• Goal: survey literature and evidence on the effects of energy prices on real economic activity

• Initial question: what would happen if the world suddenly had to try to make do with 5% less oil production?
I. Review of postwar oil supply disruptions
OPEC embargo: Oil production after Sept 1973 Arab-Israeli War.
Iranian revolution: production after Oct 1978
Major historical oil supply disruptions were followed by recessions

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Supply cut (local)</th>
<th>Supply cut (global)</th>
<th>Price Change</th>
<th>Recession Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 73</td>
<td>OPEC embargo</td>
<td>7%</td>
<td>7%</td>
<td>51%</td>
<td>Dec 73</td>
</tr>
<tr>
<td>Nov 78</td>
<td>Iran revolution</td>
<td>7%</td>
<td>4%</td>
<td>57%</td>
<td>Feb 80</td>
</tr>
<tr>
<td>Oct 80</td>
<td>Iran-Iraq War</td>
<td>6%</td>
<td>4%</td>
<td>45%</td>
<td>Aug 81</td>
</tr>
<tr>
<td>Aug 90</td>
<td>Gulf War I</td>
<td>9%</td>
<td>6%</td>
<td>93%</td>
<td>Aug 90</td>
</tr>
</tbody>
</table>
Total global oil production, 2002-2011 (millions of barrels per day)

World real GDP increased 17.5% (logarithmically) from 2004 to 2008
Projected demand growth assuming constant price and income elasticity = 0.75

2011 shortfall = 12.5 mb/d (13.4% of world production)
Sample calculations

- Price of oil at end of 2004 was $50/barrel (in 2011 dollars)
- If we assume price elasticity of 0.1, price today should be \((50) \exp(0.1344/0.1) = \$192/\text{barrel} \) (value reached in June 2008 was \$147)
- If we assume price elasticity of 0.2, price today should be \((50) \exp(0.1344/0.2) = \$98/\text{barrel} \)
- Oil price spike of 2007-2008 was also followed by a recession
Crude oil producer price index and U.S. recessions

100 times natural log relative to 1947:M1
<table>
<thead>
<tr>
<th>Gasoline shortages</th>
<th>Price increase</th>
<th>Price controls</th>
<th>Key factors</th>
<th>Business cycle peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 47- Dec 47</td>
<td>Nov 47-Jan 48 (37%)</td>
<td>no (threatened)</td>
<td>strong demand, supply constraints</td>
<td>Nov 48</td>
</tr>
<tr>
<td>May 52</td>
<td>Jun 53 (10%)</td>
<td>yes</td>
<td>strike, controls lifted</td>
<td>Jul 53</td>
</tr>
<tr>
<td>Nov 56-Dec 56 (Europe)</td>
<td>Jan 57-Feb 57 (9%) (Europe)</td>
<td>yes</td>
<td>Suez Crisis</td>
<td>Aug 57</td>
</tr>
<tr>
<td>none</td>
<td>none</td>
<td>no</td>
<td>---</td>
<td>Apr 60</td>
</tr>
<tr>
<td>none</td>
<td>Feb 69 (7%) Nov 70 (8%)</td>
<td>no</td>
<td>strike, strong demand, supply constraints</td>
<td>Dec 69</td>
</tr>
<tr>
<td>Jun 73 Dec 73- Mar 74</td>
<td>Apr 73-Sep 73 (16%) Nov 73-Feb 74 (51%)</td>
<td>yes</td>
<td>strong demand, supply constraints, OAPEC embargo</td>
<td>Nov 73</td>
</tr>
<tr>
<td>May 79-Jul 79</td>
<td>May 79-Jan 80 (57%)</td>
<td>yes</td>
<td>Iranian revolution</td>
<td>Jan 80</td>
</tr>
<tr>
<td>none</td>
<td>Nov 80-Feb 81 (45%)</td>
<td>yes</td>
<td>Iran-Iraq War, controls lifted</td>
<td>Jul 81</td>
</tr>
<tr>
<td>none</td>
<td>Aug 90-Oct 90 (93%)</td>
<td>no</td>
<td>Gulf War I</td>
<td>Jul 90</td>
</tr>
<tr>
<td>none</td>
<td>Dec 99-Nov 00 (38%)</td>
<td>no</td>
<td>strong demand</td>
<td>Mar 01</td>
</tr>
<tr>
<td>none</td>
<td>Nov 02-Mar 03 (28%)</td>
<td>no</td>
<td>Venezuela unrest, Gulf War II</td>
<td>none</td>
</tr>
<tr>
<td>none</td>
<td>Feb 07-Jun 08 (145%)</td>
<td>no</td>
<td>strong demand, stagnant supply</td>
<td>Dec 07</td>
</tr>
</tbody>
</table>

