMO and ICT "(m) # J, then

12" (m) = BR(ICT "(m), m) forall meM*. {9

By IC2, IC#"(m) = BRICT "{m), m). Consequently, {9} implies that {3} 1s
satisfied for £ =n. It follows by induction that ICZ*(m)=I#*(m) for all
me M*, which suffices to complete the proof.

Cho and Kreps {5, p. 2047 propose the equilibrium dominance test, a
slight variation on the intuitive criterion. To pass the test of equilibrium
dominance, an outcome must be a sequential equilibrium outcome with
beliefs concentrated on IC(Z *(m) for all out-of-equikibrium signals m.
Both the test of equilibrium dominance and the iterated intuitive criterion
require that there be some justification for the Sender to use m* when the
Receiver believes that only types in IC.7 *{(m) would use the signal m. 1t is
harder for an equilibrium to pass the equilibrinm dominance test than the
iterated intuitive criterion because the intuitive criterion allows the Sender
to consider more possible responses to m (and therefore a greater
possibility of finding some justification for avoiding the signal). An impor-
tant difference is that equilibrium dominance requires all types of the
Sender to hold a common conjecture about the response of the Receiver
{see Cho and Kreps [5, p. 1977). In the next section, we view signaling
games as two-player games of incomplete information. As a result, all types
of Sender will hold common beliefs about the Receiver’s behavior.

4, CO-DIVINITY

This section relates FEROs to divine and co-divine outcomes. First, we
define divinity. Fix a sequential equilibrium to the signaling game. As
usual, let u*(r) be the equilibrium expected utility of the Sender of type ¢
and let M* be the set of unsent signals in the equilibrium. The motivation
for the concept is the following. In equilibrium, the Receiver forms a
probability assessment about which types of Sender use a particular signal.
For the signals that are sent with positive probability in equilibrium, Bayes’
Rule determines this assessment. Divinity attempts to describe what
admissible assessments are when the Receiver hears an unexpected signal.
We compute these beliefs, which we denote below by D& *{(m), assuming
that all types of the Sender have a common conjecture about how the
Receiver will respond to a signal, and that the Receiver thinks that the
Sender would not use an unanticipated signal unless the Sender expects to
(weakly) gain utility (relative to the equilibrium payoff) by doing so.
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For each behavior strategy « that the Receiver can take in response to
m, let

P(a, m)={te T(m) : u*(t) <u(t, m, o)}

be the set of types that strictly prefer the response « to their equilibrium
payoff,

Lo, m)={te T(m): u*(t)=u(t, m, o)}

be the set of types for which sending m and inducing the response a yields
the same payoff as the equilibrium, and, for nonempty subsets K of T,
denote by =¥ the conditional distribution of 7 given that re K. That is,

koo B/ Esexnl(s) i 1€k
i m_{o if 1¢K.

If P(a,m) v I{a,m) # &, then let I'(a, m) = co{n®:Pla,m) = K =
P(a, m)w I(a, m) }; otherwise, set I'(e, m)= . Finally, if A4 is a subset of
MBR(T(m), m), then let (A, m)=co[U,, I (o, m)]. If it were common
knowledge that the Receiver would respond to the signal m with the
behavior strategy o, then the set K of Sender types who would prefer to
send m rather than to follow the equilibrium path would necessarily satisfy

P(ot, m)= K= P(o, m) v I(o, m). (10)

Hence, the set I'(«, m) describes the beliefs that the Receiver might hold
after hearing the signal m. I'(4, m) describes those beliefs when the set of
actions that the Receiver may take in response to m is the set A.

Now consider the iterative process that begins with the set D#°(m) of all
probability distributions on T(m) and D#°(m)=co(A(m)), the set of
responses the Receiver can take given m. Given D#%(m) and D#*(m), we
define D#** (m) and D#**'(m) by

D1. D#**'(m)=I(D#%*(m),m) and

MBR(D#** '(m), m) it DB m)# QD

D2. Dgz"“(m)={ng(m) if DB !(m)=.

We set DB*(m) = ;5o D#*(m) and DR*(m) = Vg5, DZ*(m).

DeFINITION.  An equilibrium outcome is divine if for each me M* there
exists r € D#*(m) such that u*(¢) = u(t, m, r) for all te T(m).

