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Abstract: 

We estimate the effect that six types of high school math courses have on students' 

earnings nearly a decade after graduation.  We use High School and Beyond transcript 

data to differentiate courses at a more detailed level than in previous research. This 

enables us to show that more-advanced courses have larger effects than less-academic 

courses.  We also provide evidence that math courses can help close the earnings gap 

between students from low-income and middle-income families.  Finally, by 

incorporating other academic subjects, we demonstrate how specific course combinations 

can explain the earnings premium related to an additional year of school. 

 
 
JEL:  J310 and J240.   
 

 
 

   



 

    

1

1.  Introduction 
 

Education has been at the forefront of the nation's concerns for decades.  Falling test scores 

throughout the 1960s and 1970s prompted government officials to prescribe a new curriculum.  

In 1983, the National Commission on Excellence in Education advised that all high school 

students should follow a more rigorous curriculum.1  Since then, state policymakers invoked new 

graduation requirements and curriculum standards to satisfy the commission’s recommendations.   

Although many observers believe that an enhanced curriculum is the vehicle to improved 

educational outcomes, little research has been done to understand its long-term effects.  Altonji 

(1995) marks one of the primary attempts by an economist to systematically establish a direct 

link between curriculum and wages.  His work, which examines high school graduates from 

1972, produces the puzzling result that curriculum has an extremely weak effect on wages.  

Studying graduates from the late 1970s and early 1980s, Levine and Zimmerman (1995) find 

somewhat stronger results from some of their model specifications, but conclude that any 

potential effects of math curriculum are restricted to certain sub-groups of the population (men 

with low education levels and highly educated women).  Because the notion that curriculum does 

not matter raises serious questions about the effectiveness of the American public school system, 

it is essential to investigate further. 

There are also more general reasons why it is important to understand the effects of high 

school curriculum.  First, if high school curriculum has little influence over student outcomes, 

                                                
1 It dubbed this curriculum the “New Basics” and consisted of four years of English, three 

years of math, three years of science, three years of social studies, two years of foreign language 

(for college-bound students), and six months of computer science.   
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then intervention may be necessary at an earlier stage.  Second, with the recent elimination of 

affirmative action in some states, minority access to higher education may suffer.  As the returns 

to a college education continue to rise, such limited access would aggravate income equality 

among ethnic groups.   

Carrying forward the literature that Altonji initiated, we estimate the effect that specific high 

school math courses (vocational math, pre-algebra, algebra/geometry, intermediate algebra, 

advanced algebra, and calculus) have on earnings nearly ten years after graduation for a cohort of 

students who were high sophomores in 1980.2  We also determine whether a varied math 

curriculum can explain the earnings gap between students of different ethnicities, socioeconomic 

statuses, and genders.  Our study differs dramatically from previous studies in that we use very 

detailed transcript data to analyze the effects of specific math courses rather than just the total 

number of math courses.  Our principal data source is High School and Beyond (HSB). 

The paper proceeds as follows.  Section 2 presents a theoretical discussion of the link 

between mathematics curriculum and wages and reviews the existing empirical literature.  

Section 3 describes the econometric model that we use to estimate the effects of curriculum on 

                                                
2  Research by Murnane, Willett, and Levy (1995) and by Grogger and Eide (1995) shows 

that between the 1970s and the 1980s the relative importance of math test scores in determining 

earnings grew substantially and that math achievement is a better predictor of adult earnings than 

are other types of test scores commonly available.  We therefore focus mainly on math 

curriculum, although we broaden this analysis to include curriculum from other fields.  Another 

practical reason to focus on math is that the content of math courses is much more comparable 

across schools than is the content of courses in other subjects (see Porter et. al, 1993).  
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earnings and provides an in-depth description of our data.  Section 4 presents the results from our 

earnings models as well as several robustness checks.  In Section 5, we investigate whether 

curriculum can explain ethnic, socioeconomic, and gender-based earnings gaps.  Section 6 

concludes.  

 

2. How Might Curriculum Affect Earnings?  A Review of Theory and Evidence 

 
A.  The Human Capital and Signaling Models  

Human capital theory implies that curriculum has value because it imparts skills that make 

students more productive and better rewarded in the labor market.  This mechanism can work in 

several ways.  Students who take more-advanced math classes learn skills that may apply 

directly to certain jobs.  They may also learn logic and reasoning skills that indirectly make them 

more productive.  In addition, advanced math may also teach students how to learn.  Finally, 

even if a job only requires basic math skills, a student who has taken advanced math has had an 

additional chance to master those skills.3   

In contrast to the human capital model, the signaling model (Spence, 1973) suggests that 

math courses do not cause the student to be more productive.  Rather, the innately more 

productive, i.e., “more able”, students choose to obtain the specific levels of education that 

provide signals to employers.   

In the case of curriculum, the signaling model is applicable at several levels.  Students who 

take a more rigorous curriculum provide a signal of ability to colleges.  College attendance in 

                                                
3 Gamoran (1998) mentions these paths and cites other corroborating studies as well. 
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turn provides a signal of ability to employers.4  It is less clear how taking more high school 

courses could act as a signal for students who do not attend college.  Perhaps employers of high 

school graduates look at high school transcripts – an assumption not generally supported by the 

research of Bishop (1989).  Nonetheless, more able students may signal that they have taken 

certain courses during job interviews.   

The signaling/human capital debate matters for policy.  If a student gains no productivity by 

taking a specific math course but merely buys a signal of ability, then requiring all students to 

take that course would not raise labor market productivity or aggregate wages.  Further, such a 

policy change could lead to inefficiencies in the labor market because a standardized curriculum 

would make it more difficult for employers to identify the most productive students.  In contrast, 

human capital theory contends that additional math courses could perhaps make all workers 

more productive, so there is a causal relation between curriculum and wages.  Given the stark 

difference between the implications of the two theories, our analyses involve numerous 

robustness checks.  

 
B.  Previous Research 

                                                
4 It is possible that employers do not use educational background as a signal of ability, but 

that the student possesses some characteristic, unobservable to the researcher, that causes him or 

her to take a more-advanced curriculum and to earn higher wages.  Such a pattern would lead to 

endogeneity bias.  This is closely related to the signaling model, because it recognizes the 

possibility that differences in returns from different courses could be caused by selection effects 

that are the result of underlying ability.   We thank Deborah Reed and Kim Rueben for this 

insight.   
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The economics literature has been slow to incorporate high school curriculum into wage 

models, with the exceptions of Altonji (1995) and Levine and Zimmerman (1995).5   Altonji 

asks: Does an extra year of education serve merely as a screening device or do the courses that 

make up that year possess some intrinsic value?  Using the National Longitudinal Survey of the 

High School Class of 1972 (NLS72), he models the log-wage of each person as a function of 

credits completed in eight different subjects during grades 10-12, standard background variables, 

and years of postsecondary education.6  Because the eight curriculum variables are highly 

correlated, he conducts the same analysis using combinations of courses by subject instead of 

entering the individual courses separately. 

He uses three methods to estimate the effects of the curriculum: OLS, OLS with high school 

fixed effects, and a model in which he uses a school’s average number of credits earned per 

student within each subject as an instrument for each student’s number of credits earned in that 

subject.  All three approaches lead to similar results.  Altonji’s overall conclusion is that “the 

                                                
5 Gamoran (1998) provides an excellent review of other studies that have undertaken similar 

goals.  Most of these studies are quite dated and not in the economics literature.  Many focus on 

the effects of tracking rather than specific high school courses.  Others that do look at courses 

restrict their samples to students who obtain no postsecondary education.  In unpublished work, 

Ackerman (2000) also addresses the issue of math curriculum but does not divide up courses in 

as detailed a manner as we do. 

6 The eight subjects are science, math, English, social studies, foreign language, industrial 

arts, commercial courses, and fine arts.  One credit refers to an additional year’s worth of the 

course. 
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effect of a year equivalent of courses is much smaller than the value of one year in high school.”  

In other words, the whole is greater than the sum of its parts.  Even before controlling for 

background characteristics, the IV estimates suggest that each additional year of science, math, 

English, social studies, and foreign language combined leads to a miniscule 0.3 percent increase 

in wages.  He finds stronger curriculum effects if he excludes the negative effects of English and 

social studies.  An additional year of math, science, and foreign language increases earnings by 

3.1 percent.7  Because an additional year of school is estimated to increase wages by 7 percent, 

Altonji’s results lend support to the view that high school serves as a screening device rather than 

as a mechanism for human capital formation.  

On the other hand, Altonji’s results could be not so much a refutation of human capital 

theory as a sign that schooling increases human capital in ways quite distinct from curriculum.  

For instance, schooling may improve student’s critical thinking and punctuality.  See Bowles, 

Gintis and Osborne (2001) for a discussion of these ideas.   

Levine and Zimmerman focus on the effect that math and science courses have on wages.  

They use data from two main sources:  the National Longitudinal Survey of Youth (NLSY) and 

HSB's 1980 senior cohort.  Levine and Zimmerman focus on students who graduated in the late 

1970s through the early 1980s and estimate separate models for men and women.  Like Altonji, 

they use the number of credits earned in math and science courses (separately) as their 

curriculum measures in the HSB data. 

                                                
7 OLS estimates are slightly larger, and OLS with high school fixed effects are substantially 

larger.  OLS estimates without fixed effects predict that the effect of an additional year of 

mathematics on earnings is 1.8 percent, but that disappears once ability controls are added.   
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Levine and Zimmerman find that the number of science classes has very little effect on 

wages for either males or females.  However, their OLS results indicate that an additional 

semester of math increases male wages on average by 3 percent and female wages on average by 

about 2 percent.  Further, they find that the math effects are limited to men who have only a high 

school degree and to women who have completed some college or have earned a college degree.  

For female college graduates, an additional semester of math during high school leads to a 5.4 

percent increase in log wages.  The effect for men with only a high school diploma is 3.1 

percent.  When Levine and Zimmerman use instrumental variables with Altonji’s instrument, the 

math effects disappear.  The variation in results across subgroups may be the result of the small 

sample sizes within each group.  Furthermore, they are looking at wages only about six years 

after high school graduation, so males may not have settled into careers indicative of their 

curriculum and educational attainment.  

 
C.  Contributions of this Paper 

A key factor that distinguishes our work from the two earlier contributions is our detailed 

analysis of the types of math courses taken.  A second distinguishing factor is our focus on the 

role, if any, that high school curriculum plays in creating the well-known wage gaps between 

workers of different races, ethnicities, and genders. 

