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Econometrica, Vol. 63, No. 5 (September, 1995), 1181-1193 

AN EVOLUTIONARY APPROACH 
TO PRE-PLAY COMMUNICATION 

BY YONG-GWAN KIM AND JOEL SOBELi 

We add a round of pre-play communication to a finite two-player game played by a 
population of players. Pre-play communication is cheap talk in the sense that it does not 
directly enter the payoffs. The paper characterizes the set of strategies that are stable with 
respect to a stochastic dynamic adaptive process. Periodically players have an opportunity 
to change their strategy with a strategy that is more successful against the current 
population. Any strategy that weakly improves upon the current poorest performer in the 
population enters with positive probability. When there is no conflict of interest between 
the players, only the efficient outcome is stable with respect to these dynamics. For 
general games the set of stable payoffs is typically large. Every efficient payoff recurs 
infinitely often. 

KEYWORDS: Game theory, evolution, pre-play communication, cheap talk, adaptive 
behavior. 

1. INTRODUCTION 

ALTHOUGH INFORMAL STORIES in game theory emphasize that pre-play commu- 
nication allows players to coordinate on efficient Nash equilibria, these stories 
are difficult to capture in full models of the communication process. The basic 
reason for the difficulty is that costless communication can never destroy a Nash 
equilibrium. If all but one player decides to ignore everything that is said and 
play according to an equilibrium strategy, then the other player can do no better 
than speak randomly and also follow the equilibrium. Several authors have 
approached this problem by assuming that language exists and has a focal 
meaning obtained from its use outside the model. They continue by making 
behavioral assumptions that require players to believe the literal meaning of 
messages, provided that these meanings do not violate strategic aspects of the 
game. Papers of Farrell (1988), Myerson (1989), and Rabin (1994) are examples 
of this work. Our approach is different. We do not assume that words have 
meaning outside the model. Instead, we show that if outcomes satisfy a stability 
condition suggested by adaptive dynamics, then pre-play communication effec- 
tively eliminates inefficient equilibria. 

We add a round of pre-play communication to a finite two-player game. Each 
player simultaneously makes a staitement from a finite language. The statements 
are revealed and then the underlying game is played. Pre-play communication is 
cheap talk in the sense that it does not directly enter the payoffs. 

1This manuscript is a radically revised version of a 1992 paper with the same title. Kim thanks the 
College of Business Administration at the University of Iowa and NSF and Sobel thanks the Sloan 
Foundation and NSF for financial support. Thanks go to Antonio Cabrales, Vincent Crawford, Eddie 
Dekel-Tabak, Drew Fudenberg, Martin Hellwig, Akihiko Honda, Avi Shmida, Leo Simon, Jeroen 
Swinkels, Joel Watson, seminar audiences, and three referees for comments. 
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We characterize sets of strategies that are stable with respect to a stochastic 
dynamic adaptive process. We assume that there is a finite population of players 
who use pure strategies. Periodically a player has an opportunity to replace his 
strategy by a more successful strategy. It is important for our results that the 
replacement process never ends (even when all strategies are performing equally 
well) and that all strategies which weakly improve on the poor performer are 
possible replacements. 

The following example illustrates how pre-play communication enables the 
population to move away from inefficient equilibria. The coordination game in 
Figure 1 has two pure-strategy Nash equilibria and a completely mixed one. 
There is no conflict of interest in this game and one can supply many reasons 
why experienced players would coordinate on the efficient equilibrium. The 
inefficient pure-strategy equilibrium is a problem for standard theory, however. 
If for some reason a player believes that other players will be playing BAD, they 
receive their highest payoff only if they play BAD themselves. 

Without pre-play communication it is difficult to see how players can move 
away from the inefficient strict equilibrium since a unilateral deviation from the 
equilibrium strategy leads to a strict decrease in payoff. When players have 
more than one communication strategy before they reach the underlying game, 
the communication game will have no strict equilibrium; evolutionary pressures, 
which favor strategies that do well against the existing population, force effi- 
ciency. 