" Banks and Sobel [1] write the definition of I(a, m) in a different, but equivalent, form.
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FIGURE 1

Banks and Sobel [17 show that there exists a divine equilibrium
outcome in all finite signaling games.

in rationalizability the Sender forms conjectures over the set of possibie
pure-strategy best responses of the Receiver. Consequently the convex hull
of the set of pure-strategy responses possible for the Receiver determines
the strategies that the Sender may use. In contrast, divinity computes the
set of allowable beliefs for the Receiver using a set of possible mixed-
strategy best responses of the Receiver. Since the set of mixed strategy best
responses may be strictly smaller than the convex hull of pure-strategy best
responses, divinity may be a harder test to pass than fixed-equilibrium
rationalizability.

Consider the example in Fig. 1,* which is based on a similar example in
Fudenberg and Kreps [10]. Let us test the equilibrium in which the Sender
plays strategy m, with probability one, and the Receiver responds to m
with a,. It is straightforward to check that D#'(m)=D%%m) is equal to
the set of probability distributions on {7, 7,}. The mixed-strategy best-
response set of the Receiver to D' (m) contains all mixtures of a, and 4,,
and all mixtures of g, and a;. As a result, we have DZ%m)=
co{(3, 3), (0, 1)}, since any action in D#'(m) that yields a noanegative
utility to ¢, yields a positive utility to t,. Therefore, D#*(m) is equal 10
{a, }. Direct applications of D1 and D2 show that D#*(m)= {({}, 1)} and
DR*(m)= {a,}, and therefore the outcome is not divine. However, fixed-
equilibriutm rationalizability deletes no strategies, and therefore the
outcome is 2 FERQ. To see that fixed-equilibrium rationalizability deletes
no strategies, argue as follows. The strategy s* is a best response for the

& In all of the examples the Sender’s payoffs are written above the Receiver's.

642/52/2-6
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Sender provided he conjectures that the Receiver responds to m with a,.
The strategy (s(¢,), s(¢,)) = (m, m) is an optimal response to the conjecture
that the Receiver responds to m with a,. If the Sender conjectures that the
Receiver will respond to m with equal mixtures of the pure strategies a,
and a,, then he responds optimally by using m if ¢, and m* if ¢,.
Alternatively, if the Sender conjectures that the Receiver will respond to m
with a (.3,.7) mixture of the pure strategies a; and a,, then he responds
optimally by using m* if z, and m if ¢,. Consequently, R¥!=R " It is
straightforward to verify that R2 deletes none of the Receiver’s strategies.
In particular, a, is a best response to the conjecture that the Sender is
equally likely to play (m*, m) and (m, m*).

The difference between divinity and rationalizability in the example
arises because the convex hull of the set of pure-strategy best responses and
the set of mixed-strategy best responses are not the same. Divinity is a
refinement of sequential equilibrium obtained by imposing additional
conditions on beliefs held off the equilibrium path. Hence, in a divine
outcome it must be common knowledge that the Receiver responds to each
out-of-equilibrium signal with a best response to some belicf. When the
convex hull of the set of pure-strategy best responses is strictly larger than
the set of mixed-strategy best responses, fixed-equilibrium rationalizable
outcomes can be supported by conjectures that do not correspond to an
optimal response to beliefs. The same distinction can be made between the
test of equilibrium dominance and the intuitive criterion: The equilibrium
dominance test requires that the response to an unexpected signal is known
to be a best response to beliefs; the intuitive criterion does not. The distinc-
tion between the sets of mixed-strategy best responses and the convex hull
of pute-strategy best responses did not play a role in Section 3 because
an outcome fails the iterated intuitive criterion if and only if there is
te T(m) such that u*(z)<u(t, m,a) for all pure strategy responses
aeBR(ICT *(m), m). As we have noted ((1) and (2)), this condition is
equivalent to u*(t)<u(t, m,r) for all re MBR(ICT *(m), m) or for all
re co(BR(ICT *(m), m)).

A minor variation of divinity does correspond to (a form of) fixed-
equilibrium rationalizability.

Begin with the set C#°m) of all probability distributions on T(m) and
C#°(m) = A(m), the set of responses the Receiver can take given m. Given
C#*(m) and C#*(m), we define CB**+*(m) and CZ**'(m) by

Cl. C#**'(m)=TI(co(C#*(m)),m) and

BR(C#**1(m), m) it C#**'(m)#J

C2. CA“H(m)= {C@k(m) if CA**'(m)=g

We set CH*(m) = \xso CH*(m) and CR*(m)= (s CH* (m).
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DerINITION.  An equilibrium outcome is co-divine if for each me M*
there exists p{m)eco(CA*(m)) such that «*{(#)>ult, m, p(m)) for all
te T(m).°

Co-divinity differs from divinity in two respects. Co-divinity treats the set
of possible actions of the Receiver, C&*(m), as a set of pure strategies.
More importantly, the set of allowable beliefs, C%*(m), is derived as the set
of probability assessments available to the Receiver if the Sender responds
optimally to arbitrary conjectures on the (pure) strategies in C#*(m),
instead of the smaller set of mixed-strategy best responses.