Like Levine and Zimmerman, we use the HSB dataset.  Unlike Levine and Zimmerman, we 

use the sophomore cohort of the HSB dataset, most of whose members graduated from high 

school in 1982, rather than the senior cohort that graduated in 1980.  This alternative sample 

provides several advantages.  First, our data reflect earnings ten years after graduation rather than 

only six years, as is the case with Levine and Zimmerman’s data.  The effects of curriculum on 

earnings could look quite different for workers in their late twenties than for a sample of 24-year-
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olds who may not yet have settled into careers.  Even students who obtained ample 

postsecondary education have relevant earnings data in our sample.  Second, the transcript data 

for the 1982 HSB seniors are much more detailed than is the course information for the 1980 

HSB seniors.  Third, both Levine and Zimmerman and Altonji study a cohort of seniors, thus 

excluding high school dropouts.  Because we begin with a tenth grade cohort, we are able to 

include some dropouts in our models.  Fourth, whereas Altonji examines earnings in the 1970s 

and in 1986, and Levine and Zimmerman examine earnings in 1986, we follow the students into 

the early 1990s.  This update may be important given the dramatic increase in the returns to 

education in the United States between the late 1970s and the mid-1990s.    

 

3.  Earnings Model and Data 
 
A.  Estimating the Effects of Curriculum on Earnings 

We construct the following linear model of the log of 1991 annual earnings for student i at 

school s:  

isisisisisisis HiDegSchFamDemoCurricearn ε+β+β+β+β+β+α= 43210ln      (1) 

where Curricis denotes curriculum (a vector of the credits earned in each of six math course 

categories); Demois refers to demographic information; Famis and  Schis are family and school 

characteristics, respectively; HiDegis represents a series of dummy variables indicating the 

highest degree the student has earned by 1992; and εis is an i.i.d. error term.8  The specific 

                                                
8 In our initial analyses, we assume the error term is independent across students.  However, 

because some shocks may affect all students at a particular school in the same way, we also 

estimated random effects models in which the error term also contains a school specific 
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regressors included are listed in Table 1.  Each element in the vector of coefficients, 0β , 

describes the effect of an additional credit in the corresponding math course on the log of 

earnings.  Because we include the school variables upon which the HSB survey was stratified, 

we do not weight the regressions.  

Insofar as educational attainment could itself be an endogenous function of high-school 

curriculum, we also estimate reduced form models that exclude educational attainment.  We 

elaborate on the specific models we estimate after describing the data.  In Section 4, we discuss 

the issue of omitted ability extensively and present several alternative specifications, including 

an instrumental variables approach similar to that used by Altonji (1995) and a model that 

includes school fixed effects.  

 
B.  Data Description 

The principal source of data for this study is the High School and Beyond (HSB) Sophomore 

Cohort: 1980-92 data.  This longitudinal study surveyed over 30,000 high school sophomores in 

1980 and followed up on approximately 15,000 of them in 1982, 1984, 1986, and 1992.  This is 

an excellent source of data for several reasons.  It provides extremely detailed high school 

transcript information, including every course taken by the student, the term it was taken, the 

                                                                                                                                                       
component.  The estimated curriculum coefficients and standard errors were nearly identical to 

those estimated by OLS (the coefficients differed by 0.0002 at most and the standard errors by 

even less, depending on the specific model specification), so we report the OLS estimates for 

simplicity. 
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grade received, and the number of credits earned.  It also provides a wealth of personal and 

family characteristics and includes high school dropouts in the transcript and follow-up surveys.9  

We use the log of annual earnings in 1991 as our primary dependent variable.  There are two 

primary shortcomings of these data.  The earnings data are missing for approximately 20 percent 

of the public school sample, thus reducing the number of usable observations.  These data are 

missing primarily because of the lack of participation in the final follow-up.  Secondly, the 

earnings data measure annual earnings rather than an hourly wage, which is a much better 

measure of actual productivity.10  Thus any apparent curriculum effect may operate through two 

channels: an effect on wages and an effect on employment status and hours worked.  It is 

impossible to disentangle these two effects entirely.  We therefore restrict the range of earnings 

that we model, eliminating those who earned less than $2,000 (to exclude those most likely 

working part-time) and those few who earned more than $75,000.11   

We constructed data on mathematics curriculum from the restricted high school transcript 

data.  In this dataset, every high school math course a student took is classified into one of 42 

categories using the standard Classification of Secondary School Courses (CSSC).  We 

                                                
9 Respondents who missed a year were still included in subsequent follow-ups if possible.  

Even students who were selected into the base-year survey but missed it were included in the 

follow-ups if possible. 

10 The survey did gather extremely detailed wage data until 1986 but stopped after that. 

11  Grogger (1996) and Grogger and Eide (1995) make similar data restrictions.  In a 

subsequent section, we discuss how the results change when we relax this income restriction and 

when we use a version of monthly earnings as the dependent variable.   
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aggregated these 42 classes into 6 broader categories based on a classification system provided 

by the National Center for Education Statistics (NCES).  In increasing level of rigor these are: 

vocational math, pre-algebra, algebra/geometry, intermediate algebra, advanced algebra, and 

calculus.  Table A.1 describes the specific math courses included in each category.12  The 

number of credits a student earned in each class is also available, where a typical one-year course 

is assigned one credit and a half-year course is assigned 0.5 credits (technically, these credits are 

Carnegie units).  Combining these two variables yields our primary measure of curriculum:  the 

number of credits earned by student i in each of the 6 math course categories.13 

Students for whom earnings data or curriculum data are missing are excluded from this 

analysis.  We also restrict our sample to students who attended public schools and exclude 

students who transferred schools during high school.  In addition, we exclude students who were 

enrolled in postsecondary education at any time during the 1991 year or for whom enrollment 

                                                
12 Although we describe math here for simplicity, we do analyze other academic subjects.  

Table A.2 shows the classification system that we use for science courses. 

13 In the unrestricted version of the data, only the total number of math classes that a student 

took is available.  Thus, no measure of course difficulty is available.  Also problematic is that the 

pre-calculated course counts in the transcript data give each course taken a count of one.  So, if 

one student takes a one-year algebra course and another student takes two one-semester algebra 

courses, they will have course counts of 1 and 2, respectively.  In essence, the two students have 

taken the same course, but their tally is misleading.   This could lead to measurement error bias 

in models that use either the unrestricted version of the data  (or the pre-calculated course counts 

in the restricted version), which would bias the estimated effect of math toward zero.  
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data are missing, because their earnings may not truly reflect their human capital formation, or 

their final signal.14  Tables A.3 and A.4 list the number of missing observations for the primary 

variables used in the analysis.  

We treated questionable data values as missing (for example, student-teacher ratios of 0.17 

and of 2000).  For variables other than the dependent variable and the curriculum measures, we 

set missing values equal to zero and included a dummy variable indicating whether the variable 

was missing.  In approximately 25 cases, we imputed values for earnings or considered them to 

missing when the reported data seemed implausible.  For example, we assumed incomes that 

jumped from $20,000 in 1990 to $200,000 in 1991 and then back to $20,000 in 1992 were data 

entry errors and we corrected them appropriately (in the above case, set to $20,000).  We did not 

change large jumps in earnings that coincided with the completion of a bachelor’s degree.15 

                                                
14 School attendance data are nonexistent for August of 1991, so in practice the restriction 

applies to those enrolled, or missing enrollment data, during the remaining eleven months of the 

year. 

15 Although the last follow-up took place in the spring of 1992, we did not use the annual 

earnings data from that year because they seem inaccurate.  Whereas the average annual earnings 

steadily increase from 1982 through 1991 in an expected fashion, they fall to about half of their 

expected value in 1992, as if some respondents gave year-to-date earnings information.  Even 

after discussions with the HSB personnel from the Department of Education, we could not find a 

clear cause.  Although the 1991 earnings reports are self-reported and retrospective in nature, 

they are likely to be accurate because the data are gathered in 1992 (and near tax time for 1991 

income). 
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C.  Descriptive Statistics 

Because HSB used a stratified national probability sample of schools in which schools with a 

high percentage of Hispanic students were oversampled, the summary statistics must be 

weighted to make meaningful projections to the population as a whole.16  In Table A.5, we 

present both weighted and unweighted means and standard deviations of the primary variables 

used in our analysis.  We present these descriptive statistics for the 11,724 students in public 

schools and, because some crucial data are missing, for the subsample of observations used to 

estimate the earnings models (the regression sample).  The means and standard deviations in the 

regression sample are strikingly similar to those obtained when using the full set of potential 

public school observations.17  This similarity offers some assurance that sample attrition and 

missing values have not distorted our sample. 

                                                
16 Although that type of school was oversampled, within the school 36 students were 

randomly selected.  The ethnic composition of the oversampled schools still leads to a higher 

than nationally representative proportion of Hispanics in the sample.  Our regressions do not use 

weights, opting instead to include controls for the variables used to stratify schools in the HSB 

sample. 

17 We examined mean differences for all regressors, including those not shown in Table A.5.  

The biggest mean difference occurs in the percentage of sample members who are male.  This 

percentage is 4.5 points higher in the usable regression sample, indicating that we lose a 

disproportionate number of females.  This is not surprising because, on average, more females 

will be out of the labor force and therefore missing earnings data in the appropriate range.  As an 

additional test of whether the correlations between the curriculum variables and other regressors 
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4.  Earnings Model Results:  Does Math Curriculum Affect Earnings? 

 
A.  Basic Log-Earnings Models 

Table 2 presents the coefficients and standard errors from the model in equation (1) as well 

as from two more parsimonious models.  The coefficients can be interpreted as the percentage 

change in earnings associated with an increase of one credit, i.e., one year, for each of the 

specific math courses.18  The predicted effects of taking high school math vary across models, 

but the final conclusion appears robust: Math matters. 19 

                                                                                                                                                       
in our regression subsample are different than in the excluded data, we ran regressions of each 

curriculum variable on the other conditioning variables and tested for variations in coefficients 

between the full sample and the regression sample.  We found little evidence of any changes in 

covariations between curriculum and other conditioning variables. 

18 These are approximate percentage changes.  The regression coefficients represent a first 

order approximation to the proportional increase in earnings from a one-unit increase in a 

regressor.   The exact percentage change is given by  ( 1−βe )*100%, where β is the regression 

coefficient. 

 19 These models are unweighted regressions.  Although the sample is stratified, DuMouchel 

and Duncan (1983) argue that the preferred estimation technique is not to weight but rather to 

include controls for all the variables upon which the sample was stratified, which is the course 

we take here.  We replicated the main models in this paper using the weights we used to report 

sample means in Table A.5, and found similar results.  One substantial change was the calculus 

coefficient in column 3 becomes insignificant at the 5 percent level. 
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All of the main models in this table disaggregate math courses by type.  However, under the 

six disaggregated math courses, we provide a row showing the results of otherwise identical 

models that control only for the total number of math courses taken.  While these ‘average’ 

effects are often statistically significant, they mask some fairly large variations in the impact of 

different types of math courses.  For this reason, our discussion of Table 2 will focus on the more 

detailed models that disaggregate math courses by type.   