In this paper we demonstrate that evolutionary stability leads to efficiency in 
two-player games where the interests of the players coincide in a strong way. In 
the example it is not difficult to see why outcomes that induce the BAD action 
are not stable. Suppose that the population has coordinated on an equilibrium 
in which the players always use a particular (normal) message. Everyone chooses 
the BAD action regardless of the message sent. As long as abnormal words are 
not used, however, there is no pressure to respond to them in a particular way. 
It is possible for an individual in the population to replace his strategy by one 
that sends the normal message, and plays GOOD in the underlying game if and 
only if he meets another player who sends an abnormal message. This strategy 
does as well as the original strategy and, over time, it is possible for the 
population to reach a state in which everyone would respond to an abnormal 
message with the GOOD action, although no one in the population actually uses 
the abnormal message. At this point a strategy that uses an abnormal message 
and then always plays GOOD does better than the existing population. This 
strategy can continue to replace any strategy that uses the BAD action. Conse- 
quently, it thrives. Furthermore, once the population has reached a configura- 

GOOD BAD 

GOOD 2,2 0,0 

BAD 0,0 1,1 

FIGURE 1. 
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tion in which every pair of players is able to coordinate on the GOOD 
equilibrium, it is not possible to move away from this outcome. Eventually the 
population plays the efficient equilibrium and when it does there is no pressure 
to move to an inefficient outcome. 

In the next section we describe the communication game and the adjustment 
process that we study. Section 3 demonstrates that, for games with common 
interests, where there is only one efficient payoff, cheap pre-play communication 
forces efficiency under our evolutionary dynamics. In Section 4 we describe an 
efficiency result for general games: Independent of what strategy the population 
plays initially, every efficient payoff recurs infinitely often. This result suggests 
that our dynamic process provides little guidance about how the game is played 
when the common-interest assumption fails. Section 5 extends the analysis to 
games in which only one player can speak. We show that if the speaker's 
preferred outcome is a strict equilibrium, then it is the only long-run outcome 
observed under our assumptions. Section 6 discusses related literature and 
variations of our model. 

2. THE FRAMEWORK 

We begin with a given finite two-player game,2 which we call the underlying 
game. We add to the game one round of communication. There is a finite set M 
of messages (words) that contains at least two elements. For most of the paper 
we assume that players have access to the same set of messages and speak 
simultaneously. We discuss the case in which only some of the players can talk 
in Section 5. The strategies of the players in the communication game are rules 
that specify a statement from M, and a function that maps the opponent's 
statement into the set of strategies in the underlying game. Payoffs for this game 
are precisely the payoffs obtained from the underlying game. 

A finite population plays this communication game. Each member of the 
population is assigned to play either the role of player one or player two. These 
players use pure strategies. Pairs from the population play the game repeatedly 
and anonymously. On rare occasions, one member of the population changes his 
strategy. We look for stable sets of strategies for adaptive dynamics satisfying 
the properties described below. 

Talk is cheap since the messages do not enter payoff functions directly. 
Messages influence payoffs only to the extent that they affect the actions players 
choose in the underlying game. 

For this class of games there is always a Nash equilibrium in which players 
play the same actions in the underlying game for all communication histories. 
Nash equilibrium cannot force particular statements to have meaning unless the 
statements are directly linked to payoffs. Nevertheless, allowing pre-play com- 

2We limit attention to two-player games because pairwise contests have been the standard setting 
for evolutionary games. If we assume that all messages can be heard by all players, then our results 
extend in a natural way to games with many players. 
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munication changes the strategic environment in a fundamental way. Strict Nash 
equilibria in the underlying game are no longer strict equilibria in the communi- 
cation game. This observation suggests that processes which use communication 
to move the population gradually away from inefficient equilibria could evolve. 
The outcomes that we study cannot ignore cheap talk. 

Formally, let the underlying game be (T, u), where T = T1 x T2 (Ti is the 
finite strategy set for a player in role i), and u = (u1, u2). If the player in role i 
uses strategy ti E Ti for i = 1 and 2, then the payoff to a player in role j is 
uj(t1, t2). In the normal form of communication game with message space M, 
role i's strategy space is M x TiMX M, and the payoff to a role j player if role i 
uses strategy (mi, ti(.)) E M x TiMXM is 

(1) Uj(m1, t1(), iM2, t2( )) = Uj(t1(M1, M2), t2(m1, M2)). 