Key factors:
- Price controls
-Price increase
-Gasoline shortages

Business cycle peak:
- Nov 48
- Jul 53
- Aug 57
- Apr 60
- Dec 69
- Nov 73
- Jan 80
- Jul 81
- Jul 90
- Mar 01
- none
Correlation could be

(1) coincidence
(2) oil shocks and recessions both caused by some third factor
(3) causal
Testing for coincidence: is there a statistically significant forecasting relation?

\[y_t = quarterly\ change\ in\ U.S.\ real\ GDP \]
\[o_t = quarterly\ change\ in\ nominal\ crude\ oil\ price \]
\[x_t = (1, y_{t-1}, y_{t-2}, y_{t-3}, y_{t-4}, o_{t-1}, o_{t-2}, o_{t-3}, o_{t-4})' \]
\[y_t = b'x_t + e_t \]
\[
y_t = 1.14 + 0.20 y_{t-1} + 0.05 y_{t-2} - 0.10 y_{t-3} - 0.19 y_{t-4}
\]
\[
-0.004 o_{t-1} - 0.027 o_{t-2} - 0.034 o_{t-3} - 0.065 o_{t-4}.
\]

Hamilton (1983):

Hypothesis that lagged oil prices don’t help predict real GDP growth strongly rejected, even using data only prior to 1972 and even using data only for 1973-1980
Correlation could be

(1) coincidence
(2) due to some other third factor
(3) causal
$o_t = b'x_t + e_t$

- Little indication prior to 1973 that any variables such as real GDP, unemployment, inflation, other commodity prices, interest rates could predict oil price changes
- Principal factors behind major oil price increases seem exogenous to U.S. economy
<table>
<thead>
<tr>
<th>Gasoline shortages</th>
<th>Price increase</th>
<th>Price controls</th>
<th>Key factors</th>
<th>Business cycle peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 47- Dec 47</td>
<td>Nov 47-Jan 48 (37%)</td>
<td>no (threatened)</td>
<td>strong demand, supply constraints</td>
<td>Nov 48</td>
</tr>
<tr>
<td>May 52</td>
<td>Jun 53 (10%)</td>
<td>yes</td>
<td>strike, controls lifted</td>
<td>Jul 53</td>
</tr>
<tr>
<td>Nov 56-Dec 56 (Europe)</td>
<td>Jan 57-Feb 57 (9%)</td>
<td>yes (Europe)</td>
<td>Suez Crisis</td>
<td>Aug 57</td>
</tr>
<tr>
<td>none</td>
<td>none</td>
<td>no</td>
<td>---</td>
<td>Apr 60</td>
</tr>
<tr>
<td>none</td>
<td>Feb 69 (7%)</td>
<td>no</td>
<td>strike, strong demand, supply constraints</td>
<td>Dec 69</td>
</tr>
<tr>
<td>Jun 73 Dec 73- Mar 74</td>
<td>Apr 73-Sep 73 (16%)</td>
<td>yes</td>
<td>strong demand, supply constraints, OAPEC embargo</td>
<td>Nov 73</td>
</tr>
<tr>
<td>May 79-Jul 79</td>
<td>May 79-Jan 80 (57%)</td>
<td>yes</td>
<td>Iranian revolution</td>
<td>Jan 80</td>
</tr>
<tr>
<td>none</td>
<td>Nov 80-Feb 81 (45%)</td>
<td>yes</td>
<td>Iran-Iraq War, controls lifted</td>
<td>Jul 81</td>
</tr>
<tr>
<td>none</td>
<td>Aug 90-Oct 90 (93%)</td>
<td>no</td>
<td>Gulf War I</td>
<td>Jul 90</td>
</tr>
<tr>
<td>none</td>
<td>Dec 99-Nov 00 (38%)</td>
<td>no</td>
<td>strong demand</td>
<td>Mar 01</td>
</tr>
<tr>
<td>none</td>
<td>Nov 02-Mar 03 (28%)</td>
<td>no</td>
<td>Venezuela unrest, Gulf War II</td>
<td>none</td>
</tr>
<tr>
<td>none</td>
<td>Feb 07-Jun 08 (145%)</td>
<td>no</td>
<td>strong demand, stagnant supply</td>
<td>Dec 07</td>
</tr>
</tbody>
</table>
1973-1974:

- Arab oil embargo announced following Arab-Israeli War in October 1973
- Arab oil production down 4.4 mb/d (= 7.5% of world production) between September and November
Barsky and Kilian (2001)

• Arab nations had discussed embargo before the war
• Embargo was lifted without achieving its purported objectives
• Embargo followed an acceleration of U.S. inflation, peak of U.S. oil production
II. Theoretical channels
A. Effects operating through supply-side effects

\[Y = F(K, N, E) \]

\[\frac{\partial Y}{\partial E} = \frac{P_E}{P} \]

\[\Rightarrow \quad \frac{\partial \ln Y}{\partial \ln E} = \frac{P_E E}{P Y} \]

\[\frac{\partial \ln Y}{\partial \ln (P_E/P)} = \frac{\partial \ln Y}{\partial \ln E} \frac{\partial \ln E}{\partial \ln (P_E/P)} \]

\[= (\text{expenditure share}) \times (\text{elasticity}) \]
Consumer expenditures on energy goods and services as a percentage of total consumption spending, 1959:M1-2012:M6
Problem: the expenditure share is small and short-run price elasticity is small--could not generate big effects from this mechanism.

E.g., relations discussed below imply that a 10% increase in energy prices leads one to predict 1.6% slower real GDP annual growth rate 4 quarters later.

Expenditure share of 5% and unit price-elasticity of demand would predict only 0.5% slower growth.
Kim and Loungani (1992)

- Embedded $F(K,N,E)$ production function in calibrated dynamic stochastic general equilibrium model driven by exogenous energy price and technology shock to $F(.)$
- With expenditure share of 16% and Cobb-Douglas $F(.)$, energy prices could account for 35% of output variability
- With CES $F(.)$, would account for 16% of variability
Rotemberg and Woodford (1996):
Imperfect competition in output market would magnify effects

Increased energy price leads monopolist to raise markup, lower labor demand
Could get larger effects if N and K respond to P_E

$$Y = F(K, N, E)$$

$$\frac{\partial Y}{\partial E} = \frac{P_E}{P}$$

$$\Rightarrow \frac{\partial \ln Y}{\partial \ln E} = \frac{P_E E}{P Y}$$

$$\frac{\partial \ln Y}{\partial \ln(P_E/P)} = \frac{\partial \ln Y}{\partial \ln E} \frac{\partial \ln E}{\partial \ln(P_E/P)}$$

$$= (\text{expenditure share}) \times (\text{elasticity})$$
Response of capital utilization

Finn (2000):
For given capital utilization rate, capital and energy used in fixed proportions

Higher utilization increases energy costs and capital depreciation
Response of real value-added to 1% increase in energy price

Response of employment

Wage and price rigidities can lead to unemployed labor--
if energy price increase lowers marginal product of labor, unemployment could result

Leduc and Sill (2004):
Combined Rotemberg-Woodford imperfect competition, Finn capital-utilization, and new Keynesian unemployment effects.
Response to a doubling in real oil price under two monetary policy rules

Source: Leduc and Sill (2004).
B. Effects operating through sectoral rigidities

- Effects on demand for labor in some sectors may be much greater than others
- Keynesian rigidities: this can produce unemployment if wages fail to fall to clear the market
- Sectoral rigidities (Davis, 1987): this can produce unemployment if it takes time for workers to retrain and relocate
Hamilton (1988):

If there are real costs to retraining or relocating, workers may instead choose to remain unemployed as they wait for terms in their sector to improve.