Column 1 contains the results from the simplified version of the model in equation (1) that 

does not control for any student characteristics, summarizing the variation in mean earnings 

among workers with different numbers of math courses.  The math coefficients are quite large 

and vary by the level of the course.  An additional year of calculus is predicted to increase 

earnings by approximately 19.5 percent, whereas an additional year of algebra/geometry is 

predicted to increase earnings by about 8.0 percent.  Vocational math courses, however, seem to 

have almost no effect on earnings. 

Obviously, this first model is simplistic because it does not take account of many other 

observable variables that are known to affect wages.  As column 2 shows, adding demographic, 

family, and school characteristics causes the effect of math courses at or above the 

algebra/geometry level to drop by 24 to 38 percent; the lower level math effects drop by even 

more.  This pattern suggests that a portion of the curriculum effects from the previous model 

should be attributed to these other factors.20   Nonetheless, all the curriculum coefficients, except 

that of pre-algebra, are still quite large and statistically significant at the 5 percent level.  An 

additional credit in algebra/geometry is predicted to increase earnings by 6.1 percent, but 

                                                
20 See Table 1 for a list of the specific demographic, family, and school variables used.  
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advanced algebra is associated with an 8.8 percent gain. In this model, vocational math has a 

significant negative coefficient, indicating that taking additional vocational math courses leads to 

lower earnings.  This result might seem to suggest that signaling, rather than human capital 

formation, is at work.  While this may be, the result is consistent with either signaling or human 

capital theories.  There are virtually no students in the sample who take no math at all.  Because 

the model contains a constant term, each coefficient is identified by variations in the 

corresponding variable from the sample average.  Thus, in our model, the negative sign does not 

imply that taking an extra vocational math course actually lowers earnings relative to a student 

who takes no math courses.  Rather, the negative coefficient means that taking an additional 

vocational math course lowers earnings relative to the student who has taken the average 

curriculum, which includes only 0.69 of a year of vocational math courses.  This could indicate 

that vocational math is a negative ability signal.  It could also indicate that the minority of 

students who take one or more years of vocational math have paid the opportunity cost of taking 

more advanced math courses that would have helped them develop human capital needed in the 

labor market.   

To further illuminate the path through which these curriculum effects work, we control for 

the ultimate educational attainment of the student.  We add to the previous model a series of 

dummy variables indicating the student's highest educational degree attained by 1992 and 

present the results in column 3.  With these controls, the math curriculum coefficients drop by 

about one-half.  The signaling interpretation of this drop is that about one-half of the overall 

effect of high school math reflects the way in which math courses enable more productive 

students to attend college and therefore signal their ability to their employers.  The human capital 

interpretation is that high school math courses increase a student’s efficiency, thus increasing his 
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or her chances of attending college, and in this way increase the student’s productivity further.  

In the human capital interpretation, column 2 continues to show the overall effects of curriculum, 

whereas the results in column 3 show the effect that works directly rather than indirectly through 

education.  The striking curriculum effects that remain in column 3 after controlling for 

educational attainment suggest that there may be a direct effect of math curriculum on labor 

market productivity that works independently of the final degree attained.  In this model, the 

vocational math coefficient is still negative and significant, the coefficient on pre-algebra credits 

is no longer significant, but the high-level math coefficients remain significant.21  A course in 

                                                
21 To determine the extent to which the negative sign on vocational math is being driven by 

students who take only vocational math courses and nothing higher, we re-estimated the model 

in column 3 but included a dummy variable indicating whether the student had taken only 

vocational math.  The coefficient on this indicator is –0.065 and is significant at 5 percent.  The 

magnitude of the vocational math credits coefficient becomes slightly less negative at –0.019 but 

is now only significant at 10 percent.  This indicates that, on average, students who take only 

vocational math earn less than those who take vocational math and some higher math.  It also 

indicates that even those students who take some vocational math but also take some higher math 

(approximately 35 percent of the students who take one vocational math course fall into this 

category) still earn less than the average student who does not take any vocational math.  

Because the average student does not take an entire credit of vocational math, students who do 

take one credit are taking it at the expense of a more advanced course.  Thus, there is some 

opportunity cost to taking vocational math.   
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algebra/geometry is estimated to increase earnings by 3.1 percent and a calculus course appears 

to increase earnings by 6.5 percent.22 23 24  

                                                
22 The calculus coefficient is very large relative to most others in the model.  One effect that 

is almost as large is coming from a family with an income greater than $25,000 rather than 

coming from a family with a mid-level income ($20,000 to $25,000).  Furthermore, the calculus 

effect is almost great enough to offset the negative effect of coming from a family with 

extremely low income (less than $7,000) relative to coming from a family with mid-level 

income.  The calculus effect also counterbalances the effect of having a mother with less than a 

high school degree rather than having a mother with a high school degree.  In contrast, standard 

measures of school quality such as the student teacher ratio are not statistically significant.  Not 

even reducing the percentage of disadvantaged students at a school by 25 percentage points 

outweighs the effect of taking a calculus course. 

23 To allay concerns that excluding observations with earnings not between $2,000 and 

$75,000 was driving our results, we estimated the column 3 model but set all nonmissing 

earnings values less than $2,000 equal to $2,000 (about 80 percent of these earnings were $0).  

This imputed earnings value can be thought of as earnings that individuals forgo by remaining at 

home, or it may represent a low-value of the household work for those not working.  In this case, 

the results are also quite similar to those in of column 3 in Table 2.  As a second solution to elicit 

productivity rather than variations related to labor force attachment, we modeled the log of 

monthly earnings (calculated as annual earnings in 1991 divided by the number of months that 

the respondent was employed during that year).  At each stage, the resulting math coefficients 

were very close to those from the original model using annual earnings.  Because using the 
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Another mechanism through which curriculum could affect earnings is by channeling 

students into majors, or by keeping the door open to majors and occupations that are more highly 

rewarded in the labor market.  We estimated, but do not show, models that also controls for the 

student's college major and occupation (with 9 and 13 categories, respectively).  The purpose of 

these models is to understand the channels through which high school curriculum increases 

wages.  As expected, in models that control for students’ college major, the curriculum 

coefficients all fall, but not enough to indicate that the bulk of the remaining curriculum effect 

operate though the college-major channel.  Even with these additional controls, many of the math 

effects are still statistically significant.25  Separate models that controlled for students’ 

                                                                                                                                                       
monthly earnings measure meant losing 150 more observations resulting from missing 

employment data, we chose to use annual earnings throughout this paper.   

 24 Another important issue is whether the returns to taking math courses are non-linear.  We 

re-estimated model 3 after adding the squares of the number of credits taken in each math 

subject.  None of the squared terms were close to being significant.  Although we suspect that 

diminishing returns should set in at some point, the relatively small number of courses taken in 

each subject, as shown in Appendix Table A.5, prevents us from determining at what point such 

non-linearities begin. 

25 The algebra/geometry coefficient is .027, whereas that of advanced algebra is larger at 

.034.  Calculus still has the largest effect at 5.7 percent, but it is only statistically significant at 

the 10 percent level.  We thought that there might be important interactions between educational 

attainment and major.  However, the curriculum effects did not change substantially when we 

added these interactions terms.  Indeed, none of the interactions of curriculum and highest degree 
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occupation were quite similar.  Vocational math, algebra/geometry and advanced algebra remain 

significant at 5 percent while calculus and intermediate algebra become insignificant. 26   

To understand better the degree to which educational attainment, college major and 

occupation can account for the observed impact of math courses on earnings, we calculated the 

predicted impact of taking an average number of courses in each category (from the final column 

of Appendix Table A.5) before and after accounting for educational attainment (Table 2, models 

2 and 3, respectively), and in a version of model 3 that also added controls for college major and 

occupation.  We found that 64 percent of the impact of math courses appears to work through 

educational attainment, while an additional 18 percent works through students’ subsequent 

occupation and college major.  This leaves 18 percent of the curriculum effect that apparently 

works through other mechanisms. 

In sum, it appears that the effects of curriculum operate much more through educational 

attainment than through the choice of major or occupation.  The results from this section indicate 

that, even after accounting for a multitude of factors, a more rigorous curriculum is associated 

                                                                                                                                                       
dummies were statistically significant, suggesting that the impact of taking additional courses is 

widespread.  

26 The coefficients on the math variables are also slightly smaller once we control for occupation, 

at -0.02 (vocational math), 0.005 (pre-algebra), 0.025 (algebra/geometry), 0.026 (intermediate 

algebra), 0.038 (advanced algebra) and 0.050 (calculus).  We also tried models that 

simultaneously controlled for occupation and college major.  The general pattern was a further 

slight reduction in the math coefficients, with vocational math, algebra/geometry and advanced 

algebra remaining significant at 5 percent.   
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with higher earnings, indicating that math curriculum may directly affect labor market 

productivity. 

 
B.  Omitted Ability  

Two factors that are impossible to include fully in any school-earnings study are ability and 

motivation.  Theory suggests that these traits are positively related both to students’ level of 

education and to their subsequent wages.27  Thus, if these characteristics are omitted from an 

earnings model, the coefficients on the schooling variables (in our case, the curriculum variables) 

will be biased upward to the extent that these characteristics are positively correlated with 

curriculum and earnings.  This could be a particularly large problem when we count the number 

of courses of a specific type, rather than when we aggregate all math courses into one category. 

We adopt two main strategies to deal with this issue.  Our main strategy is to add ability and 

motivation controls in the form of the student's mathematics grade point average (GPA).  We 

also use an instrumental variables approach similar to that used by Altonji (1995) to eliminate 

the part of curriculum that is related to the student’s own ability and motivation. 

i)  Controlling for Ability and Motivation 

The student's math grade point average provides a potentially good measure of ability and 

motivation because it represents how well students understand and apply themselves given a 

particular curriculum.  But GPA may in part measure factors quite distinct from human capital, 

such as punctuality, neatness, and the level of involvement by parents in the student’s 

                                                
27 In theory, a negative relation could arise between ability and education if more able 

students found it optimal to leave school earlier because of the high opportunity costs of 

schooling in the form of forgone earnings.  See Griliches (1977). 
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schoolwork.  Considering the difficulty in distinguishing one effect from the other, we refer to 

the ensemble of ability and motivation as “ability.” 

