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Abstract

A norm of 50-50 division appears to have considerable force in a wide range of
economic environments, both in the real world and in the laboratory. Even in settings
where one party unilaterally determines the allocation of a prize (the dictator game),
many subjects voluntarily cede exactly half to another individual. The hypothesis
that people care about fairness does not by itself account for key experimental pat-
terns — for example, that there is frequently a gap in the distribution of transfers just
below 50%, or that the frequency of 50-50 splits is sensitive to observability and social
distance. We consider an alternative explanation, which adds the hypothesis that
people like to be perceived as fair. The properties of equilibria for the resulting sig-
naling game correspond closely to laboratory observations. The theory has additional
testable implications, and we confirm the validity of these implicaitons through new
experiments.
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1 Introduction

In laboratory experiments, economists usually view audience effects as unfortunate confounds

that obscure “real” motives. We often attempt to eliminate these effects, e.g., through the

use of double-blind designs. Yet both casual observation and honest introspection strongly

suggest that audience effects are pervasive in real economic choices. People care deeply

about how others perceive them, and these concerns influence a wide range of decisions.

Thorstein Veblen’s theory of conspicuous consumption exemplifies these principles, but the

phenomenon appears to be much more general.1 In some instances, concerns for social

image arise for instrumental reasons. Yet these concerns remain even when instrumental

explanations are absent — for example, most of us care about the impressions we make on

complete strangers, even when we don’t expect to encounter them again. As a result of either

biology or social conditioning, we simply feel good when others think highly of us. Given

the likelihood that this effect contributes to many economic phenomenon, it is important to

develop and test theories of audience effects, rather than to focus attention on unrealistic

settings in which these effects are absent.

In this paper, we examine one particularly widespread phenomenon: the norm of 50-50

division (or, more generally, equal division with more than two parties). This norm appears

to have considerable force in a wide range of economic environments. Fifty-fifty sharing rules

are well-documented in the context of asymmetric joint ventures among corporations (e.g.

Veuglers and Kesteloot [1996], Dasgupta and Tao [1998], and Hauswald and Hege [2003]),2

share tenancy in agriculture (e.g. De Weaver and Roumasset [2002], Agrawal [2002]), and

bequests to children (e.g. Wilhelm [1996], Menchik [1980, 1988]). “Splitting the difference”

is a common outcome in negotiations and conventional arbitration (Bloom [1986]). Ca-

sual observation suggests other examples: business partners often split the earnings from

joint projects equally provided their contributions are roughly similar; friends often split
1See Bagwell and Bernheim [1996] for a modern treatment of Veblen’s theory.
2Where issues of control are critical, one also commonly sees a norm of 50-plus-one-share.
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restaurant tabs equally provided all have ordered roughly comparable meals, and the U.S.

government splits the nominal burden of the payroll tax equally between employers and

employees.

The tendency to comply with a 50-50 norm has been duplicated in the laboratory. Even

in the extreme case where one party has all of the bargaining power (the “dictator game”),

typically 20 to 30 percent of subjects voluntarily cede half of a fixed payoff to another

individual (Camerer [1997]); in “ultimatum games,” where the second individual has the

opportunity to reject the offer (in which case both subjects receive nothing), the fraction

offering a 50-50 split is considerably higher (see e.g. the review of experimental results in

Fehr and Schmidt [1999]).

For the dictator game, there is clear evidence that the strength of the 50-50 norm is

related to audience effects. Choices are sensitive to observability and social distance. In

double-blind trials, the typical subject cedes a small amount, and significantly fewer adhere

to the 50-50 norm (e.g. Hoffman et. al. [1996]). Conversely, when dictators and recipients

face each other, adherence to the 50-50 norm is far more common (Bohnet and Frey [1999]).3

A number of theories have been proposed to account for the prevalence of 50-50 division

in dictator games. Some of the leading alternatives invoke altruism or concerns for fair-

ness. Neither approach — by itself — accounts for sensitivity of choice to observability and

social distance. Other puzzling features of the experimental data underscore our limited

understanding of behavior even in this simple environment. In particular:

• There is frequently a trough in the distribution of fractions ceded just below 50%. For
example, in Forsythe et. al. [1994], subjects were given ten dollar bills, and were asked

to divide these with another individual; 17% ceded one dollar, 13% ceded two dollars,

29% ceded three dollars, 0% ceded four dollars, and 21% ceded five dollars. To account
3Several economic experiments have found that audiences enhance generosity. Andreoni and Petrie [2004]

and Rege and Telle [2004] find a greater tendency to equalize payoffs when there is an audience. Studies
of field data confirm that an audience increases charitable giving (Soetevent [2005]). Indeed, charities can
influence contributions by adjusting the coarseness of the information provided to the audience (Harbaugh’s
[1998]).

3



for this gap within the context of standard theories, one would need to assume rather

peculiar distributions for underlying preference parameters.

• A significant fraction of the population elects precisely 50-50 division, even when it is
possible to give slightly less or slightly more. In the context of the fairness model,

this would require a kink in the utility function at equal division (which is indeed what

Fehr and Schmidt [1999] assume), or approximate optimization. Both assumptions are

somewhat awkward. In the context of the altruism model, the same evidence would

require a fortuitous atom in the distribution of the critical preference parameter.

• It is extremely rare for a subject to cede more than 50% of the aggregate payoff. The
fairness model accounts for this pattern, but the altruism model again would require

a peculiar population distribution for the key preference parameter.

• In a dictator game with a total prize of $X, nearly two-thirds of dictators are willing
to exit the game for a payoff of $Y with Y < X, provided that the recipient is not told

about the game (Brobert et. al. [2007]; see also Dana et. al. [2006]). Neither the

altruism model nor the fairness model account for these inefficient choices.

The hypothesis that people care about fairness is plausible, and probably helps to account

for behavior both in simple laboratory settings and in the real world. However, it does not

appear to be enough. This paper explores the implications of supplementing this hypothesis

with an additional, plausible assumption: people like to be perceived as fair. In the model

described below, we incorporate the desire to be perceived as fair into the utility function;

however, one could also model this dependence as arising explicitly from concerns about

subsequent interactions. Our theory explains (1) why 50-50 emerges as a norm, (2) why the

force of the norm is related to observability and social distance, (3) why there is a gap in

the distribution of choices below 50%, (4) why people choose exactly 50-50, even when it is

possible to give slightly more or slightly less, (5) why very few people give more than 50%,

and (6) why a dictator would sacrifice part of the total prize to opt out of the game.
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The intuition for each of these results is straightforward. Our model gives rise to a

signaling game wherein the dictator’s choice affects others’ inferences about his tastes for

fairness, and where he likes others to think he’s fair. For standard reasons, in any separating

equilibrium the dictator tries to create a favorable impression by transferring more than he

would if he were not concerned about others’ inferences. This is sustainable because the cost

of giving more away is lower for those who attach more importance to fairness. However,

there’s a catch: the single crossing property is not satisfied in this setting. Once the transfer

exceeds half of the total payoff, giving more away increases inequality, and is therefore

more costly on the margin for those who attach more importance to fairness. Dictators

try to distinguish themselves from those who care less about fairness by giving more, but

this only works up to the point where the transfer equals half of the total pie; further

separation is impossible. Accordingly, one obtains an atom in the population distribution

of choices at a 50-50 split, even when there are no atoms in the population distribution of

preferences (explaining items (1) and (4)), and no dictator gives away more than half the prize

(explaining item (5)).4 As is typical in signaling models with partial pooling, there is a gap

in the distribution of choices immediately below any atom (explaining item (2)); otherwise,

there would be a discontinuity in inferences (and hence perceived fairness) right below the

action associated with the atom, and this would induce those choosing slightly lower actions

to deviate. A downward shift in the distribution of weights attached to perceptions of

fairness (e.g. because opportunities for reciprocation are fewer) moves individuals toward

the separating region and away from the pooling region, reducing both the average transfer

and the measure of types pooling at 50-50 (explaining item (3)). Finally, many dictators

will prefer to act selfishly as long as they can do so without triggering negative inferences

(explaining item (6)).

It is important to emphasize that this is not necessarily the best explanation — or even

a good explanation — for all 50-50 norms observed in practice, or even all those mentioned
4Similar properties would hold if we simply imposed 50% as a ceiling on transfers (for the reasons explored

in Cho and Sobel [1990]); here, the ceiling is endogenous.
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at the outset of this section.5 Nevertheless, it deserves serious consideration in many cases.

With respect to joint ventures, for example, corporate managers may accede to a 50-50 rule

even when they are in relatively strong bargaining positions because they believe this will

help establish an atmosphere of trust wherein their partner will expect them to act fairly

in the future, and where this expectation will induce the partner to invest more effort and

resources in the venture.

We also derive theoretical results for an alternative version of the dictator game that lead

to additional testable implications. The alternative setting works as follows. At the outset,

nature chooses x = x0 (some particular value) with probability p, in which case the game

is over, or selects the dictator game with probability 1 − p. While the dictator observes

nature’s choice, an audience (including but not necessarily limited to the responder) does

not; the audience does not know whether the outcome is the result of nature’s choice or the

dictator’s choice. For the case of x0 = 0, we show that an increase in p strictly increases

the mass of dictators selecting zero, and strictly reduces (if positive) the mass of dictators

selecting equal division. Similar properties hold as long as x0 is close to zero. Accordingly,

by varying the parameters of this extended game (p and x0), we should be able to create a

spike in the distribution of voluntary choices at or near zero, and manipulate both its size

and location. In contrast, if social image is not a concern, varying these parameters should

have no effect on behavior.
5Bernheim and Severinov [2003] propose an explanation for equal division of bequests that is also based

on partial pooling in a signaling model. The mechanism appropriate for bequests is quite different from that
considered here, and is probably not applicable to many other contexts in which 50-50 norms are observed
(likewise, the mechanism considered here is probably not applicable to bequests). In their model, parents
differ according to their relative affection for two children, and children care about parental affection, which
they infer from actions. The direction of imitation changes as one moves from one end of the type space to
another, which is why parent types pile up on some intermediate action. This mechanism is not a plausible
explanation for what transpires in the dictator game; to invoke it, one would need to assume that those who
care little about the receiver want to be perceived as caring more, and that those who care a lot about the
receiver want to be perceived as caring less. In ultimatum and dictator games, the direction of imitation
does not change as one moves from one end of the type space to the other — everyone wishes to be perceived
as more fair. The main result here is also cleaner in the following sense: in Bernheim and Severinov [2003],
there is a range of possible equilibrium norms that includes equal division; here (as we’ll see), equal division
is the only possible equilibrium norm.
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We examine the validity of these testable implications by conducting new experiments.

Subjects manifestly exhibit the predicted behavior, and to a striking degree. This cor-

roborates our particular theory, and more generally supports a signaling interpretation of

audience effects.

Broadly, this paper falls within the literature on “psychological games,” in which play-

ers are assumed to have preferences over the beliefs of others (as in Geanakoplos, Pearce,

and Stecchetti [1989]). More narrowly, it is related to other work that explores the behav-

ioral implications of concern for social image (e.g., Bernheim [1994], Bagwell and Bernheim

[1996]). Recent papers in this general area include work on esteem (Ellingsen and Johan-

nesson [2006]), shame (Tadelis [2007]), and respect (Manning [2007]).

The remainder of this paper is organized as follows. Section 2 describes the model. Sec-

tion 3 examines some preliminary issues (including the failure of single crossing). Section 4

studies equilibria of the basic model. Section 5 considers testable comparative statics. Sec-

tion 6 describes our experimental procedures and results. Section 8 offers some conclusions.

Proofs of theorems appear in the appendix.

2 The Model

There are two players, a dictator (D) and a receiver (R). D controls a prize normalized to

have unit value, and divides it between himself and R. Let x ∈ [0, 1] denote the amount
given to R. D consumes c = 1 − x. D is drawn from a population of potential players,

differentiated by the parameter t, which indicates the importance placed on fairness. Po-

tential types t lie in the set [0, t], and the distribution is given by some atomless CDF H.6

We define Hs as the CDF obtained from H, conditioning on t ≥ s. The value of t is D’s
6Some dictator game experiments appear to produce an atom in the choice distribution at 0, though the

evidence for this pattern is mixed (see e.g., Camerer [2003]). Our model does not produce this pattern unless
we assume that there is an atom in the distribution of types at t = 0. Since the type space is truncated
below at 0, it may be reasonable to allows for this possibility. One could also generate a choice atom at
zero by assuming that some individuals do not care about social image (in whice case the analysis would be
more similar to that presented in Section 6). In experiments, it is also possible that a choice atom at zero
results from the discreteness of the choice set and/or approximate optimization.
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private information. D cares about his own prize (c), the fairness of the distribution (g), and

perceptions of his fairness (m) by some audience (A), which includes (but is not necessarily

limited to) R:7

U(c,m, g, t) = F (c,m) + tg

The function F is taken to be unbounded (in both arguments), twice continuously differen-

tiable, strictly increasing (with, for some f > 0, F1(c,m) > f for all c ∈ [0, 1] and m ∈ R+),
and strictly concave in c. Thus, payoff increases in own consumption, D’s perceived fairness,

and fairness of the outcome.

Social image m depends on A’s perception of D’s fairness. People who are more fair

are accorded more respect. If A is certain that D’s type is bt, we will assume that m = bt.8
We need to allow for cases where A is uncertain about D’s type. Let Φ denote the CDF

representing A’s beliefs about D’s type. We suppose that m = B(Φ) for some function B

satisfying the following weak assumption:

Assumption B-1: (1) B is continuous (where the set of CDFs is endowed with the weak

topology). (2) min supp(Φ) ≤ B(Φ) ≤ max supp(Φ), with strict inequalities when
the support of Φ is non-degenerate. (Thus, if Φ places probability one on type bt,
then B(Φ) = bt). (3) If Φ0 is “higher” than Φ00 in the sense of first-order stochastic

dominance, then B(Φ0) > B(Φ00).

As an example, B might calculate the mean of t given Φ. In effect, assumption B-1

requires that B is a well-behaved aggregator.

Though the players are asymmetric in terms of bargaining power, we assume that they

are symmetric with respect to publicly observed indicia of merit. Accordingly, the fairness

of an outcome is taken to depend on the extent to which it departs from equal division.9 We
7In experimental settings, the audience may include the experimenter and other subjects.
8This is just a normalization; m could be an increasing and continuous function of bt, in which case that

function has been incorporated into F .
9If the players were asymmetric with respect to publicly observed indicia of merit, the fairness of an

outcome might depend on the extent to which it departed from some other benchmark, such as 60-40.
Similar results would follow, except that the behavioral norm would correspond to this alternate benchmark,
rather to 50-50.
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assume that g = G(x− 1
2
), where the function G is twice continuously differentiable, strictly

concave, and reaches a maximum at zero. Thus, we can rewrite D’s payoff as

U (x,m, t) = F (1− x,m) + tG
µ
x− 1

2

¶
Play is simple. D selects x. Seeing x, R forms an inference Φ about t. D does not see

this inference directly, but knows the equilibrium relation between x and Φ, and therefore

accounts for the effect of the decision on his perceived fairness. This game involves a form

of signaling, but, as we’ll see, the single-crossing property is not satisfied, so the solution is

non-standard.

