
Simple Math:

Cryptography

1 Introduction

This section develops some mathematics before getting to the application. The
mathematics that I use involves simple facts from number theory. Number
theory is an area of mathematics where it is possible to state a lot of interesting
propositions very simply (“Are there an infinite number of prime numbers?”
“For fixed n > 2 is it possible to find positive numbers a, b, c such that cn =
an + bn?” “For which integers c is it possible to find integers a and b for which
c = a2 + b2?), but sometimes these propositions are difficult to prove. Much
of number theory developed because people were attracted by the sheer beauty
and elegance of the logical activity. The mathematics was not motivated by
specific applications. In fact, number theory is often thought of as the purest
of pure mathematics. It is interesting, therefore, to see that some of the simple
results from number theory have applications.

I plan to introduce the mathematics abstractly and then explain how it can
be used to solve a “practical” problem. The mathematics is challenging because
it is abstract and to follow it you will need to be able to keep track of arguments
that have several steps. On the other hand, all of the steps are elementary (that
is, they probably do not involve any ideas you do not know). Also, all of the
general results can be illustrated by specific numerical examples. If the going
gets tough, then I urge you to plug in numerical values into general formulas
and see how the formulas work.

2 Mathematical Preliminaries

Some of the ideas are related to “modular” arithmetic. We say that x ≡
a (mod m) (“x is congruent to a modulo m”) if x−a is divisible by m. (Through-
out this section, numbers are whole numbers. When I say that y is divisible
by m, I mean that there is a whole number r such that y = r · m.) We use
modular arithmetic every day when we tell time. 3:00 PM today is congruent
to 3:00 PM yesterday modulo 24; it is congruent to 3:00 AM today modulo 12.
Minutes and seconds are naturally organized modulo 60.

You’ll need to recall three other definitions. A prime number is a number
that is divisible only by one and itself. The greatest common division d of
two numbers m and n, written gcd(m,n) is the largest number that is a divisor
of both m and n. Two numbers m and n are relatively prime (or co-prime)
if gcd(m,n) = 1.

Here is the first result.

Proposition 1 (Chinese Remainder Theorem.) Let m and n be relatively
prime and let a and b be arbitrary. The pair of equations x ≡ a (mod m) and

1

x ≡ b (mod n) have a unique solution for x (mod m · n).

Proof Uniqueness: Suppose that x and x′ are two solutions. From the first
equation it follows that

x− x′ = K1m (1)

(that is, the difference between the solutions must be a multiple of m). From
the second equation it follows that

x− x′ = K2n. (2)

From equations (1) and (2) it must be that x − x′ is a multiple of both n and
m. Since gcd(m,n) = 1 by assumption, the least common multiple of m and n
is m · n, which means that x ≡ x′ (mod m · n). This proves uniqueness.

To prove existence, consider the m numbers xk of the form b + kn for k =
0, . . . ,m−1. Plainly xk ≡ b (mod n) for all x. Also if k 6= k′ (and 0 ≤ k, k′ < m),
then xk − x′

k = (k − k′)n is not a multiple of m (because gcd(m,n) = 1). It
follows that xk are m distinct numbers mod m and hence, for any a, precisely
one of them (say x∗

k) satisfies x∗
k ≡ a (mod m). This proves existence. Q.E.D.

Proposition 2 (Fermat’s Little Theorem.) Let p be prime. Then xp−1 ≡
1 (mod p) for all x satisfying gcd(x, p) = 1.

Proof List the first p−1 positive multiples of x: x, 2x, 3x, . . . , (p−1)x. Suppose
that rx and sx are the same modulo p, for 0 ≤ r, s < p. Then we have x(r−s) ≡
0 (mod p). Since gcd(x, p) = 1, this can only happen if r = s. Therefore, the p−1
multiples of x above are distinct and nonzero; that is, they must be congruent
to 1, 2, 3, . . . , p − 1 in some order. Multiply all these congruences together and
we find:

(p− 1)!xp−1 = x · 2x · . . . · (p− 1)x ≡ 1 · 2 · . . . · (p− 1) = (p− 1)! (mod p).

