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Abstract

Revealed preference tests are elegant nonparametric tools that ask whether choice
data conforms to optimizing behavior. These tests present a vexing tension between
goodness-of-fit and power. If the test finds violations, is there an acceptable tolerance
for goodness-of-fit? If no violations are found, was the test demanding enough to be
powerful? This paper complements the many on goodness-of-fit by presenting several
new indices of power. By focusing on the underlying probability model induced by
sampling, we attempt to unify the two approaches. We illustrate applications of the
indices, and provide a field guide to applying them to experimental data.

∗We are grateful to Oleg Balashov, David Bjerk, Khai Chiong, Ian Crawford, Federico Echenique, Joseph
Guse, Shachar Kariv, Grigory Kosenok, Justin McCrary, Matt Shum, and Hal Varian, as well as seminar
participants at the California Econometrics Conference, California Institute of Technology, Stanford Uni-
versity, and the University of California Berkeley for helpful comments. We owe special thanks to Gautam
Tripathi for important insights at the early stages of this project. We also acknowledge the financial support
of the National Science Foundation.

1



Contents

1 Introduction 1

2 Background on Testing Revealed Preference 4

3 Power and Experimental Design 7
3.1 Characterizing the Distribution over Choice . . . . . . . . . . . . . . . . . . 7
3.2 Power under Different Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Power Measures and Power Indices . . . . . . . . . . . . . . . . . . . . . . . 11

4 Power Measures 12
4.1 Bronars’ Power Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Bootstrapped Power Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Weighted Bootstrap: Sampling from the Conditional Distribution over Choices 17

4.3.1 Sampling for an Individual Budget Set . . . . . . . . . . . . . . . . . 19
4.3.2 Strengths and Weaknesses of the Weighted Bootstrap . . . . . . . . . 20
4.3.3 Empirical Properties of the Unconditional and Weighted Bootstrap . 21

4.4 Jittering Measure: Sampling from the Smoothed Likelihood . . . . . . . . . 22

5 Power Indices 25
5.1 Jittering Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 The Afriat Power Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 The Afriat Confidence Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 The Optimal Placement Index . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.1 Aggregating the Optimal Placement Index Across Budget Sets . . . . 38
5.4.2 Strengths and Weaknesses of the Optimal Placement Index . . . . . . 39
5.4.3 The Distribution of the Optimal Placement Index . . . . . . . . . . . 40

6 A Field Guide to Characterizing Experimental Power 40

7 Discussion and Conclusion 42

8 References 44

2



1 Introduction

One of the most elegant tools to test theories of optimizing behavior is revealed preference.

The core axioms of revealed preference are presented in a remarkable series of papers by

Hal Varian (1982, 1983, 1984, 1985), which built on earlier work by Afriat (1967, 1972),

Hauthakker (1950) and Samuelson (1938). Given a vector of prices pt and choices xt at time

t, we know that the bundle xt is preferred to another bundle x if x was affordable when

xt was chosen, ptxt ≥ ptx. Relying on transitivity of preferences, we can string together

chains of these inequalities to rank bundles, even those that were never directly compared

by the consumer, and bound possible indifference curves that could have generated this

data. Of course, if these chains of inequalities cannot all be mutually satisfied, then the data

fail to conform with a model of utility maximization. Hence, revealed preference is both a

descriptive and a diagnostic tool.1

We begin with a few definitions:

Definition: Directly Revealed Preferred: xt is directly revealed preferred to x if

ptxt ≥ ptx, and is strictly directly revealed preferred if ptxt > ptx.

Definition: Revealed Preferred: xt is revealed preferred to x if there is a chain of

directly revealed preferred bundles linking xt to x.

The revealed preference relation is thus the transitive closure of direct revealed preference

and revealed preference tests evaluate the validity of the following axioms:

Definition: Weak Axiom of Revealed Preference (WARP): If xt is directly re-

vealed preferred to x, then x is not directly revealed preferred to xt.

Definition: Strong Axiom of Revealed Preference (SARP): If xt is revealed

preferred to x, then x is not revealed preferred to xt.

Definition: Generalized Axiom of Revealed Preference (GARP): If xt is re-

vealed preferred to x, then x is not strictly directly revealed preferred to xt.

1Note the same notions can be applied to optimizing by firms, as Varian (1984) demonstrates. For brevity,
we will confine our discussion to consumer theory, but it all can be applied to producer theory as well.
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The most commonly applied notion of a revealed preference test focuses on Varian’s (1982)

Generalized Axiom. If the data is consistent with GARP, then there exists a utility function

that would have generated the data. That is, the data conforms with a theory of optimizing

behavior. A failure to satisfy GARP, on the other hand, precludes the existence of a utility

representation for the observed choices.

Two obvious issues arise in interpreting revealed preference tests from data. The first is

that the test is extremely sharp – a single violation of GARP results in a rejection of the

model. One can naturally ask whether there is some tolerance that can be applied to the data

to account for errors in either measurement or choice that can allow some “minor” violations

to be accepted within the theory. This is the notion of goodness of fit of the model. There

have been several important attempts in the literature to formalize approaches to goodness of

fit, the most prominent of which is the Afriat Critical Cost Efficiency Index (CCEI) proposed

by Varian (1990, 1991).2 These techniques allow researchers to not only identify the event

that choices violate GARP, but also characterize the welfare loss due to these violations.

The other issue arises when the data fail to reject GARP, leaving researchers to interpret

a negative result. If the optimizing model is not, in fact, the correct model, would the

revealed preference test applied be sensitive enough to detect it or is the negative result a

consequence of weak design? This is a question of the power of the revealed preference test,

one closely related to the empirical content of the theory in the testing environment.

In contrast to substantial efforts characterizing the goodness of fit for GARP studies,

there have been few formal attempts to characterize the power of these revealed preference

tests. The earliest contribution in this vein was Bronars (1985), who proposes an alternative

hypothesis that individual choices are randomly distributed uniformly over the choice set.

In investigating the empirical content of GARP tests generally, Beatty and Crawford (2011)

incorporate Bronars alternative hypothesis with Selton (1991)’s measure of predictive success

2We formally define Afriat’s CCEI in Section 5.2, but intuitively, the measure can be thought of as the
proportion of an agent’s wealth that is preserved despite violations of GARP. Several alternative goodness
of fit measures have been proposed in the recent literature, including Echenique, Lee, and Shum (2012)’s
Money Pump and Dean and Martin (2011)’s modification of Houtman and Maks (1985)’s goodness of fit
measure.
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to define the Difference Power Index which is quite similar to our Optimal Placement Index.

Dean and Martin (2012) extend Beatty and Crawford’s approach to incorporate observed

choice information by deploying a bootstrap of budget shares across budget set. In a novel

application, Polisson (2012) compares the power of GARP tests over goods and aggregated

features of those goods.

When measuring power for a fixed experimental design, the central challenge lies in speci-

fying the alternative hypothesis that characterizes choice behavior. To that end, we introduce

a nonparametric panel regression model in Section 3 that provides a flexible characterization

of choice behavior without imposing a utility representation. Given an observed sample of

choice behavior, our analysis in Section 4 then illustrates ways of estimating the distribution

over choice in that regression model using nonparametric methods. We present intuitive

sampling strategies to generate these distributions from observed choice behavior and, in

so doing, relate these measures to prior approaches adopted by experimental researchers to

measure power.

Estimating the likelihood of observing GARP violations provides a first step toward

characterizing the power of an experimental design. Still further information is available by

exploiting design features specific to tests for revealed preference to create intuitive measures

of the efficiency of the experimental design. For example, we can ask how severely the

observations or design would have to be perturbed in order to observe GARP violations.

Exploring this sort of question in Section 5 doesn’t lead to a probabilistic characterization

of power, but rather statistics we refer to as power “indices.” We introduce three new power

indices: the Jittering Index, the Afriat Power Index, and the Optimal Placement Index.

Our analysis presents a series of different approaches to measure the power of an experi-

ment’s design. How different power measures and indices behave depends on the characteris-

tics of choices in the population and the experimental design. For example, if behavior in the

cross-section is extremely concentrated around modes (for instance, due to unobserved types

that favor equity or fairness), a given power measure may behave differently than if that

behavior is rather diffuse. Throughout the exposition, we explore these properties of differ-
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ent power measures by presenting the power indices and measures from two very different

experimental settings. Before concluding, we provide some suggestions for how researchers

seeking to use these measures should choose the order and depth with which to explore their

design’s power.