A signaling equilibrium consists of a mapping Q from types (t) to decisions (x), and a

mapping P from decisions (x) to inferences (Φ), where decisions are optimal given infer-

ences, and inferences are consistent with decisions. We will use Φx to denote the inference

associated with the action x. We will confine our attention to pure strategy equilibria.

3 Preliminary Observations

3.1 Solution when type is observable

Suppose for the moment that type is observable. What will D choose? Let x∗(t) denote

the first-best choice. Since G is strictly concave and F is strictly concave in c, the best

choice is unique, and a continuous function of the preference parameters.

The following theorem tells us what happens if type is observable. No one chooses x = 1
2
.

If image and prize are weak substitutes, the size of the gift is weakly increasing in t. There

is always mass at zero. Finally, the optimal choice converges to 1
2
as t gets large. See Figure

1 for an illustration.

Theorem 1: (1) For all t, x∗(t) ∈ [0, 1
2
). (2) If F12 ≤ 0, then x∗(t) is weakly increasing in

t (strictly when x∗(t) ∈ (0, 1)). (3) There exists t∗ > 0 such that x∗(t) = 0 for t ≤ t∗.
(4) limt→∞ x∗(t) = 1

2
.
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Figure 1: Optimal Choices with Complete Information, and Indifference Curves

Example Let F (1 − x,m) = 1− x + αm, and let G
¡
x− 1

2

¢
= − ¡x− 1

2

¢2
. Then x∗(t) =

max
©
0, 1

2
− 1

2t

ª
. Note that x∗(t) = 0 for t < 1.

Even though we’ve assumed F2 > 0, the proof of Theorem 1 subsumes the case where

social image, m, doesn’t matter (F2 = 0). So, as claimed in Section 1, a model with concern

for fairness, but without social image, produces a counterfactual implication — it predicts

that everyone should select a transfer strictly less than 1
2
.

3.2 The failure of single-crossing

For the usual reasons, the solution described in Theorem 1 is not sustainable as a separating

equilibrium when type is inferred from action, and when social image depends on the inferred

type. Here we lay the groundwork for an analysis of signaling equilibria.

To begin, we examine D’s willingness to make trade-offs between the magnitude of the

gift and social image. Setting U(x,m, t) equal to a constant and differentiating implicitly,
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we obtain
dm

dx

¯̄̄̄
U

= −tG
0 ¡x− 1

2

¢− F1 (1− x,m)
F2 (1− x,m)

Suppose that x < 1
2
. Then G0

¡
x− 1

2

¢
> 0. An increase in t causes dm

dx

¯̄
U
to fall. In

other words, in the (x,m) plane, indifference curves, if positively sloped, become flatter with

an increase in t, and, if negatively sloped, become steeper. This is the usual Spence-Mirrlees

condition. Increasing x is, in effect, less costly to those with high values of t, so these types

can signal their fairness by giving more.

However, for x > 1
2
, G0

¡
x− 1

2

¢
< 0. An increase in t causes dm

dx

¯̄
U
to rise. In other

words, in the (x,m) plane, indifference curves, if positively sloped, become steeper with an

increase in t, and, if negatively sloped, become flatter. This is the usual Spence-Mirrlees

condition in reverse. Increasing x is, in effect, more costly to those with high values of t, so

these types cannot signal their fairness by giving more.

We illustrate these points in Figure 1. The indifference curves I11 and I
2
1 belong to type

t1, while the indifference curve I2 belongs to type t2, where t1 > t2. Notice that I11 is flatter

than I2 at A, where x < 1
2
, and steeper than I2 at B, where x > 1

2
. Also, I21 is tangent to

I2 at C, where x = 1
2
.

Given these properties, one can see that, intuitively, in a signaling equilibrium, x = 1
2

naturally serves as something of a barrier. Of course, it is not literally a barrier, and indeed

there are equilibria where some type or types choose to transfer more than 1
2
. However, there

is only limited scope in equilibrium for choices exceeding 1
2
(see Lemma 2 in the appendix),

and these possibilities do not survive the application of standard refinements.

4 Equilibrium

As in most signaling models, there are many equilibria. In this section, we describe a partic-

ular class of equilibria. We show that existence is guaranteed and demonstrate uniqueness

within this class. We also show that it is reasonable to focus on the identified equilibrium

because it is the only one satisfying the D1 criterion (a standard equilibrium refinement for
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signaling games). We also discuss some of the properties of this equilibrium.

4.1 Separation

Since the problem has a fairly standard signaling structure for x ∈ £0, 1
2

¤
, it’s natural to

start by looking for separating equilibria.

In a separating equilibrium with action function S(t), action x leads to inference ϕ(x) =

S−1(x) (provided this action is taken by some type). Optimality requires each type t to

choose a values of x that maximizes the function U(x, S−1(x), t). Taking the first order

condition, and then substituting x = S(t) (which holds in any separating equilibrium), we

have:

S0(t) = − F2 (1− S(t), t)
tG0

¡
S(t)− 1

2

¢− F1 (1− S(t), t) (1)

The preceding is a non-linear first order differential equation. As usual, given an

initial condition (a choice z and an associated type r), a unique solution to this equation is

guaranteed. As we will see below, in all cases of interest the solution is strictly increasing,

so the inverse function (the inference function) is also well defined.

We will denote the solution with initial condition (r, z) (that is, type r chooses action z)

as Sr,z(t), and the inverse as ϕr,z(x) (so that ϕr,z(z) = r and Sr,z(r) = z). For the most

part, we will find it more useful to discuss the separating action function, rather than the

inference function. In general, we will be interested in cases where z ≥ x∗(r). This holds,

for example, when the process is initialized by letting type t = 0 choose x = 0.

The following result tells us that, for z ≥ x∗(r), Sr,z(t) assigns to each type a transfer
exceeding the first-best level, that it is strictly increasing in t, and that it assures mutual

non-imitation among all actions not exceeding 1
2
. It also tells us that there is some type to

which Sr,z(t) assigns equal division, and that Sr,z(t) is increasing in z and continuous in r

and z.

Theorem 2: Assume z ≥ x∗(r). (1) Sr,z(t) > x∗(t) for t > r. (2) For all t ≥ r, S0r,z(t) >
0. (3) If Sr,z(t0) ≤ 1

2
and Sr,z(t00) ≤ 1

2
, type t0 ≥ 0 prefers (x,m) = (Sr,z(t

0), t0) to
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Figure 2: The Separating Function

(Sr,z(t
00), t00). (4) There exists t∗r,z > r such that Sr,z(t

∗) = 1
2
. (5) Sr,z(t) is increasing

in z and continuous in r and z.

We will use S0(t) as shorthand for the efficient separating function, S0,0(t). We illustrate

S0(t) and t∗0,0 (defined by the intersection between S0(t) and the vertical line at x =
1
2
) in

Figure 2. Types t1 and t2 choose, respectively, x1 and x2. Their indifference curves, I1 and

I2, are tangent to the curve representing S0(t) at, respectively, points A and B, so they prefer

these alternatives to all other points on the signaling function. Notice that the solution to

the differential equation continues to the right of the vertical line at x = 1
2
(where it is shown

as a broken line). For types t3 and t4, the solution assigns, respectively, the choices x3 (point

C) and x4 (point D). Their indifference curves (I3 and I4) are tangent to the broken curve

at these points, but are on the “wrong side” of it, so the mutual non-imitation constraints

are not satisfied. Indeed, the assigned choice are local minima along the broken line, rather

than local maxima. Accordingly, the solution only works as a separating function to the

left of the vertical line at x = 1
2
.
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Now we establish a simple necessary and sufficient condition for the existence of a sepa-

rating equilibrium.

Theorem 3: A separating equilibrium exists if and only if t ≤ t∗0,0.

Thus, if the population contains people who are “sufficiently” fair-minded, perfect sepa-

ration is impossible.

4.2 Pooling at equal division

What happens when t > t∗0,0? Intuitively, if 1
2
acts as a boundary, we’d expect to find a

pool at 1
2
(Cho and Sobel [1990]). What would such an equilibrium entail? There are two

possibilities.

For the first possibility, we divide the types into two segments, [0, t0] and (t0, t] (with t0

s.t. S0(t0) < 1
2
), and construct the equilibrium as follows: for t ∈ [0, t0), Q(t) = S0(t); for

t ∈ (t0, t], Q(t) = 1
2
. In other words, types separate up to t0, and all higher types divide the

prize equally.

For this configuration to be an equilibrium, the lowest type in the equal-division pool

must be indifferent between separating and joining the pool:

U(S0(t0), t0, t0) = U

µ
1

2
, B (Ht0) , t0

¶
Remember that Ht0 is defined as the CDF obtained starting from H (the population dis-

tribution) and conditioning on t ≥ t0. Because of t0’s indifference, there is a completely

identical equilibrium (differing from this one only on a set of measure zero) where t0 resolves

it’s indifference in favor of 1
2
(that is, it joins the pool). Throughout this paper, we adopt the

convention of always resolving indifferent in favor of the lower action. This shortens some

of the arguments without altering any of the substance (since it always involves a choice

among essentially identical equilibria).

We illustrate this type of equilibrium in Figure 3. Notice that the indifference curve for

type t0, labelled It0, passes through both point A, the separating choice for t0, and point B,
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Figure 3: A Central Pooling Equilibrium

the outcome for the pool. For any type t > t0, an indifference curve through point B has

the shape of the curve labelled It>t0 ; it is flatter than It0 to the left of B, and steeper to the

right. Consequently, all such types strictly prefer the pool to any point on S0(t) below t0.

The second possibility is that everyone joins the pool (Q(t) = 1
2
for all t). This would

require

U(0, 0, 0) < U

µ
1

2
, B (H) , 0

¶
,

so that the lowest type prefers to be in the pool rather than choose his first-best action and

receive the worst possible inference.

We refer to these configurations as “central pooling equilibria.” The following theorem

shows that a central pooling equilibrium exists precisely when a separating equilibrium does

not exist. Moreover, when it exists, it is unique. Finally, there is always a gap in the

distribution of actions right below 1
2
; in Figure 3, it is the interval (S0(t0), 12).

Theorem 4: A non-degenerate central pooling equilibrium exists iff t > t∗0,0. When this

condition holds, the central pooling equilibrium is unique, and S0(t0) < 1
2
.
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Remark: For t = t∗0,0, there is a degenerate central pooling equilibrium (the pool consists

only of type t), which is also a separating equilibrium.

Despite some surface similarities, the mechanism producing a central pool in this model

differs from those explored in Bernheim [1994] and Bernheim and Severinov [2003]. In those

papers, the direction of imitation reverses when type passes some threshold; types in the

middle are unable to adjust their choices to simultaneously deter imitation from the left and

from the right. Here, higher types always try to deter imitation by lower types, but are

simply unable to do this once x reaches 1
2
.

4.3 Justifying the Equilibrium

So far, we have looked at only two types of equilibria: separating equilibria, and equilibria

with central pools. We now justify this focus by applying a standard equilibrium refinement:

the D1 criterion of Cho and Kreps [1987]. This criterion insists that agents attribute any

action not chosen to the type that would be willing to choose it for the widest range of

inferences. The following theorem tells us that the separating and central pooling equilibria

described above all satisfy the D1 criteria, and indeed are the only equilibria that satisfy

this criterion. A similar result holds for other standard criteria (e.g. divinity).

Theorem 5: When t ≤ t∗0,0, the efficient separating equilibrium S0(t) is the unique signaling
equilibrium satisfying the D1 criterion. When t > t∗0,0, the central pooling equilibrium

is the unique signaling equilibrium satisfying the D1 criterion.

In standard signaling environments (with single crossing), the D1 criterion isolates sep-

arating equilibria, and equilibria with pools at the upper boundary of the action set (Cho

and Sobel [1990]). Consequently, the unusual aspect of this theorem is that central pooling

equilibria satisfy the D1 criterion. To understand why, refer back to Figure 3. What in-

ference would the audience make upon observing some x ∈ (S0(t0), 12), or x > 1
2
? The case

of x ∈ (S0(t0), 12) is standard. Since the single crossing property is satisfied for x < 1
2
, the

indifference curve for t0, It0, lies below the indifference curve of all other types — both It>t0 ,
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and It<t0 . Consequently, t0 would be willing to choose the action for the widest range of

inferences, and therefore, by the D1 criterion, the action would be attributed to t0. Given

this inference, no type would prefer to make this choice. The case of x > 1
2
is nonstandard.

Since the indifference curves of higher types are steeper than those of lower types for x > 1
2
,

for any such x, the indifference curve of type t0, It0 once again lies below the indifference

curves of all higher types, It>t0. Consequently, any such choice would be attributed to t0,

or to a lower type. Given this inference, no type would prefer to make this choice.

4.4 Varying the importance of social image

In the laboratory, treatments that make choices observable to larger audiences, or that

reduce the social distance between dictators and recipients, generate higher frequencies of

50-50 division. How does our theory account for these patterns?

Presumably, these types of treatments cause dictators to attach greater importance to

social image. Formally, we say that eU attaches more importance to social image than U if
eU(c,m, g, t) = U(c,m, g, t) + φ(m),

where φ us differentiable, and φ0(m) is strictly positive and bounded away from zero. The

addition of the separable term φ(m) allows us to increase the weight attached to social image

without altering the trade-off between consumption and equity. We note that the modified

model continues to fall without our framework; simply take eF (c,m) = F (c,m) + φ(m).

The following result tells us that an increase in the importance attached to social image

increases the extent to which dictators conform to the 50-50 norm:

Theorem 6: Suppose that eU attaches more importance to social image than U . Let et0
and t0 denote the types defining the lower boundary of the central pool for eU and U ,
respectively. Then et0 ≤ t0, with strict inequality when t0 ∈ (0, t). Thus, the measure
of types choosing x = 1

2
is weakly greater for eU than for U , and strictly greater when

some but not all types choose x = 1
2
with U .
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Theorem 6 confirms that, according to our theory, treatments that make choices observ-

able to larger audiences, or that reduce the social distance between dictators and receivers,

should produce greater conformance with the 50-50 norm.

4.5 Observable properties of the equilibrium

Here we provide a brief review of the observed behavioral patterns for which our theory

accounts. First, provided that the variance in dictators’ preferences are sufficiently great,

the model produces a spike in the distribution of choices precisely at equal division, even if

the prize is perfectly divisible. Second, no one gives more than half of the prize. Third,

there is always a gap in the distribution of choices just below equal division. Intuitively,

if a dictator intends to divide the pie unequally, it makes no sense to divide it only slightly

unequally, since the tiny consumption gain will be overwhelmed by negative inferences about

his motives. Fourth, conditions that raise the importance attached to social image should

result in greater conformance with the 50-50 norm. Thus, the theory accounts for the primary

features of the experimental data on the standard dictator game.