There are 2N individuals (N pairs) in the population. We will assume that 
players do not condition their strategies on the identity of their opponent. This 
assumption makes more sense when the population is large; our formal argu- 
ments require only that the population be finite. Denote the strategy of 
individual k in role i by Oi(k) = (mi, tif()) eM x TiMXM A population strategy 
profile is a list that specifies a strategy (01(n), 02(n)) for each agent n = 1,..., N 
and role i = 1 and 2 in the population. A strategy profile is homogeneous if Oi(n) 
is independent of n for i = 1 and 2. Given a population strategy profile 
0= (01(1), 02(1),..., 01(N), 02(N)), the payoff functions U1 and U2 induce a 
population payoff for individual k1 in role 1: 

(2) A1(k1; 0) = E U1(01(kl), 02(n)) 
n 

and, for individual k2 in role 2, 

(3) U2(k2; 0)= E U2(01(n), 02(k2)). 
n 

That is, we compute the population payoff for an individual under the assump- 
tion that he is matched exactly once with everyone assigned to the other role in 
the population. 

Let 0/0j,(k) denote the strategy profile with Oi(k) replaced by OO(k). We say 
that 01,(k) is a best response to the strategy profile 0 if U1(k; /01,(k)) ? 
U1(k; 0/01(k)) for all pure strategies 01(k). We say that 01,(k) improves upon 
01(k) if U1(k; 0/01,(k)) > U1(k; 0). Similar definitions hold for a player in the 
second role. 

We assume that the population starts at an arbitrary strategy profile. To 
simplify analysis, we assume that in each round each player meets all of the 
other members of the population and plays the communication game once. 
Hence if the strategy profile at the beginning of a round is 0, then the payoffs 
from that round are given by (2) and (3). At the end of the round, one member 
of the population has the opportunity to change his strategy. In order to 
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describe the dynamic behavior of our system, we must specify the probability 
that any member of the population is allowed to change his strategy and identify 
the strategy that he changes to. These probabilities in principle could depend on 
the entire history of play. In what follows we assume that the probability that an 
individual is permitted to replace his strategy at the end of a round depends only 
on the current population strategy profile. The probability that he picks a 
particular replacement strategy depends only on the individual and the current 
population strategy profile. This stationarity assumption simplifies exposition, 
but is not necessary for our results. To handle more general specifications, 
substitute "with probability bounded away from zero" for "with positive proba- 
bility" in Assumptions (S), (R), and (BR) below. We maintain four assumptions 
about the dynamic process. 

ASSUMPTION (I): Exactly one member of the population may change his strategy 
each round. 

ASSUMPTION (S): Some individual who performs worst in his role in a round has 
the opportunity to change his strategy with positive probability. 

ASSUMPTION (R): Any strategy that improves upon the strategy being replaced is 
adopted with positive probability. 

ASSUMPTION (NL): A strategy that does not improve upon the agent's current 
strategy cannot be adopted. 

Assumption (I) states that adjustments are individual. This condition simpli- 
fies exposition. We use Assumption (I) to guarantee that efficient payoffs are 
stable in common-interest games. Assumption (S) is a selection condition. It 
requires that the evolutionary process replace poorly performing strategies. 
Assumption (R) requires that the replacement process be sufficiently rich that 
any strategy that weakly improves upon an existing strategy may be adopted. 
Under our evolutionary dynamics players may change to strategies that perform 
relatively well, although not necessarily optimally. The third assumption also 
requires that there be a positive probability that strategies not currently repre- 
sented may replace existing strategies. This property would not hold for a 
deterministic biological dynamic (where any strategy that is not present in one 
generation cannot appear in subsequent generations). While (R) rules out a 
best-response dynamic that requires the replacement strategy be an optimal 
response to the current population, the results of Sections 3 and 5 would hold if 
we made the following weaker assumption: 

ASSUMPTION (BR): Any strategy that responds optimally to the population strat- 
egy is adopted with positive probability. 