2 Background on Testing Revealed Preference

A vast empirical literature uses revealed preference axioms to build new and better price

indices. Mansur and McDonald (1988) examined 27 years of aggregate consumption data.

By assuming preferences are homothetic, they improved the power of GARP tests and nar-

rowed the bias in constructing exact prices indices, finding the aggregate data to be broadly

consistent with both GARP and with homothetic preferences.

Other researchers have used repeated samples from cross-sectional surveys such as the

Consumer Expenditure Survey and the British Family Expenditure Survey. Famulari (1995)’s

analysis of the Consumer Expenditure Survey (CEX) from 1982–1985 focused on testing the

common preferences assumption. Aggregating choices across representative households to

increase power, she found almost all of these “groupings” satisfied GARP. Blundell, Brown-

ing and Crawford (2003) note that GARP tests may actually be quite weak when applied to

annual data, since incomes expand over time and relative prices are somewhat stable. They

propose adopting “flexible parametric models over regions where the nonparametric tests

do not fail” to enhance the power of revealed preference tests. Using sophisticated semi-

parametric methods to estimate expansion paths for preferences, they then project observed

choices into an optimal test setting, finding the data largely fails to reject the optimizing

model while also deriving much tighter bounds on consumer price indices.

Not all empirical studies show uniform support for revealed preference axioms and numer-

ous violations of the optimizing model have been discovered using disaggregated consumer

panels. A recent study by Echenique, Lee, and Shum (2012) uses scanner data from super-

market food expenditures and find individuals’ consumption decisions are often inconsistent

with WARP. In order to evaluate the magnitude of these violations, they introduce a “money-
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pump” measure corresponding to the profits an arbitrageur would be able to generate by

exploiting these violations. By this measure, they show that the widespread violations do not

impose great costs to the consumer. In another analysis, Dean and Martin (2011) propose

a modification of Houtman and Maks (1985) efficiency that finds the least expensive way in

which to resolve GARP violations. Using a large panel of household consumption choices,

they find pervasive violations of GARP, most of which are of relatively small magnitude. Fur-

ther, by focusing on substantial heterogeneity in preferences across households, Dean and

Martin (2011) underscore that care must be taken in aggregating choices in cross-sectional

evaluations of revealed preference.

A parallel literature has developed around controlled laboratory experiments. An impor-

tant first study is by Cox (1997), who evaluates revealed preference in a field experiment

using subjects who were residents at a psychiatric hospital. This hospital had a functioning

“token economy” with a local currency that could only be traded for goods at a hospital

store. Cox found almost all patients’ consumption choices to be consistent with the revealed

preference axioms, despite potential problems with some goods being storable.

To address issues relating to choices over storable goods, Sippel (1997) provided a test

with 10 budget sets over eight commodities, all of which had to be consumed over the course

of the experiment. Sippel found 57% of the subjects violated GARP, although very few of

these violations were severe in terms of the Afriat Efficiency Index. Fevrier and Visser (2004)

used five budgets of six goods, all of which were different varieties of orange juice. They

found that 30% of subjects were inconsistent with GARP, with 15% having Afriat Effeciency

below 0.95.

Other experimental settings have focused on evaluating the degree to which GARP applies

in different populations. Mattei (2000) used 20 budgets with 8 goods (mostly school supplies),

conducting the experiment with three different populations, including 20 undergraduates,

100 graduate students, and 320 readers of a consumer affairs magazine. Applying Afriat

Efficiency threshold of 0.95, he found fewer than 4% of subjects violated GARP in each of

these populations. Harbaugh, Krause and Berry (2001) test the rationality of children and
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young adults at different stages of development by offering them choices from budget sets over

chips and juice boxes. While second graders performed relatively poorly, sixth graders and

college students tended to perform equally well in choosing consumption bundles consistent

with GARP. More recent work by Burghart, Glimcher, and Lazzaro (2012) explores the

degree to which alcohol impairs an individual’s ability to choose consistently with GARP.

Surprisingly, even highly inebriated subjects’ choice behavior appears to be fairly consistent

with axioms of revealed preference.

We illustrate the power measures and indices proposed in the paper using data from two

experiments. In the first, Andreoni and Miller (2002) evaluated the extent to which subjects’

generosity in a dictator game is consistent with revealed preference. Participants chose from

linear budget sets over wealth kept by the dictator and passed to their partner, revealing

modal choices corresponding to monotonicity and equity with less than 10% of subjects’

choices violating of GARP. The second, Andreoni and Harbaugh (2009), presents subjects

with choices over gambles where they faced a linear trade off between the size of the prize

and the probability of winning. Behavior in this setting is much more diffuse and, while

choices over gains are largely consistent with revealed preference, choices over losses have

many more violations of GARP.

The protocols for these two studies are discussed in more detail in Appendix A1. Figure

1’s left panel shows the choice sets offered in Andreoni and Miller (2002), as well as a

scatterplot of the actual choices and the average allocation chosen on each budget set. The

right panel shows a similar perspective of the Andreoni and Harbaugh (2009) experimental

treatment. Our objective in the paper is to answer the question of which experiment provided

a more powerful test of GARP. The study on risk preferences includes more budget sets and

is characterized by more diffuse choices, so we expect to (and do) find more GARP violations

in that sample. However, choice behavior in the rational altruism experiment is concentrated

around the intersection of budget sets, so the design of that experiment can be considered

more efficient even if it reveales fewer ex post violations of GARP in the sample.
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(a) Budgets for Testing Altruistic Preferences
Andreoni and Miller (2002)
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(b) Budgets for Testing Risk Preferences
Andreoni and Harbaugh (2009)

Figure 1: Budget Sets and Distribution over Choices from Experimental Data
This figure presents the budget sets and distribution over observed choices in the two experimental

treatments we use to illustrate the properties of our ex post power measures and indices. The solid lines
present budget sets, the solid black dots represent the mean choice on each budget set, and the light circles
illustrate the distribution over choices along each set. Larger circles indicate bundles that were chosen with

relatively high frequency.

3 Power and Experimental Design

In this section, we illustrate the tight link between the pattern of choice behavior and the

structure of the experiment’s design. We define the power of an experiment, conditional on

the experiment’s design, and develop a nonparametric characterization for the distribution

over choices.

3.1 Characterizing the Distribution over Choice

We begin by presenting a probability model for studies evaluating the rationality of observed

choice under differing budget sets. Using this context, we will be able to discuss alternative

specifications for the data generating process that are not necessarily consistent with rational

choice and how to easily sample from these alternative hypotheses.

Assume the econometrician observes a panel of N individuals choosing allocations among

K goods and represent each of individual i’s choices of consumption bundles on t = 1, . . . , T
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budget sets by the vector xi,t. The budget sets are denoted B1, . . . , BT with Bt defined by

the price vector pt and income mt. Denoting individual i’s choice function by ri and using ε

as an error term, we can represent the data generating process using a nonparametric panel

regression model:

xi,t = ri (Bt) + εi,t, E [εi,t|ri (Bt)] = 0 (1)

Note that there are two underlying sources of randomness in the observed consumption

decisions. Across subjects, variation in choices arises from the individual’s “true” choice

function, ri, that could result from an underlying random utility model whose error terms

are fixed across all budget sets. The second source of randomness is generated by the term εi,t,

which reflects noise in the individual’s observed choices, whether due to measurement error,

optimization errors, or time-variation in preferences. The realized choices for all individuals

in the population forms the outcome for which our probability model is defined. The sampling

of individuals and choices induces a population joint distribution for Xi ≡ {xi,1, . . . , xi,T}

conditional on the budget sets included in the experimental design, B = {B1, . . . , BT} . We

denote this measure P ∗ and use it to characterize the power properties of a given test.3

3.2 Power under Different Designs

Our power measures explicitly state the probability that the null hypothesis will be rejected

when observing the choice behavior of a single subject from the population for a specified

experimental design. Fixing the budget sets included in the experiment, the null hypothesis

here is simply:

H0: P
∗ {Xi (B) |Xi (B) violates GARP} = 0 (2)

This specification of the null hypothesis is rather flexible, in that it allows us to adopt

alternative characterizations for a choice profile that “violates GARP.” This flexibility will

3Additional regularity and exogeneity conditions are needed to ensure identification of the model. Such
an exercise is not in the scope of the current work but would be necessary for projecting choices onto
unobserved budget sets. An alternative would be to specify a random utility model where an individual
receives a preference shock at every budget set. Our purpose in adopting the regression framework is to
frame our analysis in a setting similar to the framework established by Epstein and Yatchew (1985) to study
testing in nonparametric models.
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be useful in allowing for different thresholds, perhaps in terms of Afriat’s CCEI, to satisfy

goodness of fit. While the null hypothesis can satisfy different thresholds of goodness of fit,

it applies for any experimental design.4

Unfortunately, feasibility of implementation prevents the experimenter from completely

spanning the set of all possible budget sets. Consequently, the likelihood of rejecting the

null hypothesis depends both on the data generating process and the experimental design

itself. Note that, while conceptually similar notions, it is important to distinguish this

definition of power as a feature of the design of an experiment from the classical definition

of power characterizing the properties of a statistical test. In particular, we are interested

in comparing the power of potentially different experimental designs. For a given choice

setting, some experimental designs may be more likely to reveal violations of GARP than

others. Here, we use the regression model to characterize choice behavior in the experiment

under these different designs.