It is a simple matter to check that D®*(m)c C#*(m) for all £=>0.
Consequently, we have the next result.

ProPOSITION 3. Any divine outcome is co-divine.

Next we compare FESSO to co-divinity. We denote by SZ*(m) and
S&*(m) (SF*(m) and SF*(m)) the sets of admissible strategies for the
Receiver (Sender) obtained by applying RO, Ri, and R2 to G{({m}).
Divinity and co-divinity differ from rationalizability because the first
concepts compute the Receiver’s possible responses as a set of best
responses to beliefs, while rationalizability constructs S#%(m) by allowing
the Receiver to best respond to arbitrary conjectures over the strategies
in S¥*m). To facilitate a comparison between co-divinity and
rationalizability, we will represent S%%(m) as the set of best responses to a
collection of probability distributions over T(m). If seS¥*m) and
K{s,m)= {1 :s(t)=m} is the subset of types that send m when the Sender
uses s, then the Receiver's set of optimal responses to s is equal to
BR(n®*"™ m). More generally, responding optimally to a conjecture over
strategies in a set S¥*(m) is equivalent to making an optimal response to
a probability distribution in

co{n® :I5e SF*(m) such that K= K(s, m)}. (11)

PROPOSITION 4.  An equilibrium outcome is co-divine if and only if it is a
fixed-equilibrium signal-by-signal rationalizable outcome.

Proof. Both co-divinity and fixed-equilibrium signal-by-signal ratic-
nalizability treat unsent signals one at a time. Therefore, we can fix a signal
me M* and show that the Receiver’s set of admissible actions at each step
of the iterative process for co-divinity agrees with the set of admissible
actions for the Receiver defined for FESSG. That is, we will show that

CHA*(m)=SA*(m) forall k=0. (12}

® Fudenberg and Kreps [10] independently develop and analyze a related concept.
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Condition (12) holds for k=0 by the definition of the two sets. Assume
that (12) holds for £=0,1,..,n—1. We prove that it holds for k=n.
Notice that it is sufficient to show that

{Kc T(m): K+ & and 35 S¥"(m) such that K= K(s, m)} -
={KcT(m): K+ and

Ju e co(CA"~(m)) such that P(e, m) = K = P(a, m)w I(a, m)}.
(13)

By (11), S#"(m) is the set of best responses to probability measures
determined by the first set in (13). The second set in (13) determines
C#"(m) in the same way. However, se S%"(m) if and only if it is an
optimal response to a conjecture over strategies in S#Z"'(m). Since
CA"'(m)=S%""'(m) by the induction hypothesis, R1 implies that
seSS"(m) if and only if 3o € co(CR"~ *(m)) such that s is a best response
to «. However, s is a best response to « if and only if

P(x, m)< K(s, m) < P(a, m) U I(o, m). (14)

Equation (13) follows from (14). Therefore, we have established that (12)
holds for k& =n. By induction, we can conclude that

CR*(m) = SA*(m). (15)

In order to have a FESSO, we must have that m*eS%*(m), or,
equivalently, that for all e T(m),

Jo e co(S#*(m)) such that w*(¢) = u(t, m, a). (16)

In view of (15), (16) is equivalent to the outcome being co-divine (relative
to the unsent signal m).

Co-divinity, divinity, and fixed-equilibrium, signal-by-signal rationaliza-
bility treat unreached information sets one at a time. Implicit in this
approach is an assumption that whatever causes a particular “unexpected”
signal to be sent is independent of the other available unsent signals. The
assumption that deviations are independent across signals is restrictive, as
the next example shows.

Figure 2 describes a signaling game.'® The outcome in which both types
of Sender send m, with probability one is a sequential equilibrium outcome
since the Receiver could respond to m; with a; (a; is a best response to
u(tymy) €[5, 51). Similarly, the Receiver could have pu(¢,|m,)e[4, 2] and

® Bric van Damme has told us of a similar example constructed by Georg Noldeke.
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FiGure 2

respond to m, with r;. However, the outcome fails to be co-divine. To see
this, note that u(t,, my, r;) >u(t,, my, r;) for j=1, 2, and 3. Therefore, 1,
prefers m, to m, whenever ¢, prefers m, to m;. Since m, is not dominated
for either player in the first round of deletion, co-divinity requires that
ult,|my) 2 7(t,). Consequently, the Receiver must respond to m, with r,,
and both types of Sender would deviate from their equilibrium strategy.
Moreover, a similar analysis applies to the out-of-equilibrium play of m,,
giving us an alternative basis for co-divinity 1o reject the outcome.