5 Further Testable Implications

A good theory not only explains existing observations, but also generates new testable im-

plications. In this section, we explore some sharp new comparative static implications for

a modified version of the dictator game. The rest of the paper tests those implications

experimentally.

The modified version of the dictator game operates as follows. At the outset, nature

chooses some x0 with probability p, in which case the game is over, or selects the dictator

game described in Section 2 with probability 1 − p. While D observes nature’s choice, R

does not; R does not know whether the outcome is the result of nature’s choice orD’s choice.

As we show in this section, our theory has distinctive implications concerning the effects of

x0 and p on the dictators’ choices.
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We provide formal results for the case of x0 = 0. With p > 0, the distribution of voluntary

choices has mass at x = 0, as well as (in some cases) x = 1
2
. Intuitively, the potential for

nature to choose x = 0, regardless of the dictator’s type, reduces the stigma associated

with voluntarily choosing x = 0. Moreover, as p increases, more and more dictator types

are tempted to “hide” their selfishness behind nature’s choice. This mitigates the threat

of imitation, thereby allowing higher types to reduce their gifts as well. Accordingly, the

measure of types voluntarily choosing x = 0 grows, while the measure of types choosing

x = 1
2
shrinks.

Due to space limitations, we do not provide formal results for the case of x0 > 0. However,

for any x0 close to zero, the analysis and intuition are similar.10 The potential for nature

to choose x0 regardless of the dictator’s type reduces the stigma associated with voluntarily

choosing x0. Notably, x0 becomes more attractive both to those who would otherwise have

given more than x0, and to those who otherwise would have given less. Thus, a pool forms

at x0, rather than at zero, reducing the total mass both above and below x0. Just as there

is a gap in the distribution of voluntary choices just below x = 1
2
, there is also a gap in the

distribution of voluntary choices just below x0 (and for the same reasons).

Accordingly, our theory has two critical comparative static implications. The first con-

cerns p. Setting p > 0 creates a second pool (in voluntary choices) at x0; raising p enlarges

this pool and shrinks the one at x = 1
2
. There are gaps in the distribution of voluntary

choices just below both pools. The second implication concerns x0: by varying x0 (near

zero), we should be able to manipulate the location of the second pool. Those predictions

are specific and testable.

As in Section 4, we proceed by describing a particular class of equilibrium, proving

existence and uniqueness within this class, and then showing that the D1 criterion always
10When x0 is close to zero, the equilibrium inference associated with x0 for p = 0 must be close to zero,

and therefore less than B(H). Accordingly, setting p > 0 (with no change in behavior) leads to a more
positive inference for x0. When x0 is not close to zero, the equilibrium inference associated with x0 for
p = 0 may be greater than B(H), in which case setting p > 0 (with no change in behavior) leads to a more
negative inference for x0; hence the same results do not follow.
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selects this equilibrium. We then examine comparative statics in p.

5.1 Preliminaries

First we introduce an additional assumption concerning B.

Assumption B-2: Consider the CDFs J , K, and L, such that J(t) = λK(t) + (1−λ)L(t).

If max supp(L) ≤ B(K), then B(J) ≤ B(K), where the second inequality is strict if
the first is strict or if the support of L is nondegenerate.

In words, the assumption says the following. If we starts with a distribution K and mix

it with a distribution L that places all probability on types whose social images are no higher

than the image associated with K, then the social image of the resulting group can’t exceed

the social image of K. If L also places some probability on types whose social images are

lower than the image associated with K, then the social image of the resulting group is lower

than the social image of K.

Now we describe a particular class of equilibria. We divide the types into three segments,

[0, t0], (t0, t1], and (t1, t], where t0 ≤ t1. We construct equilibria as follows: for t ∈ [0, t0],
Q(t) = 0; for t ∈ (t0, t1], Q(t) = St0,x∗(t0)(t) ≡ St0(t) (where the latter definition is to simplify
notation); for t ∈ (t1, t], Q(t) = 1

2
. In other words, types up to t0 give no gift, types between

t0 and t1 separate (with t0 picking his favorite action), and all higher types divide the prize

equally.

In this definition, we assign t0 to the lower pool and t1 to the middle pool. One could

also assign t0 to the middle pool and/or t1 to the upper pool. Since each type is of measure

zero, we regard these equilibria as equivalent, and always resolve indifference toward the

lower choice as a matter of convention.

There are two main cases to consider, and some subcases.

Case A: t0 < t1 (so the middle segment is present). For this case, there are two subcases.

Case A-1: t1 < t (so the top segment is also present).

Case A-2: t1 = t (so the top segment is not present).
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Case B: t1 = t0 (so the middle segment is not present).

What do we require for these configurations to be equilibria? For Case A (both subcases),

type t0 must be indifferent between joining the pool choosing zero, and separating (which,

it turns out, must involve t0’s first-best choice, x∗(t0)):

U
³
0, B

³ bHt0´ , t0´ = U (x∗(t0), t0, t0) (2)

where bHt0 is the CDF for types in the pool choosing zero (H with probability p, and H

truncated above at t0 with probability 1− p).11 For Case A-1, type t1 must be indifferent

between joining the pool choosing 1
2
and separating:

U

µ
1

2
, B (Ht1) , t1

¶
= U

¡
St0(t1), t1, t1

¢
(3)

For Case B, type t0 must be indifferent between pooling at zero and pooling at 1
2
, and (for

reasons that will become clear below) must weakly prefer both to its optimal choice with

revelation of its type:

U
³
0, B

³ bHt0´ , t0´ = U µ12 , B (Ht0) , t0
¶
≥ U (x∗(t0), t0, t0) (4)

We refer to these configurations as “double pooling equilibria” (even though Case A-2

involves a single pool). Figure 4 illustrates Case A-1 (with two pools and a region of

separation). The indifference curve It0 indicates that type t0 is indifferent between the

lower pool (point A) and separating with it’s first best choice, x∗(t0) (point B). All types

between t0 and t1 choose a point on the separating function generated when point B is used

as the initial condition. The indifference curve It1 indicates that type t1 is indifferent between

separating (point C) and the upper pool at x = 1
2
(point D).

5.2 Formal results

Our first result establishes the existence and uniqueness of a double pooling equilibrium. It

also characterizes the conditions under which Cases A-1, A-2, and B prevail.
11In the proof of Theorem 7, we provide an explicit formula for bHt0 .
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Figure 4: A Double Pooling Equilibrium

Theorem 7: There exists a unique double pooling equilibrium, which is characterized as

follows. Equation (2) has a unique solution, t∗0 ∈ (0, t). If

U (x∗(t∗0), t
∗
0, t

∗
0) ≤ U

µ
1

2
, B
¡
Ht∗0
¢
, t∗0

¶
, (5)

then the equilibrium belongs to Case B, and t0 ∈ (0, t∗0) (so that there is positive mass
at gifts of zero and 1

2
). If

U (x∗(t∗0), t
∗
0, t

∗
0) > U

µ
1

2
, B
¡
Ht∗0
¢
, t∗0

¶
, (6)

then the equilibrium belongs to Case A, and t0 = t∗0 ∈ (0, t) (so that there is positive
mass at zero gift, but not full mass). If in addition St

∗
0(t) > 1

2
, it is a Case A-1

equilibrium, and St
∗
0(t1) <

1
2
(so that there is positive mass at 1

2
and a gap in the

action distribution just below 1
2
). If St

∗
0(t) ≤ 1

2
, it is a case A-2 equilibrium.

As in Section 4, we justify our focus on the equilibria described in Theorem 7 by applying

the D1 refinement.
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Theorem 8: The double-pooling equilibrium is the unique signaling equilibrium satisfying

the D1 criterion.

The unique D1 equilibrium of this model has a number of notable properties. For

voluntary choices, there is always mass at x = 0. Nature’s exogenous choice of x = 0

induces players to “hide” their selfishness by mimicking this choice. There is never positive

mass at any other choice except 1
2
. As before, there is a gap in the distribution of choices

just below 1
2
. As shown in Figure 4, there may also be a gap in the distribution of choices

just above x = 0, but this gap only forms for large values of p.12

Now we turn to the role of p. It turns out that both t0 and t1 are monotonically

increasing in p. This means that the mass at x = 0 grows, and the mass at x = 1
2
shrinks,

as p increases.

Theorem 9: The measure of types choosing x = 0 is strictly increasing, and the measure

of types choosing x = 1
2
is decreasing (strictly if positive) in p. Moreover, the measure

of types choosing x = 0 converges to zero as p approaches zero.

5.3 An additional observation

After circulating an earlier draft of this paper, we became aware of work by Dana et. al.

[2006] and Brobert et. al. [2007], which shows that many dictators are willing to sacrifice

part of the total prize to opt out of the game, provided that this decision is not revealed

to recipients. Even though we did not develop our theory with these new experiments in

mind, it provides an immediate explanation. Within our framework, opting out permits the

dictator to retain a favorable image, B(H) (the population average), while acting selfishly.

In that sense, it is similar (but not identical) to choosing an action that could be attributable

to nature. Not surprisingly, a positive mass of dictator types will take this option.
12Formally, it can be shown that a gap just above x = 0 definitely forms for p sufficiently close to unity,

and definitely does not form for p sufficiently close to zero. However, since we do not attempt to test these
implications, we omit a formal demonstration for the sake of brevity.
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Formally, let’s suppose that opting out permits the dictator to consume y < x. To

construct an equilibrium, we divide the types into three segments, [0, t0], (t0, t1], and (t1, t],

where t0 ≤ t1. For t ∈ [0, t0], the dictator opts out; for t ∈ (t0, t1], Q(t) = St0(t); and

for t ∈ (t1, t], Q(t) = 1
2
. This structure resembles that of a double pooling equilibrium,

except that, instead of choosing x0, the lowest segment opts out. Type t0 must be indifferent

between opting out and separating (where, as with double pooling equilibria, separation

involves his first-best alternative, x∗(t0)). Opting out provides a type t dictator with the

utility level F (y,B(H))+ tG
¡−y

2

¢
.Thus, the following indifference condition takes the place

of (2):

F (y,B(H)) + t0G
³
−y
2

´
= U(x∗(t0), t0, t0). (7)

For t0 = t, the right-hand side of (7) is necessarily greater than the left; separating pro-

vides the dictator both with a better image and with a preferred distribution of consumption.

If the penalty for opting out is sufficiently small (in other words, if y is sufficiently close to

x), then, for t0 = 0, the left-hand side of (7) is greater than the right-hand side; opting out

provides a better image and virtually the same distribution of consumption. Therefore, with

a small opt-out penalty, the solution to (7) is interior, which means that a positive mass of

dictator types opts out.

6 Experimental Evidence

The theory described in the preceding sections not only accounts for previously observed

behavioral patterns, but also generates additional testable implications. To our knowledge,

no existing data shed light on the validity of those further implications. We therefore

designed new experiments and collected fresh data. We focus on the theory’s most simple

and direct first-order implications: for the extended dictator game described in Section 5,

increasing p should increase the mass of dictators who choose any given x0 (close to zero)

and reduce the mass who split the payoff equally. We test these implications by examining

the effects of changes in p and x0 on the distribution of dictators’ choices.
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6.1 Overview of the experiment

Subjects are divided into pairs, with partners and roles assigned randomly. Each pair splits

a $20 prize. To facilitate interpretation, we will henceforth renormalize x, measuring it on

a scale of 0 to 20. Thus, equal division corresponds to x = 10, rather than x = 0.5.

To heighten the effects of social image, dictators, recipients, and outcomes are publicly

identified at the conclusion of the experiment. We manipulate the intensity of the resulting

audience effect through the parameter p, which determines the audience’s inclination to

attribute an outcome to a dictator. We examine choices for four values of p (p = 0, 0.25,

0.5, and 0.75) and two values of x0 (x0 = 0, 1).

Identifying the distribution of voluntary choices for eight separate parameter combina-

tions obviously requires a great deal of data. Suppose, for example, that we wish to have 30

observations of voluntary choices for each parameter combination. With each pair of sub-

jects playing one game, we would require 1,000 subjects and $10,000 in prizes.13 Therefore,

our main challenge was to design experimental procedures that would allow us to gather

sufficient data at reasonable cost.

One natural solution is to use the strategy method. In other words, we could ask each

dictator to identify binding choices for a number of games, in each case conditional on nature

permitting him to divide the prize, and then choose one game at random to determine the

outcome. Unfortunately, this simple approach raises two important concerns.

First, in piloting the study, we discovered an apparent tendency for subjects to focus

on ex ante fairness — that is, the equality of expected payoffs before nature’s move — when

choosing a strategy for a given game. If a dictator knows that nature will favor him when

nature determines the split, the dictator will compensate by choosing a strategy that favors

the recipient when the dictator determines the split. Thus, the strategies for a substantial

fraction of dictators will prescribe gifts in excess of 50 percent of the prize. While this

phenomenon raises some interesting questions concerning ex ante versus ex post fairness,
13We would require 30 pairs for each combination with p = 0, 40 pairs for each combination with p = 0.25,

60 pairs for each combination with p = 0.5, and 120 pairs for each combination with p = 0.75.

25



concerns for ex ante fairness are properly viewed as confounds in the context of our current

investigation.

Second, the strategy method potentially introduces unintended and confounding audience

effects. If a subject views the experimenter as part of the audience, his decisions may be

influenced by the possibility that the experimenter will make inferences about the subject’s

character from his strategy rather than from the outcome. The experimenter potentially

knows whether an outcome is attributable to nature or to the dictator, what the dictator

would have chosen even if nature determined the outcome, and how the dictator would

have played the game with other values of p and x0. Our theory assumes that the relevant

audience has none of this information.

We address these concerns through the following measures.

(1) We use the strategy method only to elicit choices for different games. We do not

use it to elicit the subject’s strategy for a particular game. For each game, the dictator is

only asked to make a choice if he has been informed that his choice will govern the outcome.

Thus, within each game, each decision is made ex post rather than ex ante, and there is no

risk that the experimenter will draw inferences from portions of strategies that are never

executed.

(2) We modify the extended dictator game described in Section 5 by making nature’s

choice symmetric. In our experiments, the dictator determines the split of the prize with

probability 1 − p. Nature sets the gift at x0 with probability p/2 and at 20 − x0 with
probability p/2. This symmetry largely eliminates the discrepancy between ex ante and

ex post fairness, and should neutralize the tendency among dictators to compensate for

any asymmetry in nature’s choice. Notably, this modification does not alter any of the

theoretical implications described in Section 5.14

(3) Our experimental procedures guarantee that no one associated with the experiment
14For the purpose of constructing an equilibrium, the mass at 20−x0 can be ignored. It is straightforward

to demonstrate that all types will prefer their equilibrium choices to this alternative, given it will be associated
with the social image B(H). They prefer their equilibrium choices to the action chosen by t, and must prefer
that choice to 20− x0, because it provides more consumption, less inequality, and a better social image.
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will be able to associate any dictator with his or her strategy. We make this fact evident to

all subjects.