Assumption (NL) assumes that agents can avoid strategies that perform 
poorly (under existing conditions); they will always pick new strategies that lead 
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to no loss. Qualitatively our results would not change if there is a probationary 
period after which strategies that are new to the population are replaced 
immediately if they fail to outperform their predecessor. 

Let A(0) be the set of strategy profiles that can be reached with positive 
probability starting from the profile 0. We extend this notation to sets of 
population profiles: For any set of profiles (, A(e) is the union of A(0) for 
0 E- (. e is absorbing if A(e) c (. Call a minimal, nonempty, absorbing set 
stable. Since the set of all strategy profiles is absorbing and finite, stable sets 
exist. In fact, each absorbing set must contain a stable set. It is straightforward 
to check that 

(4) the intersection of absorbing sets is absorbing and 
(5) for each 0, A(e) is absorbing. 

By (4) two stable sets coincide or are disjoint. By (5) a stable set 0* satisfies 
A(O*)- =9* and also for each 0, there exists a stable set (* such that 
(* cA(O). 

We call strategies that occur infinitely often with positive probability recur- 
rent; other strategies are transient. For our model the recurrent profiles are 
precisely the elements of stable sets. A profile that is not an element of a stable 
set must be transient (since, by (R), whenever the profile arises it is eventually 
replaced with positive probability by an element of a stable set, and once the 
population profile is in a stable set it never leaves). A profile that is an element 
of a stable set must be recurrent (otherwise there is a smaller absorbing set 
contained in the stable set). 

We use the structure of stable sets explained above to prove our main results. 
Given a population strategy profile 0, we identify elements of A(O) by using 
properties (S) and (R). In particular, if a population strategy profile 0' is 
obtained from 0 by making changes in how players respond to unsent messages, 
then 0' e A(0). We refer to this type of change as drift. 

3. GAMES WITH COMMON INTEREST 

In this section we assume that the set of feasible payoffs F= 
{(u1(t1, t2), u2(t1, t2)): ti E Ti} of the underlying game has a unique point (u*, u*) 
that strongly Pareto-dominates all other feasible payoffs (so that if (U1, U2) E F, 
(u1, u2) * (u*I, u*2) implies that ui < u for i = 1 and 2). In this case we say that 
the game has common interests. A game with common interests need not have a 
unique efficient action as several strategy combinations may give rise to the 
payoff (u*, u*). Denote by (* the set of all population strategies that give rise 
to these payoffs (that is, the set of strategies 0 such that Ui(k; 0) = u0 for all 
k= 1, .. .,N and i= 1 and 2). 

PROPOSITION 1: In any game with common interests, if there are at least two 
messages, then the set (9* of all strategy profiles that give rise to efficient payoffs is 
stable. 
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PROOF: It is sufficient to prove that A()= - * for all 0 E 6Y*. First note 
that 0 E 0* implies that A(6) c 0*. Suppose that individual k in role 1 has an 
opportunity to replace his strategy. (NL) guarantees that the new strategy must 
lead to a payoff of u*. Since (u*, u*) is the unique weakly efficient point of the 
game, each role two player in the population must obtain u* when matched 
against individual k's new strategy. 

It remains to show that 0 E &* implies * cA(6). Fix 6' E &*. It is possible 
for the population strategy to drift to a configuration in which all players in a 
given role use the same strategy (for example, if one by one individuals in role 
one adopt the same best response to the population strategy, and then individu- 
als in the second role do the same). Call the messages used under this strategy 
(Mi1, Mi2). If these messages are not used in 6', responses to the other messages 
can drift so that they agree with 6', and a series of replacements can lead the 
population to 6'. Otherwise, the following sequence of replacements arises with 
positive probability: responses to another pair of messages drift to actions that 
support the efficient payoff; all individuals use these messages; the response to 
(M1, IM2) drifts to the response played under 0'; the responses to the other 
messages drift so that they agree with 0'; and individuals replace their signaling 
strategies with the ones in 6'. 

Proposition 1 requires that M, the set of messages, has at least two elements. 
If there are two different ways to achieve the efficient payoff in the underlying 
game, and M contains only one element, then there will be distinct stable sets 
supporting each equilibrium. 

