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Approaches to large data sets

• Sparsity 
– assumption: most variables not useful

– examples: LASSO, random forest

• Shrinkage
– assumption: all variables used but each gets 

small weight

– Principal components, ridge regression, 
Bayesian inference

• Problem: how use these methods when 
some variables may be nonstationary? 2



• Principal components: subtract sample 
mean from each variable and divide by 
standard deviation

• Calculate eigenvectors of correlation 
matrix associated with largest eigenvalues

• Use eigenvectors associated with largest 
eigenvalues to calculate linear 
combinations of variables
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• Problem: if a variable is nonstationary, 
sample mean and standard deviation do 
not converge to any population parameter

• PCA when some variables are 
nonstationary can give very misleading 
results
– Onatski and Wang, Econometrica 2021

• Usual approach: determine transformation 
necessary to make each individual 
variable stationary 4



Problem 1: necessary 
transformation can be unclear
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• Many finance applications apply PCA to 
yields themselves

• McCracken and Ng (JBES 2016) use first-
differences of yields or yield spreads

• Crump and Gospodinov (Econometrica
2022) use excess returns or first-
differences of returns
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Problem 2: reproducibility

• Need to communicate decision used for 
every variable in the study

• Another researcher who did not use same 
transformations could get different 
answers
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Problem 3: appropriateness of 
the method

• Suppose we knew for certain that variable 
1 is random walk and variable 2 is AR(1) 
with coefficient 0.99

• Current approach would say use 
differences of variable 1 and levels of 
variable 2

• But these have very different properties

8



Levels and first-differences of 
yields
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Hamilton (REStat, 2018)

• The error in predicting a variable 2 years 
from now as a linear function of recent 
values:
– is a stationary population magnitude for a 

broad class of nonstationary processes such 
as ARIMA(p,d,q) or processes stationary 
around dth-order polynomial time trends

– could be described as cyclical component of 
the series

– can be consistently estimated by OLS 
regression without knowing d
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Example: suppose yit is stationary

(d  1.

Accounting identity:

yit  yi,th  j0
h1 yi,tj

yit can be written as linear function of

yi,th plus something stationary.
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Error predicting yit from yi,th,yi,th1,

. . . ,yi,thp1 is stationary.

OLS minimizes sample squared

forecast errors and consistently

estimates this population object.
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Suppose 2yit is stationary

(d  2.

Accounting identity:

yit  yi,th  hyi,th  j0
h1

j  12yi,tj

yit can be written as linear function of

yi,th, yi,th1 plus something stationary.
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yit  observation on variable i in period t

yit   i0   i1yi,th   i2yi,th1 

  ipyi,thp1  cit

cit  population magnitude (exists for large

class of possible data-generating

processes for yit

ĉit  OLS residual
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Proposal: estimate by OLS separately

for each i  1, . . . ,N

yit  zit
 i  cit

zit
  1,yi,th,yi,th1, . . . ,yi,thp1

Perform PCA on regression residuals ĉit.
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In principle, would work for any finite h.

h  1 would correspond to principal

component of 1-month-ahead forecast

errors which is not usual object of interest.

For h too large, cit has lots of persistence

and very large sample needed to estimate.

We recommend h  24 and p  12 for

monthly data.
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Suppose true cyclical components are

characterized by an approximate factor

structure as in Stock and Watson

(JASA 2002):

N1
Ct 

Nr


r1
Ft 

N1
et

N
lim sup t s

 |Eetets/N| 

N
lim sup t N1

i1
N 

j1
N |Eeitejt| 

N
lim sup t,s N1

i1
N 

j1
N |coveiseit,ejsejt| 
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vit  ĉit  cit

If vit
m.s.
 0 uniformly in i and t, then

subject to normalization conditions,

fjt
p
 fjt j, t

T1 t1
T fjt

2 p
 Efjt

2 for j  r

T1
t1
T fjt

2 p
 0 for j  r
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Should we expect that Evit
2  0?


t1
T vit

2   i   i t1
T zitzit

 i   i

This is proportional to OLS Wald test

of the (correct) null hypothesis that

 i is the true value.
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 t1
T vit

2 converges in distribution to some

variable in a variety of stationary and

nonstationary settings.