The model with math GPA appears in column 4 of Table 2.  The algebra/geometry 

coefficient is still significant at the 5 percent level and approximately as large as before, with a 

predicted effect of 2.9 percent.  Similarly, the advanced algebra coefficient remains significant at 

the 5 percent level, but does drop somewhat in magnitude.  The calculus coefficient is no longer 

significant with math GPA in the model.  This latter result is certainly consistent with the idea 

that some of the most advanced courses may reflect ability in part rather than the creation of 

human capital.28  

                                                
28 We experimented with other potential ability controls and the results were fairly consistent 

regardless of the control we used.  We hoped to include a pre-high school test score to control for 

pre-high school math ability (and more generally prior achievement).  Unfortunately, the earliest 

test score data available in HSB is from a series of tests administered during spring semester of 

the student's sophomore year.  Because this score is likely to be affected by the courses students 

take during grades 9 and 10, it does not provide an adequate measure of pre-high school math 

aptitude.  It may actually “overcontrol” for ability, causing a downward bias on the curriculum 

coefficients.  Nonetheless, we did estimate a model that included the student’s mathematics test 

score and the results are comparable to the case with GPA controls.  In this model, the 

algebra/geometry coefficient is 0.025 and significant at the 5 percent level; the advanced algebra 

coefficient is slightly smaller at 0.027 and significant at the 10 percent level.  In contrast to the 

model with GPA, controlling for test score yields a calculus coefficient that is significant at the 

10 percent level and slightly larger in magnitude at 0.055.  The math coefficients may change 
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We also re-estimated model 4 after adding controls for college major and occupation, both 

separately and together.  The results mirror our discussion of these extensions to model 3: there 

is evidence that college major and occupation explain some but not all of the impact of high 

school math courses on earnings.  The most striking changes came when we added controls for 

both major and occupation, in which case vocational math remained significant at 5 percent, 

algebra/geometry was significant at almost 5 percent and intermediate algebra was significant at 

about the 10 percent level.  In a model not shown, where we repeat model 4 but without 

educational attainment, we find that the estimated impact of math courses rises substantially, 

similarly to what we show in model 2. 

We re-calculated our earlier decomposition of the sources of the math effects, but this time 

using the models that condition on math GPA.  The results suggest that 68 percent of the effect 

works through students’ educational attainment and an additional 19 percent works through 

                                                                                                                                                       
across model specifications in part because of the falling sample sizes that result from missing 

data in some of the controls (13 percent of the regression sample is missing test score data).  As 

an additional way of accounting for student motivation and parental influence, we controlled for 

a set of attitudinal variables indicating the academic inclination of students and parents (such as 

whether the parents closely monitor the student's schoolwork, whether the parents know where 

their children are at all times, whether the student intends to go to college, the amount of 

television the student watches and how much time the student spends reading outside of class).  

Adding these variables, rather than GPA, causes even smaller changes in the math coefficients 

from the case of no ability controls.    
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students’ college major and occupation.  The unexplained portion, about 13 percent, appears to 

work through other mechanisms.   

ii)  Instrumental Variables Estimation 

In another attempt to curb omitted ability bias, we follow Altonji's lead and use a school's 

average math credits earned in each of the six math categories as instruments for the student’s 

own math credits earned in those categories.  The intuition is that we want to purge the portion of 

the curriculum effect that is related to ability.  We use the school's average curriculum to predict 

the student's actual curriculum, and any deviation of the student's actual curriculum from the 

predicted level is assumed to be caused by variations in ability, thus leaving the predicted value 

independent of ability.  Therefore, if we use this predicted level of curriculum in our model 

instead of the actual level, we will be estimating the effect of pure curriculum rather than the 

effect of a mix of curriculum, ability, and motivation.  However, note that if parents of highly 

motivated students all flock to the same school, the instrument will not fully eliminate ability 

bias.  (We control for this possibility, but rather imperfectly, by including dummies for census 

region and for suburban and rural schools.)  We return to this issue after discussing the IV 

results.   

We estimate our earnings model using two stage least squares and present the results in 

columns 5 and 6 of Table 2.29  Column 5 shows the IV results with no additional ability controls 

                                                
29 We exclude the student’s own curriculum when calculating the school average curriculum 

for that student.  In our second stage regression, we exclude students who come from schools 

where the school average curriculum was calculated using fewer than four observations, causing 

us to exclude about 4 percent of the students.  The results change only minimally if we change 
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and column 6 includes GPA.  The results are strikingly similar in both IV specifications.30  

Vocational math credits have a statistically significant negative effect on earnings of around 8 

percent.  Credits earned in the algebra/geometry category are significant at the 5 percent level in 

both specifications and are of similar magnitude at approximately 8 to 9 percent.  This is a rather 

large increase from the OLS estimates.  It appears that the effect of higher-level math courses has 

been condensed into the algebra/geometry category.  It is important to stress that although the 

higher-level math coefficients now have negative signs, they are not significantly different from 

zero.31 

iii)  High School Fixed Effects 

As another robustness check, we use OLS to estimate an earnings model with high school 

fixed effects both with and without GPA (see columns 7 and 8).  Whereas the IV estimates 

should net out ability effects within each school, the fixed effects estimates should control for 

                                                                                                                                                       
the requirement for the number of observations for computing the average from each school.  

The number of students per school ranges from 1 to 36, with a median of about 12.  We tried an 

alternative specification where we estimated the first-stage regressions using the largest possible 

sample of students, including those students whom we excluded from the second-stage 

regression because of missing earnings data.  However, the results changed only minimally.   

30 In fact, the following results also hold in other IV model specifications that include 

controls for math test score and models that include both math GPA and math test score.   

31 Given that few students took the high-level math courses, the quality of the instrument may 

be reduced for this level of course, therefore explaining the lack of precision in estimating these 

coefficients. 
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variations in abilities across schools.  Without GPA in the model, half of the curriculum 

coefficients are higher than the comparable model in column 3.  The pre-algebra and 

algebra/geometry coefficients remain practically unchanged and the coefficient on vocational 

math is no longer significant.  The results with math GPA added in addition to the fixed effects 

are similar to, but somewhat stronger than, the corresponding model in column 4 with GPA but 

without high school fixed effects. 32   

 
C.  Additional High School Subjects 

Although our research focuses on the effects of mathematics curriculum, we also incorporate 

courses in English, science, and foreign language into our model using detailed curriculum 

categories.33  We classified the number of English credits earned into four levels:  below grade 

                                                
 32 F-tests that the high school dummies are jointly equal to zero produced p-values of 0.0001 

without GPA in the model and 0.00014 with GPA in the model.  However, our other models that 

condition upon high school characteristics appear to capture much of this variation, with p-values 

for the F-tests of 0.02 regardless of whether we include GPA.  The school characteristics that 

were significant at the 5 percent level were many of the dummies indicating the stratifications 

used to sample HSB schools, and region dummies.  None of the measures of school resources 

were significant, while the percentage of students who were disadvantaged was the demographic 

characteristic closest to being significant at the 5 percent level. 

33  These curriculum measures display collinearity with math.  The number of math credits 

earned has a correlation of 0.54, 0.36, and 0.38 with science, English, and foreign language 

credits, respectively.  We also estimated models that included social science credits, but the main 

results were not altered.  We decided to leave it out to reduce collinearity problems.  
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level, average grade level, above grade level, and English literature courses.  We measured 

science curriculum as the number of credits earned in six science course categories (see Table 

A.2 for the classification system).  We classified foreign language curriculum into two variables.  

One designates whether the student took one or two courses whereas the other signals that the 

student took three or four courses. 

We estimate models containing all four subjects using both OLS and IV methods and present 

the results in Table 3.  For comparative purposes, we include models that do and do not 

condition on math GPA.  However, we focus on the models in columns 2 and 4 that condition on 

math GPA.  We note that the other subjects may also serve as ability/motivation controls.  All 

models include controls for demographic, family, and school characteristics as well as the 

highest educational degree attained by the student.   

Including the credits earned in other subjects (column 2) causes the math coefficients to drop 

by approximately 30 to 40 percent from the base level case, depending on the math course 

(except for the case of vocational math).  It appears that taking an average or above-level English 

course is associated with increases in earnings roughly similar to the predicted gains from taking 

a math class at the algebra/geometry level or higher.  The above-level English credits are 

predicted to have a larger effect on earnings than are average-level English credits.  None of the 

science coefficients are statistically significant except for primary physics, which is predicted to 

have a negative effect on earnings (most likely for the same reasons that vocational math does).  

Taking three or four foreign language courses also has a significant positive effect.  At 5.6 

percent, its coefficient seems relatively large compared to those of other subjects.  However it 

represents the effect of three to four credits whereas the predicted effects of the other subjects 

represent the effect of one additional credit.    
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We repeat the analysis using the IV technique.  The results from adding the additional 

curriculum measures are remarkably similar to the IV results in Table 2 column 6, in that the sole 

math variable that is significant at 5 percent is algebra/geometry.  The IV models are less 

supportive of the notion that foreign language and science are associated with higher earnings 

than are the OLS models.   

Our results indicate that mathematics courses have a large effect on earnings, regardless of 

whether we also control for other types of courses taken.  In fact, the IV estimates imply that the 

returns to taking a one-unit algebra/geometry course are statistically significant and large in 

magnitude – over 9 percent.  This is higher than the average returns to an additional year of 

schooling (often cited as 7 percent).  Other math courses, as in the simpler IV model, become 

insignificant.  

In contrast to the OLS estimated model that contains all four curriculum measures, the effect 

of the above-average English credits in the IV estimated model is tripled.  Perhaps accumulating 

credits in foreign language is a sign of ability or motivation, which the IV method eliminates.  

Finally, in the IV estimated model, the low-level science courses are still predicted to have 

negative, and now even larger, weakly significant effects. 

Unlike some of the earlier literature, we find that the sum of the parts (i.e., the effect of high 

school courses) can be as large as the whole (i.e., the effect of an additional year of high school, 

often cited as a 7 percent increase in earnings) contingent upon the student taking the right 

courses.  In the case of students who take the most demanding courses, curriculum predicts 

earnings gains of more than 7 percent per year.  This can be seen best by considering some 

simple thought experiments.   
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To compare our estimated effects of a year’s worth of curriculum to the 7 percent effect of a 

year’s worth of schooling, Table 4 shows OLS estimates of potential combinations of high 

school courses.  The first row shows that students who drop out in tenth grade experience a 12 

percent earnings deficit compared to those who stay in school (calculated as the effect of having 

less than a high school degree in the Table 2, column 4 model).  This resonates with the 

estimated 7 percent benefit per year that school provides.  The remaining rows in the table 

compare the earnings gain for a student who takes the stated set of courses, relative to an 

otherwise identical student who does not take the courses.  In each case, the set of courses is 

meant to approximate what a typical student might take by staying in school one year longer.  

For students who do not drop out, we present three hypothetical course loads (low, medium, and 

highly academic combinations) that they could take during their eleventh and twelfth grades.  