The argument for rejecting the equilibrium depends upon testing the play
of one out-of-equilibrium signal at a time while ignoring the existence of
other unsent signals. In particular, the test we described for co-divinity
{and FESSO) looked at the play of m, by (at least) one type of Sender
while ignoring the possibility that another type of Sender may be playing
m, with positive probability. We can use the example to demonstrate that
requiring the players to treat deviations one signal at a time may restrict
equilibria in an unreasonable way.

Consider the game derived from the equilibrium in which the Sender
always uses mj;. The strategies (s(f,), s(¢,))={(m;, m*) are strictly
dominated for i=1 and 2 (for example by a (3, 3) mixture of (m*, m*) and
{(m*, m,;)) because any conjecture that makes m™ optimal for ¢, must make
m* uniquely optimal for f,, but no other strategies for the Sender are
dominated in the derived game. Furthermore, when only {m,, m*) and
(m,, m*) are deleted from the Sender’s strategy set, all of the Receiver’s
strategies in the derived game remain undominated. Consequently, the
cutcome is a FERO even though it fails the test of fixed-equilibrium
rationalizability when either message is takcen alone.

Co-divinity does not allow the Receiver to believe that ¢, is likely to send
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m,. However, the discussion above provides a context in which there is
some justification for this belief. If the Sender conjectures that @, is the
response to m; and r, is the response to m,, then ¢, would send m, and
t, would send m;. Hence, ¢, can use the signal m,; t,’s best response to a
conjecture about the Receiver’s strategy need not be m, whenever ¢,’s best
response to the same conjecture is m,. When all unsent signals are taken
into account, it may be inappropriate to conclude that “z, is less likely than
t, to defect to m,” The same type of argument demonstrates that we
cannot conclude that “¢, is less likely than ¢, to defect to m,” even though
co-divinity requires that u(z,|m,)>.75.

The example demonstrates that a FERO need not be a FESSO. The next
proposition shows that the set of FEROs is always as large as the set of
FESSOs.

ProrosiTION 5. Any FESSO is a FERO.

A proof of Proposition 5 is in the appendix. Here is an informal argu-
ment. The strategies of a signal-by-signal (FESSQO) game are a subset of the
strategies for a multiple-signal (FERQ) derived game: Any strategy for the
multiple-signal game in which the Sender uses only one signal other than
m* with positive probability is also a strategy for a signal-by-signal game.
We can show that for any FESSO, the set of strategies for the Sender that
remain after k iterations of RO, R1, and R2 for the signal-by-signal game
is always contained in the set of strategies that remain for the multiple-
signal game. Therefore, if the strategy of sending only m* is rationalizable
in all of the signal-by-signal games, then it is rationalizable in the multiple-
signal game. To see this, suppose that the strategy s remains after &
iterations in the signal-by-signal game. If s(¢) e {m*, m'} for all ¢, and s(z)
is also an optimal response to a conjecture a(m'), then let the Sender
conjecture that the Receiver will make a response o(m) that satisfies
u*(t) 2 u(t, m, a(m)) for all ¢t and for all me M*\ {m’}. If the Sender’s
copjectures over all me M* are given by a(-), then s is an optimal response
in the multiple-signal game. The only detail missing in this argument is a
verification that the Sender’s conjectures are made over strategies that
remain in the Receiver’s possible response set at the £th step of the iterative
process. The verification is straightforward provided that for each me M*
there remains a strategy se S%*(m) such that s(z) =m for some e T(m).
In this case one can show that any behavior strategy of the Receiver that
the multiple-signal procedure deletes must also be deleted by the signal-by-
signal procedure. Therefore, any conjecture feasible for the signal-by-signal
procedure is feasible for the multiple-signal procedure also. The argument
is more complicated if there is a step in the signal-by-signal procedure at
which all strategies that send me M* are deleted. At that point the signal-
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by-signal procedure does not delete any more of the Receiver’s responses to
m. The multiple-signal procedure may continue to delete responses to .
To show that a FESSO is a FERO we must show that the multiple-signal
procedure does not delete ail actions that are worse than m* for some
Sender type. The appendix contains the details of an argument that shows
there always remains a strategy for the Receiver that yields a payoff that
no Sender prefers to the fixed-equilibrium payoff.