(4) Our experimental procedures also call subjects’ attention to the fact that everyone

present in the lab will associate each dictator with the outcome that emerges in the se-

lected game. We thereby focus the subjects’ attention on a particular audience and on the

revelation of particular information (the outcome).

To avoid overwhelming subjects with large numbers of contingent choices, we created

two distinct experimental conditions, designated “condition 0” and “condition 1.” We set

x0 = 0 for condition 0 and x0 = 1 for condition 1. Each pair of subjects is assigned to one

of the two experimental conditions, and each dictator makes choices for all four values of p.

With this design, we identify the effects of x0 from variation between subjects, and the

effects of p from variation within subjects. When p = 0 we should observe the same

distribution of choices for both conditions, including a spike at x = 10, a 50-50 split. For

p = 0.25, a second spike should appear, located at x = 0 for condition 0 and at x = 1 for

condition 1. As we increase p to 0.50 and 0.75 the spikes at 10 should shrink and the spikes

at x0 should grow.

The subjects for our experiment were students enrolled in undergraduates economics

courses at the University of Wisconsin—Madison in March and April 2006. We recruited a

total of 120 subjects and divided them into two groups of 30 pairs, with one dictator and

one recipient in each pair. One group of dictators made choices under condition 0, the other

under condition 1. Due to unexpected attrition, we lost one pair for condition 1, leaving 29

pairs.

The next subsection describes our experimental protocol in greater detail. The terrain

explored in this experiment provided some special challenges, and thus the design of our

protocol required a bit of methodological innovation. Readers who are uninterested in

experimental methods can skip directly to section 6.3, which presents results.
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6.2 Details of the Protocol

The design of our experiment addresses four main challenges.15 First, we must gather

a substantial amount of data from a limited subject pool at reasonable cost, presumably

through some variant of the strategy method. Second, we must induce subjects to focus

on ex post fairness within each game. Third, we must establish a salient audience and

minimize the likelihood that a subject will concern himself with the inferences of some

spurious audience. Finally, we must make sure that subjects comprehend both the game’s

information structure and the odds that govern nature’s choices. Dictators must understand

that if they select x = x0, the receiver will not be able to determine whether nature or the

dictator chose the allocation. In this section, we describe how the experiment unfolded from

the perspective of the subjects, and how particular design elements addressed these four

challenges. Copies of the subjects’ instructions are available from the authors.16

Each session included 20 subjects, all of whom were paid a $5 show-up fee. As they

entered the experiment, participants were randomly assigned seats. Ten subjects sat on each

side of the room. Those on one side were designated dictators, the others recipients. Each

recipient was seated opposite the dictator with whom he or she was paired. Each pair was

assigned a group number.

We began the experiment by asking each matched pair of subjects to stand and face each

other, as in Bohnet and Frey (1999). They recited to each other the phrase, “Hello. I am

in Group Number X . I am your partner.” Subjects were told that one of them would be

the “decision maker” (that is, the dictator), and that the other would be idle. Each dictator

was given three envelopes. One, marked “blanks,” contained nine decision sheets, described

below. The other two, marked “completed” and “chosen,” were empty.
15In the spirit of full disclosure, we acknowledge that we learned of the the second and fourth challenges

through two “unsuccessful” pilot experiments. In the first it was clear that the design was excessively
complex, and that subjects didn’t understand either the probabilities governing nature’s choices or the
information structure. In the second, subjects overwhelmingly focused on ex ante fairness. The powerful
and striking pull of ex ante fairness calls for further study, which we hope to pursue separately from this
project.
16Go to http://econ.ucsd.edu/~jandreon/ or http://www.stanford.edu/~bernheim/.
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Figure 5: Example Decision Sheet

We then assigned to each dictator a “private number” using the following procedure.

Dictators came to the front of the room one at a time, and each rolled a die until he obtained

a number between 1 and 4. This private number was then written in ink at the top of each

of the dictator’s decision sheets (which already included the dictator’s group number). The

subject was instructed not to share this private number with anyone else.

Each decision sheet corresponded to a separate modified dictator game. We used separate

sheets for separate games to underscore the notion that the dictator should consider each

game in isolation. Figure 5 is an example of a decision sheet.
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Notice that the method of allocating the $20 prize in Figure 5 depends on the dictator’s

private number. For some private numbers, the dictator determined the allocation of the

prize by filling in the blanks in the following statement:17

“Divide $20: I allocate ______ to myself, and ______ to my partner.”

For other private numbers, the dictator made no decision, instead submitting to a rule for

determining the allocation. In that case, the dictator was asked to write “forced” on the

decision sheet. Because each dictator wrote something on each sheet whether or not he or

she chose the allocation, participants were unable to infer whether a particular decision was

forced by watching the dictator.

For the decision sheet in Figure 5, the forced-choice rule was to allocate $20 to one partner

and $0 to the other based on an unobserved coin flip. This rule corresponds to condition

0 (x0 = 0). We replace these values with $19 and $1 for condition 1 (x0 = 1). Note that

nature’s rule treats the dictator and recipient symmetrically. With this symmetric rule,

we are more confident that no subject will, for instance, choose x = 20 to balance out the

possibility that nature might have chosen x0 = 0. Since nature is equally likely to be nice or

nasty to the recipient, x = 10 remains the most natural fair allocation.

Notice also that the dictator makes choices ex post within each game — that is, after,

nature determines whether the dictator controls the allocation for that game. This design

feature has several advantages. First, it focuses the dictator’s attention on ex post fairness,

thereby reducing the likelihood that he will in some way attempt to compensate for nature’s

decision rule. Second, it eliminates one possible source of spurious audience effects (those

arising from the experimenter’s ability to observe choices that turn out to be irrelevant within

a given game). Third, it underscores the fact that the dictator, unlike the audience, knows

whether nature is responsible for the outcome.

We varied the value of p from one decision sheet to the next by changing the set of

private numbers for which the dictator chose the allocation. This procedure made the odds
17Subjects were asked to check that the amounts summed to 20. All choices did.
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of forced decisions transparent. For example, for the decision sheet in Figure 5, dictators

with private numbers of 1 or 2 chose the allocation of the prize. Consequently, this decision

sheet corresponds to a modified dictator game with parameter values x0 = 0 and p = 0.5

(since that is the prior probability of a forced decision as perceived by any recipient). To

assure transparency, we also listed the odds at the bottom of the decision sheet.

To guarantee that every dictator actually makes at least one allocation decision for every

value of p, we used nine decision sheets. The nine sets of private numbers for which the

dictator chose the allocation were {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2}, {3, 4}, {1}, {2}, {3},
and {4}. With the set {1, 2, 3, 4}, all dictators chose allocations, so p = 0. With the sets
{1, 2, 3} and {2, 3, 4}, three out of four dictators chose allocations, so p = 0.25. With the

sets {1, 2} and {3, 4}, two out of four dictators chose allocations, so p = 0.5. Finally, with
the sets {1}, {2}, {3}, and {4}, one out of four dictators chose an allocation, so p = 0.75.
Notice that we obtain one observation from each dictator for all values of p other than

0.25. For p = 0.25, we obtain one observation if the dictator’s private number is 1 or 4 and

two observations if that number is 2 or 3. In our experiment, 35 dictators actually made two

decisions for p = 0.25. Of those, 29 made the same choice both times and 6 made different

choices. When analyzing the data, we average the duplicative choices. Our results are not

sensitive to this convention. Using the first, second, maximum, or minimum value leads to

virtually identical conclusions.

Prior to each session, the order of the decision sheets was determined at random. However,

all dictators within a single session filled out the sheets in the same order and at the same

time. Once all private numbers had been assigned, dictators were instructed to remove the

top decision sheet from the envelope marked “blanks.” A copy of the sheet was displayed on

an overhead projector so both dictators and recipients could see it. When subjects completed

a form, they put it in the envelope marked “complete.” Once all subjects completed a sheet,

they were instructed to remove the next sheet from the “blanks” envelope.

After all nine forms were completed, the experimenter randomly selected the one that
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would be used to determine payments.18 All dictators were instructed to remove the chosen

decision sheet from the “complete” envelope and put it in the envelope marked “chosen.”

Both envelopes were sealed and the “chosen” envelopes were collected. Those envelopes were

then handed to an assistant waiting outside the room. The assistant opened the envelopes in

another room, determined payoffs, and placed earnings in “earnings envelopes” marked with

the subjects’ numbers. Without entering, the assistant returned the earnings envelopes to

the original room, along with a summary of the outcomes. Since the assistant did not view

any of the participants, it is doubtful that subjects regarded him as part of the audience.

The experimenter then wrote the final allocation for each pair on a board at the front of

the room. The following example, which illustrates how outcomes would be displayed, was

included in the subjects’ instructions:

Chosen Decision Sheet: 8
Odds of an intended decision: 1 in 4 (25%)
Odds of a forced decision: 3 in 4 (75%)

Group 1 Decision maker - $10 Partner - $10
Group 2 Decision maker - $20 Partner - $0
Group 3 Decision maker - $9.10 Partner - $10.90
Group 4 Decision maker - $18 Partner - $2
Group 5 and so forth...

The subjects’ instructions also made it clear that, in this example, all participants would be

able to infer that the dictators in groups 1, 3, and 4 surely determined the allocations for

their groups, while the allocation for group 2 might have been chosen either by the dictator

or by chance. To make sure that the subjects understood the game’s information structure,

the instructions included two other related examples.

At the conclusion of the session, subjects were handed their sealed earnings envelopes.

After turning in the envelopes containing the unused decision sheets, they were free to leave.

Subjects were assured at the outset of the session that the “complete” envelopes would be
18Randomization involved rolls of a 10-sided die. If a 10 appeared, the experimenter rolled the die again.

Subjects observed this process.
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opened much later, and that at no time would anyone who had been present in the room

view any of their decision sheets.

While subjects were waiting for their payments, we asked them to fill out a question-

naire. This tested their understanding of the game by having them compute payoffs for both

dictators and recipients in several examples, and state whether recipients could distinguish

an intentional choice from a forced choice. All subjects–dictators and recipients–correctly

answered the test questions, giving us confidence that the instructions were well understood.

As a check on our motivational assumptions, the questionnaire also asked about their

goals and attitudes during the experiment. We discuss the responses to this questionnaire

below.

6.3 Main Findings

In this section we evaluate the theory’s central predictions. In subsequent sections we

provide further analysis of the data at the subject level, and we discuss responses to the

questionnaire. As we will see, the experimental data provides decisive support for the

theory.

Figure 6 summarizes the distributions of dictators’ voluntary choices in condition 0 (x0 =

0) for each of the four values of p.19 For ease of presentation, we group values of x into the

following five categories: x = 0, x = 1, 2 ≤ x ≤ 9, x = 10, and x > 10. Figure 7 provides

the same information for condition 1 (x0 = 1).

The data depicted in Figures 6 and 7 provide striking confirmation of our theory’s predic-

tions. Look first at Figure 6 (condition 0). For p = 0 we expect a spike at x = 10. Indeed,

57 percent of dictators divided the prize equally. Consistent with results obtained from

previous dictator experiments, a substantial fraction of subjects (30 percent) chose x = 0.20

19Although subjects were permitted to choose any division of the $20 prize, and although they were
provided with hypothetical examples in which dictators chose allocations that involved fractional dollars, all
chosen allocations involved whole dollars.
20For instance, the fraction of dictators who kept the entire prize was 35 percent in Forsythe et al. (1994)

and 33% in Bohnet and Frey (1999). In contrast to our experiment, however, no dictators kept the entire
prize in Bohnet and Frey’s “two-way identification” condition. One potentially important difference is that
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Figure 6: Distribution of Amounts Allocated to Partners, Condition 0
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As we increase p we expect the spike at x = 10 to shrink and the spike at x = 0 to grow.

That is precisely what happens. Note also that no subject chose x = 1 for any value of p.

Look next at Figure 7 (condition 1).Again, for p = 0 we expect a spike at x = 10.

Indeed, 69 percent of dictators divide the prize equally, while 17 percent keep the entire

prize (x = 0), and only 3% (one subject) chose x = 1. As we increase p the spike at x = 10

once again shrinks. In this case, however, a new spike emerges at x = 1. Specifically, as

p increases to 0.75, the fraction of dictators choosing x = 1 rises steadily from 3 percent to

48 percent, while the fraction choosing x = 10 falls steadily from 69 percent to 34 percent.

Notably, the fraction choosing x = 0 falls in this case from 17 percent to 10 percent. Once

again, the effect of variations in p on the distribution of choices is dramatic, and exactly as

predicted by the theory.

The statistical significance of these effects is demonstrated in Table 1, which reports

estimates of two random-effects probit models. The specification in column (1) describes

the probability of selecting x = x0; the one in column (2) describes the probability of selecting

x = 10, equal division. The explanatory variables include indicator variables for the values

of the experimental parameters p (with p = 0 omitted) and x0 (with x0 = 0 omitted). In

both cases, we report marginal effects at mean values, including the mean of the unobserved

individual heterogeneity. For ease of presentation, we pool data from both conditions,

although similar results hold on each condition separately.

In column (1), the coefficients on the indicator variables for all probabilities p are positive

and highly statistically significant, indicating that an increase in p from 0 to any positive

value raises the fraction of subjects choosing x0. Moreover, the coefficient on the indicator

for p = 0.50 is significantly higher than the one for p = 0.25 ( χ2 = 6.61, α < 0.01), as

predicted. The coefficient on the indicator for p = 0.75 is virtually identical to the one for

p = 0.50. Note that the coefficient on the indicator variable for x0 = 1 is significant and

negative. This may reflect the choices of a subset of subjects who are unconcerned with

Bohnet and Frey’s subjects were all students in the same course, whereas our subjects were drawn from all
undergraduates enrolled in economics courses at the University of Wisconsin, Madison.
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social image, and are therefore more willing to join a pool at x = 0 than at x0 = 1.

In column (2), the coefficients on the indicator variables for all probabilities p are negative

and highly statistically significant, indicating that an increase in p from 0 to any positive

value reduces the fraction of subjects choosing x = 10 (equal division). While the coefficients

decline with p as predicted, the coefficient on the indicator for any given p is not statistically

significantly different from its neighbor (for p = 0.25 vs. p = 0.50,χ2 = 0.59, and for p = 0.50

vs. p = 0.75, χ2 = 0.04). Notice that the coefficient on the indicator variable x0 = 1 is not

significantly different from zero in this regression.