Divide both side by (p− 1)! to complete the proof. Q.E.D.

Proposition 3 (Generalization of Fermat’s Little Theorem) Let p, q be
two distinct primes. Let n = p · q. Then x(p−1)(q−1) ≡ 1 (mod n) for all x
satisfying gcd(x, n) = 1.

Proof
x(p−1)(q−1) ≡ (xp−1)q−1 ≡ (1)q−1 ≡ 1 (mod p),

where xp−1 ≡ 1 (mod p) from Fermat’s Little Theorem. Similarly, it must be
that x(p−1)(q−1) ≡ 1 (mod q).

To complete the proof, note that the Chinese Remainder Theorem implies
that the solution to the two equations is unique mod p · q. Since x(p−1)(q−1) ≡
1 (mod p · q) is one solution, the theorem follows. Q.E.D.

The other bit of mathematics involves an algorithm for finding the greatest
common divisor of two numbers.

2

Proposition 4 Suppose m and n are integers with m ≥ n ≥ 1. Suppose that
m = qn + r for integers q and r, 0 ≤ r < n. Then gcd(m,n) = gcd(n, r).

Proof The proposition states that in order to find the greatest common divisor
of two numbers, m and n, you can look instead for the greatest common divisor
of n and a smaller number – the remainder after you divide m by n.

To prove the proposition you establish two things. First, you show that
anything that divides both n and r must divide both n and m. This implies
that gcd(m,n) ≥ gcd(n, r). Second, you show that anything that divides both
n and m must divide both n and r. This implies that gcd(m,n) ≤ gcd(n, r).

To prove the first thing, let u be a divisor of both n and r. Since m = q ·n+r,
u must be a divisor of m also. For the second thing, you argue in the same way:
if v divides evenly into n and m, then it must also divide evenly into r = m−q ·n.
Q.E.D.

This proposition guarantees that the following algorithm works to compute
greatest common divisors.

Procedure 1 [Euclidean Algorithm.] Suppose that a1 and a2 are integers with
a1 > a2 ≥ 1. Define the decreasing sequence of integers a1, a2, . . . , aN+2 = 0
by letting aj+2 be the remainder when we divide aj by aj+1. [That is, aj =
qj+1aj+1 + aj+2 with qj+1 and aj+2 integers and aj+1 > aj+2 ≥ 0.] aN+1 is the
first ak+1 with the property that ak+1 is a divisor of ak. The integer aN+1 is
equal to gcd(a1, a2).

I need to say three things about the algorithm. First, I must show that it
is well defined. The procedure that defines the elements of the sequence {aj}
is straightforward division. So the sequence is well defined. Furthermore, it is
guaranteed that aj > aj+1 ≥ 0. Therefore we must eventually get to a point at
which ak+2 = 0. In this case ak+1 divides ak. This means that the algorithm
will stop after a finite number of steps.

Second, I must show that aN+1 is equal to the greatest common divisor of
a1 and a2. By construction, gcd(aN , aN+1) = aN+1 (because aN+1 is a divisor
of aN). By the previous proposition, we have gcd(a1, a2) = gcd(a2, a3) = . . . =
gcd(aN , aN+1), which establishes the claim.

Third, I want to assert that the algorithm is computationally efficient. One
way to do this is to notice that the sequence constructed in the algorithm has the
property that ak

2 > ak+2 for all k. That is, the bigger number is (at least) cut
in half in two steps. This means that the sequence {aj} shrinks exponentially:
If a1 < 2N for some N , then the algorithm returns the gcd in no more than 2N
steps. To prove the claim that ak

2 > ak+2 for all k, note that:

ak = qk+1ak+1 + ak+2 ≥ ak+1 + ak+2 > 2ak+2,

where the equation is a definition, the first inequality follows because qk+1 ≥ 1
and the second inequality follows because ak+1 > ak+2.