In order to guarantee that once the population arrives at an efficient payoff it 
is sure to stay there, we must use (NL). If inferior strategies enter with positive 
probability, then play could depart 6*. We would obtain the same qualitative 
result if we weaken (NL) but require that any new strategy that does not 
perform as well as the strategy that it replaces is immediately replaced. This 
dynamic behavior would be guaranteed if we assumed that only those individuals 
using the least successful strategy in the current population are replaced (a 
property that is consistent with (S)). Under these conditions once the population 
arrives at a strategy in &9* it stays close in that the population strategy profile 
differs from an element in &* by the strategy of at most one individual. 

Stability of (9* could also be destroyed if we weakened (I) to permit many 
individuals to change their strategies simultaneously. 

Proposition 1 guarantees that the set of strategy profiles leading to the 
efficient payoff is a stable set for common-interest games. Next we show that 
there is a unique stable set of profiles, and that this set contains an efficient 
point. Combined with Proposition 1 it establishes that pre-play communication 
forces efficiency in common-interest games. 

PROPOSITION 2: In any game with common interests, if there are at least two 
messages, then there is a unique stable set. 
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PROOF: For i = 1 and 2, let u0' be the highest feasible payoff for a player in 
role i of the underlying game; let (a1, a) be strategies in the underlying game 
that give rise to a payoff (u*,ut). Let 0* denote the homogeneous strategy 
profile in which each individual in the population sends the same message m 
and, independent of the messages sent, an individual in role i plays ai. We will 
show that 0* eA(0) for all 0. It follows that 0* is an element of any absorbing 
set; hence it is an element of any stable set. Since stable sets either coincide or 
are disjoint, there is a unique stable set, and it contains 0*. 

Through a series of replacements we can transform an arbitrary population 
profile 0 first to a homogeneous profile in which unused messages lead to payoff 
ul*, then to a strategy profile in which role one players actually attain this payoff, 
and finally to 0*. One by one, each agent in role one can be given an 
opportunity to replace his strategy with the same optimal response to the role 
two strategies currently in the population; suppose this leads agents to send the 
message m'. These changes can occur (with positive probability) while the 
strategies of the role two players remain fixed. Next, the role two players can 
switch (one by one) to a strategy that responds optimally to the first role's 
strategy. This strategy can be selected to have the property that role two players 
take action a2 in response to an unsent message m" (independent of the 
message that role two players themselves send). Next, change the strategy of 
every role one player so that they all send m" and take action a1 independent of 
the message that they hear from their opponent. Since u* is the largest feasible 
payoff for a role one player, this replacement satisfies (NL) (indeed, it is an 
optimal response to the population strategy). At this point the population 
strategy profile is homogeneous and leads to the payoff u* for role one players. 
To obtain the strategy 0*, let role two players modify their strategies so that 
they all send the message m and take a2 in response to every message; and let 
role one players modify their strategies (if m" i m) so that they too send m. 

Propositions 1 and 2 guarantee that in common-interest games there is a 
unique stable set, and it contains precisely those strategies that lead to effi- 
ciency. The logic behind the result is plain. If the population is outside of this 
set, it can drift to a profile in which there is an unused message, and agents can 
use this message to coordinate on a good outcome. When there are common 
interests, the population gets stuck once everyone obtains an efficient payoff. A 
direct consequence of these results is that payoffs converge globally in 
common-interest games. The.payoff to an individual in role i must converge to 
the efficient payoff, u*, with probability one. 

Since all of the replacements used in the proofs of Propositions 1 and 2 satisfy 
(BR), existence and uniqueness of a stable set in common-interest games holds 
under (BR) (instead of (R)). 

4. GENERAL GAMES 

When the common-interest assumption fails, the set of outcomes that arise 
infinitely often is large. The next result, which follows from a simple modifica- 
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tion of the proof of Proposition 2, states that the stable set of any communica- 
tion game must include the efficient frontier of the set of stage-game payoffs. 

PROPOSITION 3: For any game with pre-play communication with at least two 
messages there is a unique stable set. For any efficient payoff in the underlying game, 
the stable set contains a homogeneous strategy profile yielding that payoff. 