Multiplier comes from loss of output of unemployed workers rather than direct effects of less energy used.
C. Effects operating through demand channels

- Could a monetary response (Fed raises interest rate when it sees higher oil prices) account for the correlation?
- Bernanke, Gertler, and Watson (1997): estimated a dynamic model of interaction between oil prices, interest rates, GDP, and other variables
- Simulated its behavior if interest rates don’t rise in response to oil shock
Hamilton and Herrera (2004):

- Bernanke, Gertler and Watson (1997) based estimates on model with 7 monthly lags
- Biggest empirical effects in data come 3 and 4 quarters following oil price increase
- When BGW relations are re-estimated using 12 lags, the conclusions change radically
Solid line: Predicted response of real GDP to 10% increase in energy price at month 0 based on 12-lag system. Horizontal axis: time in months from the increase. Dashed line: predicted response if Fed holds interest rate constant. Source: Hamilton and Herrera (2004).
Effects on consumer spending

E.g., if

• 5% of consumer spending goes to energy \((a_t = 0.05) \)
• energy price goes up 20%
• consumers purchase same quantity of energy

then

• saving or other spending must decline by 1%
Energy Expenditures as a Share of Income and Expenditures

Source: Daniel Carroll, FRB Cleveland, 2011
Effects on investment and consumer durable demand

- An increase in uncertainty about energy prices could cause firms and consumers to postpone irreversible decisions
- Bernanke (1983)
- Lee, Kang and Ratti (2011)
III. Empirical evidence
A. Background: using vector autoregressions

Let y_t be a vector of variables of interest

- $y_{1t} = \text{change in energy price}$
- $y_{2t} = \text{rate of growth of real consumption}$

Consider linear forecast of $y_{2,t+1}$

$$x_t = (1, y_t', y_{t-1}', \ldots, y_{t-p+1}')'$$

$$y_{2,t+1} = \pi_2' x_t + \varepsilon_{2,t+1}$$

Could estimate π_2 by OLS
Could form similar equation to forecast energy prices

\[y_{1,t+1} = \pi'_1 X_t + \varepsilon_{1,t+1} \]
Stack the two equations in a vector
\[
\begin{bmatrix}
 y_{1,t+1} \\
 y_{2,t+1}
\end{bmatrix} =
\begin{bmatrix}
 \pi_1' \\
 \pi_2'
\end{bmatrix} x_t +
\begin{bmatrix}
 \varepsilon_{1,t+1} \\
 \varepsilon_{2,t+1}
\end{bmatrix}
\]
\[
y_{t+1} = c + \Phi_1 y_t + \Phi_2 y_{t-1} + \cdots + \Phi_p y_{t-p+1} + \varepsilon_{t+1}
\]
\[
E(y_{t+1}|y_t, y_{t-1}, \ldots, y_{t-p+1}) = c + \Phi_1 y_t + \Phi_2 y_{t-1} + \cdots + \Phi_p y_{t-p+1}
\]
Suppose prior to t we observe $y_{t-1}, y_{t-2}, \ldots, y_{t-p+1}$ and we’re told the value of energy price at t (y_{1t}). How would we change our forecast of $y_{2,t+1}$?
First note that y_{1t} tells us something about y_{2t}.

Let $\sigma_{11} = E(\varepsilon_{1t}^2)$

\[
\sigma_{12} = E(\varepsilon_{1t}\varepsilon_{2t})
\]

\[
\frac{\partial E_t(\varepsilon_{2t})}{\partial \varepsilon_{1t}} = \frac{\sigma_{12}}{\sigma_{11}}
\]
\[E(y_{t+1} | y_t, y_{t-1}, \cdots, y_{t-p+1}) = c + \Phi_1 y_t + \Phi_2 y_{t-1} + \cdots + \Phi_p y_{t-p+1} \]

\[
\frac{\partial E(y_{t+1} | y_{1t}, y_{t-1}, \cdots, y_{t-p+1})}{\partial y_{1t}} = \Phi_1 \begin{bmatrix} 1 \\ \sigma_{11}^{-1} \sigma_{12} \end{bmatrix}
\]
How would news about y_{1t} cause us to revise our forecast of y_{t+2}?