We’ll need the next proposition for our application.

3

Proposition 5 If u and v are non-zero integers with gcd(u, v) = w, there exist
integers R and S such that

w = Ru + Sv.

Proof Let a1 = u and a2 = v. Consider a sequence of equations of the form:

a1 = q2a2 + a3

a2 = q3a3 + a4

aj = qj+1aj+1 + aj+2

an−1 = qnan + an+1

an = qn+1an+1

The Euclidean Algorithm implies that w = an+1. It follows from the second-
to-last of the equations that w = an−1− qnan. We can express this relationship
more grandly as: There exist integers Rn−1 and Sn−1 for which

w = Rn−1an−1 + Sn−1an.

Suppose that we could find integers Rj+1 and Sj+1 for which

w = Rj+1aj+1 + Sj+1aj+2.

Then we could use aj = qj+1aj+1 + aj+2 to write

w = Rj+1aj+1 + Sj+1(aj − qj+1aj+1) = Sj+1aj + (Rj+1 − qj+1Sj+1)aj+1.

Therefore, we can write

w = Rjaj + Sjaj+1

with Rj = Sj+1 and Sj = Rj+1 − qj+1Sj+1. This means that we can continue
until we have

w = R1a1 + S1a2,

which is the desired result. Q.E.D.

4

3 Public-Key Cryptography

Cryptographers always begin explanations with quaint stories involving three
people. I will not deviate from the convention.

Alice and Bob are friends. Alice wants to send Bob a secret message. Un-
fortunately for Alice and Bob, a third party, Eve, can hear anything Alice says.
Alice wants Bob to learn the secret, but keep Eve from eavesdropping.

Abstractly, we think of Alice’s secret as x (you can think of x as a number,
which is perfectly general, or a message like: “Attack the west front at dawn.”).
What Alice does is send a function of x, call it m = e(x), over a public channel.
Bob can hear m, but so can Eve. Cryptography works when Bob has access to
a key that allows him to figure out x from m, but Eve doesn’t have the key.
Mathematically, the key is a function d(·) that inverts the function e(·) so that

d(e(x)) = x.

An easy to explain, classical cryptographic method is letter substitution. In
this method, Alice and Bob agree on a permutation of the letters of the alphabet
(say A replaces C, B replaces K, and so on; permutation means that all letters
are replaced by exactly one letter). For example, if you replace a letter by the
letter three later in the alphabet (and X is replaced by A; Y by B; and Z
by C), then JOEL becomes MRHO). If Bob and Alice agreed privately on a
particular letter substitution method, then one might expect that Alice could
send a message to Bob that Bob could decode, but Eve wouldn’t understand.
If the message is long enough, however, Eve can use properties of the English
language (for example, that the letter e is more common than the letter z) to
crack the code efficiently. This type of code creates amusing puzzles that can
be done with pencil and paper, but would be a foolish way to safeguard state
secrets.

The Data Encryption Standard (DES) is a widely used system in which
longer strings of letters are encrypted. Doing the encoding and decoding is more
computationally intensive (that is, it is harder), but the method promises to
break the power of “frequency analysis” to figure out the code. Fast computers
make it possible to encode and decode messages efficiently. Unfortunately, it
also makes it possible to crack codes by enumeration. (There are 26! different
substitutions, for example. If Eve has a fast computer, she can program it to
compute all 26! possible meanings of Alice’s message and then cross check these
with a dictionary to see which make sense.)

In this section, I will outline the ideas behind what is called public-key
cryptography. In this system, Bob has his own secret key for decoding (kd) and
a public key for encoding (ke). ke is public – so it is known to everyone. kd is
known only to Bob. If Alice wants to sent the information x to Bob, she uses
the public key to compute m = ke(x); Bob then figures out x by computing
kd(m) = x. This system is a feasible method of sending codes if it is the case
that kd(ke(x)) = x, so that Bob can always decode Alice’s message. It is a
secure method if Bob can be confident that no one can figure out kd(·) knowing

5

ke(·). This last step is certainly not true for traditional substitution codes (or
the more complicated DES method).