Banks and Sobel [1] demonstrate that all finite signaling games have at
least one divine outcome and that divine outcomes survive the equilibrium
dominance and iterated intuitive criteria. Therefore, the first five proposi-
tions imply the following existence result.

COROLLARY. Every finite signaling game has a FESSO, a FERO, and a
FERIMO.

We can now position our concepts within the current refinement
hierarchy. Propositions 1 and 2 demonstrate that the set of FERIMOs is
precisely the outcomes that satisfy the iterated intuitive criterion, and
contains the set of FEROs. In turn, the set of FEROs contains the FESSGs
by Proposition 5. FESSOs coincide with the set of co-divine outcomes
{Proposition 4). We cannot place outcomes that survive the equilibrium
dominance test inside this hierarchy. Although any divine outcome passes
the equilibrium dominance test and anything that passes equilibrium
dominance is a FERIMO, there is no general relationship between FEROGs
or FESS8Os and the outcomes that pass equilibrium dominance. The test of
equilibrium dominance can be harder to pass than FERO or FESSO
because it requires all types of the Sender to conjecture that the Receiver
choose an element in the set of mixed strategy best responses rather than
in the possibly larger convex hull of pure strategy best responses. The equi-
librium dominance test may be easier to pass because it does not require
all Sender types to hold the same beliefs over the Receiver's response. 1t is
not difficult to construct examples in which an outcome that passes the test
of equilibrium dominance is not a FERO (and hence not a FESSO), and
examples in which an outcome that is a FESSO (and hence a FERQ) fails
to pass the equilibrium dominance test.

The choice of which fixed-equilibrium refinement to select (FERIMO,
FERO, or FESSO) is determined by an evaluation of whether the
economic environment is best modeled as a (T'+ 1)-player game of imper-
fect information or a two-plaver game of incomplete information, and
ranges from the iterated intuitive criterion to co-divinity. If one is troubled
by tests that treat unreached information sets independently, then
co-divinity may be too strong.
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5. PERFECT SEQUENTIAL EQUILIBRIA

Thus far we have focused on the set of outcomes to signaling games that
are rationalizable in a derived game. One could also ask what would
happen if we required our outcomes to satisfy another game-theoretical
restriction in the derived game. A natural approach is to replace
rationalizability with Nash Equilibrium. In this section, we discuss one way
to do this.

One possible question to ask is: Under what conditions will s* be a
Nash Equilibrium strategy for the Sender in the derived game? This is not
an interesting question because (s*, p) is always a Nash Equilibrium
strategy profile for the derived game G(o, p, M,) for My,= M*. Next, we
could ask whether s* is still a Nash Equilibrium strategy after we have
deleted strategies from the derived game using one of the procedures intro-
duced earlier. For example, we could find conditions under which s* is a
Nash Equilibrium strategy for the Sender when strategies outside of R %*
and RZ* are deleted. Here the requirement that s* be a Nash Equilibrium
strategy is equivalent to the outcome being fixed-equilibrium rationalizable.
This follows because if s¥ € R#*, then there exists a conjecture p* over
RZ* such that s* is an optimal response to p*. Since all strategies in R 22*
are optimal responses to s*, (s*, p*) is a Nash Equilibrium.

One other interpretation of the derived game leads to a refinement of
Grossman and Perry’s [11] (see also Farrell [9] who introduced a related
concept) idea of Perfect Sequantial Equilibrium (PSE). In this section we
introduce PSE and PSE¥*, a refinement of PSE due to van Damme [7]. We
then provide an interpretation of the derived game that provides a charac-
terization of PSE*. Finally, we use the derived game to interpret the
solution concepts.