The returns to curriculum depend critically on the type of courses taken.  A low-level curriculum 

taken in either year has a predicted effect on earnings of about 2 percent, compared to a 5-6 

percent return for a medium-level curriculum.  An additional year of a high-level curriculum 

carries a predicted earnings premium closer to 7 to 9 percent.34   

                                                
34 Throughout this exercise, we assume that all other background characteristics are held 

constant and that the only difference between the students we are comparing is their curriculum.  

In other words, the effects within each academic year (e.g., twelfth grade) are measured relative 

to a hypothetical student who stays in school that academic year but does not take any math, 

English, science, or foreign language courses.  The more interesting comparisons are between 

students who take a high-level curriculum rather than a low-level curriculum. 
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We conclude that on average, the returns to one year of high school can be largely explained 

by the courses, especially in math and English, that students take. 

 
D.  Comparison to Previous Research 

So far, our unique contribution to this branch of literature is to classify the number of math 

courses that students take based on the academic level of the course.  To highlight the difference 

that classifying courses by their type makes, we re-estimate the previous set of models using the 

aggregate credits earned in a particular subject rather than the detailed credit counts.35  We also 

present a specification using aggregate credits that matches Altonji’s (1995) specification as 

closely as possible.  We present the outcomes from the aggregate models in Table 5.   

Notably, the results from our models with aggregate course counts in the four subjects 

closely approximate the results in Altonji (1995).36  Thus our method of classifying the 

                                                
35 Rather than relying on the pre-calculated course counts provided in HSB, we calculated the 

total number of credits earned directly from the transcript data. 

36 This applies to models estimated by both OLS and IV methods.  To further approximate 

Altonji’s results, we estimated these models but excluded high-school dropouts.  The results 

changed minimally, with the predicted effects differing by 0.002 at the most.  We had 

hypothesized that our results differed from Altonji’s because we used a more recent cohort and 

included high school dropouts in our analysis.  Now it seems clear that the differences stem 

mostly from our more detailed classification of curriculum. 
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curriculum by level seems to explain some of the “curriculum puzzle.”37  We also find that some 

of our other hypotheses concerning Altonji’s results are incorrect or only partially correct. 

Columns 1 and 2 of Table 5 repeat the models from columns 1 and 2 of Table 3 but use 

aggregate credits instead of detailed course counts.  Both models control for the demographic, 

family, school, and educational attainment characteristics that have been used throughout this 

paper.  In model 1, the math coefficient is only marginally significant, whereas in this model’s 

Table 3 counterpart, several of the disaggregated math coefficients are significant at the 5 

percent level.  Model 2 in Table 5 adds GPA to model 1.  The aggregate math coefficient is no 

longer significant.  Total English credits become marginally significant.    

Column 3 takes the first step towards approximating Altonji’s Table 2 model 7.  The main 

changes are that we remove the school resources that are not included in Altonji’s model, and we 

also exclude high school dropouts as Altonji does.38  Neither of these differences between 

Altonji’s model and our own seem to matter much, whether these changes are made jointly, as 

shown in the table, or individually.   

At this point, the major difference between Altonji’s model and our replication is that we use 

math GPA as a control for ability, whereas Altonji uses test scores.  Column 4 of Table 5 takes 

the final step towards replicating Altonji’s model.  It makes the same restrictions as the column 3 

model, but it includes senior year test scores instead of GPA.  In this replication, aggregate math 

                                                
37 This term was coined by Altonji when describing the small estimated effects of 

curriculum. 

 38 See the notes to Table 5 for more details of how columns 3 and 4 differ from columns 1 

and 2 in a bid to mimic the specification used by Altonji as closely as possible. 



 

    

32

credits are not significant.  English and foreign language credits are significant but the effects are 

modest.  The main difference between these findings and those of Altonji is that English credits 

in our model are significant.  Altonji reports that one year of math, science and foreign language 

is associated with a gain in earnings of about 1.5 percent.  Our Table 5 column 4 gives an 

estimate of 1.9 percent.  But when we add in a year of English our estimate jumps to 3.6 percent 

compared to 0.6 percent in Altonji.  Still, overall the results seem highly similar to Altonji’s in 

that we do not come close to “explaining” a 7 percent increase in earnings from attending one 

more year of school. 

Disaggregation of courses taken is the most important innovation we make, but the use of 

GPA rather than test scores is a secondary reason for why our results are somewhat more 

optimistic than Altonji’s.  Although the math variable is still not significant in either models 3 or 

4, it does fall by half when we include test scores rather than GPA.  Overall, we interpret this as 

a sign that our decision not to use high school test scores as a control, because they are 

endogenous, makes a substantive difference.   

It is also notable that the timeframes differ significantly between our samples and Altonji’s -- 

our earnings observations are from 1991 compared with 1977 through 1986 in Altonji (1995).  

Because the returns to education increased markedly between the late 1970’s and the early 

1990’s, we had speculated that perhaps math curriculum matters more today than it did in the 

past.  Our results do not provide strong evidence that this is the case, except perhaps for our 

finding that in our specification closest to Altonji’s, English courses matter much more than he 

found.   

The remaining columns in Table 5 repeat the same series of specifications but use the IV 

estimator.  Perhaps the most notable finding here is that the coefficient on math courses taken is 
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never significant and is always negative.  Our earlier IV models that disaggregate suggest that in 

fact some math courses do indeed matter. 

Overall, we conclude that the main reason for the divergence between our results and those 

of Altonji is our disaggregation of courses by type; a secondary reason appears to be our decision 

not to condition on high school test scores because they are an endogenous function of courses 

taken. 

The finding that course type matters has many implications for curriculum reform.  In 

particular, merely increasing the number of math courses required of students may not achieve 

the desired effect.  It will be important to focus on the type of courses students are required to 

take as well.39  In particular, our results suggest that algebra and geometry courses should be a 

fundamental part of any curriculum reform.   

 

5.  An Analysis of Earnings Gaps among Ethnic, Socioeconomic and Gender Groups 

 
This section examines whether differences in high school curriculum contribute to the well-

known gaps in earnings among workers of different races and ethnicities.  Similarly, we test 

whether gaps in earnings related to a person’s parental background of the person’s gender in part 

reflect variations in high school courses.   

In the early 1980s, math course completion rates varied considerably by ethnicity.  Nearly 9 

percent of Hispanic students and 10 percent of black students completed math credits in 

                                                
39 When graduation requirements are increased, there is the risk of more students dropping 

out. See Costrell (1994) and Betts (1998) for a theoretical analysis and Lillard (1998) for an 

empirical analysis. 
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advanced algebra or calculus compared to rates of 22 percent and 43 percent for white and Asian 

students, respectively.40  The same disparities emerge when we examine the number of credits 

earned rather than the highest course completed.  Hispanic, black, and Native American students 

tended to earn more credits in vocational math and fewer credits at or above the 

algebra/geometry level than Asian and white students. 

Similarly, students from the lowest-income families (those with parents who earned less than 

$7,000 annually) were concentrated in the lower-level math courses, with 46 percent failing to 

progress beyond vocational math.  For students from middle-income families (those earning 

$20,000 to $25,000), only 19 percent failed to advance beyond that level.  Whereas 24 percent of 

middle-income students took courses at or above the advanced algebra level, only 8 percent of 

the lowest-income students did.   

How much of the earnings gap between members of different ethnic groups or parental 

income groups can be attributed to these variations in mathematics course-taking behavior?  We 

first estimate a model of earnings that only includes ethnicity variables as explanatory factors, 

with white students as the omitted group.  The results appear in column 1 of Table 6.  Consistent 

with common perception, this simple model shows that Hispanics and blacks earn significantly 

less than whites on average - about 5.2 percent and 10 percent less, respectively.41    

                                                
40 These figures are based on every public school observation for which we have ethnicity 

and math data.  The same course-taking trends are evident for the weighted regression sample as 

well.  

41 These earnings deficits are smaller than those reported in other literature because of the 

HSB sampling scheme.  The HSB dataset includes only those people who are still in school in 
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To establish a baseline earnings gap for students from different parental income levels, we 

carry out a similar procedure – estimating an earnings model that only contains parental income 

levels as explanatory factors.  We measure the differences in average earnings relative to 

students whose parents were in the middle-income category, i.e., families that earn between 

$20,000 and $25,000 a year in 1980.42  In this model (shown in column 2 of Table 6), students in 

the lowest-parental-income category (less than $7,000) earn about 30 percent less than students 

from middle-income families, whereas those in the highest-parental-income group earn 10 to 11 

percent more.  

Next, we estimate a model that conditions on both parental income and ethnicity while taking 

account of demographic, family and school characteristics.  The resulting earnings gaps are 

presented in column 3 of Table 6.  The non-curriculum factors that we add to this third model 

can explain almost all of the ethnic earnings differentials and a large portion of the 

socioeconomic earnings gaps.  In this more realistic model of earnings, the Hispanic and black 

earnings gaps disappear entirely.  Asian students still experience an earnings premium relative to 

white students, but the effect is statistically weak.  Native American students still experience an 

earnings deficit.  Which factors are responsible for the closure in the Hispanic and black earnings 

gaps?  Entered into the model on their own, either parental income or parental education can 

explain nearly all of the Hispanic gap and about half of the black gap.  Together, the two 

                                                                                                                                                       
the second half of their sophomore year in high school.  Thus, it excludes students who drop out 

of school at an early age, as well as immigrants who had no U.S. education. 

42 The income categories in this section are defined in 1980 dollars.  
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measures of parental background can account for the entire earnings gap between whites and 

either of these minority groups.   

As column 3 of Table 6 also demonstrates, the earnings gaps related to parental- income 

groups diminish substantially after controlling for the remaining demographic, family, and 

school factors, yet they are still present.  Students from the lowest-income families earn about 16 

percent less than those from middle-income families and students from the highest-income 

families now earn about 6 percent more. 

Column 3 also suggests that there is a gender gap in earnings, with males earning 27 percent 

more than females.   

Next, we add math curriculum to the model in column 3 to see whether it can explain the 

ethnic, SES and gender differences.  The results appear in column 4.  Adding the six distinct 

math curriculum controls changes some of the ethnic effects.  Curriculum appears to entirely 

explain the remaining Native American earnings deficit and the Asian earnings premium.  In 

fact, controlling for curriculum provides weak evidence (significant at the 10 percent level) that 

Hispanics are predicted to earn 3.6 percent more than whites given similar curriculum and 

background characteristics. 