Rather than provide a proof of this result, we shall illustrate the result with 
the prisoner's dilemma game. Suppose that the population was playing a 
homogeneous profile in which every agent used the same message and cheated 
no matter what his opponent said. Through a sequence of replacements, the 
strategies of the role two individuals could change so that they all respond to an 
unsent message with the cooperative action. Finally, through a sequence of 
replacements, the strategies of the role one players can change so that these 
players are using the previously unsent message (but still cheating). As a result, 
the role one players receive their highest payoff (even though this payoff could 
not be achieved in a static equilibrium).3 It is straightforward to show that the 
population can move with positive probability to a configuration in which players 
in role one receive their highest payoff from any initial specification of the 
population. This configuration is not a stable one: when role two players have an 
opportunity to adjust their strategy, they will cheat again. Hence the population 
moves from configurations that are preferred by one type of agent, to configura- 
tions that are inefficient, to configurations that are good for the other type of 
agent. Without providing more details about the transition probabilities, we 
cannot say how much time the process will spend at efficient outcomes. Our 
dynamic does not limit the set of possible predictions when the underlying game 
lacks common interests. The uncontrolled drift off the equilibrium path permit- 
ted by (R) leads to this result. 

5. NONE-SIDED COMMUNICATION 

In the literature that assumes language has a focal meaning, it is generally the 
case that if only one player is able to communicate, then that player is 
guaranteed to achieve his favorite outcome. This result holds in our framework.4 
Imagine that only players in the first role are able to send messages. The 
argument of Proposition 2 demonstrates that a population profile in which the 
agent who is able to speak receives his highest feasible payoff must be an 
element of every stable set. Hence there is only one stable set. 

3If instead the role one players used the previously unsent message and then cooperated, a 
replacement that satisfies (R) but not (BR), the population would move to an outcome in which both 
plal'ers cooperate. 

The efficiency result did not hold in our earlier model, Kim and Sobel (1992). 



1190 YONG-GWAN KIM AND JOEL SOBEL 

We can also prove a version of the efficiency result of Section 3. If player one 
obtains his highest payoff only at a strict equilibrium, then the only stable 
population profiles must give rise to this equilibrium. As long as role one players 
receive their highest payoff, only other role one strategies that lead to the 
highest payoff can enter the population. When the equilibrium is strict, no role 
two strategy that lowers a role one player's payoff can enter the population. We 
summarize these results in Proposition 4. 

PROPOSITION 4: Assume that only players in role one may signal prior to playing 
the underlying game. Let w1 be the highest feasible payoff for a player in role one of 
the underlying game. There is a unique stable set of population strategies. w* is a 
payoff to role one players associated with a homogeneous population profile con- 
tained in the stable set. If the only way to obtain the payoff w* for role one players is 
in a strict equilibrium in the underlying game, then role one players must receive w 
at each element of the stable set. 

Proposition 4 holds if the assumption that the role-one player's equilibrium is 
strict is replaced by the weaker condition: w* = u1(t*, t*) and t2 an optimal 
response to t1 implies that u1(t , t2) = w . This condition holds in all common- 
interest games. 

6. CONCLUSION 

In this section we note limitations and extensions of our approach and briefly 
discuss related papers. 

It is traditional in evolutionary models to view players as being drawn from a 
single population. Assuming that players are drawn from a single population 
leads to difficulties that we believe are artificial. Cheap talk is needed not only 
to provide a myopically attractive way to avoid inefficient strict equilibria, but 
must also be used to create asymmetries. Our basic results for common-interest 
games remain true in this setting nonetheless,5 provided that there exists at least 
one unsent message for each individual in the population, and that we replace 
(S) with the more restrictive assumption that the probability that any individual 
has the opportunity to change his strategy at the end of a round is positive.6 
Assuming that there are at least two messages for each individual in the 
population guarantees that in any population strategy profile there is an unused 
message for each individual. When the population is finite, agents can use these 
extra messages to determine their roles in the game. In an infinite population, 
symmetric model, Schlag (1993) demonstrates that one cannot rely on the 
replicator dynamic to guarantee efficiency even in games where players' have 
identical payoffs. 