We now define PSE. Fix a sequential equilibrium (o, p) to the original
signaling game. Let me M* be a signal that is not used by the Sender in
equilibrium. Recall from Section 4 that for any behavior strategy o that the
Receiver may take in response to the signal m, I'(«, m) is the set of beliefs
that the Receiver may hold if the Sender of type ¢ chooses between u*(r)
and u(z, m, o). Grossman and Perry call the belief u consistent if there
exists a behavior strategy « € MBR(y, m) such that ue I'(«, m). Let CB(m)
be the set of consistent beliefs given the signal m. A Perfect Sequantial
Equilibrium is a sequential equilibrium in which off-the-equilibrium path
beliefs are consistent whenever possible. Hence, the Nash Equilibriom
(o, p) gives rise to a PSE outcome if and only if for all me M * such
that CB(m)# (J, there exists ue CB(m) and o€ MBR(y, m) such that
u*(t) = u(t, m, a) for all te T(m). Van Damme [7] introduces a refinement
of PSE, which he calls PSE*. Van Damme calls a behavior strategy «
consistent with an equilibrium given the signal m if there exists ue I'(x, m)
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such that we MBR(y, m). Denote by CBS(m) the set of consistent behavior
strategies given m. A sequential equilibrium is a PSE* if and only if the
off-the-equilibrium actions are comsistent whenever possible. Hence, the
Nash Equilibrium (o, p) gives rise to a PSE* outcome if and only if for
all me M* such that CBS(m)+# J, there exists e CBS{m) such that
u* ()= ult,m, o) for all 1e T(m). Note that for any consistent behavior
strategy of the Receiver there exists a consistent belief Hence any PSE*
outcome is a PSE outcome. However, there may be a behavior strategy o
that is an optimal response to a consistent belief, but fails to be a consistent
behavior strategy. So the PSE* test is logically more difficult to pass than
the PSE test. Indeed, van Damme shows by an example that there exist
perfect sequential equilibria that fail to be PSE*,

PSE* outcomes can be described using derived games. Delete the pure
strategy s* in which all types of the informed player use m* from the game
G(o, p, {m}). For notational convenience we do not refer to (g, p), and we
call this game G'({m}). In G'({m}) at least one type of Sender uses m with
positive probability. Consider the set E(m) of Nash Equilibria (¢, 2') 1o
G'({m}). Because we have deleted the pure strategy s* but allow the
Sender to use s* with positive probability, E{m) may be empty. However,
for all (o', ') e E{m),

w*()y<ult, o'(t), o) forall 1. (17}

If (17) failed to hold for some type 7', then ¢’ could increase his payoff by
increasing the probability he sends m* {provided that he did not increase
the probability to one).

PROPOSITION 6. A sequential-equilibrium sirategy profile (o, p) deter-
mines a PSE* outcome if and only if for all me M*, either E{m)= (& or
there exists {g', &'y € E{(m) such that

uMt)zult,m &’y forall teT{m). (18}

In view of (17), (18) is equivalent to w*(¢)=u(t, o’{t}, '} for all «.

To prove the proposition, one need only check that « is a consistent
behavior strategy if and only if there exists a o’ such that (¢, «) € E{(m).
Consequently E(m)=J if and only if CBS(m)= . We omit the
straightforward verification.

While Farrell, Grossman and Perry, and van Damme provide arguments
to motivate PSE, Proposition 6 provides a different prespective. When the
Receiver hears the unexpected signal m, he could act as if he is playing the
game G'({m}), since every type of Sender could not have used the strategy
s* with probability one in this case. If the Sender prefers to send the signai
m rather than to play as specified by the equilibrium, then it is plausible
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to assume that he expects to gain (weakly) relative to the equilibrium.
According to Proposition 6, PSE* requires that the players coordinate on
a Nash Equilibrium of G'({m}) that is at least as good as the original equi-
librium for each type. (If no such an equilibrium exists, then the outcome
is a PSE¥*.) Consequently, an outcome fails to be a PSE* if every Nash
Equilibrium of G'({m}) is better for at least one Sender type than the
original outcome.

Proposition 6 suggests that PSE* requires a higher level of coordination
than does co-divinity. Both concepts depend on the assumption that
unexpected signals are treated independently,and that the Sender only
sends them if he does not expect to lose relative to his equilibrium expected
utility. However, beyond these restrictions, co-divinity demands only that
there be a rationalizable outcome of G’({m}) that is no better than the
equilibrium outcome for each type of Sender; PSE* goes further by asking
that there be a Nash Equilibrium outcome of G'({m}) that is no better
than the equilibrium outcome for each type of Sender. The additional
restriction helps to explain why there exist signaling games with no PSE*
(Grossman and Perry [11, p. 112] give an example, due to Joseph Farrell
and Fric Maskin, of a signaling game without a PSE).

6. AN ALTERNATE INTERPRETATION OF THE DERIVED GAME

This paper studies equilibrium refinements for signaling games by
examining the cutcomes that survive iterated deletion of weakly dominated
strategies in an auxiliary game. Ben-Porath and Dekel [2] and van
Damme [8] do a similar exercise. These two papers add to a given game
a stage in which one of the players may publicly burn money before they
play the original game. This strategy lowers the burner’s payoffs uniformly.
When weakly dominated strategies are iteratively deleted (or the more
restrictive strategic stability of Kohlberg and Mertens [157 is applied), the
new game may have a unique outcome, which is an equilibrium outcome
of the original game, even if the original game has multiple equilibria."*
The framework of these papers is quite different from ours. Not only do
they treat a different class of games, but the derived games of Ben-Porath
and Dekel and van Damme can be defined without reference to an
equilibrium outcome in the original game.