The power properties of a statistical test apply to evaluating the likelihood of rejecting

the null hypothesis based on a summary statistic for a single experiment under an alternative

hypothesis for the data generating process. The power properties of the experiment evaluate

the power of a test based on a summary statistic conditional on observation within a fixed

design. In this sense, the goal of the current exercise is to compare the power of a design

specification using the distribution of choices observed in the experiment. As such, rather

than a statistical testing problem that analyzes the distribution of a specific test statistic

under the null hypothesis, we face a counterfactual estimation problem characterizing the

likelihood of observing a violation under an alternative design. Indeed, under the null hy-

pothesis that every individual of the population makes choices consistent with GARP, any

experiment or testing strategy would have zero power by definition. Instead, our goal is to

specify the alternative hypothesis for the data generating process using the ex-post observed

choice data and use that alternative hypothesis to characterize the counterfactual power

4Many natural specifications for the distribution of the error component in the generative choice model,
such as the normal error considered in jittering measures below, would lead to observed choice profiles that
violate GARP. However, the frequency with which such violations are observed will still depend on the
budget sets presented in the experiment.
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under different designs.
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(a) Uninformative Design
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(b) Design with Possible SARP Violations
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(c) Budget Sets Cross Away From Most Choices
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(d) Budget Sets Cross Near Many Choices

Figure 2: Experimental Design and Ability to Detect GARP Violations
Panels (a) through (d) present hypothetical experiments in which subjects faced only two budget sets. The
likelihood of these hypothetical experiments to detect violations of GARP in the population depends both

on the point at which the budget sets cross and the distribution of choices in the population.

To illustrate the role of design in experimental power, suppose that, rather than using the

full set of budget choices presented in the Andreoni and Miller (2002) experiment presented

in Figure 1, the experimenter could include only two budget sets. Figure 2 presents four

possible designs. In the design presented by Panel (a), none of the budget sets cross one

another, and, as such, the design has no power to generate violations of GARP. That is, no
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matter what choices a subject makes in Experiment (a), the experimenter will not observe a

violation of GARP. In Panel (b), the budget sets meet only at their corners, making GARP

violations possible but exceedingly unlikely. The budget sets in Panel (c) cross in the middle

of the choice plane, but choices are concentrated away from the crossing. The budget sets

in Panel (d) cross away from the mid point of the budget sets, but near where many choices

are observed.

3.3 Power Measures and Power Indices

As evidenced by the examples in Figure 2, the placement of budget sets and the distribution

over choices on those budget sets jointly determine the power of the experiment. Condi-

tioning on the budget sets, the power of an experiment’s design is entirely determined by

the distribution over observed choices. The inference objective here is to characterize this

distribution over choices to evaluate ex post the degree of likelihood of rejecting revealed

preference. Since distributional estimation typically involves some form of smoothing the

observed sample distribution, different assumptions on that smoothness will generate dif-

ferent distributions over choice and different measures of power. Defining the alternative

hypothesis distribution over choices as a function of the smoothing parameter, we refer to

such direct likelihoods of revealed preference violations as power measures.

Power indices differ from direct power measures by evaluating ex post how the data

generating process must be perturbed to generate violations of the null hypothesis. For

example, we may wish to find the “smallest” change that would be necessary for a set

of observed choices, which are consistent with the restrictions of revealed preference, to

generate violations. Here, indices will vary in terms of how one defines the distance used to

characterize “smallest.” While they are not probabilistic statements, power indices provide

ordinal measures of power by exploiting features of the model that characterize the degree

of rigor in the test.
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4 Power Measures

In this section, we characterize different nonparametric approaches to estimating the ex post

distribution of choices implied by model 1 for use as the alternative hypothesis in measuring

experimental power. Perhaps the simplest formulation of this alternative hypothesis is to

adopt the sample distribution of choices observed from the N ⊂ I subjects in the experiment,

which we’ll denote PN . We can then define:

HA, Sample: ri (Bt) = xit; εit = 0 (3)

The key limitation of a purely sample-based measure is that it may be overfit in finite

samples, understating the true variation in choice behavior, and is difficult to extend to

choices outside the observed budget sets, limiting its application in counterfactual analysis.

To this end, we propose nonparametric strategies for smoothing the observed measure PN

along with simple sampling algorithms that facilitate calculating the power properties under

these smoothed measures.

The ex post results for observed choices from the two experimental samples are displayed

in the bottom row of each panel for Table 1 along with the Bronars power measures that we

present in the next subsection. The rational altruism study uncovered a small frequency of

violations with 9% of subjects selecting choice profiles inconsistent with GARP and only 2%

of subjects choices implying an Afriat Critical Cost Efficiency Index (CCEI) less than 0.95

and an average CCEI of 0.998. The study evaluating risk preferences over gains reveals a

higher frequency of violations, with 44% of the subjects including at least one violation and

14% of subjects’ CCEI’s falling below 0.95. Interestingly, while there was more variation

in the realized CCEI values for individuals in this experiment, these were generated with a

smaller average variance in the budget shares.

4.1 Bronars’ Power Measures

Bronars (1987) developed the first and most lasting index for the power of revealed preference

tests, specifying an alternative hypothesis based on Becker’s (1962) notion that individual

12



Table 1: Sample Ex Post Results and Bronars’ Power Measures

Panel A: Altruistic Preferences
Budget Share Violation CCEI CCEI Frequency of CCEI <

Avg St Dev Frequency Average St Dev 0.50 0.75 0.90 0.95 0.99 1.00
Bronars M1 0.289 75% 0.88 0.122 0% 16% 46% 59% 69% 72%
Bronars M2 0.238 59% 0.93 0.095 0% 7% 27% 40% 52% 55%
Bronars M3 0.220 44% 0.95 0.082 0% 4% 18% 27% 37% 40%

Sample 0.278 9% 1.00 0.017 0% 0% 1% 2% 3% 3%

Panel B: Risk Preferences over Gains
Budget Share Violation CCEI CCEI Frequency of CCEI <

Avg St Dev Frequency Average St Dev 0.50 0.75 0.90 0.95 0.99 1.00
Bronars M1 0.289 91% 0.82 0.133 1% 27% 68% 80% 88% 90%
Bronars M2 0.238 80% 0.89 0.112 0% 11% 44% 60% 74% 78%
Bronars M3 0.237 86% 0.87 0.120 1% 15% 52% 68% 81% 84%

Sample 0.185 44% 0.98 0.057 0% 2% 7% 14% 25% 27%

This table reports the Sample and Bronars Power Measures for choices observed in the experimental
studies by Andreoni and Miller (2002) and Andreoni and Harbaugh (2009). The cross-sectional standard
deviation of budget shares is averaged across budgets and the Violation Frequency reports the frequency
with which a subjects’ choice profile violates GARP. The table also presents the cross-sectional average,

standard deviation, and quantiles for the distribution of the Afriat Critical Cost Efficiency Index (CCEI).

choices are made at random and uniformly distributed on the frontier of the budget set.

In a data generating model consistent with this behavior, the alternative hypothesis can be

stated as:

HA, Bronars M1: ri(k) (Bt) =
1

K

mt

pt(k)
, k = 1, . . . , K; εi,t ∼ U (Bt) (4)

where U (Bt) denotes the uniform distribution over the frontier budget set Bt recentered at

zero.