\[y_{t+1} = c + \Phi_1 y_t + \Phi_2 y_{t-1} + \cdots + \Phi_p y_{t-p+1} + \epsilon_{t+1} \]

\[y_{t+2} = c + \Phi_1 y_{t+1} + \Phi_2 y_t + \cdots + \Phi_p y_{t-p+2} + \epsilon_{t+2} \]

\[y_{t+2} = c + \Phi_1 (c + \Phi_1 y_t + \Phi_2 y_{t-1} + \cdots + \Phi_p y_{t-p+1} + \epsilon_{t+1}) + \Phi_2 y_t + \cdots + \Phi_p y_{t-p+2} + \epsilon_{t+2} \]
\[
E_t(y_{t+2} | y_t, y_{t-1}, \ldots, y_{t-p+1}) \\
= (c + \Phi_1 c) + (\Phi_1^2 + \Phi_2)y_t + (\Phi_1 \Phi_2 + \Phi_3)y_{t-1} \\
+ \cdots + (\Phi_1 \Phi_{p-1} + \Phi_p)y_{t-p+1} + \Phi_1 \Phi_p y_{t-p+1}
\]

\[
\frac{\partial E(y_{t+2} | y_{1t}, y_{t-1}, \ldots, y_{t-p+1})}{\partial y_{1t}} = (\Phi_1^2 + \Phi_2) \begin{bmatrix} 1 \\ \sigma_{11}^{-1} \sigma_{12} \end{bmatrix}
\]

\[
= \Psi_2 \begin{bmatrix} 1 \\ \sigma_{11}^{-1} \sigma_{12} \end{bmatrix}
\]
Similarly,

\[
\frac{\partial E(y_{t+s} | y_{1t}, y_{t-1}, \ldots, y_{t-p+1})}{\partial y_{1t}} = \Psi_s \begin{bmatrix}
1 \\
\sigma_{11}^{-1}\sigma_{12}
\end{bmatrix}
\]

Plot of this vector as a function of \(s \) is called the orthogonalized impulse-response function with \(y_{1t} \) ordered first.
B. Consumer responses

Recall theory--

- if 5% of consumer spending goes to energy \(a_t = 0.05 \)
- energy price goes up 20%
- consumers purchase same quantity of energy

then

- saving or other spending must decline by 1%
Edelstein and Kilian (2009)

\(\alpha_t = \) consumer expenditures on energy goods and services as fraction of total consumption spending

\(P_t^E = \) index of cost of energy goods and services

\(y_{1t} = 100 \alpha_t (\ln P_t^E - \ln P_{t-1}^E) \)

\(y_{2t} = 100 \) times change in log of total real consumption spending in month \(t \)

\(y_{t+1} = c + \Phi_1 y_t + \Phi_2 y_{t-1} + \cdots + \Phi_p y_{t-p+1} + \varepsilon_{t+1} \)

estimated 1970:M7 - 2006:M7
Pre-2007 estimated impulse-response function (and 95% confidence intervals) relating 100 times log of real consumption spending to energy price increase that corresponds to 1% of total spending.

Reproduces Figure 8a in Edelstein and Kilian (2007)
Pre-2007 estimated impulse-response functions.

Reproduces Figure 8b-d in Edelstein and Kilian (2007)
Pre-2007 estimated impulse-response functions.

Reproduces Figure 8e in Edelstein and Kilian (2007)
Pre-2007 estimated impulse-response functions.

Reproduces Figure 11a in Edelstein and Kilian (2007)
C. Structural change and nonlinearity

Hamilton (1983)

\[y_t = 100 \ln(GDP_t / GDP_{t-1}) \text{ (quarterly rate)} \]

\[o_t = 100 \ln(P_t^o / P_{t-1}^o) \text{ (PPI crude petroleum)} \]

Estimated 1949:Q2 to 1980:Q4

\[
\begin{align*}
y_t &= 1.14 + 0.20 y_{t-1} + 0.05 y_{t-2} - 0.10 y_{t-3} - 0.19 y_{t-4} \\
&\quad - 0.004 o_{t-1} - 0.027 o_{t-2} - 0.034 o_{t-3} - 0.065 o_{t-4}
\end{align*}
\]
\[y_t = 1.14 + 0.20 y_{t-1} + 0.05 y_{t-2} - 0.10 y_{t-3} - 0.19 y_{t-4} \\
\quad - 0.004 o_{t-1} - 0.027 o_{t-2} - 0.034 o_{t-3} - 0.065 o_{t-4} \]