Math curriculum appears to be responsible for around 27 percent of the earnings gap 

experienced by students from lowest-income families relative to middle-income families.43  The 

                                                
43 This is computed as the percentage change in the lowest parental-income (less than 

$7,000) effect from the column 3 to column 4 of Table 6.  Including detailed measures of 

English, science and foreign language curriculum in the model that controls for math narrows the 

gap by another 7 percent.   Adding the aggregate number of math credits earned in lieu of the six 
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gap becomes insignificant for the second-lowest family income group ($7,000 to $15,000) after 

adding curriculum to the model.  However, students from the two highest parental-income 

categories still experience the same earnings premium that they do in the model without 

curriculum.  Thus, curriculum explains a large portion of the earnings gap between students from 

low-income and medium-income families, but it does not explain the gap between students from 

high- and medium-income families.44  The overall picture does not change if we also control for 

GPA.  These results are shown in columns 5 and 6.  The parental income gap between the lowest 

and the middle-income students drops 23 percent drop rather than 27 percent.  Once again, the 

gap between the highest parental-income and middle parental-income groups does not change 

from the model without curriculum to the model with curriculum. 

Finally, we note that math courses taken explain none of the observed earnings gap between 

men and women, regardless of whether we control for each student’s GPA.  Some other 

mechanism must be at work here.   

                                                                                                                                                       
curriculum measures does not induce as much of a change in ethnic or parental income effect, 

further indicating the contribution that these new detailed measures of curriculum make to the 

literature. 

44 If we additionally control for the student’s highest educational attainment in the column 3 

and column 4 models, the earnings gap between the lowest parental-income and middle parental-

income groups changes from –0.123 to –0.107 once we control for curriculum representing a 13 

percent change, yet the earnings gap between middle and high-income students does not close.  

We chose to exclude highest degree from the displayed results to show the overall curriculum 

effect.   
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The results on parental income may carry important policy implications.  Whereas many 

other factors help to determine the labor market success of students whose parents have average 

and high incomes, students of low-income families could significantly improve their earnings 

prospects with a better curriculum.  Policies aimed at encouraging and preparing low-income 

students to take a more rigorous curriculum could yield significant benefits.  Although we do not 

explicitly find that standardizing the curriculum can help narrow the ethnic earnings gap, the 

ethnic composition of students in the lowest parental income group was such that narrowing this 

gap would be a step toward narrowing the ethnic earnings gap as well:  30 percent of the students 

who came from the lowest-income families were Hispanic, 20 percent were black, and 34 

percent were white.    

 

6.  Conclusion 

 
 The main message of this study is that math matters.  The math courses that students take in 

high school are strongly related to students’ earnings around ten years later, even after taking 

account of demographic, family, and school characteristics, as well as the student's highest 

educational degree attained, college major and occupation.  Another important message is that 

not all math courses are equal.  More advanced math courses have a larger effect on earnings 

than less academic courses.  Our results suggest that a curriculum that includes algebra and 

geometry is systematically related to higher earnings for graduates a decade after graduation.  As 

we have stressed throughout the paper, it is not entirely clear whether the link between math and 

earnings is causal or merely reflects unobserved variations in student ability or motivation.  But 

it is noteworthy that math continues to matter even after controlling for proxies of ability and 

motivation, such as math GPA and math test scores, and after using instrumental variable 
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methods.  The IV estimates suggest that algebra/geometry credits have the largest effect on 

earnings, whereas the remaining courses have insignificant effects.  Indeed, throughout this 

battery of robustness tests, credits earned in the algebra/geometry category most reliably remain 

a statistically significant predictor of earnings.  Furthermore, both the OLS and IV results persist 

when we include English, science, and foreign language curriculum measures in the model, 

although some of these other types of courses (for example, above-level English) appear to 

influence earnings as well. 

Can gaps in curriculum explain gaps in earnings among racial and socioeconomic groups or 

the gap related to gender?  In answering this question, it is important to account first for 

variations in family background.  Virtually all of the earnings gap between whites and most 

minority groups can be accounted for by differences in family background and, to a far lesser 

extent, school characteristics, without any need to control for curriculum.  In contrast, the 

earnings gap related to variations in parental income levels or in gender cannot be fully 

explained by family and school characteristics.  We found no evidence that math courses taken 

can explain the gender pay gap.  But math curriculum can explain nearly one-quarter of the gap 

between students with parental income in the lowest and middle groups.  This latter finding is 

important because it suggests a tool – namely the math curriculum - for increasing the degree of 

equity in students’ earnings opportunities later in life.   

Of course, it is difficult to know how in practice to implement this deceptively simple policy 

prescription of enriching the math curriculum.  Why do low-income students fail to take more 

high school math if it is true that this effort would substantially boost their earnings later in life?  

We suspect that part of the answer is that young students have rather imperfect knowledge of the 

labor market returns to education, let alone to specific courses.  For instance, Betts (1996) 
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surveys undergraduates at an elite public university and finds that while on average 

undergraduates have a reasonably good knowledge of the returns to education in various fields, 

the beliefs of individual students are often massively wrong.  It stands to reason that high school 

students from low-income families, who lack the same windows into the higher education 

system, have a less accurate understanding of the returns to education overall or to taking courses 

in individual subjects.  A second reason why students from low-income families may not want to 

enroll in the most demanding high school courses is that they have a rather high discount rate.  

Indeed, the idea that young people discount their future income too highly can explain why we 

have compulsory attendance laws.  The excessive discounting of future income is likely to be 

particularly common among the less affluent.  For evidence that people living in poverty have 

higher discount rates than average, see Lawrance (1991).  A third reason why students living in 

poverty may not take “enough” high school math courses could well be that by the time they 

reach high school, their accumulated educational deficit makes it difficult for them to take 

further courses at grade level.   

Better information about the realities of the labor market, combined with higher standards for 

all students, might do much to solve the first two problems.  The standards movement that has 

swept the United States during the 1990’s has already led to much clearer, and in general higher, 

requirements for high school graduation in most states, through the tightening of course 

requirements, and in many cases, the creation of high school exit exams.  The third issue, that 

students living in poverty may be far behind grade level by the start of high school, is far more 

problematic.  It would suggest that setting higher course requirements in high school could 

backfire unless at the same time education policymakers closely examined the deficiencies in 

student performance at lower grades and intervene early enough in students’ careers to minimize 
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these deficiencies.  Clearly, such interventions could prove costly, and we cannot speculate on 

the cost-benefit ratio of such interventions.  Still, our results do provide some concrete evidence 

that the benefits of a richer curriculum are real and meaningful in size; it is the cost side of the 

equation that is less clear.   

Our results emanate from the detailed manner in which we measure curriculum, and this is a 

major contribution of this study.  If we simply analyze the effect of aggregate math credits 

earned, we find that it is an average of specific math course effects.  When aggregate credits in 

other subjects are also included, the aggregate math effect is only marginally significant and the 

effects of English and science subjects disappear entirely.  Furthermore, the aggregate number of 

math credits a student earns cannot explain as much of the earnings gap as the credits in 

individual courses can. 

A perennial problem facing researchers working on the economics of education concerns the 

human capital/signaling debate.  Does education, or in our case curriculum, increase earnings by 

increasing human capital (i.e., skills) or simply by signaling pre-existing student ability?  This 

issue is of pivotal importance for policymakers.  If the only role that math courses play is to 

provide more able students with an opportunity to signal this fact to the labor market by 

surpassing other students, then a policy requiring a more enriched curriculum for all students will 

not make students intrinsically more productive.   

Although our data cannot provide unequivocal results on how curriculum affects earnings, 

our preferred earnings models that condition on math GPA suggest that 68 percent of the effect 

works through students’ educational attainment and an additional 19 percent works through 

students’ college major and occupation.  The unexplained portion, about 13 percent, appears to 

work through other mechanisms.   
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Furthermore, our controls for student ability (math GPA and test score) suggest that signaling 

of ability and motivation is unlikely to be the only way in which curriculum matters.  Unlike 

some earlier work, we find evidence that courses taken during high school can indeed explain 

most of the economic returns to a year of schooling.  In this sense, as well, our results suggest 

that education does more than signal ability.  As public attention continues to focus on such 

issues as school spending and class size, this study shows that it is crucial to remain focused on 

the heart of the matter:  what students actually learn in school.  
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Appendix A:  Data 

Math Test Score.  The math test score that we included was based on a math test in which 

students had 21 minutes to answer 38 questions.  The questions required them to compare two 

quantities and determine whether one was greater, whether they were equal, or whether the 

relationship was indeterminable based on the given data.  We used the HSB-computed Item 

Response Theory (IRT) scores from this test as our measure of math test score.45 

Grade Point Average and Number of Credits Earned.  We computed the student’s math 

GPA on a scale of 0 to 4.3.  We took a weighted average of the student’s grade points for each 

course, where the weights were the number of credits that the student earned for the class.  These 

credits were either 0.25, 0.33, 0.5, or 1, depending on whether the course length was a quarter, 

trimester, semester, or, more commonly, a year-long course.  We converted letter grades to grade 

points.  An “A” received 4 points, a “B” received 3 points, a “C” received 2 points, and a “D” 

received 1 point.  We added 0.3 points for a “plus” and deducted 0.3 points for a “minus.”  For 

example, we counted a “B+” as 3.3 points.   

                                                
45 IRT is a “method of estimating achievement level by considering the pattern of right, 

wrong, and omitted responses on all items administered to an individual student.  Rather than 

merely counting right and wrong responses, the IRT procedure also considers characteristics of 

each of the test items, such as their difficulty and the likelihood that they could be guessed 

correctly by low-ability individuals.  IRT scores are less likely than simple number-right formula 

scores to be distorted by correct guesses on difficult items if a student’s response vector also 

contains incorrect answers to easier questions.” See Ingels et al. (1995, p M-4). 
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If a student failed a course, but subsequently retook it and passed it, we included the letter 

grade and credit information from the successful completion of the course in the student’s GPA, 

but we ignored the information from the failed attempt.  We believed that it is the final level of 

success in a given course that is likely to have the greater effect on a student’s subsequent 

educational attainment and earnings.  If, however, the student failed a course and did not repeat it 

successfully, we included the credit information in the student’s GPA calculation but assigned 0 

grade points to the course.  In other words, we gave the student credit for having taken the 

course, but lowered the GPA accordingly. 

The credit values that we used to compute the GPA also served as our measure of math 

curriculum.  So, for example, a student who took a one-year calculus course had a tally of 1 

credit for that course category.  A student who took three semesters worth of a geometry course 

had a tally of 1.5 credits for that category.   In a few cases, students received a grade of “pass” in 

a course.  We did not include these grades in the GPA calculations but we did add the number of 

credits earned to the tally of credits earned by the student.     

 We estimated an alternative specification where we included only the courses that the student 

passed in the GPA calculation and in the tally of credits that the student earned.  The results from 

our main models did not change when we used this alternative measure. 
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Table 1 – Regressors Included in Main Models 

 
Math Curriculum  
 

= 

 
Math credits earned in each of the following six math 
categories:  vocational math, pre-algebra, algebra/geometry, 
intermediate algebra, advanced algebra, and calculus. 
 