Y Ben-Porath and Dekel study finite games which contain an outcome that every player
prefers to all other outcomes. For this class of games, they show that only the preferred
outcome of the original game survives deletion of weakly dominated strategies in an auxiliary
game in which one player has the option to burn money (in sufficiently small denominations).
No money is burned in the undominated outcome of the auxiliary game.
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A reinterpretation of our auxiliary game brings it closer to these papers.
View a signaling game as a decision problem for the Sender. Let the subjec-
tive expected utility of the Sender of type ¢ be u*{r). Now consider an
auxiliary game, call it G”, in which a Sender of type ¢ may send the signal
m™* in addition to the strategies in M. If he uses m™*, then he receives u*(s};
otherwise, G” is no different from the original game. Hence, in the auxiliary
game the Sender has an opportunity to collect with certainty (what he
claims is) the value of the original game. Under what conditions is the
value of the auxiliary game equal to the value of the original game? If one
requires solutions to survive the iterative deletion procedures that we have
discussed, then our paper comes close to answering this question.

This game differs from the derived games considered in the paper
because the signal m* does not replace the equilibrium path. However, the
concepts are related. Let u*(z), 1=1,2, .., 7, be expected utilities from a
sequential equilibrium to the original game. It is easy to check that m* is
a signal-by-signal rationalizable strategy for the corresponding auxiliary
game G" if and only if the original equilibrium outcome is a FESSO. Also,
if the original equilibrium outcome is a FERQ, then m* is a rationalizable
strategy in G”. The converse is not true, as the next example demonstrates.
(See Fig. 3).

Consider the sequential equilibrium outcome in which the Sender sends
m,; with probability one and the Receiver responds to m, by choosing «,
with probability one. This outcome can be supported as a sequential equi-
librium provided that u(z,[m,) <1, so that the Receiver can respond to m,
by playing r, with enough probability to discourage the Sender from using
m,, However, since ulty, m,, ri) > ulty, my, ry), ulty, My, 1) =u{ls, My, 154

1

and u*(f)=u*(t,) =0, co-divinity requires that u(¢,|m,)>=. Therefore,

FIGURE 3
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the outcome is not co-divine. (Equivalently, note that the outcome is not
a FERO since the strategy (s(t,), s(¢,)) = (m*, m,) is deleted in the first
iteration.) Nevertheless, if the strategy m* were added to the game without
deleting the signal m,;, we could delete only the strategy (m*, m,) of the
Sender. In particular, the strategy (m,,m,) would survive because the
Sender could conjecture that the Receiver would respond to m, with g, and
respond to m, with r,. Consequently, the set of values that are
rationalizable in G"” is strictly larger that the set of values that can be
obtained through FEROs.

APPENDIX

This appendix contains a proof of Proposition 5. We start with some
definitions.

Define RJ* and SJ* by RJ* = {m : Ise R#* such that s(r) =m for some
teT(m)} and SJ*={m:35eSF*(m) such that s(z)=m for some
te T(m)}. RJ* and SJ* are the sets of signals that are reached by strategies
in R¥* and S¥*; we say that a conjecture ¢ on the Sender’s strategy set
reaches m if there exists 7e T(m) such that o(m|t)>0.

Next, we define a procedure that iteratively defines the artificial sets
A S (m) and AR*(m). Set AF (m) =S5 (m) and AR(m)=SR°(m) and
let AT, A¥**!(m), and AZ**!(m) be determined from A ¥*(m) and
A Z*(m) using the following steps.

AO0. AV'={meM*:3seAF*(m) such that s(t)=m for some
te T(m)}.

Al. AZ*" ' (m)={s:3Jueco(AR*(m)) such that s is a best response
to o).