Historically: \(o_t \) almost always positive
1985-1986: huge negative value for \(o_t \)
relation predicts economic boom that didn’t occur
Mork (1988)

\[o_t^+ = \begin{cases}
 o_t & \text{if } o_t \geq 0 \\
 0 & \text{otherwise}
\end{cases} \]

\[o_t^- = \begin{cases}
 o_t & \text{if } o_t < 0 \\
 0 & \text{otherwise}
\end{cases} \]

Regress \(y_t \) on \((1, y_{t-1}, \ldots, y_{t-4}, o_{t-1}^+, \ldots, o_{t-4}^+, o_{t-1}^-, \ldots, o_{t-4}^-)' \)

Coefficients on \(o_{t-j}^- \) statistically insignificant
But Hooker (1996) found based on data through 1994 that Mork’s asymmetric relation is also unstable.
Why might effects of energy prices on economy be asymmetric?

(1) consumer durables-- effect operates through postponing purchases

(2) threshold effects-- less change in consumer plans and sentiment if these prices were seen recently

(3) sectoral effects: 1985-86 saw a recession in U.S. oil-producing states (Hamilton and Owyang, forthcoming)
Probability that state was in recession in 1986:Q1 (estimated independently)
Probability that state is included in group that experienced a mid 1980s recession (estimated jointly)
Hamilton (2003)

- energy price decreases don’t produce economic boom
- an oil price increase that just reverses recent decline has little effect
\[O_t = \log \text{ of oil price in quarter } t \]
\[o_t^m = O_t - \max\{O_{t-1}, O_{t-2}, \ldots, O_{t-12}\} \]
\[= \text{amount by which oil price is above or below its highest value of previous 3 years} \]
\[o_t^\# = \max(0, o_t^m) \]
\[= \text{net oil price increase} \]
Regression of \(y_t \) on \((1, y_{t-1}, \ldots, y_{t-4}, o_{t-1}^\#, \ldots, o_{t-4}^\#)' \) appears to be stable
Other nonlinear specifications

Lee, Ni and Ratti (1995):

\[o_t^+ \] by oil price conditional standard deviation from GARCH model

Jo (2012):

uncertainty itself (conditional variance from stochastic volatility model or realized volatility model for oil prices) affects output
Kilian and Vigfusson (2011): If oil price measure is a nonlinear function of original data, cannot use standard methods to calculate impulse-response function

\[o_{t+1}^{+} = \pi'_{1}x_{t} + \varepsilon_{1,t+1} \]

optimal forecast must be nonnegative

\[E(o_{t+1}^{+}|x_{t}) \neq \pi'_{1}x_{t} \]

Instead must simulate draws for \(o_{t+s}^{+} \) rather than calculate analytically
However, if we reject hypothesis that \(\beta^+_j = \beta^-_j \) in the regression

\[
y_{t+1} = c + \alpha_1 y_{t-1} + \cdots + \alpha_p y_{t-p} + \beta^+_1 o^+_{t-1} + \cdots + \beta^+_p o^+_{t-p} + \beta^-_1 o^-_{t-1} + \cdots + \beta^-_p o^-_{t-p} + \varepsilon_{t+1}
\]

then correctly calculated impulse-response function \textit{must} be nonlinear
Hamilton (2011):

An easier alternative to simulation of nonlinear system is just to estimate s-period-ahead forecasts directly:

$$y_{t+s} = c + \alpha_1 y_{t-1} + \cdots + \alpha_p y_{t-p} + \beta_1 o_{t-1}^\# + \cdots + \beta_p o_{t-p}^\# + \varepsilon_{t+1}$$
D. Alternative interpretations of structural instability

Blanchard and Gali (2010): relation is linear, but economic importance of oil has decreased over time due to

- good luck (i.e. lack of concurrent adverse shocks)
- smaller share of oil in production
- more flexible labor markets
- improvements in monetary policy
Consumer expenditures on energy goods and services as a percentage of total consumption spending, 1959:M1-2012:M6
Hamilton (2009):

Improved fit (both historical and most recent data) if use net oil price times expenditure share: $\alpha_t o_t^#$
• Baumeister and Peersman (2011) found in time-varying-coefficient VAR oil price increase of given size predicts smaller change in GDP over time.

• They also estimate that the price-elasticity of demand has decreased over time, so that a disruption of supply of given size has bigger effect on price today.