With this alternative, one can analytically calculate the exact probability that a random

set of choices will violate GARP. Perhaps more sensibly, one can conduct a series of Monte

Carlo experiments on the budgets under the alternative hypothesis and calculate the prob-

abilities of GARP violations. Then the power of a particular GARP test is the chance that

random choices will violate GARP. Bronars calls this Method 1.5 Bronars also considered

5One should also note the paper by Aizcorbe (1991) that argued that using Bronars’ method to search
for WARP violations in all pairs of observations may misstate power in that violations over pairs is not
independent (comparing bundle a vs. b is not independent of the comparison of b vs. c). She then suggests a
lower bound estimate of power based on independent sets of comparisons. We propose an alternative method
for addressing this dependence using a weighted bootstrap algorithm below.
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two modification of Method 1. His Method 2 first derives random budget shares in which

the expected share is 1/n, where n is the number of goods. Method 3 finds random budget

shares in which the randomness is centered on actual budget shares. Method 1, however,

has come to dominate the literature.6

The three Bronars’ power measures are presented in Table 1 for the altruism and risk

preference experimental designs. Bronars’ Method 1 provides the least structured behavioral

model and, as such, imparts the highest power to each of the experiments. Under this

measure, approximately 75% of the choice samples for altruistic preferences included at

least one violation of GARP, generating an average CCEI of 0.88, with 59% of the samples

generating a CCEI less than 0.95. The Bronars’ power measures rate the risk preference

study somewhat higher, mainly due to the larger number of budget sets available, with 91%

of the samples including at least one GARP violation and 80% of samples generating a CCEI

less than 0.95 for an average CCEI of 0.82. Bronars’ Methods 2 and 3 impart more structure

on the data and, in doing so, yield weaker power properties. Still, across the two experimental

designs, all of the Bronars’ measures impart a higher power to the risk preference study.

An advantage of Bronars’ approach is that it is both natural and simple, motivated by the

representation of the alternative hypothesis as a minimally informative prior in the Bayesian

sense. A disadvantage is that the alternative hypothesis is perhaps too unconditional and

takes no advantage of the information in observed choices about the distribution over be-

havior. 7 Suppose, for instance, the budgets offered did not intersect near the points where

individuals are actually choosing. Then if preferences do not conform to utility maximiza-

tion, the test would be unlikely to discover it. This is true even if Bronars’ analysis shows

that randomly made choices provide a high likelihood of violations. Dean and Martin (2012)

6Famulari (1995) and Cox (1997) offered variants of the Bronars method in which observed prices and
quantities were randomly paired, and these pseudo-random budget choices are tested for GARP violations.
As these are not formal measures of power, we do not discuss them further here, but mention them for
completeness. Both approaches involve sampling from both observed budget sets as well as observed choices
in a manner that projects choices from one budget set onto another. While a helpful technique for addressing
settings with stochastic budget sets, our focus on a fixed sample of budget sets allows us to avoid such issues.

7Note, however, that Bronars’ Method 3 does take into consideration the average choices observed in the
population at each budget set.
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present a similar critique in a comment on Beatty and Crawford (2011)’s difference power

index, proposing a bootstrap technique loosely related to the approaches we propose in the

next section. What would be preferred, though, is an index of power based on an alternative

that takes account of the choices exhibited.

4.2 Bootstrapped Power Measures

In the ex post setting where we have choice data from a panel of subjects, we can use the

multiple observations to get additional information about the distribution over choices that

will actually be made within these budget sets. In particular, we can ask whether the organi-

zation put on the data by the subjects themselves—by matching individuals with choices—is

superior to another method that would have randomly assigned choices to individuals from

the universe of choices actually made.

Figure 3: Individual Choices without GARP Violations

For simplicity, consider an example of two experimental subjects given the same two

budgets. Suppose the data are like that shown in Figure 3. Here there are no violations of

revealed preference. Suppose that, on each budget, we were to pool the choices made by

the subjects and then create new synthetic subjects by randomly drawing from the universe

of choices actually made. That is, we use bootstrapping techniques to generate a measure

of power. In the example of Figure 3, x1 ∈ {a, d}, and x2 ∈ {b, c}. Then there would be a

25% chance that the synthetic subject would be assigned choices a and c, hence violating
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GARP, which is the maximum likelihood possible with two budgets and no initial violations

of revealed preferences.

Compare these choices to those in Figure 4. Here there would be no chance that we could

create a synthetic subject that would violate GARP. In this sense, the test has more power

if the study generates data like that in Figure 3 rather than Figure 4.

Figure 4: Individual Choices without GARP Violations and Zero Bootstrap Power

Note that this technique can reveal either greater or lesser power than a simple Bronars

methods. For instance, in the budgets shown in Figures 3 and 4 a Bronars (Monte Carlo)

test would show only about 12% of the cases finding violations, whereas the bootstrapping

test will get exactly 25% violations (Figure 3) or 0% violations (Figure 4).

This algorithm maps to an alternative hypothesis that choices are drawn independently

across budgets from the empirical marginal distribution of choices on each budget. As such,

the bootstrapped alternative hypothesis maintains the Bronars’ Method 3 hypothesis that

the function ri (·) is a constant equal to the cross-sectional average consumption bundle

chosen on the budget set. However, instead of εi,t being uniformly distributed over the

zero-centered budget set, as in Bronars’ measures, here εi,t’s distribution gives rise to the

empirical distribution of observed choices on the budget set (which, we recall, is denoted by
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P ). That is:

HBootstrap: ri (Bt) = x̄t ≡
1

N

N∑
i=1

xi,t, (5)

P̃ (εi,t = xj,t − x̄t) = P (xj,t)

With this alternative, the probability of violations among the synthetic subjects is the power

of the test.8

4.3 Weighted Bootstrap: Sampling from the Conditional Distri-
bution over Choices

The main strength of the unconditional bootstrap as compared to Bronars’ method lies in

its ability to measure how the test’s design was suited to the population studied. Like the

Bronars method, however, the alternative hypothesis specified is still subject to the Aizcorbe

(1991) critique of ignoring dependence in choices across budget sets and consequently as-

cribing too much randomness to each subject, especially in populations with heterogeneous

preferences.

We can address this shortcoming by exploiting continuity in preferences to group the

behavior of different subjects. Consider the example from the previous section but, instead

of there being two subjects, there are four subjects who make the choices depicted in Figure

5. Visually, it appears the preferences for subjects A and B and for subjects C and D are

similar to one another, but the two sets of subjects appear to have very different preferences.

Under the bootstrapped power measure, after drawing an observation of xA,1 on budget set

1, we’d be equally likely to impute the selection of xA,2, xB,2, xC,2, and xD,2 on budget set

2 as the anticipated decision for that type. However, given the obvious pattern in choices, it

seems relatively unlikely that an indvidual who selects xA,1 really would select xC,2 or xD,2

and much more likely that she would select either xA,2 or xB,2.

8This bootstrapping technique was introduced by Andreoni and Miller (2002) and applied by Harbaugh,
Krause, and Berry (2001). Dean and Martin (2012) adopt a bootstrapping strategy where they sample from
budget shares across budget sets, effectively implying that the distribution of budget shares on unobserved
budget sets is equivalent to the unconditional distribution of chosen budget shares. The Dean and Martin
(2012) approach is particularly helpful when projecting observed choices onto budget sets that are not
observed in the experiment.
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Figure 5: Dependence in Choices Across Budget Sets
When individual choices indicate dependence across budget sets, an unconditional bootstrap can overstate
the degree of variation in the data. In contrast, the weighted bootstrap samples from choices in a way that
preserves this dependence structure. In this example, individuals tend to prefer one of the two goods, but
are unlikely to choose a bundle concentrated in good 1 on one budget and in good 2 on another budget.

For these reasons, we may wish to account for this dependence structure of the choices

for an individual across budget sets in the bootstrap. Specifically, for budget set B1, we

want to identify the conditional distribution of selected consumption bundles for subject

i given the observed choices subject i has made on the budget sets 2, . . . , T . That is, we

want to identify the distribution of xi,1|xi,2, . . . , xi,T and use that distribution to characterize

the probability of a WARP violation along the B1 budget set. Further, denoting by xi,−t

the array of observed consumption bundles xi,1, . . . , xi,t−1, xi,t+1, . . . , xi,T , we can iteratively

identify each of the Ti marginal conditional distributions for subject i. We can then use

these marginal distributions to sample from the set of budget choices conditional on drawing

subject i from the population, using the frequency of GARP violations in these draws to
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measure the power of the test for each individual in the study.