Demographic 
Information   = Ethnicity, gender, age in 1991, and marital status in 1991. 

Family 
Characteristics  = Parental income, parental education, parental nativity, and the 

number of siblings. 

School 
Characteristics = 

Student-teacher ratio, books per pupil, length of the school 
year, school enrollment, percentage of disadvantaged 
students, percentage of teachers with a master’s degree, 
district’s average spending per pupil, teacher salary, whether 
teachers are unionized, and the public school type (regular, 
alternative, Cuban Hispanic, or other Hispanic), geographic 
region (nine U.S. regions), and urbanicity (rural, urban, or 
suburban). 

Highest Degree = 
High school dropout, high school diploma, some 
postsecondary education (but no degree), a certificate, an 
associate’s degree, and a bachelor’s degree or higher. 

 
Note:  Specific categories and means of the above variables are available from the authors on request.   
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Table 2 
The Effects of Specific Math Courses on Log-Earnings:   

OLS, IV and Fixed-Effects Estimates 
 

(1) (2) (3) (4) (5) (6) (7) (8)

Vocational 0.001 -0.024 ** -0.027 ** -0.029 ** -0.084 ** -0.086 ** -0.019 -0.023 *

(0.011) (0.011) (0.010) (0.011) (0.030) (0.030) (0.012) (0.013)

Pre-Algebra 0.067 ** 0.023 0.007 0.005 0.015 0.013 0.006 0.004

(0.014) (0.014) (0.014) (0.014) (0.034) (0.034) (0.017) (0.017)

Algebra/Geometry 0.080 ** 0.061 ** 0.031 ** 0.029 ** 0.090 ** 0.083 ** 0.029 ** 0.027 **

(0.010) (0.010) (0.010) (0.010) (0.035) (0.035) (0.012) (0.012)

Intermediate Algebra 0.109 ** 0.078 ** 0.032 ** 0.022 -0.107 -0.100 0.054 ** 0.042 **

(0.017) (0.016) (0.016) (0.017) (0.068) (0.067) (0.019) (0.019)

Advanced Algebra 0.134 ** 0.088 ** 0.042 ** 0.029 ** -0.077 -0.082 0.054 ** 0.039 **

(0.014) (0.014) (0.014) (0.015) (0.050) (0.050) (0.017) (0.017)

Calculus 0.195 ** 0.120 ** 0.065 ** 0.047 -0.132 -0.140 0.077 ** 0.058

(0.033) (0.032) (0.032) (0.032) (0.167) (0.167) (0.036) (0.036)

Total Math Credits 0.106 ** 0.069 ** 0.027 ** 0.019 ** -0.009 -0.010 0.036 ** 0.027 **

(0.006) (0.007) 0.007 (0.007) (0.024) (0.024) (0.008) (0.008)

Math GPA 0.036 ** 0.063 ** 0.039 **

(0.009) (0.015) (0.009)

Other Controls

Demographic Information No Yes Yes Yes Yes Yes Yes Yes

Family Characteristics No Yes Yes Yes Yes Yes Yes Yes

School Characteristics No Yes Yes Yes Yes Yes No No

Highest Educational Degree No No Yes Yes Yes Yes Yes Yes

Estimation Method OLS OLS OLS OLS IV IV FE FE

R-squared 0.069 0.172 0.199 0.201 0.187 0.192 0.316 0.319

Number of Obs 5,919 5,919 5,919 5,896 5,864 5,841 5,919 5,896

Notes:  ** Significant at the 5 percent level; * significant at the 10 percent level.  Standard errors are in parentheses.  All models include an intercept.  
Adding dummy variables for college major changes the coefficients only minimally.  In the first-stage regressions of each IV-estimated model, the p-values 
for the F-test of the hypothesis that the coefficients on the six school-average instruments are equal to zero are 0.0001.
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Table 3 
The Effects of Specific Math, English, Science, and Foreign  
Language Courses on Log-Earnings:  OLS and IV Estimates 

(1) (2) (3) (4)

Vocational -0.030 ** -0.032 ** -0.075 * -0.075 *
(0.011) (0.011) (0.039) (0.040)

Pre-Algebra 0.004 0.002 0.030 0.029
(0.014) (0.014) (0.045) (0.045)

Algebra/Geometry 0.020 * 0.019 * 0.097 ** 0.093 **
(0.011) (0.011) (0.044) (0.045)

Intermediate Algebra 0.019 0.010 -0.129 -0.134
(0.017) (0.017) (0.082) (0.082)

Advanced Algebra 0.030 ** 0.018 -0.093 -0.101 *
(0.015) (0.016) (0.058) (0.059)

Calculus 0.043 0.028 -0.162 -0.187
(0.033) (0.033) (0.171) (0.173)

Below Level English           0.004 0.005 0.019 0.020
                            (0.013) (0.013) (0.033) (0.033)

Average English             0.015 ** 0.015 ** 0.025 0.024
                            (0.008) (0.008) (0.024) (0.024)

English Literature Courses 0.015 * 0.015 * 0.034 0.035
                            (0.009) (0.009) (0.029) (0.029)

Above Level English 0.026 ** 0.025 * 0.071 ** 0.076 **
                            (0.013) (0.013) (0.036) (0.036)

Basic Biology          -0.008 -0.009 -0.080 * -0.084 *
                            (0.019) (0.019) (0.046) (0.046)

General Biology -0.015 -0.014 -0.069 * -0.070 *
                            (0.013) (0.013) (0.040) (0.040)

Primary Physics  -0.023 ** -0.024 ** -0.060 * -0.059 *
                            (0.012) (0.012) (0.031) (0.031)

Secondary Physics   0.005 0.005 0.143 0.149
                            (0.034) (0.034) (0.100) (0.100)

Chemistry 1, Physics 1       0.020 0.015 -0.004 -0.012
                            (0.014) (0.014) (0.060) (0.060)

Chemistry 2, Physics 2, 0.020 0.020 0.028 0.045
     AP Biology (0.020) (0.020) (0.073) (0.071)

Foreign Language (1-2)     0.025 0.028 -0.024 0.000
                            (0.017) (0.017) (0.104) (0.103)

Foreign Language (3-4)     0.054 ** 0.056 ** 0.129 0.138
                            (0.026) (0.026) (0.143) (0.142)
GPA - Math 0.036 ** 0.067 **

(0.009) (0.020)
R-squared 0.200 0.203 0.186 0.191
Number of Observations 5,735 5,718 5,681 5,664

IVOLS

Notes:   ** Significant at the 5 percent level; *significant at the 10 percent level.  Standard errors are in 
parentheses.  All models control for demographic, family, school, and highest-degree characteristics.  See 
Table 1 for a complete list.  Each model contains an intercept.  For the first-stage regressions in each IV 
model, the p-values for the F-test of the hypothesis that the coefficients on the instruments are equal to 
zero are 0.0001
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Table 4 
The Predicted Earnings Effect of Hypothetical  

Course Combinations During Grades 11 and 12 
 
School Year 
& Level Hypothetical Curriculum Predicted  

Effect 

10 Dropout No more subjects    -0.122** 
   (0.036) 

11 Low No math, average English, secondary physics, no foreign 
language   

    0.021 
   (0.035)    

 
11 Med 

Intermediate algebra, average English, chemistry 1, 
foreign language (third year) 

    0.054** 
   (0.022) 

11 High Advanced algebra, advanced English, chemistry 1, 
foreign language (third year) 

    0.072** 
   (0.021) 

12 Low Same as grade 11 low     0.021 
   (0.035) 

12 Med Advanced algebra, English literature, physics 1, foreign 
language (fourth year) 

   0.062** 
  (0.019) 

12 High Calculus, advanced English, chemistry 2, foreign 
language (fourth year) 

   0.086** 
  (0.037)  

 
Notes:  ** Significant at the 5 percent level.  Standard errors are in parentheses.  Except for the effect of 
dropping out (which is simply the coefficient on the dropout dummy variable in column 4 model of Table 2), 
the predicted effects are computed by summing up the individual effects of the hypothetical class list from 
column 2 of Table 3.  In other words, the effects within each academic year (e.g., grade 12) are measured 
relative to a hypothetical student who stays in school that academic year but does not take any math, 
English, science, or foreign language courses.  The standard errors are computed by taking the square root 
of the variance of the sum of the coefficients from the hypothetical class list.  To compute the effects more 
easily, we estimate a slightly different specification of the column 2 model in Table 3 in which we enter the 
total number of foreign language credits rather than the two dummy variables.  Coefficients on the other 
subjects are practically unchanged.  That of foreign language credits becomes 0.014.   
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Table 5 
The Effects of Aggregate Math, English, Science, and Foreign  
Language Courses on Log-Earnings: OLS and IV Estimates 

 
 
 (1) (2) (3) (4) (5) (6) (7) (8)

Math 0.014 * 0.008 0.009 0.005 -0.029 -0.034 -0.040 -0.025
                            (0.008) (0.008) (0.008) (0.009) (0.033) (0.034) (0.034) (0.034)

English 0.011 0.013 * 0.016 ** 0.017 ** 0.030 -0.030 0.030 0.042 *
                            (0.007) (0.007) (0.008) (0.008) (0.023) (0.023) (0.022) (0.023)

Science 0.005 0.003 -0.001 -0.008 -0.025 -0.026 -0.030 -0.045 *
(0.008) (0.008) (0.008) (0.008) (0.026) (0.026) (0.025) (0.027)

Foreign Language 0.025 ** 0.024 ** 0.025 ** 0.021 ** -0.034 0.036 0.053 ** 0.010
(0.007) (0.007) (0.007) (0.008) (0.028) (0.028) (0.026) (0.030)

Controls
  Demographic Information yes yes yes yes yes yes yes yes
  Parental SES yes yes yes yes yes yes yes yes
  School Region/Type yes yes yes yes yes yes yes yes
  School Resources yes yes no no yes yes no no
  Highest Educational Degree yes yes yes yes yes yes yes yes
  Test Scores (1982) no no no yes no no no yes
  GPA no yes yes no yes yes yes no
  Dropouts included in model yes yes no no yes yes no no