• Net implication is that a disruption of supply of given size has same predictive implications for future GDP.
Ramey and Vine (2011):

• One reason that an observed oil price change of given magnitude seems to have had a bigger effect in the 1970s is consumer rationing

• shadow price > observed price
New York Times, Dec 1, 1956, reporting from London:

There was no heat in some buildings; radiators were only tepid in others. Hotels closed off blocks of rooms to save fuel oil. . . . [T]he Netherlands, Switzerland, and Belgium have banned [Sunday driving]. Britain, Denmark, and France have imposed rationing.

Nearly all British automobile manufacturers have reduced production and put their employees on a 4-day instead of a 5-day workweek. . . . Volvo, a leading Swedish car manufacturer, has cut production 30%.

In both London and Paris, long lines have formed outside stations selling gasoline.

Source: Hamilton (forthcoming [a])
Throughout much of California today, and especially so in the Los Angeles area, there were scenes reminiscent of the nation’s 1974 gasoline crisis.

Lines of autos, vans, pickup trucks and motor homes, some of the lines were a half mile or longer, backed up from service stations in a rush for gasoline.

Source: Hamilton (forthcoming [a])
D. Sectoral responses

Herrera (2012):

• Looked at behavior of sales, production, and inventories in different sectors following oil price shock
• Motor vehicles sales and production respond immediately
• Reducing inventories over time contributes to subsequent declines
Cumulative impulse-response to 10% increase in net oil price in quarter 0. Dashed 90% confidence intervals; dotted: 95%. Source: Herrera (2012)
Sectors that sell to the auto sector such as rubber and primary metals experience subsequent declines.
Herrera studied these inventory dynamics using an optimizing model in which firms may not recognize full implications of energy prices (unintended inventory accumulation may contribute to dynamics)
Motor vehicles manufacturing

VAR model

Inventory model

Behavioral model

Inventories

Sales

Output
Davis and Haltiwanger (2001)

• Studied employment response of individual firms
• Largest effect of energy price increase on firms with higher capital intensity, energy intensity, and producing durable goods
Lee and Ni (2002)

• Used industry-level quantity produced and price to try to isolate supply and demand channels
Conclusions of Lee and Ni (2002)

Industries with supply effects dominant
• petroleum refining, industrial chemicals

Industries with demand effects dominant
• nonferrous metals, lumber, apparel, furniture, appliances, automobile

Industries with both effects
• paper, rubber and plastics, iron and steel, electronic machinery
“in 1973 [t]he valve that limited [chemical] production growth was on the supply end of the flow chart, not the demand end. This was particularly true of organic chemicals where shortage of crude oil and natural gas, and the Arab oil embargo put a squeeze on petroleum feedstocks.” (Chemical and Engineering News, May 6, 1974, p. 10).

Source: Lee and Ni (2002).
Mork, Olsen, and Mysen (1994) studied quarterly real GDP in 7 countries

- Oil price increases have negative and statistically significant predictive value for real GDP in U.S., Japan, West Germany, and U.K.
- Oil price increases have negative but not statistically significant ($p = 0.11$) predictive value for France and Canada
- Oil price increases have positive and statistically significant predictive value for Norway (oil exporter)
Cuñado and Pérez de Gracia (2003) studied quarterly industrial production growth in 14 European countries

- Found that net oil price increase has statistically significant predictive power in Germany, Belgium, Austria, France, Ireland, Luxembourg, UK, Netherlands, Denmark, Greece, and Sweden
- Not statistically significant in Spain, Finland, and Italy
Fig. 2. Responses to NOPI (trivariate VAR) for some European countries.