TABLE 1
Random effects probit models:

marginal effects for regressions describing
(1) the probability of choosing x = x0 and

(2) the probability of choosing x = 10 (equal division),
conditional on experimental parameters.†

(1) (2)
Pr(x = x0) Pr(x = 10)

p = 0.25 0.604∗∗ −0.386∗∗
(0.112) (0.111)

p = 0.50 0.801∗∗ −0.466∗∗
(0.077) (0.121)

p = 0.75 0.800∗∗ −0.482∗∗
(0.077) (0.122)

x0 = 1 −0.524∗∗ 0.224
(0.179) (0.219)

Observations 236 236
†Standard errors in parentheses. Significance: ** at α < 0.01.

As final check on the model’s predictions, we compare choices across the two conditions

for p = 0. Since the forced choice is irrelevant in those cases, we expect to find the same

distribution of choices regardless of whether x0 equals 0 or 1. As predicted, we find no

significant difference between the two distributions (Mann-Whitney z = 0.670,α < 0.50,

Kolmogorov-Smirnov k = 0.13,α < 0.95). The higher fraction of subjects choosing x = 0

in condition 0 (30 percent versus 17 percent) and the higher fraction choosing x = 1 in
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condition 1 (3 percent versus 0 percent) suggest a modest anchoring effect, but that pattern

is also consistent with chance (comparing choices of x = 0,we find t = 1.145,α < 0.26).

6.4 Subject-level analysis

One stark implication of our theory is that no subject should give away more than half of the

prize. In previous experimental studies of the dictator game, violations of this prediction

occasionally occur, but are relatively rare. The same is true of our experiment. For

condition 0, there were three violations of this prediction, out of 139 total choices. One

subject gave away $15 when p = 0. A second subject gave away $15 in one of two instances

with p = 0.25 (but gave away $10 in the other instance), and gave away $11 when p = 0.75.

For condition 1, there were only two violations of this prediction out of 134 total choices.21

Both involved the same subject, who chose x = 19 with p = 0.5 and 0.75. When asked

to explain her choices on the post-experiment questionnaire, this subject indicated that she

alternated between giving $1 and $19 in order to “give me andmy partner equal opportunities

to make the same $.” Despite our precautions, this subject was clearly concerned with ex

ante fairness.

Our theory also implies that, as p increases, a subject in condition 0 will not increase

his gift, x. We find that 5 of 30 subjects violate this monotonicity prediction; for each of

these subjects, there is a single violation. The same prediction holds for condition 1, with an

important exception: according to theory, an increase in p could induce a subject to switch

from x = 0 to x = 1. We find four violations of monotonicity for condition 1, but two

involve switches from x = 0 to x = 1. One subject gave away nothingwith p = 0,but gave

$1 for all higher values of p. A second gave away nothing for p < 0.75, but gave away $1 for

p = 0.75. Thus, problematic violations of monotonicity are relatively rare.

In sum, an examination of subject-level data strengthens our confidence in the theory.

Allocations in excess of 50-50 are uncommon and subjects’ choices are largely monotonic, as
21The total numbers of observations reported here exceeds the numbers reported in Tables 1 and 2 because

here we do not average duplicative choices for p = 0.25.
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the theory predicts.

6.5 Motivational Assumptions

The theory developed in this paper is based on two main assumptions concerning preferences:

first, that people are fair-minded to varying degrees; second, that people like others to

see them as fair. As a check on the validity of these assumptions, we included in the

subjects’ questionnaire several questions concerning attitudes and motives. We acknowledge

that answers to such questions are potentially open to interpretation and rarely suffice to

prove or disprove an economic theory. However, since the motives envisioned in our model

are nonstandard, we feel it is useful to supplement our examination of indirect behavioral

evidence (discussed above) with direct evidence concerning objectives. Here we focus on

three questions that pertain to the model’s assumptions.

Subjects were presented with a list of possible objectives and asked to indicate the im-

portance of each on a scale of 1 to 5, with 1 signifying “not important” and 5 signifying “very

important.” The list included the following objectives (where the use of 19 or 20 depended

on the condition):

a) Making the most money I could.

b) Being generous to my partner.

c) Not getting caught when I chose 20 (19) for me.

The importance of objective (a) should correlate with selfishness, while the importance

of objective (b) should correlated with altruism or fairness. We would expect those who

endorse (a) to be more likely to choose x = x0, and those who endorse (b) to be more likely

to choose x = 10. Statement (c) acknowledges a desire to mask intentions by disguising

selfish actions. Those who endorse (c) should be more likely to select x = x0 and less likely

to choose x = 10, but only when p > 0.

To check these hypotheses we estimated additional random-effects probit models, which

we report in Table 2. Column (1) shows that endorsing (a), the desire to make money, is
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strongly positively related to choosing x = x0. Endorsing (c), the desire to hide selfishness,

is strongly positively related to choosing x = x0 when p > 0, but not when p = 0, exactly

as our theory predicts. Column (2) shows that endorsing (b), the desire to be generous, is

significantly related to choosing x = 10. Endorsing (c) is significantly negatively related to

choosing x = 10 when p > 0, but not when p = 0, again exactly as our theory predicts. Thus,

the patterns in these regressions are consistent with our underlying behavioral assumptions.

TABLE 2
Random-effects probit models: marginal effects for regressions describing
(1) the probability of choosing x = x0,and (2) the probability of choosing

equal division (x = 10), conditional on self-reported motivations,
and interactions with an indicator for p > 0.†

(1) (2)
Pr(x = x0) Pr(x = 10)

a. Making money 0.351∗∗ -0.161
(0.125) (0.109)

b. Being generous -0.005 0.232∗

(0.100) (0.092)

c. Not getting caught 0.011 0.064
(0.082) (0.065)

a.×1(p > 0) 0.101 -0.138∗

(0.070) (0.067)

b.×1(p > 0) -0.173 0.152∗

(0.099) (0.071)

c.×1(p > 0) 0.296∗∗ -0.180∗

(0.095) (0.081)

Observations 236 236
†Standard errors in parentheses. Significance: ** at α < 0.01, * at α < 0.05

7 Concluding Comments

We have proposed and tested a theory of behavior in the dictator game that is predicated

on two critical assumptions: first, that people are fair-minded to varying degrees; second,

that people like others to see them as fair. We have demonstrated that this theory accounts

for previously unexplained aspects of observed behavior. It also has ancillary implications
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that are both sharp and testable. Because no existing data shed light on the validity of

those further implications, we designed a new experiment and collected fresh data. The

data obtained from our experiment strongly support the theory.

Narrowly interpreted, this study enriches our understanding of behavior in the dictator

game. More generally, it provides a theoretical framework that potentially accounts for the

prevalence of the equal division norm in a wide range of settings. Perhaps most significantly,

it underscores both the importance and feasibility of studying audience effects with theo-

retical precision, and it suggests that economists can gain an understanding of those effects

by modeling them as signaling phenomena. Formal models of audience effects, like the

one proposed here, can potentially help economists design better experiments and interpret

experimental results more accurately. To the extent audience effects are pervasive in real

economic choices (as we claim), such models will also prove useful more generally.
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Appendix

Proof of Theorem 1: Consider the problem

max
x∈[0,1]

F (1− x, t) + tG
µ
x− 1

2

¶
The solution involves one of the following three conditions:

tG0
µ
x− 1

2

¶
= F1 (1− x, t) (8)

tG0
µ
−1
2

¶
< F1 (1, t) (in which case x = 0) (9)

tG0
µ
1

2

¶
> F1 (0, t) (in which case x = 1) (10)

(1) We know that F1 is strictly positive, and that G0(z) is non-positive when z ≥ 0.

Clearly, (10) is never satisfied, and (8) cannot be satisfied for x ≥ 1
2
.

(2) Implicitly differentiating (8), we obtain

dx

dt
= − G0

¡
x− 1

2

¢− F12(1− x, t)
tG00

¡
x− 1

2

¢
+ F11 (1− x, t)

(11)

With x < 1
2
and separability of F , the numerator is strictly positive. By strict

concavity, the denominator is strictly negative. Thus, the entire term is strictly positive.

Note that, if x = 0 is optimal for some t, then, by (9), it is also optimal for smaller t provided

that F12 ≤ 0.
(3) Let

t∗ = min

(
f

G0
¡−1

2

¢ , t)
(where f was defined before as the lower bound on F1). For all t < t∗, (9) is satisfied by

construction.

(4) Suppose this is false. Then there exists a sequence < tk >
∞
k=0 increasing without

bound and some x0 < 1
2
such that, for all k, x∗(tk) < x0. In that case, tkG0

¡
x∗(tk)− 1

2

¢
>

tkG
0 ¡x0 − 1

2

¢
> 0, so as k goes to infinity tkG0

¡
x∗(tk)− 1

2

¢
increases without bound. Since
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F1 is bounded, this means that neither (8) or (9) can be satisfied. Since a maximum exists,

and since (10) cannot be satisfied either, this is a contradiction. ¤

We now prove two general lemmas concerning (pure strategy) signaling equilibria, which

we use in subsequent proofs.

Lemma 1 In equilibrium, G
¡
X(t)− 1

2

¢
is weakly increasing in t. (In other words, more

fair types choose allocations that are weakly more fair.)

Proof: Consider two types, t and t0 with t < t0. Suppose type t chooses x earning

image m, while t0 chooses x0 earning image m0. Let f = F (1 − x,m), f 0 = F (1 − x0,m0),

g = G
¡
x− 1

2

¢
, and g0 = G

¡
x0 − 1

2

¢
. Mutual non-imitation requires

f 0 + t0g0 ≥ f + t0g

and

f 0 + tg0 ≤ f + tg

Subtracting the second expression from the first yields

(g0 − g)(t0 − t) ≥ 0

Since t0 − t > 0, it follows that g0 − g ≥ 0. ¤

Corollary 1 Let TL = {t | Q(t) ≤ 1
2
}, and TH = {t | Q(t) ≥ 1

2
}. The equilibrium action

function Q(t) is weakly increasing in t on TL and weakly decreasing in t on TH .

Lemma 2 Suppose that Q(t) > 1
2
. Define x0 as the solution to G

¡
x0 − 1

2

¢
= G

¡
Q(t)− 1

2

¢
(if G is not symmetric around 1

2
, x0 may not exist, but the statement of the lemma

still applies) Then, for all t0 > t, Q(t0) ∈ {x0, Q(t)}. In other words, if type t chooses
to give away more than half of the prize, then all higher types must either choose the

same action as t, or choose to give away an equally fair amount less than 1
2
.
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Proof: According to lemma 1, G
¡
Q(t0)− 1

2

¢ ≥ G
¡
Q(t)− 1

2

¢
. To prove the lemma,

we show that this must hold with equality. Suppose on the contrary that the inequality

is strict for some t0. Since G is single-peaked, 1 − Q(t0) > 1 − Q(t). We claim that, in

addition, B
¡
ΦQ(t0)

¢ ≥ B ¡ΦQ(t)¢. Let t0 = inf{τ | Q(τ) = Q(t0)}. Plainly, B ¡ΦQ(t0)¢ ≥ t0.
From lemma 1, we know that, for all t00 > t0, Q(t00) 6= Q(t). Thus, B

¡
ΦQ(t)

¢ ≤ t0, which
establishes the claim. It follows that F

¡
1−Q(t0), B ¡ΦQ(t0)¢¢ > F

¡
1−Q(t), B ¡ΦQ(t)¢¢.

But then all types, including t, prefer Q(t0) to Q(t), a contradiction. ¤

Corollary 2 There is at most one value of x greater than 1
2
chosen in any equilibrium.

Proof of Theorem 2: (1) First we show that Sr,z(t) > x∗(t) for t > r and t − r
sufficiently small. If z > x∗(r), this is obvious. Suppose z = x∗(r). If x∗(r) is characterized

by (9), then x∗(r) = 0, and it’s easy to check that S0r,z(r) > 0 (the numerator is positive, and

the denominator is negative because the best choice for r, ignoring social image, is strictly

less than zero). Since (9) also implies that x∗(r) = 0 for t close to r, we have the desired

conclusion. The other possibility is that x∗(r) is characterized by (8). In that case, S0r,z(r)

is positive infinity. Inspection of (11) reveals that dx∗(t)
dt

¯̄̄
t=r

is finite, so again the desired

conclusion follows directly.

Next we argue that Sr,z(t) > x∗(t) for all t > r. Suppose not. Then, since the solution

Sr,z must be continuous, there is some t0 such that Sr,z(t0) = x∗(t0) and Sr,z(t) > x∗(t) for

t < t0. Consider any monotonic sequence tk ↑ t0. As k increases, the denominator in
the expression for S0r,z(tk) approaches zero from below while the numerator converges to a

strictly positive number, implying that S0r,z(tk) increases without bound. In contrast, given

our assumptions about F and G, the derivative of x∗(t) is bounded within any neighborhood

of t0 (see equation (11) — G0 achieves a maximum on
£−1

2
,+1

2

¤
, G00 achieves a strictly negative

maximum on
£−1

2
,+1

2

¤
, F12 achieves a strictly negative minimum on [0, 1]×[t0 − ε, t0 + ε], and

F11 achieves a strictly negative maximum on [0, 1]× [t0 − ε, t0 + ε]). But then Sr,z(t)− x∗(t)
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must increase over some interval (t00, t0) (with t00 < t0). This implies Sr,z(t0) − x∗(t0) >
Sr,z(t

00)− x∗(t00) > 0, which contradicts Sr,z(t0)− x∗(t0) = 0.
(2) The numerator of (1) is always strictly positive and, in light of part (1), the denomi-

nator is always strictly negative for t > r. The negative sign in front of the fraction makes

the derivative positive. As discussed in the proof of part (1), S0r,z(r) may be infinite.

(3) Consider t0 and t00 with Sr,z(t0), Sr,z(t00) ≤ 1
2
. Assume that t0 < t00. Then

U (Sr,z(t
00), t00, t0) = U (Sr,z(t0), t0, t0) +

Z t00

t0

dU (Sr,z(t), t, t
0)

dt
dt (12)

ButZ t00

t0

dU (Sr,z(t), t, t
0)

dt
dt =

Z t00

t0

½·
t0G0

µ
Sr,z(t)− 1

2

¶
− F1 (1− Sr,z(t), t)

¸
S0r,z(t) + F2 (1− Sr,z(t), t)

¾
dt

<

Z t00

t0

½·
tG0

µ
Sr,z(t)− 1

2

¶
− F1 (1− Sr,z(t), t)

¸
S0r,z(t) + F2 (1− Sr,z(t), t)

¾
dt

= 0

where the inequality follows from Sr,z(t) <
1
2
, and where the final equality follows from (1).

From (12), this implies

U (Sr,z(t
00), t00, t0) < U (Sr,z(t0), t0, t0)

The argument for t00 < t0 is symmetric.