Here is one way to look at the public-key system. Bob has a box in front of
his house. On the box is a lock. Alice (or anyone else) can go to Bob’s house,
drop a message in the box, and then click the lock shut. The lock acts as the
public key. Now the only one who can read the message is the person with the
key to the lock. This key is the private key, assumed to be available only to Bob.
It is easy to imagine a lock that is easy to close but hard to open. This section
provides a mathematical construction of such a system (due to Ron Rivest, Adi
Shamir, and Len Adleman and called the RSA system).

The RSA method depends on numbers p, q, n, e, and d that Bob constructs.
Bob selects p and q and then computes the other numbers from p and q. I
assert (and will provide limited support for the assertion) that the steps are
all computationally simple. First, Bob finds two “large” prime numbers p and
q. The numbers must be large to make sure that it is hard to figure out kd(·)
knowing ke(·). I will have more to say about what “large” and “hard” mean.
Second, Bob computes n = p · q. Third, Bob picks an integer e < n with the
property that e and p− 1 and e and q − 1 are co-prime. (Two numbers are co-
prime if their greatest common factor is equal to one.) The pair (n, e) describes
Bob’s public key. Bob’s secret key is (n, d), where d = e−1 mod ((p−1) ·(q−1)).

Now I must describe how the code operates. Suppose Alice wants to send a
message to Bob.

1. Alice breaks the message into segments of length log n. (If the large primes
have 100 digits, then log n is roughly two hundred.)1 Call a representative
segment x.

2. Alice computes xe (mod n). This is the encoded message ke(x). Note
that the encoding function ke(x) = xe (mod n) depends only on the pair
(n, e).

3. Bob receives the message m = ke(x). He computes kd(m) and decodes the
message. I claim that kd(m) = md (mod n). I will return to this claim.

I have described the system. Several aspects need to be evaluated. First,
is it possible to construct the key? In practice, one can take e = 3 in which
case the only real issue is whether it is possible to come up with a pair of large
primes p and q with the property than neither p − 1 nor q − 1 are divisible by
three. There are a lot of primes and efficient methods for finding primes exist
(although the algorithm depends on it being hard to factor really big numbers).

1Here is a pedantic procedure. Start with a message, written in English (for convenience,
ignore punctuation and breaks between words). Break it up into groups of K letters. Associate
each letter with its numerical position in the alphabet (A = 1, B = 2, . . . Z = 26). Translate

a group of K letters k1k2 . . . kK into the number x =
∑K

i=1
26i−1(ki − 1). This procedure

assigns a unique integer between 0 and 26K − 1 to every sequence of K letters. For example,
JOEL becomes 9 + 14 · 26 + 4 · 262 + 11 · 263.

6

To use the proposition to compute d, we set u = e, v = (p− 1) · (q− 1), and use
gcd(e, (p− 1) · (q − 1)) = 1 to conclude that there exist k and l such that

1 = Re + S(p− 1) · (q − 1). (3)

¿From equation (3) we see that R is the inverse of e modulo (p − 1) · (q − 1).
Therefore, computing d from e, p, q is not hard. Second, I must verify that
the formula given for kd(·) above is actually the inverse of ke(·). Consider the
following equations:

kd(x)d = xd·e = x1+K·(p−1)·(q−1) ≡ x (mod n). (4)

Here, the first equation is the definition of kd(·). By definition, d = e−1 (mod (p−
1) · (q− 1)). This means that d = e−1 + c · (p− 1) · (q− 1), where c is a constant.
Hence d ·e = 1+c ·e ·(p−1) ·(q−1), so K = c ·e in equation (4). Finally, the gen-
eralization of Fermat’s Little Theorem implies that x(p−1)·(q−1) ≡ 1 (mod n),
so the last equation in (4) follows (provided that x is not a multiple of p or q).