4.3.1 Sampling for an Individual Budget Set

To link choices on budget set Bτ with the choices observed on other budget sets, we add

additional structure to the random function ri (Bτ ). In particular, letting ηi,t be a mean-zero

error term, assume

ri (Bt) |xi,−t = gt (xi,−t) + ηi,t (6)

Importantly, the function g does not depend on the actual individual i, but only the

choices made by individual i on other budget sets. Then, subject to exogeneity conditions on

ηi,t, we could use nonparametric regression in the cross-section to estimate the g function and

characterize the distribution for ri (Bt) |Xi,−t. Adapting this estimation strategy, however, is

not necessary when a weighted bootstrap allows us to sample directly from this distribution.

Define the weighting function w (xi,−t, xj,−t) so that, given the sample x1, . . . , xN and a

choice profile on the −t budget sets xi,−t we assign as the choice profile on the t budget

set the choice xj,t with probability
w(xi,−t,xj,−t)∑N

n=1 w(xi,−t,xn,−t)
. The weighting function is analogous

to the kernel in nonparametric regression, smoothing out variation across the population,

motivating a Gaussian weighting function. Denoting the normal p.d.f. by N , the sample

covariance matrix for choices on the budget sets other than budget set t by Σ−t, and a

bandwidth parameter by h, we propose the weighting function:

w (xi,−t, xj,−t) ∝ N
(
xi,−t − xj,−t, h2Σ−t

)
(7)

The weighted bootstrap nests the unconditional bootstrap as h becomes large and each

observation is drawn with equal likelihood. Such a bandwidth would imply individual pref-

erences on a given budget set are not well-characterized by their choices on other budget sets

and decision is driven by idiosyncrasies at the individual and budget set level. As h becomes

small, the distribution implied by the weighted bootstrap becomes very close to the sample

distribution over choices.9 The weighted bootstrap implies an alternate hypothesis measure

9In this limit, the only within subject sampling variation in choice for an individual would come from
other subjects whose choices matched that individual along each of the −t budget sets but differed at the
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over choices P̃ as:

HA, WBS (h) : ri (Bt) =
N∑
j=1

w (xi,−t, xj,−t)xj,t ≡ x̄i,t; (8)

P̃ (εi,t = xj,t − x̄i,t) ∝ w (xi,−t, xj,−t)P (xj,t)

4.3.2 Strengths and Weaknesses of the Weighted Bootstrap

The weighted bootstrap generalizes the unconditional bootstrap method from Andreoni and

Miller (2002) for characterizing the distribution over choices. The main benefit to doing so

comes by exploiting the cross-section to account for dependence across an individual’s choices

on multiple budget sets. In this regards, the weighted bootstrap effectively addresses the

Aizcorbe (1991) critique of Bronars’ and similar power measures, such as the unconditional

bootstrap, that ignore this dependence.

The weighted bootstrap also decomposes variation in choices as arising from between sub-

ject and within subject variation, sampling from the conditional distribution of ri (Bt) + εi,t

given that individual i has been drawn from the population. As such, a standard law of large

numbers implies the bootstrap sample average converges to ri (Bt) and the bootstrap sample

variance converges to V ar [εi,t]. Aggregating across individuals, we can take advantage of the

exogeneity of errors to decompose the unconditional variance of the choice for a randomly

selected individual at budget set t:

V ar [xi,t] = V ar [ri (Bt)] + V ar [εi,t] (9)

Denoting the total number of bootstrap samples drawn by M , it is straightforward to show

the following convergence results hold within subjects:

x̄i,t ≡
1

M

M∑
m=1

x
(m)
i,t −−−−−→

M,N→∞
ri (Bt) , and,

1

M

M∑
m=1

(
x
(m)
i,t − x̄i,t

)2
−−−−−→
M,N→∞

V ar [εi,t]

t-th choice set. In the example above, if XC,2 = XD,2 but XC,1 6= XD,1, then the weighted bootstrap for
subject C would draw both XC,1 and XD,1 with equal probability for the choices on budget set B1. While
minor, aggregating this variation across budget sets can be sufficient to generate choice profiles that do not
appear in the sample.
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With the following convergence results also holding between subjects:

x̄t ≡
1

N

N∑
i=1

xi,t −−−→
N→∞

E [ri (Bt)] , and,
1

N

N∑
n=1

(x̄i,t − x̄t)2 −−−→
N→∞

V ar [ri (Bt)]

As in most nonparametric analysis, a central indeterminacy in the weighted bootstrap

arises from the need to specify the weighting function and bandwidth. Unfortunately, there

is no clear definition of an “optimal” bandwidth in this setting, as such a bandwidth would

depend on the true conditional dependence among choices. If the bandwidth is too small,

the weighted bootstrap would understate the degree of variation in the data, essentially

considering the power of the test to be the frequency of violations in the observed data. Too

high of a bandwidth overstates the degree of variation in the data, exaggerating the power

for the test. As such, we propose evaluating the weighted bootstrap in terms of its power

function determined by the bandwidth.

4.3.3 Empirical Properties of the Unconditional and Weighted Bootstrap

For the altruism and risk preferences experiments, we generate one million samples for each

budget using the unconditional bootstrap and 100,000 draws for each subject using the

weighted conditional bootstrap for a variety of bandwidths ranging from h = 0.1 to h = 10.

The results summarizing the power properties of the GARP tests using the bootstrapped

sample appear in Table 2.

Comparing the two experiments, the unconditional bootstrap illustrates similar power

properties for both, the only difference being that we’d expect slightly more severe violations

of GARP to be observed in the risk preferences study. Violations occur in approximately 75%

of the samples with about 43% (23%) of the risk preference (altruism) samples generating a

CCEI of less than 0.95.

As expected for the highest bandwidths, the weighted bootstrap gives almost the exact

same results as the unweighted bootstrap. As we decrease the bandwidth, the frequency of

violations and the distribution over CCEI’s drops from that implied by the unconditional

bootstrap to that observed in the sample. Further, as the bandwidth is tightened, the amount

of variability in choices and CCEI attributed to variation between individuals increases
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Table 2: Bootstrapped Power Measures
CCEI Variance Analysis

Violation CCEI Frequency of CCEI < Within Between
Frequency Average 0.75 0.90 0.95 1.00 St Dev Subject Subjects

Panel A: Altruistic Preferences

Simple Bootstrap 77% 0.93 6% 29% 33% 34% 0.109 100% 0%
Weighted Bootstrap
h = 10 73% 0.94 5% 24% 29% 30% 0.102 100% 0%
h = 5 64% 0.96 3% 17% 22% 22% 0.087 98% 2%
h = 1 36% 0.99 0% 3% 6% 6% 0.034 78% 22%
h = 0.5 27% 1.00 0% 1% 3% 3% 0.022 59% 41%
h = 0.1 15% 1.00 0% 1% 2% 2% 0.017 18% 82%

Sample 9% 1.00 0% 1% 2% 3% 0.017 0% 100%

Panel B: Risk Preferences over Gains

Simple Bootstrap 75% 0.93 6% 29% 45% 63% 0.094 100% 0%
Weighted Bootstrap
h = 10 66% 0.95 3% 16% 30% 51% 0.072 99% 1%
h = 5 61% 0.96 2% 12% 25% 44% 0.063 95% 5%
h = 1 49% 0.97 2% 8% 15% 32% 0.058 14% 86%
h = 0.5 45% 0.98 2% 7% 14% 28% 0.057 1% 99%
h = 0.1 44% 0.98 2% 7% 14% 27% 0.057 0% 100%

Sample 44% 0.98 2% 7% 14% 27% 0.057 0% 100%

This table reports properties of the Bootstrap Power Measures for choices observed in the experimental
studies by Andreoni and Miller (2002) and Andreoni and Harbaugh (2009). The Simple Bootstrap

corresponds to the alternative hypothesis presented in equation 5 while the Weighted Bootstrap
corresponds to the alternative hypothesis in equation 8 for varying bandwidths (h). The cross-sectional
standard deviation of budget shares is averaged across budgets and the Violation Frequency reports the

frequency with which a subjects’ choice profile violates GARP. The table presents the distributional
properties for the Afriat Critical Cost Efficiency Index (CCEI), including the percentage of the variance in

the CCEI that is due to within- and between-subject variation in choices based on the decomposition in
equation 9.

as each individual’s choice samples become less variable, with the residual variation being

attributed to between subject variation in preferences.