(4) Assume that the claim is false. Since the solution to the differential equation is

continuous, we must have Sr,z(t) < 1
2
for all t ≥ r. Note that, since F is unbounded in

m, U
¡
1
2
,m, r

¢
exceeds U (z, r, r) = U(Sr,z(r), r, r) for m sufficiently large. Since Sr,z(t) lies

between t’s first best choice and 1
2
, since t’s first-best choice approaches 1

2
as t gets large

(Theorem 1 part (4)), and since F1 is bounded, we know that U (Sr,z(t), t, r) converges to

U(1
2
, t, r), which in turn exceeds U(Sr,z(r), r, r) for t sufficiently large. But this contradicts

part (3). (If F is assumed to be separable, the proof is simpler.)

(5) If z > z0, then Sr,z(r) > Sr,z0(r). We wish to show that Sr,z(t) > Sr,z0(t) for all t > 0.

If this is not the case, then there exists some t0 > r for which Sr,z(t) = Sr,z0(t). But, for
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standard reasons, two trajectories with different initial conditions cannot intersect. Conti-

nuity in r and z follows from standard properties of the solutions of differential equations.

¤

Proof of Theorem 3: First we argue that, in any separating equilibrium with action

function Q, we must have Q(t) < 1
2
for all t < t. We prove this in two steps. The first step is

to show Q(t) ≤ 1
2
for all t < t. Corollary 2 tells us that there is at most one value of x greater

than 1
2
chosen in any signaling equilibrium. For a separating equilibrium, this means that

at most one type, call it t0, that chooses an action greater than 1
2
. Assume t0 < t. Consider

t00 ∈ ¡t0, t¢. We know that Q(t00) ≤ 1
2
< Q(t0), so F (1−Q(t00), t00) > F (1−Q(t0), t0). From

Lemma 1, G
¡
Q(t00)− 1

2

¢ ≥ G ¡Q(t0)− 1
2

¢
. But then t0 would imitate t00, a contradiction.

The second step is to rule out Q(t) = 1
2
for all t < t. Assume on the contrary that Q(t0) = 1

2

for some t0 < t. By Lemma 1, Q(t00) = 1
2
for all t00 > t. But then Q is not a separating

function. (From Corollary 2, it then follows that any separation function is monotonic.

Through a more elaborate argument, we can also show that Q(t) ≤ 1
2
. Neither of these

conclusions are necessary for what follows.)

The argument in the preceding paragraph tells us that, in a separating equilibrium, all

types t ∈ [0, t) choose actions in the “standard” half of the action set where the single-crossing
property is satisfied. Standard arguments then imply that a separating action function must

solve (1) for some initial condition (Mailath [1987]). In other words, the separating action

function must be S0,z(t) for some z. Moreover, from the preceding paragraph, we know

we must have S0,z(t) ≤ 1
2
. Since S0,z(t) is increasing in z, it is possible to construct a

separating equilibrium iff S0(t) ≤ 1
2
. Since S0(t) is strictly monotonic, this is equivalent to

the statement that t ≤ t∗. ¤

Proof of Theorem 4: Define ψ(t0) as the solution to

U(S0(t0), t0, t0) = U

µ
1

2
,ψ(t0), t0

¶
Note that we can rewrite the equilibrium condition as either (1) ψ(t0) = B (Ht0), or (2)
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ψ(0) < B (H).

Let’s start by looking at the properties of ψ. Under our assumptions, ψ(t0) always

exists, is unique, and exceeds t0 (since x∗(t0) < S0(t0) < 1
2
, we know that U(S0(t0), t0, t0) >

U
¡
1
2
, t0, t0

¢
). Also, ψ(t∗0,0) = t∗0,0. We claim that ψ(t0) is also strictly decreasing and

continuous in t0. Continuity follows because all the pertinent functions (including S) are

continuous. To see that the function is strictly decreasing, consider any t0 and t00 with

t0 > t00. We know that

F (1− S0(t0), t0)− F
µ
1

2
,ψ(t0)

¶
= t0

·
G

µ
1

2

¶
−G

µ
S0(t

0)− 1
2

¶¸
and

F (1− S0(t00), t00)− F
µ
1

2
,ψ(t00)

¶
= t00

·
G

µ
1

2

¶
−G

µ
S0(t

00)− 1
2

¶¸
>From the first expression, we know that

F (1− S0(t0), t0)− F
µ
1

2
,ψ(t0)

¶
> t00

·
G

µ
1

2

¶
−G

µ
S0(t

0)− 1
2

¶¸
Subtracting the third expression from the second yields

[F (1− S0(t00), t00)− F (1− S0(t0), t0)] +
·
F

µ
1

2
,ψ(t0)

¶
− F

µ
1

2
,ψ(t00)

¶¸
< t00

·
G

µ
S0(t

0)− 1
2

¶
−G

µ
S0(t

00)− 1
2

¶¸
But we also know (by the non-imitation constraint) that

[F (1− S0(t00), t00)− F (1− S0(t0), t0)] ≥ t00
·
G

µ
S0(t

0)− 1
2

¶
−G

µ
S0(t

00)− 1
2

¶¸
These two inequalities can hold only if

F

µ
1

2
,ψ(t0)

¶
− F

µ
1

2
,ψ(t00)

¶
< 0

which requires ψ(t00) > ψ(t0).

Now let’s think about the properties of B (Ht0). Given our assumptions on B, it’s plainly

increasing and continuous in t0. Moreover, B
³
Ht∗0,0

´
> t∗0,0.
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From the preceding, we know that B (Ht0)− ψ(t0) is strictly increasing and continuous

in t0.

Now let’s look for equilibria. Assume t > t∗0,0. If B(H)−ψ(0) ≥ 0, then we automatically
have an equilibrium (all types choose x = 1

2
), and it’s plainly unique becauseB(Ht0)−ψ(t0) >

0 for all t0 > 0. Suppose instead that B(H)−ψ(0) < 0. We know that B
³
Ht∗0,0

´
−ψ(t∗0,0) >

0. Thus, there exists a unique value of t0, necessarily on the open interval (0, t∗0,0) (which

gives us S0(t0) < 1
2
), for which B(Ht0)− ψ(t0) = 0.

To complete the description of an equilibrium, we need to supply beliefs for actions

not chosen in equilibrium (all those in [S(t0), 12) and (
1
2
, 1]). We assume these actions are

attributed to t0 (when every type joins the pool, type zero). It is easy to check that no type

would select any of these actions.

Now suppose t < t∗0,0. Then , for t0 sufficiently close to t, B (Ht0) is very close to

t0. But since S0(t0) is bounded away from 1
2
, ψ(t0) is bounded away from t0. Therefore,

B (Ht0)−ψ(t0) < 0. Since this function is strictly increase in t0, we know thatB (Ht)−ψ(t) <
0 for all t ∈ [0, t]. But this means that there is no central pooling equilibrium.
For the case of t = t∗0,0, we have B(Ht∗0,0)− ψ(t∗0,0) = 0, so the central pool is empty (it

consists of (t, t]). One can also think of this as a case with a degenerate pool at x = 1
2
(it

just consists of t). ¤

Proof of Theorem 5: We establish this result through a series of lemmas.

Lemma 3 Consider an equilibrium in which some nondegenerate set of types (a pool) selects

some action other than 1
2
. This equilibrium does not satisfy the D1 criterion.

Proof: Suppose there is a pool that selects an action x0 6= 1
2
. Select some type t0

belonging to the pool such that t0 > B (Φx0). We claim that, for any action x00 with

G
¡
x00 − 1

2

¢
> G

¡
x0 − 1

2

¢
, B (Φx00) ≥ t0. The lemma follows immediately from the claim

because t0 can then choose an action slightly closer to 1
2
than x0 and obtain a discontinuous

increase in payoff from a discrete jump in social image (any other effect on utility can be

made arbitrarily small by taking the new choice sufficiently close to x0).

50



There are two cases to consider.

Case #1: x00 is chosen by some type in equilibrium. In that case, the claim follows

immediately from Lemma 1, which tells us that no type lower than t0 chooses x00.

Case #2: x00 is not chosen by some type in equilibrium. Consider any t00 < t0. We

argue that the set of inference for which t00 would select x00 rather than its equilibrium choice

is strictly smaller than the set of inferences for which t0 would select x00 rather than its

equilibrium choice. By the D1 criterion, this means that the inference upon seeing x00 places

no weight on any type t00 < t0, from which the claim follows directly.

Consider any m such that

F (1− x00,m)− F ¡1−Q(t00), B ¡ΦQ(t00)¢¢ ≥ t00 ·GµQ(t00)− 1
2

¶
−G

µ
x00 − 1

2

¶¸
(which means t00 is weakly willing to pick x00). We also know (from non-imitation) that

F
¡
1−Q(t00), B ¡ΦQ(t00)¢¢− F (1− x0, B (Φx0)) ≥ t00 ·Gµx0 − 1

2

¶
−G

µ
Q(t00)− 1

2

¶¸
Adding these inequalities yields

F (1− x00,m)− F (1− x0, B (Φx0)) ≥ t00
·
G

µ
x0 − 1

2

¶
−G

µ
x00 − 1

2

¶¸
Since, by assumption, t00 < t0 and G

¡
x00 − 1

2

¢
> G

¡
x0 − 1

2

¢
, we have

F (1− x00,m)− F (1− x0, B (Φx0)) > t0
·
G

µ
x0 − 1

2

¶
−G

µ
x00 − 1

2

¶¸
Since Q(t0) = x0, this means that t0 strictly prefers to choose x00, given the inference m. So

t0 is willing to choose x00 for a strictly larger set of inferences, as claimed. ¤

Lemma 4 In any equilibrium satisfying the D1 criterion, type t = 0 selects either x = 0 or

x = 1
2
.

Proof: Suppose Q(0) /∈ {0, 1
2
}. By lemma 3, ΦQ(0) places probability one on type 0.

But then

U (0, B (Φ0) , 0) ≥ U(0, 0, 0) > U
¡
Q(0), B

¡
ΦQ(0)

¢
, 0
¢
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which contradicts the assumption that Q(0) is the optimal choice for type t = 0. ¤

Now we prove that the D1 criterion excludes all equilibria other than the ones mentioned

in the statement of the theorem. Assume first that an equilibrium satisfying the D1 criterion

includes a pool at 1
2
. Lemmas 1 and 2 together imply that Q(t) ≤ 1

2
for all t ∈ £0, t¤. By

Corollary 1, the action function is weakly monotonic, so by Lemma 3 either all types choose

x = 1
2
, or we can partition the types into two sets, (t0, t], who choose 1

2
, and [0, t0], each of

whom chooses a different action. (Note again that t0 can be placed in either group, and

that the choice is inconsequential because all types have measure zero; by convention, we

place t0 in the separating group.)

Suppose all types choose x = 1
2
. Then

U

µ
1

2
, B(H), 0

¶
> U (0, B (Φ0) , 0) ≥ U(0, 0, 0)

(where the strict inequality follows from the fact that we resolve indifference in favor of lower

choices), since otherwise type zero would choose x = 0. But this is then a central pooling

equilibrium.

Now suppose that some types do not choose x = 1
2
. For types in [0, t0], we have a

completely standard problem of separation (because we know their actions must lie in the

standard half of the choice set). Standard arguments then imply that their actions must

solve (1), and Lemma 4 implies that the initial condition is S(0) = 0. Thus, for types in

[0, t0], actions are given by S0(t). Moreover, type t0 must be indifferent between
¡
1
2
, B (Ht0)

¢
and (S0(t0), t0) — if t0 strictly preferred the first alternative then, by continuity, types slightly

lower than t0 would strictly prefer to enter the central pool; if t0 strictly preferred the second

alternative then, by continuity, types slightly higher than t0 would strictly prefer to exit the

pool by imitating t0. Accordingly, the configuration is again a central pooling equilibrium.

Now assume that an equilibrium satisfying the D1 criterion does not include a pool at

1
2
. By Lemma 3, we know it’s a separating equilibrium. In the proof of Theorem 3, we

showed that a separating equilibrium action function must equal Sz(t) for t ∈ [0, t). By
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Lemma 4, we know that z = 0. Since type t is of measure zero, its choice is inconsequential,

but nevertheless we can still show that it’s S0(t). If this is false, then, by Corollary 1,

Q(t) > S0(t). By Theorem 2, S0(t) > x∗(t). Therefore, type t0 must strictly prefer

(S0(t), t) to (Q(t), t). Take any sequence tk ↑ t. By continuity of S0, we know that

(S0(tk), tk) converges to (S0(t), t). But then type t would prefer to imitate type tk for large

k.

The final step in the proof is to show that these equilibria satisfy the D1 condition.

Consider any equilibrium, and let x be some out-of-equilibrium action. For each type t,

define mx(t) as the value of m that satisfies U(x,m, t) = U(Q(t), B
¡
ΦQ(t)

¢
, t) (if the left-

hand side exceeds the right-hand side for allm ≥ 0, thenmx(t) = 0; otherwise, existence and

uniqueness of a solution to the equation is guaranteed because the left-hand side increases

continuously and without bound in m). Let Mx =
©
t ∈ £0, t¤ | mx(t) ≤ mx(t

0)∀t0 ∈ £0, t¤ª.
The D1 criterion implies that Φx places probability only on the set Mx. Clearly, one can

always find beliefs that satisfy this condition. The question is whether the beliefs would

then induce some type to deviate from its equilibrium choice.

Begin with a separating equilibrium. Out-of-equilibrium actions consist of the interval

(S0(t), 1]. Since no type t prefers (S0(t), t) to its own equilibrium outcome, and since

S0(t) > S0(t) > x
∗(t), no type prefers (x,m) to its equilibrium choice for any x > S0(t) and

anym ≤ t. Thus, the equilibrium is consistent with any inference Φx that places probability
only on Mx.

Now consider a central pooling equilibrium. Out-of-equilibrium actions consist of the

sets (S0(t0), 12) and (
1
2
, 1]. Consider any action x in either of these intervals. We know that

F (1− x,mx(t0))− F
µ
1

2
, B (Ht0)

¶
= t0

·
G (0)−G

µ
x− 1

2

¶¸
So, for any t > t0,

F (1− x,mx(t0))− F
µ
1

2
, B (Ht0)

¶
< t

·
G (0)−G

µ
x− 1

2

¶¸
This implies mx(t) > mx(t0), which in turn implies t /∈ Mx. So, for any inference Φx that
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places probability only on Mx, B (Φx) ≤ t0. We will show that, for any such inference, no
type would deviate to x.

Consider first x > 1
2
. For any such Φx, we have B (Ht0) > t0 ≥ B (Φx), so every

type t strictly prefers
¡
1
2
, B (Ht0)

¢
to (x,B (Φx)). But since each type t weakly prefers¡

Q(t), B
¡
ΦQ(t)

¢¢
to
¡
1
2
, B (Ht0)

¢
, no type has an incentive to deviate to x.

Now consider x ∈ (S0(t0), 12). For t ≤ t0, (x,B (Φx)) is not as good as (S0(t0), t0)

(because x > S0(t0) ≥ S0(t) > x∗(t) and B (Φx) ≤ t0). Since type t’s equilibrium payoff

is at least as high as its payoff from choosing (S0(t0), t0), it has no incentive to select x.