T1
t1
T vit

2 p
 0



Application 1: Describing the 
yield curve
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Conventional PCA on levels:

y it  yit  y i/ i

N1

y t 
Nr


r1
Ft 

N1
e t

r1
F t 

rN
 

N1

y t
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Let  j  eigenvector of correlation

matrix of raw yields associated with

jth largest eigenvalue.

Consider plot of weights of  j as a

function of maturity of yield i.



Factor loadings for first 3 PC of raw yields 
as a function of maturity in months
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First PC of raw yields as a 
function of time
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ĉit  residual from OLS regression of

yit on 1,yi,t24,yi,t25, . . . ,yi,t35.

 j  eigenvector of correlation

matrix of ĉit associated with

jth largest eigenvalue.

Now plot elements of  j as a

function of maturity of yield i.



Factor loadings for first 3 PC of cyclical 
components of yields
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First principal component of raw yields 
and cyclical component of yields
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• For this application, PCA on levels works 
fine because all variables share the same 
trend component.

• Principal components capture both level 
and trend.

• If we mix U.S. nominal interest rates with 
other variables that have different trends, 
nonstationarity is bigger concern.
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Application 2. Large 
macroeconomic data set

• Stock and Watson (JME 1999) found that 
first PC of a set of 85 different measures 
of real economic activity was best way to 
use big data set to predict inflation.

• This evolved into the Chicago Fed 
National Activity Index (CFNAI).

30



• McCracken and Ng (JBES 2016) 
developed FRED-MD data set
– output and income; labor market; housing; 

consumption, orders, and inventories; money 
and credit; interest and exchange rates; 
prices; and stock market

– 134 variables in 2015:4 vintage

– continually updated

– McCracken and Ng selected a transformation 
to make each variable stationary
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Plant managers index
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Log of industrial production 
index
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Unemployment rate
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Series as transformed by 
McCracken and Ng
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PC1 of transformed data and 
CFNAI
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Cyclical components as 
identified by regressions
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PC1 of transformed data and of 
cyclical components
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Dealing with outliers

• Traditional approach to outliers:
– Calculate interquartile range of transformed 

data

– If observation exceeds k times the 
interquartile range, treat as missing

– CFNAI historically used k = 6

– McCracken-Ng used k =10 and found 79 
outliers in 22 different variables in 1960-2014 
data set
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How identify outliers if don’t 
know form of nonstationarity?

If we observed true cit, could compare

it with its interquartile range.

Can estimate ĉit, but outliers will unduly

influence regression.
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Consider regression that does not use

yit as dependent variable.

Use these coefficients to predict yit
and form “leave-one-out” residual c it.

Compare c it with its interquartile range.

Leave-one-out regression with h  1

identifies similar but not identical outliers

as McCracken-Ng.

98 outliers in 31 different variables in

1960-2014 data set.
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But regressions with h  24 have far

fewer outliers.

If yit is random walk, then cit is sum of

24 individual innovations.

By CLT, cit has a distribution much closer

to Normal distribution.

In 1960-2014, outliers detected in only

two variables (nonborrowed and total

reserves) essentially all in the Great

Recession.



Our recommended procedure 
makes no corrections for outliers
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• When dataset is expanded to include 
recent data, McCracken-Ng identifies 40 
outliers in 2020:4 observations alone

• CFNAI modified their treatment of outliers 
to accommodate COVID observations

• Even so, the index value in 2020:4 for both 
McCracken-Ng and CFNAI is a huge 
outlier; must plot on new scale
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• Cyclical components using h = 24 show 
outliers for only two variables in 2020:4
– Initial claims for unemployment insurance

– Number unemployed for 5 weeks or less

• We construct PC1 just as before with no 
changes and no outlier corrections

• PC1 of cyclical components is plotted on 
same scale before and after 2020
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