
Economics 200C: Problem Sets I and II
Answer Notes

1. Can a player have two strictly dominant strategies? Give an example or
prove that this is impossible.

No. If si and s′i were both strictly dominant, si 6= s′i, then you would have
ui(si, s−i) > ui(s′i, s−i) > ui(si, s−i) for all s−i, which is impossible.

2. Can a player have two weakly dominant strategies? Give an example or
prove that this is impossible.

No. If si and s′i were both weakly dominant, si 6= s′i, then you would have
ui(si, s−i) > ui(s′i, s−i) for some s−i and also ui(s′i, s−i) ≥ ui(si, s−i)
which is impossible.

3. Can adding a strategy for Player 2 increase Player 1’s security level? Can
it decrease it? Can it increase Player 1’s maximum equilibrium payoff?
Can it increase Player 1’s minimum equilibrium payoff?

Adding a strategy for Player 2 cannot increase Player 1’s security level
(because Player 2 can always ignore the new strategy). It can decrease
the security level (for example if the new strategy always gives Player
1 a payoff less than the old security level). It can increase Player 1’s
(minimum) equilibrium payoff:

L R
UP 0, 0 100, 100

Imagine adding the second column: The equilibrium payoff (for both play-
ers) goes from 0 to 100.

4. Can a strategy be strictly dominated by a non-trivial mixed strategy, but
not by a pure strategy? Give an example or prove that this is impossible.

Yes. Example given in class.

5. Can adding a weakly dominated strategy change the set of Nash equilibria
in a game? How about adding a strictly dominated strategy?

Adding a weakly dominated strategy can change the set of Nash equilibria.
For example:

L R
UP 10, 10 0, 0

DOWN 0, 0 0, 0

Adding R makes (DOWN, R) an equilibrium. Adding a strictly domi-
nated strategy does not change the set of Nash equilibria.
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6. Ten firms must decide whether to operate at location A or location B.
If there are n firms in location A, then each of these firms earns n2. If
there are m firms at location B, then each of these firms earns 2m2 − 14.
Describe the pure-strategy Nash equilibria of the game that arises if the
firms simultaneously decide upon a choice of location. Write down (but
do not solve) an equation that would characterize a symmetric (all firms
play the same strategy) mixed-strategy equilibrium for the game. Show
(if you can) that this equation has a solution.

In general (that is, the algebra below is not needed), let πi(k) be the payoff
at location i when k firms are there and assume that πi is increasing. For
an interior equilibrium, you need πA(n) ≥ πB(15 − n) and πB(14 − n) ≥
πA(n + 1) simultaneously (the first condition states that a firm at A does
not want to go to B; the second says that a firm at B does not want to
go to A. Note that the equilibrium specifies that there are n firms at A
and 14 − n at B then when an A firm considers a deviation, it decides
between being one of n firms at A or one of 14 − n + 1 firms at B), but
this is inconsistent with monotonicity.

You can confirm this by algebra in the special case of the problem. If there
are 0 < n < 14 firms at A, then one of these firms must choose between
getting n2 and moving to B and getting 2(15−n)2−14 (if one firm moves
from A to B then there will be 14− n + 1 firms at B). So NE requires:

n2 ≥ 2(15− n)2 − 14

in order for a firm at A to best respond. In addition, it must be true that

(n + 1)2 ≤ 2(14− n)2 − 14

if the firms at B are best responding. After some algebra (possibly correct)
these inequalities become:

n2 − 58n + 377 ≥ 0 ≥ n2 − 60n + 436.

The first inequality requires that n ≥ 9 (n is an integer). The second
inequality requires that n ≤ 7. Hence they cannot both hold. If n = 0 no
firm would want to move from A. If n = 14 no firm would want to move
to A. Hence there are two pure-strategy equilibria: all at A or all at B.

For a symmetric mixed-strategy equilibrium, each firm goes to A with
probability p. If p ∈ (0, 1), firms must be indifferent between going to A
or B. If all of the other firms (independently) go to A with probability p,
then the payoff for going to A is

13∑
k=0

(
13
k

)
pk(1− p)13−k(k + 1)2
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and to B:
13∑

k=0

(
13
k

)
(1− p)kp13−k

(
2(k + 1)2 − 14

)
.