4.4 Jittering Measure: Sampling from the Smoothed Likelihood

As the bandwidth of the weighted bootstrap goes to zero, the weighted bootstrap sampling

algorithm gives very similar results to the sample measure PN . However, the collection of

atoms representing the empirical distribution PN will overfit the true measure P ∗ in the same

way that a zero-bandwidth nonparametric kernel density estimator for a sample overfits the
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distribution generating that sample. To address this overfit, kernel density estimators smooth

the sample distribution, taking a weighted average of the frequency of “nearby” observations

to represent the likelihood of a given observation. Denoting the kernel weighting function (for

example, the standard normal p.d.f.) by κ (·), the kernel density estimate for the likelihood

that a given choice profile will be drawn from P ∗ is:

P̃ (xi = x) =
1

Nh

N∑
j=1

κ

(
xj − x
h

)
(10)

Analogous to the weighted bootstrap, we could compute the kernel density estimator

for P̃ above and use that distribution to characterize the likelihood of observing a sample

that violates GARP. However, an easier calculation is to implement a sampling strategy that

“jitters” the data by introducing white noise to the sample. Let νm be a T -dimensional vector

of independently drawn standard normally distributed noise terms, or jitters, we generate a

large number, say M , such jitters and project each of the t noise terms onto their respective

budget lines. We then create the jittered sample for subject i by adding this noise to their

observed choices. We repeat this process for each of the N subjects in the sample, so that the

likelihood of drawing a given observation in the synthetic sample is identical to that given

in equation 10.10 The frequency of GARP violations observed in this synthetic sample can

then characterize the likelihood of observing GARP violations under the measure P ∗. With

the sampling interpretation in hand, we can express the jittering alternative hypothesis as:

HA, Jitter (h) : ri (Bt) = xi,t; εi,t ∼ Ni,t (0, h) (11)

where Ni,t (0, h) is the truncated normal distribution that ensures xi,t + εi,t ∈ Bt.

Using jittering to make inferences about P ∗ requires addressing two challenges: irregu-

larities in the distribution P ∗ itself that may require boundary corrections and selecting the

kernel and bandwidth parameter for implementation. A priori, one could expect atoms to

10This sampling strategy is equivalent to the smoothed bootstrap, so the distributional equivalence arises
from standard results (for example, in Efron and Tibishirani, 1993). Here, we are simply enforcing the
uniform frequency of bootstrap draws by holding M constant across each individual in the sample. Note
that, while the kernel density estimation strategy could be generalized to project choices onto budget sets
not included in the experiment’s design, the sampling strategy can only be directly implemented on budget
sets for which a cross-section of choices are observed.
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exist in the distribution P ∗, particularly at the corner solutions. The smoothed sample may

overstate the degree of variation in choices around such focal points. Also, the constrained

support of the budget set requires censoring or truncating the distribution for the jitters to

restrict the sample to the support of the budget set. Censoring would tend to overstate the

frequency of observed corner solutions, though truncating is known to bias the frequency of

corner solutions downward. In our implementation, we consider truncated errors, as these

are most consistent with the density estimation strategy described above, although both

approaches are feasible.

As in the weighted bootstrap measure, there is room for debate about the choice of kernel,

as different kernels will undoubtedly imply slightly different population properties, but the

normal kernel is well-suited and widely adopted in the literature. The bandwidth parameter

h, however, will have a much more substantial impact on the estimated distribution over

choices. For arbitrarily small values of h, the jittered distribution P̃ will converge to the

sample distribution P . For extremely large values of h, the jittered distribution will converge

to the uniform, Bronars’ Method 1 distribution over choices. In this sense, jittering provides

a bridge between the Bronars’ Method 1, which takes no account of observed choices, and

sample based inference, which assigns unobserved choice profiles measure zero.

From an implementation perspective, there are two obvious ways of specifying the stan-

dard error for the normal distribution used to jitter the data. The first is to define the

standard error in proportion to the length of the budget line (σ̃t = σ̃`t), which we call rela-

tive errors. This sampling strategy is equivalent to drawing from a smoothed kernel density

over the sample distribution for budget shares in the experiment. The second is to let the

distribution be the same for all budget lines regardless of length (σ̃t = σ̃), which we call ab-

solute errors. Jittering with absolute errors is equivalent to drawing from a smoothed kernel

density over the sample distribution for choices themselves in the experiment. Because the

units for the relative errors bandwidth is constant across budget sets and experiments, the

power function from relative jittering is well-suited for comparing experiments. In analyz-

ing the behavior within an experiment, however, jittering with absolute errors provides a
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measure that can be directly related to the underlying choices.

Table 3 reports the distributional properties of choices and CCEI at variable levels of σ̃

for the jittered data. Focusing on the experiment analyzing altruistic prefences, we see a

remarkably different effect of the bandwidth in characterizing power using jittering and the

weighted bootstrap. In the weighted bootstrap, even minor increases in the bandwidth lead

to a substantial increase in GARP violations due to the presence of differing behavioral types

that prevented a smooth distribution of choices on the budget set. This same agglomeration

of choice requires relatively large jitters in order to bridge the gap between modal choices,

so that jittering does not impart a large frequency of GARP violations until the bandwidth

exceeds the relevant threshold.

The risk preferences experiment, with its smoother distribution of choices on the budget

sets, does not gain much power by relaxing cross-sectional dependence in the weighted boot-

strap but does respond to even slight jitters in the data. Interestingly, for the experiment

on risk preferences over gains at very low bandwidths, the jittered frequency of violations

actually drops compared to the sample violation frequency. This result arises for subjects

whose choices violate GARP while maintaining a Critical Cost Efficiency Index of unity. In

these cases, jittering the data slightly actually removes violations in 75% of the draws by

moving a choice profile off the intersection of two budget sets.

5 Power Indices

In this section, we look at power indices characterizing three properties of the experiment’s

design. We begin with the Jittering Index to characterize the amount of noise that we

would need to add to an individual subject’s choices to generate GARP violations. Next, we

consider the Afriat Power Index, which is defined by the degree to which GARP would need

to be strengthened in order to generate violations. We close with the Optimal Placement

Index as a measure of the efficiency of the experiment’s design relative to a maximally

efficient design for testing violations of WARP at each individual budget set.
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Table 3: Jittered Measure Properties
CCEI Variance Analysis

Violation CCEI Frequency of CCEI < Within Between
Frequency Average 0.75 0.90 0.95 1.00 St Dev Subject Subjects

Panel A: Altruistic Preferences

Bronars M1 75% 0.88 16% 46% 59% 72% 0.122 100% 0%
Absolute Jittering
σ = 50 58% 0.92 9% 31% 44% 58% 0.104 85% 15%
σ = 25 38% 0.96 4% 17% 26% 38% 0.083 64% 37%
σ = 15 27% 0.97 1% 10% 17% 27% 0.059 59% 41%
σ = 5 22% 0.99 0% 2% 6% 22% 0.024 41% 59%

Relative Jittering
σ = 1 73% 0.88 16% 47% 60% 72% 0.120 99% 1%
σ = 0.5 65% 0.91 11% 38% 51% 65% 0.111 94% 6%
σ = 0.1 26% 0.98 1% 8% 15% 25% 0.053 56% 44%
σ = 0.05 23% 0.99 0% 2% 8% 22% 0.028 48% 53%

Sample 9% 1.00 0% 1% 2% 3% 0.017 0% 100%

Panel B: Risk Preferences over Gains
Bronars M1 91% 0.82 27% 68% 80% 90% 0.133 100% 0%
Absolute Jittering
σ = 25 87% 0.85 20% 60% 75% 87% 0.127 96% 4%
σ = 5 57% 0.95 5% 19% 33% 57% 0.089 53% 48%
σ = 2.5 45% 0.97 3% 11% 21% 44% 0.072 28% 73%
σ = 0.5 36% 0.98 3% 8% 15% 35% 0.059 2% 99%

Relative Jittering
σ = 1 91% 0.82 26% 68% 81% 90% 0.132 100% 0%
σ = 0.5 89% 0.84 23% 64% 78% 89% 0.128 99% 1%
σ = 0.1 58% 0.95 3% 17% 32% 58% 0.079 51% 49%
σ = 0.05 44% 0.97 2% 10% 19% 43% 0.066 22% 79%

Sample 44% 0.98 2% 7% 14% 27% 0.057 0% 100%

This table reports properties of the Jittered Power Measures corresponding to the alternative hypothesis in
equation 11 for choices observed in the experimental studies by Andreoni and Miller (2002) and Andreoni

and Harbaugh (2009). The varying bandwidths, σ, correspond to the standard deviation of errors of actual
goods (Absolute Jittering) or budget shares (Relative Jittering). The cross-sectional standard deviation of
budget shares is averaged across budgets and the Violation Frequency reports the frequency with which a

subjects’ choice profile violates GARP. The table presents the distributional properties for the Afriat
Critical Cost Efficiency Index (CCEI), including the percentage of the variance in the CCEI that is due to

within- and between-subject variation in choices based on the decomposition in equation 9.