Source: Cuñado and Pérez de Gracia (2003)
Rasmussen and Roitman (2011)

- 114 countries, limited evidence that oil shocks matter
- used annual data, which may miss cyclical effects
G. Sources of shocks

Oil prices might go up because:

• there is a disruption in production in the Middle East
• GDP is surging which puts upward pressure on demand

In the second case,

• There is good news about the economy which is also relevant for a forecast of future GDP
• Price change may be more gradual, giving consumers and firms more time to adapt
Kilian (2009)

(1) How does new information about world oil production lead to changed forecast of GDP (= “supply shock”)

(2) How does new information about real economic activity (proxied by tanker shipping rates) lead to changed forecast if we already know world oil production (= “demand shock”)

(3) How does new information about real oil price (after we know (1) and (2)) lead to changed forecast (= “speculative demand shock”)
Figure 6: Historical Decomposition of Real Price of Oil
1975.2-2005.9

Source: Kilian (2009)
Impulse-response to a one-standard deviation shock that would increase real oil price with 67% and 95% confidence intervals. Source: Kilian (2007)
Baumeister and Peersman (2011): distinguished supply and demand based on sign restrictions

- supply shock raises oil price and lowers oil production
- demand shock raises oil price and raises oil production
- time-varying parameters
Median effect of an oil supply shock four quarters after the shock with 16th and 84th percentile confidence bands at each point in time. Left panel: Responses after a 10% increase in the real price of oil. Right panel: Responses after a 1% shortfall in world oil production. Source: Baumeister and Peersman (2011).
Peersman and Van Robays (2009): distinguished oil supply, global economic activity, and oil-specific demand shocks based on sign restrictions

- European economies respond very differently to the different shocks
- European response is slower than U.S. and may involve secondary feedback from higher labor costs
- Significant differences across European countries
Response following a 10% increase in oil price resulting from one of 3 indicated shocks for U.S. (dashed) and Europe (solid) with 67% confidence intervals. Source: Peersman and Van Robays (2009).
IV. Case studies

A. 2007-2008
Alternative measures of the change in energy prices, Aug 2007 - Jun 2008

Source: Hamilton (2009)
Down 26% July 07 to July 08
Down 6% July 07 to July 08
Up 14% July 07 to July 08
Down 22% July 07 to July 08

U.S. import light truck sales (thousands of units)
Amount by which motor vehicles and parts component of real GDP (measured in billions of year 2000 dollars at a seasonally adjusted annual rate) fell between indicated quarter and previous quarter during 1990-91 and 2007-08.
Black: 100 times log of actual real consumption
Blue: forecast formed 2007:M9
Green: Edelstein-Kilian forecast if we knew ex-post innovations in energy price
Black: 100 times log of actual real spending on motor vehicles & parts
Blue: forecast formed 2007:M9
Green: forecast if we knew ex-post innovations in energy price
Black: Actual value for Michigan index of consumer sentiment
Blue: forecast formed 2007:M9
Green: forecast if we knew ex-post innovations in energy price
Financial crisis, housing, and the 2007-2009 recession

Unquestionably the housing downturn contributed to first year of recession (2007:Q4 - 2008:Q3) and aftermath of Lehman collapse in September 2008 to the severe downturn (2008:Q4 - 2009:Q2)
(a) Housing had been a drag on the economy without producing a recession by itself

Average contribution of residential fixed investment to GDP growth at an annual rate

2006:Q2 - 2007:Q3 -1.04%
2007:Q4 - 2008:Q3 -0.91%
(b) If oil shock depressed GDP, that would directly impact housing

Hamilton (J. Monetary Econ., 2008)---
1% decrease in real GDP
 ? 2.6% decrease in new home sales
 ? further real estate price declines
 ? further defaults
(c) interaction effect between oil shock and housing shock-- cost of commuting to exurbs
Housing Prices Declines Greatest at the Suburban Fringe
Tampa MSA

Source: Cortright (2008)
Source: Cortright (2008)
Sexton, Wu, and David Zilberman (2012) model of housing demand:

- unanticipated increases in gas prices increased the cost of work commutes
- lowered the value of homes away from the city center and increased foreclosure rates
B. 2011-2012

Price of oil and gasoline never exceeded 3-year high.
Domestic light trucks up 25% May 11 to May 12

Truck sales still below start of 2008
Detroit successfully selling smaller cars

Domestic cars up 33% May 11 to May 12
Consumer sentiment became less responsive

Black: Michigan index of consumer sentiment.
Blue: negative of real retail gasoline price (2012 $/gallon)
Oil price has been a bigger problem for Europe

Added burden to sovereign debt crisis
Summary

• Oil price spikes historically have been a factor causing GDP temporarily to fall below potential

• Spike of 2012 contributed to Europe’s problems but should be minimally disruptive for U.S. economy
A major conflict involving Iran could be 3 times as big as any historical episode.