Third, I must argue that even if Eve learns m she cannot be expected to
figure out x. I can’t do this. I can only assert that very smart computer
scientists and mathematicians believe that the only way for Eve to recover x is
for her to somehow compute p and q and that the problem of inferring p and q
from p · q, that is the problem of factoring a very large number, is considered
to be analytically intractable. (It would take a very fast computer using the
best available methods a very long time to factor a product of two large primes.
One can quantify what it means for the computer to be fast: this is the number
of elementary operations it can perform in a unit of time. One can estimate
the number of steps it takes the best known algorithm to factor a number of
a given length. This generates an operational definition of “large.” Given the
current computational speed of computers, you select the length of p and q to
guarantee that factoring will take a long time. As computers get faster, the
definition of large changes. This discussion ignores one thing. It is conceivable
that someone will discover a more efficient algorithm for factoring large numbers.
It is currently believed that the number of computations needed to factor a
number must increase exponentially with the length of the number. If this
turns out to be false, then the foundation of the RSA procedure is destroyed.)

Finally, why did I bother to break the message into segments (Step 1)? The
answer is that since the coding and decoding is done modulo n, if messages
could be large relative to n, then there will be multiple interpretations when
they are decoded modulo n. As it stands, there is still a tiny problem – if x is a
multiple of p or q, then we cannot conduct the inversion in equation (4).2 This
is not a problem in practice.

More on Eve: Eve certainly cannot break the code by enumeration (take all
possible x; compute ke(x) and compare the results to m). This would take too
long. Alternatively, she could compute d = e−1 (mod (p− 1) · (q− 1)) and then

2Because the generalization of Fermat’s Little Theorem requires that gcd(x, p · q) = 1 in
order to conclude that x(p−1)·(q−1) ≡ 1 (mod n).

7

follow Bob’s procedure for computing x from m. Doing this requires that Eve
figure out (p−1) ·(q−1). But if Eve can figure out (p−1) ·(q−1) and she knows
n = p · q, then she can compute p and q by solving a simple quadratic equation.
Again, if there is an (as yet undiscovered) efficient algorithm for computing d
from the information available to Eve then the RSA method is not secure.

The value of the RSA system depends on two assertions that I have not
justified (and, in fact, are still conjectures rather than mathematically estab-
lished): Any method of decoding the enciphered message will give the factors
of n. There is no computationally efficient way to factor n.

It is also possible to use the ideas of public-key cryptography to send a
signed message. Here is one way to do this. Imagine that everyone has their
own private key. Now suppose that Alice wants to send a message to Bob
and “sign” it in a way that convinces Bob that the message really came from
her. Here is what she can do. She takes the text that she wants to send, x,
and encodes it as above. This creates the message m = kB

e (x) (where kB
e (·) is

Bob’s public key). Next she adds a signature, s(m). She signature is computed
by the following formula: s(m) = kA

d (m), where kA
d (·) is Alice’s private key.

The premise of the RSA procedure is that only Alice can compute s(m) from
m (that is, only Alice knows kA

d (·)). Now Bob receives m, which he decodes
using his private key. This is the secret message. To confirm that the message
came from Alice, he “decodes” the signature s(m) using Alice’s public key:
kA

e (s(m)) = kA
e (kA

d (m)) = m. If the decoded signature agrees with the message,
then Bob can be confident that the sender had access to Alice’s private key.

There are several other remarkable things that the RSA procedure make
possible. I’ll supply two “key words” and you can search for more informa-
tion if interested. “Mental Poker” permits you to play poker – and be confi-
dent that your opponent is not cheating – at a distance, say over the internet.
“Zero-knowledge Proofs” allow someone to demonstrate that a mathematical
proposition is true without actually supplying the details of the argument.

8