5.1 Jittering Index

To motivate this approach, suppose a person was offered the five budget constraints pictured

in Figure 6 and all the choices involved equal quantities of both goods, as in the left panel

of the figure. These choices do not violate GARP and are consistent with preferences that
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have a kink at the 45-degree line, however, adding only the slightest shift in choices along

the budget constraint could result in a GARP violation. Compare this to the data shown in

the right panel of Figure 6 where the data look as though they are consistent with a perfect

substitutes utility function and requiring very big perturbations added to the data in order

to generate violations of revealed preference. Since both samples imply similar predictability

in individual choices we could conclude that the left panel provides a more powerful test of

rationality due to its relative sensitivity to perturbations.

Figure 6: Different Choice Profiles for the Same Budget Sets

To formalize the approach, we need to construct two measures. The first is a measure of

how much error we need to add to the data in order to generate a predetermined severity

of GARP violations. The second is a measure of the amount of variance or error naturally

occurring in the data. By comparing the variation we need to add with the naturally occur-

ring variation, the jittering index can be normalized to account for the number of budget

sets in the design so that indices can be compared across experiments.

We can get the first measure from the power function using the jittered power measure.

The bandwidth parameter of the jittered sample corresponds to the standard deviation of

the noise added to the observed sample. For each subject, we can vary this smoothing

parameter to find the minimum bandwidth for which 5% of the jittered experiments find

at least one GARP violation. Denoting this bandwidth σ, it gives a direct measure of how

close the chosen budgets came to finding a violation of rationality—the closer σ is to zero,
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the sharper the test of rationality.11

To normalize the Jittering Index across experiments, consider tests of whether the noise

added to create the jittered data, ε̃, is significantly bigger than the noise naturally occurring

in the data, ε, under the null hypothesis that ε̃ and ε both have the same variance of σ2.

For each individual in the sample, the statistic:

φ =

1
T (K−1)

∑
(xi,t − x̃i,t)2/σ2

1
T (K−1)

∑
(xt − ri (Bt))2/σ2

≈ σ2

σ2

is characterized by the F distribution under the null hypothesis. If there are K goods on each

of T budgets, then this F–test has T (K − 1) degrees of freedom in both the numerator and

denominator.12 Fixing the significance level at the customary 5%, we can find the critical

values from the quantiles of the F distribution, denoting these cT,K−1,0.05. The Jittering

Index is then defined as σ∗ = σc
−1/2
T,K−1,0.05. Then, any σ ≥ σ∗ would be enough natural

variance to satisfy the desired confidence in the power of our test.

For interpretation, we must appeal to intuitions about whether σ∗ is “small.” The lack of

an objective definition for a “powerful” test presents the greatest limitation for the Jittering

Index, though having to specify a σ is tempered by being able to state a needed σ∗ threshold

for variance in the data. If σ∗ is a number that all would agree is small given the nature of

the data, then arguments over σ may be avoided.13

In Figure 7, we show the values of σ for all subjects who had no violations of GARP.

The bars are the marginal frequency and the lines are the cumulative frequency. Panel (a)

shows that, under absolute error, a similar degree of power holds if the natural error exceeds

11Note that this method even works to find power when there are violations of GARP, but just relatively
few. We may still want to jitter the data to see how much noise we need to add to bring violations up to
some critical value. However, in an experiment whose design has a Bronars power measure less than 5%,
the Jittering Index would be unbounded (though this is not necessarily a bad result as such a design would
have very weak power under any data generating process).

12Recall that we are thinking of K as a point on a budget plane. Thus there are only K − 1 independent
values in the vector x, and m− 1 elements in ε. Note also that the vector notation implies that

∑T
t=1(xt −

zt)
2 =

∑T
t=1

∑K−1
i=1 (xti − zti)2.

13This question is reminiscent of that encountered by Varian (1985) in his goodness-of-fit analysis, and
the answers are thus similar. One option is to find a parametric estimate of a utility function and let the
standard error of the regression stand for σ. This, obviously, dilutes the value of nonparametric analysis
with parametric analysis. Moreover, there often may be too few observations from a single agent to estimate
such a function, leaving one to postulate σ from some other ad hoc means.
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σ = 10. Panel (b) shows that, under relative errors for the altruistic study, if the natural

error in the data exceeds σi = 0.08`i, then 90% of the subjects would have been given

significantly powerful tests of GARP. The results for relative jittering in the risk preference

experiments imply a slightly lower level of natural error required to generate violations, even

after conditioning on those subjects who did not violate GARP.
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(a) Altruistic Preferences
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(b) Altruistic Preferences
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(c) Risk Preferences over Gains
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(d) Risk Preferences over Gains

Figure 7: Distribution of Jittering Index for Subjects with No GARP Violations
This figure presents the cross-sectional distribution of the absolute and relative Jittering Indices calculated

for the individual subjects in the two experiments whose choices revealed no GARP violations. The
Jittering Index corresponds to the maximal standard deviation of within-subject variation in choices that
could be rejected by an F-Test when compared to the minimal standard deviation required to generate

violations in at least 5% of the jittered samples for that subject.

This leads naturally to the question, how much natural error exists in the data? Looking
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at the data from the study of altruistic preferences, one sees immediately that one source

of natural error is rounding. Perhaps for cognitive ease, subjects have an overwhelming

tendency to choose numbers divisible by 10. This is true for both the hold and pass amounts.

In fact, over 85% of all choices had both the hold and pass values divisible by 10. Another

11% were divisible by 5, but not 10. Only 4% of choices made were not divisible by either

10 or 5. Suppose we assume subjects restrict choices to those where both hold and pass

amounts are divisible by 10, and that “rational rounding” would choose the point that yields

the highest utility. This means that the maximum error would be at least 5, assuming convex

preferences. These rounding errors alone would provide enough natural variance in the data

to make at least 38% of our GARP tests have sufficient power.14 If we were to believe that

there is some other independent variation in the data, either from measurement, reporting

or learning, that is roughly equal to noise from rounding so the expected absolute error was

about 5 tokens on each budget, then σi ≈ 0.1 for relative and σi ≈ 13 for absolute errors. If

this were the case, then about 95% of the GARP tests would have sufficient power.

Comparing the Relative Jittering Indices across the two studies, the experiment evaluat-

ing risk preferences over gains appears to have greater power than the experiment evaluating

altruistic preferences. This enhanced power comes from the difficulty of testing rigid pref-

erences, as evidenced by the spikes in the centers of Panels A & B in Figure 7. These are

due to subjects who always chose corner solutions: 28% always kept everything, and 11%

had apparently linear preferences (see Andreoni and Miller (2002), Table III). Note also that

one would not expect even rounding error to be present at corner solutions, so there’s very

little naturally occurring variation in the data at these points. As is evident, when testing

revealed preference in settings with such stark preferences, it’s exceedingly difficult to design

an experiment with a viable amount of power.