5Details of the argument are available from the authors. 
6Our previous results continue to hold under (BR) if (S) is strengthened in this way. 
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Without placing more structure on the model, it is not possible to state how 
long it would take for the population to reach a stable set, but our proofs 
suggest that convergence could be slow. The particular set of replacements that 
we identify requires one side of the population to change its strategy while 
strategies of the individuals on the other side do not change. While other paths 
to the efficient outcome exist, we have not identified them, and the population 
could remain at an inefficient outcome for a long time. This intuition appears, in 
a different form, in Banerjee and Weibull (1993) and Schlag (1993). These 
papers demonstrate that inefficient outcomes can be dynamically stable with 
respect to the replicator dynamic. 

The richness assumption (R) permits us to conclude that stable sets contain 
efficient outcomes; it also leads to our conclusion that there are many recurrent 
outcomes in games that do not have common interests. We exploit the property, 
implied by (R) (or (BR)), that replacement strategies may have arbitrary re- 
sponses to unsent messages. In particular, nothing prevents players from using a 
strongly dominated strategy of the underlying game in response to an unsent 
message. While we think that it is plausible to permit changes in off-the-equi- 
librium-path behavior, economic agents, even those with limited rationality, 
should be able to avoid certain responses. An earlier version of this paper (Kim 
and Sobel (1992)) studied the outcomes that satisfy the static stability condition 
developed by Swinkels (1992). This condition requires new strategies to be best 
responses to the population that arises after the entry. Kim and Sobel (1992) 
show that this notion of evolutionary stability forces efficiency in common-inter- 
est games provided that there are unsent messages. In contrast to the analysis of 
this paper, however, one could not guarantee the existence of unused messages 
without making another assumption in addition to common interests.7 

Robson (1990) considers the possibility of creating extra strategies in evolu- 
tionary games. These strategies play the same role communication does in our 
model. Robson demonstrates that adding a strategy forces cooperation in 
coordination games and destabilizes the inefficient outcome in the prisoner s 
dilemma. 

Matsui (1991) applies a variation of the Gilboa and Matsui (1991) idea of 
cyclically stable sets, which correspond roughly to the steady-states of best- 
response dynamics, to show that the only cyclically stable set in 2 x 2 common- 
interest games with pre-play communication contains only efficient equilibria. 
The efficiency result does not generalize to larger games because mixed strate- 
gies are permitted and there may be no guarantee that there exists an unused 
message that agents can use as a way to move to an efficient outcome. 

Sobel (1993) presents existence and efficiency results for common-interest 
games with pre-play communication using a static evolutionary stability concept. 
He obtains an efficiency result for general common-interest games assuming a 
finite population of players who use only pure strategies. The results in Section 3 

7Bhaskar (1992) and Kim and Sobel (1992) demonstrate that the unsent messages may not exist 
when mixed strategies are permitted. 
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and 4 of this paper go beyond Sobel (1993) because they rely on an explicit 
dynamic process, permit a more general class of replacements, and do not 
require large message spaces. Sobel (1993) uses the stability concept to obtain 
efficiency results for two different types of common-interest games, infinitely 
repeated games and incomplete-information games with cheap-talk. It contains 
a survey of other papers (Bhaskar (1992), Fudenberg and Maskin (1991), Kim 
and Sobel (1992), and Warneryd (1991)) that apply static evolutionary stability 
equilibrium concepts to cheap-talk games. 

Matsui and Rob (1991) and N6ldeke, Samuelson, and van Damme (1991) have 
shown that only efficient outcomes arise as limits of an evolutionary dynamic 
process in pure-coordination games with pre-play communication. These papers 
assume that the population of players is finite; that players have periodic 
opportunities to change their strategies; and that mistakes or mutations occur 
and cause the models to have a unique ergodic distribution, which they show 
converges to the set of efficient payoffs as the probability of mistakes goes to 
zero. Because mutations are permitted, the dynamics in these papers do not 
satisfy (NL). Our result that cheap talk forces efficiency holds more strongly in 
our model than in theirs in two senses. First the class of common-interest games 
strictly includes the coordination games that they study. Second our assumptions 
guarantee that once the population coordinates on an efficient outcome, it 
remains there. 
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