We know that the first expression is higher when p = 0 and the second
expression is higher when p = 1, so there must be an interior equilibrium
by the intermediate value theorem.

7. Three voters (i = 1, 2, 3) must decide between two candidates, A and B.
The candidate with the most votes wins. Voters 1 and 2 prefer candidate A
to candidate B. Voter 3 prefers candidate B. Voters vote simultaneously.
Show that there is an equilibrium in which candidate B wins. Show that
this outcome disappears if voters avoid weakly dominated strategies.

If all voters vote for B, then B wins independent of what any individual
voters does. Hence voting for B is a best response for each voter. Voting
for B is weakly dominated by voting for A for voters 1 and 2: When the
other two votes are split, it leads to a superior outcome. Otherwise, it
leads to the same outcome. Hence A will win if 1 and 2 avoid weakly
dominated strategies.

8. How do risk attitutes determine play in matching pennies? Suppose that
a risk-neutral ROW plays matching pennies against an opponent. The
ROW player is indifferent between winning receiving nothing (for sure)
and the lottery that pays one penny with probability one half and costs
one penny with probability one half. The COLUMN player is indifferent
between winning K and the lottery that pays one penny with probability
one half and costs one penny with probability one half (K may be nega-
tive.) Normalize both players’ von Neumann-Morgenstern utility function
so that the payoff for losing is -1.

(a) Compute the payoff for winning as a function of K.

(b) Compute the equilibrium of the game for each K.

(c) Now suppose that each player can “chicken out.” If a player opts
out and the other player pays either heads or tails, then the chicken
plays the monetary amount c. If both players chicken out, then they
each receive the payoff zero. Answer the first two parts (assuming
still that ROW is risk neutral).

Let U be the player’s utility function for money. .5U(1) + .5U(−1) =
U(K). So if U(−1) = −1, then U(1) = 1 + 2U(K). The equilibrium is
still for each player to randomize equally. If a player can chicken out,
then it is an equilibrium for the first player to randomize equally over his
first two strategies and the second player to chicken out provided that
U(K) < U(−c). So if the second player is risk averse (K < 0), then
the second player is willing to pay a positive amount to chicken out. If
K ≥ −c, then the equilibrium is the same as without the third strategy.
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9. Mixed strategy equilibria arise in games with discontinuous payoffs and
continuous strategy sets. For example, consider a game in which an auc-
tioneer “sells” one dollar to the highest bidder. The high bidder wins the
dollar, but every agent pays their bid. Concretely, assume that there are
two bidders; a strategy for bidder i is a non-negative number bi. The
payoff to bidder i is πi(bi, bj)− bi, where

πi(bi, bj) =


1 if bi > bj

.5 if bi = bj

−1 if bj < bi

.

(a) Find a symmetric equilibrium of this game. [First show that no
symmetric, pure-strategy equilibrium exists. Next assume that the
strategy is described by a cumulative distribution function F (·) with
the property that if one player bids less than or equal to b with
probability F (b), then the other player is indifferent between all bids
in the support of F (·). The indifferent condition leads to an equation
that you can use to find F (·).]

(b) Are there any asymmetric equilibria of the game (in pure or mixed
strategies). Say what you can.

You cannot have a symmetric pure-strategy equilibrium. If one player is
bidding b, the payoff to also bidding b is .5 − b. A deviant can do better
either by bidding slightly more than b (which earns approximately 1− b).
(If b > .5, then a player can do better by bidding 0 too.) Of course, there
is an asymmetric pure-strategy equilibrium in which one player bids 1 and
the other player bids 0. Each gets net payoff of zero.

To construct the mixed-strategy equilibrium, let F (b) = the probability
that one player bids less than or equal to b. Assume that the distribution
is continuous. The payoff to the other player is F (b) − b if she bids b
(because she pays her bid and wins with probability F (b). This should be
constant for all b is the support of the distribution. The constant must be
zero: it can’t be negative (else a player would deviate and bid 0); it can’t
be positive (else no player would bid zero, but the lowest bid would then
yield a negative payoff). It follows that F (b) ≡ b. That is, each player
randomizes uniformly on [0, 1].
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