A2, AR* Y m) = {a € AR*(m):36 € co(AF** (m)) such that
o(m]t)>0 for some ¢, and g is a best response to ¢}, if me AJ*** and

AR* " (m)={ae A(m):Ire RE**" such that r(m)=a} if m¢ AJ**+,

The artificial sets differ from the rationalizable signal-by-signal sets only
in the way in which A%®*(m) is defined when no strategy in AS%*(m)
reaches m. In this case, the set of admissible strategies for the Receiver is
defined to be the projection of R#* onto the signal m. So if there is ever
a step when the signal-by-signal iterative process fails to reach m, then we
artificially enlarge the set of allowable responses to m to include any action
permitted by the fixed-equilibrium deletion procedure. We do not require
that A% *!(m)= A¥*(m). This containment need not hold if A #*(m) is
not equal to SZ*(m).
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We show in the proof of Proposition 5 that if meSIY, then
SA*(m) = RA*(m). If m¢SI*, then we use artificial sets to establish the
result.

Proof of Proposition 5. Note that the strategies for the Sender in the
signal-by-signal game are naturally included in the Sender’s strategy set for
G(M*). We will view A F*(m) as a subset of the Sender’s strategy space for
G(M*).

In order to prove the proposition we wiil use induction to show that if
we start with a FESSO, then for all k>0

s*cAFm) forall meM*, (19}
AF*(m)c=RF* forall meM¥*, and (20}
1 AZ*(m)=RZ~ (21}

me M*

Recall that s* is the strategy of the Sender for which s*(¢}=m* for all s.
{(19), (20), and (21) hold for k£ =0 from the definitions of the sets involved.
Assume that (19), (20), and (21) hold for k=0, 1, .., n— 1. We claim that
s* is an element of A" (m) for all me M*. I A F"(m)=85"(m), then the
claim follows from the definition of a FESSO. Otherwise, m ¢ SI* for some
k <n and therefore S¥*(m)= {s*}. Let h be the largest value of k < for
which m ¢ AJ". Such an h exists because m ¢ SJ* for some k<n. By the
induction hypothesis, s* is an element of A .%"(m). Now construct the sets
A m), AR (m), K&*(m), and AR*(m) for k>h using Rl and R2
starting with A #*(m) = A %"(m) and A %"(m) = AR"(m). By the definition
of h and Al and A2, we have A% (m)=AF*(m) and AR“(m)= AR (m)
for & <k <n. Therefore, s* € A ¥"(m) implies that s* € A.¥"(m). To prove
(19) for k =mn, it suffices to show that s* e A% *{m). In order to prove this,
we show that

i s*¢ AS*(m), then AZ*(m)c SF*(m). (223

Since A% *(m)# &, (22) contradicts {s*} =S5 *(m) and establishes (19).
We prove (22) by induction. Plainly,

AFL*mycS¥*m)  and (23

A R*(m) < SE*(m) (24)

hold when & =0. If {(24) holds when k=j— 1, then (23) holds for k=; by

R1, since every element in A% *(m) responds optimally to a conjecture

over strategies in A%*(m), and hence responds optimally to a conjecture

over strategies in the larger set S%’~ '{m). Similarly, if (23} holds for k =,
then (24) holds for k=j This claim follows from RZ because i
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s*¢ AF*(m), then every strategy in A.S*(m) reaches m. Consequently
every strategy in AZ%*(m) responds optimally to a conjecture over
strategies in A.%*(m) that reach m. If (23) holds for j =k, then this conjec-
ture is also over strategies in S.#*(m). Hence (24) must hold for j=k.
Therefore, (22) follows by induction, and by our remarks, (19) holds when
k=n.

Next we show that (20) holds when k=n. If s A%"(m’)), then

s is an optimal response to « € co(AZ"~*(m')). (25)

It follows from (19) that for all me M*, there exist conjectures p*(m)e
co(A %"~ '(m)) such that

u*(t) = u(t, m, p*(m)) forall teT(m). (26)
Therefore, (21) implies that for k=n— 1 the conjecture g defined by

ﬁ(m)={§*(m) if meM*\{m'}

if m=wm

is an element of co(R#"~'). Together, (25) and (26) imply that s is an
optimal response to the conjecture g in the game G(M*). Hence (20) holds
for k=n.

We must also show that (21) holds for k& =n. It suffices to show, for all
meRIT”,

if a(m) e AR#"(m), then Jo,, € co(R.F”) such that

a,, reaches m and a(m) is an optimal response to a,,. (27)

If me AJ", then there exists g,, € co(A #"(m)) such that ¢,, reaches m and
a(m) is an optimal response to a,,. (27) now follows from (20). If m ¢ AJ”,
then (27) is an immediate consequence of A2.

We have shown that (19), (20), and (21) hold for all £ =0. Therefore,
s*e RF* and the proof is complete.

Note added in proof. After completing this paper we learned that Peter DeMarzo has
applied similar techniques to study the relationship between Perfect Sequential Equilibria and
Divine Equilibria.
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