Moreover, since

F (1− x,B (Φx))− F
µ
1

2
, B (Ht0)

¶
< t0

·
G (0)−G

µ
x− 1

2

¶¸
we also have

F (1− x,B (Φx))− F
µ
1

2
, B (Ht0)

¶
< t

·
G (0)−G

µ
x− 1

2

¶¸
for t > t0, which implies none of these types has an incentive to select x either. ¤

The following lemma is used in several of the remaining proofs, and requires Assumption

B-2.

Lemma 5: Consider the CDFs J , K, and L, such that J(t) = λK(t)+ (1−λ)L(t). If max

supp(L) ≤ B(J), then B(J) ≤ B(K), where the second inequality is strict if the first
is strict or if the support of L is nondegenerate.

Proof: Begin with the case where max supp(L) < B(J). Clearly, B(K) = B(J) would

directly contradict Assumption B-2. Suppose on the contrary that B(K) < B(J). Clearly,

λ < 1. Define Jµ(t) = µK(t) + (1 − µ)L(t). Then J1 = K and Jλ = J . Since Jµ is

continuous in µ (applying the weak topology), so is B(Jµ). Consequently, ∃µ0 ∈ (λ, 1) such
that

max supp (L) < B(Jµ0) < B(J)
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Note that

J(t) =

µ
λ

µ0

¶
(µ0K(t) + (1− µ0)L(t)) +

µ
µ0 − λ

µ0

¶
L(t)

= γJµ0(t) + (1− γ)L(t)

where γ = λ
µ0 ∈ [0, 1). By Assumption B-2, we know that B (J) < B (Jµ), a contradiction.

Now consider the case where max supp(L) = B(J). Consider a sequence Kn converging

to K in the weak topology where Kn is “higher” than Kn+1 in the sense of first-order

stochastic dominance. Let Jn(t) = λKn(t) + (1 − λ)L(t). Then, by Assumption B-1, we

have B(Jn) > B(J) = max supp(L). By the preceding argument, B (Jn) ≤ B(Kn) for all

n. Since B is continuous, B(J) ≤ B(K).
Now we consider the case where max supp(L) = B(J) and the support of L is nonde-

generate. We know from the previous argument that B(K) ≥ B(J). Suppose, contrary to
the lemma, that B(K) = B(J). Define L0 as the CDF placing all probability on B(J), and

define J 0(t) = λK(t) + (1− λ)L0(t). Since L0 is “higher” than L in the sense of first-order

stochastic dominance, J 0 is “higher” than J , so B(J 0) > B(J). Since we also know that

B(K) = B(J) = max supp(L0), Assumption B-2 implies B(J 0) ≤ B(K), a contradiction. ¤

Proof of Theorem 6: First, we claim that S0(t) < eS0(t) for all t. Notice that
S00(0) =

F2 (1, 0)

F1 (1, 0)
<
F2 (1, 0) + φ0(0)

F1 (1, 0)
= eS00(0)

It follows immediately that S0(t) < eS0(t) for small t. Now we show that the same inequality
holds for all t. Suppose the claim is false. Then, since the separating functions are

continuous, the set
n
t > 0 | S0(t) = eS0(t)o must be non-empty and compact. Let t0 be the

smallest element of this set. Letting s∗ ≡ S0(t0) = eS0(t0), we have
S00(t) =

F2 (1− s∗, t0)
F1 (1− s∗, t0)− tG0(s∗ − 1

2
)

<
F2 (1− s∗, t0) + φ(t)

F1 (1− s∗, t0)− tG0(s∗ − 1
2
)
= eS00(t)
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Moreover, since the slopes of the separating functions vary continuously with t, we must also

have S00(t) < eS00(t) for all t within some ε-neighborhood of t0 (with ε < t0). But then

eS0(t0) = eS0(t0 − ε) +

Z t0

t0−ε
eS0(t)dt

> S0(t
0 − ε) +

Z t0

t0−ε
S0(t)dt = S0(t0),

a contradiction.

It is trivial to check that et∗0,0 < t∗0,0. Therefore, if a central pooling equilibrium exists for
U (that is, if t > t∗0,0), a central pooling equilibrium also exists for eU (that is, t > et∗0,0).
Next we define the function eψ(t) analogously to our definition of ψ(t) in the proof of

Theorem 4: eU(eS0(t), t, t) = eU µ1
2
, eψ(t), t¶ (13)

Notice that we can rewrite this definition as

U(eS0(t), t, t) = U µ1
2
, eψ(t), t¶+ φ(eψ(t))− φ(t)

Because eS0(t) ≥ S0(t) ≥ x∗(t) and ψ(t) > t, we have

U(eS0(t), t, t) ≤ U(S0(t), t, t) = U

µ
1

2
,ψ(t), t

¶

< U

µ
1

2
,ψ(t), t

¶
+ φ(ψ(t))− φ(t)

Since U
¡
1
2
,m, t

¢
+ φ(m) is increasing in m, the value of eψ(t) that solves (13) must be less

than ψ(t); thus, eψ(t) < ψ(t).

Let’s focus on the cases for which there is a central pooling equilibrium with U (that is,

t > t∗0,0). As we explained in the proof of Theorem 4, if B(H) − ψ(0) ≥ 0, then there is
a unique equilibrium in which t0 = 0. Because eψ(t0) < ψ(t0), we have B(H) − eψ(0) > 0,
so there is also a unique equilibrium with eU in which et0 = 0. We also explained in the

proof of Theorem 4 that, if B(H)− ψ(0) < 0, then there is a unique equilibrium where t0 is

given by the solution to the equation B(Ht0)− ψ(t0) = 0. Note that, for that same value of
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t0, B(Ht0) − eψ(t0) > 0. Therefore, since eψ(t) and B(Ht) are, respectively, decreasing and
increasing in t, either there is some et0 < t0 that solvesB(Het0)−eψ(et0) = 0, orB(H)−eψ(0) > 0,
in which case et0 = 0. In either case, we have et0 < t0, as the theorem asserts. ¤

Proof of Theorem 7: We begin by providing a formula for bHt0 . Applying Bayes’ Law,
the probability that D’s type is less than or equal to t conditional on D choosing zero is

bHt0(t) = µ p

p+ (1− p)H(t0)
¶
H(t) +

µ
1− p

p+ (1− p)H(t0)
¶
H (min {t0, t})

Now we establish the result through a series of lemma.

Lemma 6: Equation (2) always has a unique solution, t∗0 ∈ (0, t).

Proof: First rewrite (2) as

F
³
1, B

³ bHt0´´+ t0Gµ−12
¶
= F (1− x∗(t0), t0) + t0G

µ
x∗(t0)− 1

2

¶
Define the function ξ(t) as the solution to

F (1, ξ(t)) + tG

µ
−1
2

¶
= F (1− x∗(t), t) + tG

µ
x∗(t)− 1

2

¶
(14)

A unique solution always exists because (1) for ξ = t, by the definition of x∗(t), the left hand

side does not exceed the right, (2) for sufficiently large ξ, the left hand side does exceed

the right (F is unbounded in ξ), and (3) F is strictly increasing in ξ. Indeed, from these

observations, it follows immediately that ξ(t) ≥ t, with strict inequality if x∗(t) > 0. Note
that we can rewrite a solution to (2) as

ξ(t0) = B
³ bHt0´ (15)

We proceed in a series of steps.

Step 1: There exists a solution to (15) with t0 ∈ (0, t). Since x∗(0) = 0, equation (14)

implies that ξ(0) = 0. Since bH0 = H and B(H) > 0, we have ξ(0) < B
³ bH0´. Further,

since ξ(t) ≥ t > B(H), and since bHt = H, we have ξ(t) > B
³ bHt´. By continuity, there
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must exist at least one solution between these extremes. The rest of the proof demonstrates

uniqueness.

Step 2: ξ(t) is strictly monotonically increasing. For t 6= t∗ (defined in Theorem 1),

implicitly differentiating (14) (and applying the envelope theorem for t > t∗) we obtain

ξ0(t) =
F2 (1− x∗(t), t) +

£
G
¡
x∗(t)− 1

2

¢−G ¡−1
2

¢¤
F2 (1, ξ(t))

Since F2 (1− x∗(t), t) > 0, F2 (1, ξ(t)) > 0, and G
¡
x∗(t)− 1

2

¢−G ¡−1
2

¢ ≥ 0, the entire term
is strictly positive.

Step 3: Consider some t0, t00 with t0 > t00. Then

bHt0(t) = λ bHt00(t) + (1− λ)L(t) (16)

where

λ =
p+ (1− p)H(t00)
p+ (1− p)H(t0) ∈ (0, 1)

and L(t) is a CDF given by

L(t) =
H (min{t, t0})−H (min{t, t00})

H(t0)−H(t00) (17)

Demonstrating this property is just a matter of algebra. Notice that max supp(L) = t0 (i.e.,

L(t0) = 1).

Step 4: Uniqueness. Suppose, contrary to the lemma, that there are two solutions, t0

and t00, with t0 > t00. We know that t0 ≤ ξ(t0) = B
³ bHt0´. From this, we know that max

supp(L) ≤ B
³ bHt0´ (where L is defined in (17)). Noting (16) and applying Lemma 5, we

have B
³ bHt0´ ≤ B ³ bHt00´. From step 2 and the fact that t0 > t00, we know that ξ(t0) > ξ(t00).

Putting these facts together, we have

ξ(t00) < ξ(t0) = B
³ bHt0´ ≤ B ³ bHt00´ ,

which contradicts the supposition that t00 is a solution. ¤

Henceforth in this proof, wherever we write t∗0, we mean the solution to (2).
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Lemma 7: Suppose (5) holds. Then no Case A equilibrium exists.

Proof: First consider Case A-1. Since t1 > t∗0, we know that

U (x∗(t∗0), t
∗
0, t

∗
0) ≤ U

µ
1

2
, B
¡
Ht∗0
¢
, t∗0

¶
< U

µ
1

2
, B (Ht1) , t

∗
0

¶
But then t∗0 will choose x =

1
2
rather than x = Q(t∗0) = x

∗(t∗0), a contradiction.

Now consider Case A-2. Let x0 solve maxx U
¡
x, t, t∗0

¢
. We claim that x0 ≤ x∗(t).

Suppose on the contrary that x0 > x∗(t). We know that

t∗0

µ
G

µ
x0 − 1

2

¶
−G

µ
x∗(t)− 1

2

¶¶
≥ F ¡1− x∗(t), t¢− F ¡1− x0, t¢

But then

t

µ
G

µ
x0 − 1

2

¶
−G

µ
x∗(t)− 1

2

¶¶
≥ F ¡1− x∗(t), t¢− F ¡1− x0, t¢

which contradicts the fact that x∗(t) solves maxx U
¡
x, t, t

¢
.

Since x0 ≤ x∗(t) < St∗0(t) ≤ 1
2
, we know that U

¡
1
2
, t, t∗0

¢ ≤ U ¡St∗0(t), t, t∗0¢. This implies
U (x∗(t∗0), t

∗
0, t

∗
0) ≤ U

µ
1

2
, B
¡
Ht∗0
¢
, t∗0

¶
< U

µ
1

2
, t, t∗0

¶
≤ U

¡
St
∗
0(t), t, t∗0

¢
But then t∗0 will choose x = Q(t) = S

t∗0(t) rather than x = Q(t∗0) = x
∗(t∗0), a contradiction.

¤

Lemma 8: Suppose (6) holds. Then there exists a unique Case A equilibrium. If St∗0(t) >
1
2
, it is a Case A-1 equilibrium, and St

∗
0(t1) <

1
2
. If St

∗
0(t) ≤ 1

2
, it is a case A-2

equilibrium.

Proof: We know from Lemma 6 that the value of t∗0 is uniquely determined. The

analysis of signaling equilibria for types [t∗0, t] mirrors the analysis for all types [0, t] in

Section 4. Accordingly, the proof of this lemma involves essentially the same arguments as

Theorems 3 (for Case A-2 equilibria) and 4 (for Case A-1 equilibria). ¤
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Lemma 9: When (6) holds, a Case B equilibrium does not exist. When (5) holds, there

exists a unique Case B equilibrium.

Proof: We prove the lemma through a series of steps.

Step 1: For any t0 satisfying (4), t0 ∈ (0, t∗0]. Moreover, for any t ∈ (0, t∗0], U
³
0, B

³ bHt´ , t´ ≥
U (x∗(t), t, t).

The proof of Lemma 6 establishes that U
³
0, B

³ bHt´ , t´−U (x∗(t), t, t) exceeds zero for
t = 0, is less than zero for t = t, and equals zero at a unique value t = t∗0. Since the

expression is continuous in t, it must be negative for t ≥ t∗0 (otherwise t
∗
0 would not be

unique). Consequently, we must have t0 ≤ t∗0. Since U (0, B (H) , 0) > U
¡
1
2
, B (H) , 0

¢
, we

know t0 6= 0.
For the remainder of the proof, we define the function ζ(t) as follows: (1) if U (0, 0, t) ≥

U
¡
1
2
, B (Ht) , t

¢
, then ζ(t) = 0; (2) if U (0, 0, t) < U

¡
1
2
, B (Ht) , t

¢
, then ζ(t) solves

U (0, ζ(t), t) = U

µ
1

2
, B (Ht) , t

¶
. (18)

Existence, uniqueness, and continuity of ζ(t) are all easy to verify. Moreover, the equality

in (4) is equivalent to the statement that

ζ(t0) = B
³ bHt0´ (19)

(since B
³ bHt0´ > 0, there is never a solution with ζ(t0) = 0, which is the only circumstance

where the equality in (4) would not follow immediately from (19)). From step 1, we know

that t0 satisfies (4) iff t0 ∈ (0, t∗0] and (19) holds.
Step 2: There exists bt such that ζ(t) = 0 for t < bt, ζ(t) is strictly increasing in t for

t ≥ bt.
We can rewrite the equation (18) as

F (1, ζ(t)) = t

µ
G (0)−G

µ
−1
2

¶¶
+ F

µ
1

2
, B(Ht)

¶
Note that the right-hand side of this expression is strictly increasing in t, and the left-hand

side is strictly increasing in ς. Therefore, if ζ(t) > 0 and t0 > t, we must have ζ(t0) > ζ(t).
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Thus, if ζ(0) > 0, we can trivially take bt = 0; if ζ(0) = 0, we can take bt to be the maximal
t ∈ [0, t] for which ζ(t) = 0.

Step 3: B
³ bHt´ is weakly decreasing in t for t ∈ (0, t∗0].

Consider any two values, t0, t00 ≤ t∗0, with t0 > t00. We know that t0 ≤ ξ(t0) ≤ B
³ bHt0´

(this follows from the proof of Lemma 6, given t0 < t∗0). >From this, we know that max

supp(L) ≤ B
³ bHt0´ (where L is defined in (17) from step 3 of the proof of lemma 6). Noting

(16) and applying Lemma 5, we have B
³ bHt0´ ≤ B ³ bHt00´.