R-squared 0.193 0.197 0.182 0.182 0.189 0.193 0.178 0.179

Number of Obs 5,738 5,718 5,404 4,834 5681 5664 5,356 4,790

OLS IV

Notes:   ** Significant at the 5 percent level;  * significant at the 10 percent level.   Standard errors are in parentheses.  For the first-stage regressions in each 
IV model, the p-values for the F-test of the hypothesis that the coefficients on the instruments are equal to zero are 0.0001.  Models 1 and 2 use the same 
demographic, family, and school characteristics found in Table 2.  The difference between models 1 and 2 is that model 2 includes GPA.  Models 3 and 4 use 
our data to mimic Altonji's (1995) Table 2, model 7.  These models exclude high school dropouts.  In these models, the demographic data include ethnicity, 
gender, and age.  Age is our best proxy for Altonji's control for the number of months in the labor force. The parental SES category includes parental 
education, parental income, and whether the parent is a U.S. native.  We do not have a comparable variable to Altjoni's control for parental involvement.  We 
also include school region and type, as Altonji does, but we do not control for city size and college proximity.  These replications exclude the respondent's 
marital status, the number of siblings, and a host of high school characteristics, all of which are included in models 1 and 2.  The difference between models 3 
and 4 is that model 3 controls for ability using GPA (our preferred specification), where as model 4 controls for ability using the student's senior year test 
scores in math, reading, and vocabulary (our closest approximation to Altonji's specification).  The progression of models in this table highlights how our 
results can be compared to Altonji's when we use the total number of credits earned in the different subjects.  Models 5 through 8 repeat this progression 
using IV estimates instead of OLS estimates.  Comparing results from this table to those in Table 3 also highlights how using the total number of credits is not 
as informative as using detailed credit counts.  Models 1 and 2 in this table corresponds to models 1 and 2 in Table 3.  Whereas the non-curriculum controls 
are the same in both models, this table uses the total number of credits in a particular subject whereas Table 3 uses detailed credit counts in each subject.  
Similarly, models 5 and 6 in this table corresponds to models 3 and 4 in Table 3, respectively. 
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Table 6 
Earnings Gaps Based on Ethnicity and Parental Income  

(Before and After Curriculum is Added to the Model) 

 

(1) (2) (3) (4) (5) (6)

Hispanic -0.052 ** 0.010 0.036 * 0.026 0.043 **
(0.019) (0.021) (0.021) 0.021 (0.021)

Black -0.100 ** -0.010 -0.0002 0.004 0.008
(0.024) (0.025) (0.0249) (0.025) (0.025)

Asian 0.092 ** 0.072 * 0.023 0.033 0.010
(0.043) (0.044) (0.043) (0.043) (0.043)

Native American -0.229 ** -0.102 ** -0.068 -0.088 * -0.064
(0.054) (0.052) (0.051) (0.052) (0.051)

< $7K -0.293 ** -0.171 ** -0.124 ** -0.159 ** -0.122 **
(0.032) (0.032) (0.032) (0.032) (0.032)

$7K - $15K -0.098 ** -0.039 * -0.025 -0.041 * -0.029
(0.023) (0.022) (0.022) (0.022) (0.022)

$15K - $20K -0.026 0.002 0.001 0.001 -0.0001
(0.025) (0.024) (0.023) (0.024) (0.0233)

$25K - $38K 0.096 ** 0.070 ** 0.070 ** 0.068 ** 0.068 **
(0.026) (0.025) (0.025) (0.025) (0.025)

$38K and higher 0.112 ** 0.058 ** 0.059 ** 0.061 ** 0.060 **
(0.030) (0.029) (0.029) (0.029) (0.029)

Male 0.266 ** 0.272 ** 0.285 ** 0.286 **
(0.014) (0.014) (0.014) (0.014)

Curriculum No No No Yes No Yes

GPA No No No No Yes Yes

R-squared 0.007 0.035 0.137 0.172 0.156 0.178
Number of Obs 5,919 5,919 5,919 5,919 5,896 5,896

Notes: ** Significant at the 5 percent level; * significant at the 10 percent level.  Standard errors are in parentheses.  The 
effects of ethnicity are measured relative to whites.  The effects of parental income are measured relative to students from 
families with incomes between $20,000 and $25,000.   Each column represents one model.  Column 1 contains only 
ethnicity controls.  Column 2 contains only parental income controls.  The remaining models control for all of the 
demographic, family, and school characteristics listed in Table 1 but exclude the student's highest degree.  The change in 
the coefficient from column 3 to column 4 represents the portion of the earnings gap that curriculum can explain without 
controlling for GPA. Changes from column 5 to column 6 account for GPA.  The percentage of students in the income 
categories on the above table are 8, 28, 18, 15, and 9, respectively.  The omitted category contains 17 percent of the 
students.  We do not display results for the group of students who had missing data about their family income (this 
explains why the percentages do not sum to 100). 
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Table A.1 

Mathematics Course Classification 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

Course Label Included Courses

Non-Academic (Vocational)
General (1 and 2), Basic (1, 2, and 3), Consumer, Technical, 
Vocational, Review

Low-Academic                    
(Pre-Algebra)

Pre-Algebra, Algebra 1 (Part 1), Algebra 1 (Part 2), Geometry 
Informal

Middle Academic I 
(Algebra/Geometry)

Algebra 1, Geometry (Plane and Solid), Unified 1, Unified 2

Middle Academic II 
(Intermediate Algebra)

Algebra 2, Unified 3

Advanced I and II                  
(Advanced Algebra)

Algebra 3, Algebra-Trigonometry, Analytic Geometry, Linear 
Algebra, Probability, Statistics, Pre-Calculus

Advanced III                         
(Calculus)

Advanced Placement Calculus, Calculus-Analytic Geometry, 
Calculus

Notes:  The math classification system used by NCES included a separate category for pre-calculus (called 
Advanced II), but after some initial analysis, we decided to combine it with the Advanced I level.
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Table A.2 
Science Course Classification 

 
 
 

Course Label Included Courses

Basic Biology Basic Biology

General  Biology,   
Secondary Life Science

General Biology 1, Secondary Life Sciences (ecology, marine 
biology, zoology, human physiology)

Primary Physics
Primary Physical Sciences  (applied physical science, earth 
science, college prep earth science, unified science), General 
Science

Secondary Physics
Secondary Physical Sciences (astronomy, environmental science, 
geology, oceanography, general physics, consumer chemistry, 
introductory chemistry)

Chemistry 1 and Physics 1 Chemistry 1, Physics 1

Chemistry 2, Physics 2,        
AP Biology

Chemistry 2, Physics 2, Advanced Placement Biology

Notes:  This classification system is a synthesis of the three different science classification systems provided 
by NCES.  
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Table A.3 
Number of Additional Missing Observations  

As More Restrictions Are Enacted 

               Remaining Observations Tally

Total Observations in HSB Data 14,825
Lose 21 percent of total sample because 

some students attend private schools.

     Public School Observations 11,724
Lose 22 percent of public school sample 

because of missing earnings data. 

          With Non-Missing Earnings Data 9,116
Lose  13 percent of non-missing earnings data 

because earnings are less than $2,000.

Lose 0.3 percent of non-missing earnings data 

because earnings are greater than $75,000.

               Between $2,000 and $75,000 7,880
Lose 11 percent of valid earnings data because 

of missing curriculum data. 

                    With Valid Curriculum Data 6,984
Lose 6 percent of those with valid earnings and 

curriculum data because they transferred schools.

Lose 3 percent of those with valid earnings and 

curriculum data because they are enrolled in 1991.

Lose 7 percent of those with valid earnings data 

because they have missing 1991 enrollment data.

Must add back 36 observations so that we do not 

double count those who transferred schools and

 are either enrolled or missing enrollment data.

-4 Lose 4 observations because of missing age data.

Observations Remaining for Analysis 5,919

Lost Observations Relative to 
Most Recent Tally

36

-896

-418

-219

-460

-28

-3,101

-2,608

-1,208

Notes:  This table documents how the 14,825 observations in HSB are reduced to 5,919 usable regression observations.  The 
right-hand column records the number of omitted observations for each given reason and the left-hand column keeps a running 
tally of the remaining observations after each loss.  The number and percentage of observations lost are calculated relative to the 
most recent tally. 
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Type of Missing Observation

Missing Earnings Data 2,608 22.2

Out of Range Earnings Data 1,236 10.5

Missing Curriculum Data 1,591 13.6

Transfer Students 949 8.1

Students Enrolled in Postsecondary Education 304 2.6

Missing Enrollment Data 2,426 20.7

Transfers and  Invalid Enrollment (enrolled or missing) 255 2.2

Number of

Missing

Observations

Missing Observations

out of 11,724

(Percent)

Notes:  This table documents the number and percentage of missing values for some key variables in the analysis.  
Unlike the previous table, the number of missing values in this table is always calculated relative to the total number 
(11,724) of public school observations.

Table A.4 
Missing Observations out of 11,724 Total Public School Observations 
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Table A.5 
Summary Statistics of Key Variables 

Unweighted Weighted Unweighted Weighted

Annual 1991 Earnings ($) 19,168 19,092 22,288 22,077

(13,532) (13,534) (10,954) (10,929)

Log of 1991 Earnings 9.755 9.757 9.872 9.860

(0.790) (0.782) (0.574) (0.580)

Math Curriculum Measures

Vocational Math Credits 0.758 0.757 0.685 0.708

(0.912) (0.932) (0.887) (0.904)

Pre-Algebra Credits 0.258 0.262 0.261 0.262

(0.541) (0.552) (0.543) (0.546)

Algebra / Geometry Credits 0.908 0.917 0.988 0.945

(0.874) (0.877) (0.881) (0.865)

Intermediate Algebra Credits 0.265 0.266 0.294 0.279

(0.461) (0.470) (0.476) (0.469)

Advanced Algebra Credits 0.223 0.212 0.250 0.228

(0.524) (0.514) (0.543) (0.522)

Calculus Credits 0.042 0.039 0.045 0.039

(0.220) (0.212) (0.225) (0.209)

Educational Attainment

Higher Than Bachelor's Degree 0.029 0.031 0.032 0.030

(0.168) (0.173) (0.175) (0.170)

Bachelor's Degree 0.166 0.177 0.222 0.210

(0.372) (0.382) (0.416) (0.408)

Associate's Degree 0.070 0.078 0.085 0.084

(0.255) (0.268) (0.279) (0.277)

Certificate 0.090 0.110 0.102 0.109

(0.287) (0.313) (0.303) (0.312)

High School Plus 0.187 0.190 0.202 0.191

(0.390) (0.392) (0.402) (0.393)

High School Diploma 0.261 0.337 0.297 0.320

(0.439) (0.473) (0.457) (0.466)

Less Than High School 0.060 0.061 0.051 0.049

(0.238) (0.239) (0.219) (0.215)

Degree Missing 0.137 0.015 0.009 0.008

(0.344) (0.122) (0.092) (0.088)

Additional Controls

Math GPA 2.075 2.096 2.164 2.139

(0.962) (0.933) (0.934) (0.919)

Math IRT Test Score 11.778 12.249 13.184 12.893

(9.823) (9.736) (9.726) (9.679)

Number of Observations 11,724 11,724 5,919 5,919

HSB Public School Regression Sample

Note:  Similar statistics for student and family demographics and school characteristics are 
excluded to save space, but they are available upon request.
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