Step 4: When (6) holds, a Case B equilibrium does not exist.

In this case, we have

U
³
0, B

³ bHt∗0´ , t∗0´ = U (x∗(t∗0), t∗0, t∗0) > U µ12 , B ¡Ht∗0¢ , t∗0
¶

But this means ζ(t∗0) < B
³ bHt∗0´. From steps 2 and 3, we know ζ(t) < B

³ bHt´ for all t < t∗0.
Consequently, there exists no t0 satisfying (4).

Step 5: When (5) holds, there exists a unique Case B equilibrium, with t0 ∈ (bt, t∗0].
In this case, we have

U
³
0, B

³ bHt∗0´ , t∗0´ = U (x∗(t∗0), t∗0, t∗0) ≤ U µ12 , B ¡Ht∗0¢ , t∗0
¶

This implies that ζ(t∗0) ≥ B
³ bHt∗0´ > 0, from which it also follows that bt < t∗0.

We claim that ζ(t) < B
³ bHt´ for all t ≤ bt. If bt > 0, the claim follows immediately

from the fact that ζ(t) = 0 < B
³ bHt´ for all t ≤ bt. If bt = 0, we have U (0, ζ(0), 0) =

U
¡
1
2
, B (H0) , 0

¢
, from which it follows that ζ(0) < B(H0). But B(H0) = B(H) = B

³ bH0´,
so we also have ζ(0) < B

³ bH0´ as desired.
By continuity, a solution to ζ(t) = B

³ bHt´ exists on (bt, t∗0]. Since ζ(t) is strictly increasing
in t on [bt, t∗0], and since B ³ bHt´ is weakly decreasing, the solution is unique. ¤
Lemmas 7, 8, and 9 establish the Theorem. ¤

Proof of Theorem 8: Most of the arguments in Theorem 5 apply directly. In particular,

the arguments establish, without modification, that (1) no type chooses x > 1
2
, (2) choices
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are weakly monotonic in type, (3) there is no pool at any action other than 0 and 1
2
,22 and

(4) if Q(t) < x where x is an action not chosen in equilibrium, the social image associated

with x is no less than t.

We argue first that there is positive mass at x = 0. Suppose not. Then the social

image associated with x = 0 is B(H). Type t = 0 chooses some x > 0. Since choices are

monotonic in type, the associated social image cannot exceed B(H) (and only achieves this

upper bound if all types make the same choice). But type t = 0 would plainly prefer to pick

x = 0 and receive social image B(H).

Next we argue that some types do not select x = 0. Suppose this is false. Then the

social image associated with x = 0 is B(H), and the social image associated with all x > 0

is t (see property (4) above). In that case, all types could beneficially deviate to some x

slightly greater than zero.

From these arguments, we know that an equilibrium must take one of the following

forms: (a) all mass split between zero and 1
2
, (b) mass at zero, with an atomless distribution

of choices between zero and 1
2
, and no mass at 1

2
, or (c) mass at zero and 1

2
, with an atomless

distribution of choices between these extremes.

Consider possibility (a). Since actions are monotonic in types, there exists t0 ∈ (0, t)
such that t ∈ [0, t0] choose x = 0 and t ∈ (t0, t] choose x = 1

2
(recall that our convention is

to break indifference in favor of the lower group). Clearly, t0 must be indifferent between

(x,m) =
³
0, B

³ bHt0´´ and (x,m) = ¡12 , B (Ht0)¢, or some type close to t0 would deviate to
the other pool. Thus, the equality in (4) must be satisfied. In addition, the social image

associated with all x ∈ ¡0, 1
2

¢
must be at least t0, so the inequality in (4) must be satisfied.

Thus, possibility (a) must be a Case B equilibrium.

Consider possibility (b). Since actions are monotonic in types, there exists t0 ∈ (0, t)
such that t ∈ [0, t0] choose x = 0 and t ∈ (t0, t] choose separating actions. We claim that, for
22The argument ruling out pools at actions other than 1

2 relied on the fact that, for any pool, the social
image of the pool is less than the highest type in the pool. With exogenous selection of zero, this argument
does not rule out a pool at zero, since the social image of the pool may exceed (or equal) the highest type
in the pool.
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all t ∈ (t0, t], Q(t) ≥ x∗(t). Suppose on the contrary that Q(t0) < x∗(t0) for some t0 ∈ (t0, t].
Let m∗ denote the social image associated with choice x∗(t0). We know that m∗ ≥ t0. But
then

U (Q(t0), t0, t0) < U (x∗(t0), t0, t0) ≤ U (x∗(t0),m∗, t0) ,
which implies that t0 could deviate beneficially to x∗(t0), a contradiction.

Next we claim that limt↓t0 Q(t) = x
∗(t0). If this is not the case then, by the previous

claim, limt↓t0 Q(t) > x∗(t0). Let m∗ be the social image associated with x∗(t0); we know

that m∗ ≥ t0. Note that

lim
t↓t0
U (Q(t), t, t) = U

µ
lim
t↓t0
Q(t), t0, t0

¶
< U (x∗(t0), t0, t0)

≤ U (x∗(t0),m∗, t0)

But then, for t0 > t0 with t0− t0 small, U (Q(t0), t0, t0) < U (x∗(t0),m∗, t0). This implies that
t0 could beneficially deviate to x∗(t0).

From the previous two claims, we know that, for t > t0, Q(t) must be the separating

function initialized at (t0, x∗(t0)), that is, St0(t).

Clearly, t0 must be indifferent between (x,m) =
³
0, B

³ bHt0´´ and (x,m) = (x∗(t0), t0),
or some type in a small neighborhood of t0 could beneficially deviate. Thus, (2) must be

satisfied, which implies that possibility (b) must be a Case A-2 equilibrium.

Consider possibility (c). Since actions are monotonic in types, there exists t0, t1 ∈ (0, t)
with t0 > t1 such that t ∈ [0, t0] choose x = 0, t ∈ (t0, t1] choose separating actions, and
t ∈ (t1, t] choose x = 1

2
. The arguments provided for possibility (b) implies that, for

t ∈ (t0, t1], Q(t) = St0(t), and that (2) holds. In addition, t1 must be indifferent between

(x,m) = (St0(t1), t1) and (x,m) =
¡
1
2
, B (Ht1)

¢
, or some type in a small neighborhood of t0

could beneficially deviate. This implies that (3) holds. Thus, possibility (c) must be a Case

A-1 equilibrium.

To complete the proof, we need only demonstrate that Case A and Case B equilibria

satisfy the D1 criterion, given an appropriate choice of beliefs. The argument is essentially
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the same as that given in the proof of Theorem 5 (that is, inferences assign unused actions

to the highest type taking a lower action). ¤

Proof of Theorem 9: We begin by introducing some notation. To reflect the depen-

dence of t∗0 on p, we will use the notation t
∗
0(p). Define t

∗
1(p) as follows:

t∗1(p) =


t∗0(p) when (5) holds

t when (6) holds and St
∗
0(p)(t) ≤ 1

2

the solution to (3) otherwise

(20)

We note that t∗1(p) is well-defined for all p. The three cases listed above correspond to the

circumstances in which there is, respectively, a Case B equilibrium, a Case A-2 equilibrium

and a Case A-1 equilibrium. These cases are mutually exclusive and exhaustive, and in the

third case we know a solution to (3) exists. Finally, define bt0(p) as follows:
bt0(p) =

 the solution to the equality in (4) when (5) holds

t∗0(p) when (6) holds

We note that bt0(p) is well-defined for all p. The two cases listed above correspond to the

circumstances in which there is, respectively, a Case B equilibrium, and a Case A equilibrium.

These cases are mutually exclusive and exhaustive, and in the first case we know that a

solution to (4) exists.

We have constructed these functions so that, given p, in an equilibrium types t ∈ [0,bt0(p)]
choose x = 0, and types t ∈ (t∗1(p), t] choose x = 1

2
(regardless of whether Case A-1, Case

A-2, or Case B prevails). The proof of the theorem involves showing that both of these

functions are continuous and strictly increasing in p.

Step 1: bt∗0(p) and t∗1(p) are both continuous in p.
Begin with bt∗0(p). First we claim that t∗0(p) is continuous. This follows from uniqueness

and continuity of the functions in (2). Next we claim that the solution to (4) is continuous

in p for p such that (5) holds. This follows from uniqueness and continuity of the functions
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in the equality of (4). Finally, we argue that, if (5) holds with equality for some p (the

boundary case between (5) and (6)), then bt0(p) = t∗0(p). In this case, we have
U
³
0, B

³ bHt∗0(p)´ t∗0(p)´ = U (x∗ (t∗0(p)) , t∗0(p), t∗0(p)) = U µ12 , B ¡Ht∗0(p)¢ t∗0(p)
¶

(where the first equality follows from the definition of t∗0(p), and the second follows from the

fact that (5) holds with equality). But then t0 = t∗0(p) satisfies (4), so bt0(p) = t∗0(p).
Now we turn to t∗1(p). Since (1) t

∗
0(p) is continuous in p, (2) S

t0(t) is continuous for all

t0 and t, and (3) the solution to (3), when it exists, is unique, we know that the solution to

(3) is continuous in p (when it exists).

Next we argue that, if (5) holds with equality for some p, then St
∗
0(p)(t) > 1

2
(so that

this is the boundary case between the first and third possibilities in (20)) and t∗0(p) solves

(3). The latter statement follows immediately from the fact that St
∗
0(p) (t∗0(p)) = x

∗(t∗0(p)).

Suppose contrary to the first statement that St
∗
0(p)(t) ≤ 1

2
. We know that

U
¡
St
∗
0(p)(t), t, t∗0(p)

¢ ≥ U

µ
1

2
, t, t∗0(p)

¶
> U

µ
1

2
, B
¡
Ht∗0(p)

¢
, t∗0(p)

¶
= U (x∗ (t∗0(p)) , t

∗
0(p), t

∗
0(p)) ,

which contradicts the fact that St
∗
0(p) is a separating function (t∗0(p) would imitate t).

Finally, we note that, if (6) holds and St
∗
0(p)(t) = 1

2
(the boundary case between the second

and third possibilities in (20)), then t solves (3) (this follows immediately from inspection of

(3) given that B (Ht) = t).

Step 2: t∗0(p) is strictly increasing in p.

Recall that t∗(p) is the solution to (15). From (14), we know that ξ(t) is independent of

p. We have already shown that ξ(t) is strictly increasing in t (step 2 in the proof of Lemma

6). We have also shown that, for τ ≤ t∗0(p), B
³ bHp

τ

´
is weakly decreasing in τ (step 3 in

the proof of Lemma 9). We claim that, if p0 > p00, then B
³ bHp0

τ

´
> B

³ bHp00
τ

´
for τ ≤ t∗0(p00).

It follows directly from this claim that B
³ bHp0

τ

´
> ξ(τ) for τ ≤ t∗0(p00), so t∗0(p0) > t∗0(p00), as

desired.
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We now prove the claim. Define

bHp
τ (t) =

µ
p

p+ (1− p)H(τ)
¶
H(t) +

µ
1− p

p+ (1− p)H(τ)
¶
H (min {τ , t})

Consider p0, p00 ∈ [0, 1] with p0 > p00. Note that

bHp00
τ (t) = λ bHp0

τ (t) + (1− λ)L(t) (21)

where

λ =

µ
p00

p0

¶µ
p0 + (1− p0)H(τ)
p00 + (1− p00)H(τ)

¶
∈ (0, 1)

and L(t) is a CDF given by

L(t) =
H (min {τ , t})

H(τ)

For τ ≤ t∗0(p
00), max supp(L) = τ ≤ ξ(τ) ≤ B

³ bHp00
τ

´
. Since the support of L is

nondegenerate, B
³ bHp0

τ

´
> B

³ bHp00
τ

´
by Lemma 5.

Step 3: Consider p0, p00 with p0 > p00, and suppose that a Case B equilibrium exists for p0

and p00. Then bt0(p0) > bt0(p00).
Recall that the equality in (4) is equivalent to (19), and that bt0(p00) ≤ t∗0(p

00). From

(18), we know that ζ(t) is independent of p. We have already shown that ζ(t) is weakly

increasing in t, and strictly increasing when strictly positive (step 2 in the proof of Lemma

9). We have also shown that, for τ ≤ t∗0(p), B
³ bHp

τ

´
is weakly decreasing in τ (step 3

in the proof of Lemma 9). In the previous step, we demonstrated that, if p0 > p00, then

B
³ bHp0

τ

´
> B

³ bHp00
τ

´
for τ ≤ t∗0(p00). It follows directly from this claim that B

³ bHp0
τ

´
> ζ(τ)

for τ ≤ bt0(p00), so bt0(p0) > bt0(p00), as desired.
Step 4: Consider p0, p00 with p0 > p00, and suppose that a Case A-1 equilibrium exists for

p0 and p00. Then t∗1(p
0) > t∗1(p

00).

We know from step 2 that t∗0(p
0) > t∗0(p

00). Since St
∗
0(p

00) (t∗0(p
0)) > x∗ (t∗0(p

0)) = St
∗
0(p

0) (t∗0(p
0)),

we know that St
∗
0(p

0) (t) < St
∗
0(p

00) (t) for all t > t∗0(p
0).

Analogously to the proof of Theorem 4, we define ψp(t) as the solution to

U
¡
St
∗
0(p)(t), t, t

¢
= U

µ
1

2
,ψp(t), t

¶
(22)
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We can rewrite the solution for t∗1(p) (when a Case A-1 equilibrium exists) as ψ
p(t) = B(Ht).

Arguing as in the proof of Theorem 4, one can show that ψp(t) is decreasing and continuous

in t, while B(Ht) is increasing and continuous in t. Moreover, from the argument in the

preceding paragraph, we know that an increase in p increases the left-hand side of (22),

which means that it strictly increases ψp(t). Thus, the value of t satisfying ψp(t) = B(Ht)

must rise.

All but the final sentence of the theorem follows from Steps 1-4. First consider bt0(p).
Step 2 shows that it increases monotonically when Case A prevails, step 3 shows that it

increases monotonically when Case B prevails, and step 1 shows that it changes continuously

as we move from one case to the other. Next consider t∗1(p). It is constant when Case A-2

prevails, step 2 shows that it increases monotonically when Case B prevails, step 4 shows

that it increases nonmonotonically when Case A-1 prevails, and step 1 shows that it changes

continuously as we move from one case to the other.

Finally, we argue that, as p goes to zero, t0 goes to zero, so the measure of types choosing

x = 0 converges to zero. Note that both (2) and (4) require B
³ bHt0´ ≥ t0. But, fixing

any t0 > 0, as p goes to zero, B
³ bHt0´ falls below t0. To satisfy the requirement, t0 must

converge to zero. ¤
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