14To be conservative, assume a uniform distribution of absolute rounding errors between 0 and 5, and thus
an expected absolute error of 2.5 tokens. Under the assumption of relative errors, this implies E|εi| = 0.43
and for absolute errors, this implies of E|εi| = 5.7. It is easy to show that our assumptions imply the standard
error of σ ≈ 1.15E|εi|. For the assumption of relative errors, this means σi = 0.049, while for absolute errors
it means σi = 6.53.
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5.2 The Afriat Power Index

Although the index proposed in this section was not suggested by Afriat, it seems natural

to give it his name given its similarity to the Afriat Critical Cost Efficiency Index. To

characterize the severity of a violation of revealed preference, Varian (1990, 1991) builds on

Afriat (1967, 1972) to construct the Afriat Critical Cost Efficiency Index. Varian first relaxes

the directly revealed preferred relation by defining, Rd(e), so that: xjR
d(e)x iff epjxj ≥ pjx,

where 0 ≤ e ≤ 1. It follows to define R(e), a relaxed revealed preference relation, as the

transitive closure of Rd(e). Varian defines a version of GARP, which we call L-GARP(e)

(“L” for lower), as

Definition: L-GARP( e): If xjR(e)xk, then epkxk ≤ pkxj, for e ≤ 1.

Figure 8: The Afriat Critical Cost Efficiency Index
The Afriat Critical Cost Efficiency Index (CCEI) measures how far budget sets would need to be shifted to
remove any violations of GARP from the data. A choice of consumption bundles with a low CCEI (as in the
left panel) indicates a more severe violation of GARP than one with a CCEI near unity (the right panel).

Afriat’s Critical Cost Efficiency Index, or the Afriat Efficiency Index for short, is the

largest value of e ≤ 1, say e∗, such that there are no violations of L-GARP(e). If e∗ = 1 then

there are no violations of GARP in the original data, but for e∗ < 1 there are violations.

Traditionally, researchers begin their analysis of consumer behavior by setting some critical

level of e∗, say e, such that they would consider any e∗ ≥ e a small or tolerable violation of

GARP. Varian (1991), for instance, suggests a value of e = 0.95.15

15Note that, since the Afriat Efficiency Index is just a transformation of individual choices, it can be defined
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Suppose a set of choices does not violate GARP. If the budget constraints cross near the

area that subjects are actually choosing, then we can think of that set of budgets as being

more diagnostic than a different set in which the choices are far from the intersections. For

instance, Figure 9 shows two budgets without violations of revealed preference. However, the

frame on the right gives us more confidence that the person choosing these goods satisfies

utility maximization. If there were a violation or rationality, we would be more likely to

uncover it in the right panel since even a small change in choices would have been enough

to violate GARP. In the frame on the left, by contrast, there would have to be much larger

violations of rationality before we could uncover them with this test.

Figure 9: Consumption Choices that do not Violate GARP

To capture the intuition behind Figure 9, define a stronger direct revealed perference

relation, R̃d(g), as xjR̃
d(g)xk iff gpjxj ≥ pjxk, where g ≥ 1. Thus, if g = 1 we have

the standard notion of directly revealed preferred. Then let R̃(g) be the transitive closure

of R̃d(g). Given this stronger notion of revealed preference, we can define a new concept

H-GARP (“H” for higher) as

Definition: H-GARP( g): If xjR̃(g)xk, then gpkxk ≤ pkxj, for g ≥ 1.

Using this inverted notion of the Afriat Efficiency Index, we can define the Afriat Power

as a random variable on the probability space for the experiment. As such, its distributional properties can
be inferred using the sampling techniques presented in section 4. Further, we can extend the variance
decomposition from individual choices to separate a priori variation in the Afriat Efficiency Index into
individual and cross-sectional components.
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Index as the infimal value of g ≥ 1, say g∗, such that there is at least one violation of

H-GARP(g). If g∗ > 1 there are no violations of GARP in the data, but if g∗ is close to 1

the choices are near where the budget constraints intersect. An example of the Afriat Power

Index is shown in Figure 10. The choices on the left are less informative about rationality

than those on the right, and the Afriat Power Index is closer to 1 in the panel on the right.

Hence, while the Afriat Efficiency Index told us how much we need to “relax” the budgets

to avoid violations, the Afriat Power Index tells us how much we need to “expand” budgets

in order to generate violations.16

Figure 10: The Afriat Power Index
The Afriat Power Index measures how much budget sets would need to be shifted outward for a violation
of GARP to be observed in the choice sample. Subjects whose choices would require greater shifts in the

budget set to generate a violation (as in the left panel) face a less demanding test than those whose choices
can generate violations with only small shifts in the budget sets (as in the right panel).

When can we say that the g∗ found from the Afriat Power Index is “too big” and thus

has too little power? One obvious approach is to switch our perspectives. If, under the

Afriat Efficiency Index we were willing to accept any e∗ ≥ ē as an acceptably small violation

of GARP, then any g∗ ≤ 2− ē should also be an acceptably powerful test of GARP.

As the original Afriat Efficiency Index has some shortcomings that have been highlighted

in the literature, the Afriat Power Index is subject to similar critiques. For instance, the

16Consider the special case where a single choice is made at the point where two budgets intersect but
that there is no violation of GARP. Then the smallest shift in one budget constraint will create a violation,
in which case g∗ = 1 + δ, where δ is infinitely small. For ease of discussion, we will refer to this as a case of
g∗ = 1.
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Afriat Efficiency Index is defined by only one violation, and does not give credit to an

individual who may otherwise have large numbers of perfectly rational choices. In other

words, it is not very forgiving of a single error. By the same token, it can potentially mask

the troubling nature of a large number of small errors. Similarly, the Afriat Power Index will

score well if there is a single pair of budget constraints which cross near the choices, even

if all other budget constraints cross far from the choices. As with the Jittering Index, this

limitation of the Afriat Power Index highlights the challenge of testing rationality in settings

with sharp preferences.

5.3 The Afriat Confidence Index

Assign an individual i a number Ai = e∗i g
∗
i , where e∗i is the Afriat Efficiency Index and

g∗i is the Afriat Power Index.17 Call Ai person i’s Afriat Confidence Index. If Ai < 1 the

person has at least one violation of GARP and this number can be interpreted as indexing

the severity of the violation. If Ai > 1 then the person has no violations of GARP, and

the number can index the stringency of the GARP test. An Ai = 1 corresponds to the

ideal data—the person could not have been given a sharper test. By selecting an e prior to

analysis we gain a “confidence interval” on Ai, that is e ≤ Ai ≤ 2− e. An Ai in this interval

can be seen as a successful test of GARP.

Figure 11 shows the distribution of Afriat Confidence Indices, Ai, for the experimental

samples. The left hand side of the graph presents results for subjects who had at least one

violation of GARP (and, as such, an ACI ≤ 1) and the right hand side of the graph presents

results for subjects with no violations of GARP (and an ACI ≥ 1).

To focus on the power properties of the experiments’ designs, consider those subjects

who had no GARP violations. In the rational altruism study, more than two-thirds of these

(71%) had Afriat Confidence Indices of 1, indicating that the GARP test could not have been

17Alternatively, we could derive Ai from a unified framework. Define Rd
A(a) as xjR

d
A(a)xk iff apjxj ≥ pjxk,

for some a > 0, and let RA be the transitive closure of Rd
A.

Define A-GARP(a): If xjRA(a)xk, then apkxk ≤ pkxj , for a ≥ 0.
Then let a∗i = inf{a : there exits a single violation of A-GARP(a), or at which the smallest change in a
would remove all violations of A-GARP(a)}. Then Ai = a∗i .
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Figure 11: Afriat Confidence Index, Ai
This chart presents the cross-sectional distribution of the Afriat Confidence Index for choices observed in

the experimental studies by Andreoni and Miller (2002) and Andreoni and Harbaugh (2009). Subjects
whose scores are far above unity did not encounter a sufficiently stringent test of their preferences.
Subjects whose scores are far below unity severely failed to pass the GARP test. The population of

subjects with Ai near unity either passed a stringent test of their choice behavior or failed within the
tolerance of the Critical Cost Efficiency Index.

sharper. If we apply the same criterion for “high power” that we do to “small violation”

then 107 (83%) of the non-violators have Ai ≤ 1.05. Then the “confidence interval” of Afriat

Confidence Indices such that 0.95 ≤ Ai ≤ 1.05 means that 82% of subjects in the sample

were given stringent tests of GARP and passed, 2% of subjects had significant violations of

GARP (Ai < 0.95) and 16% were given GARP tests that were not sufficiently diagnostic

(1.05 < Ai).

Comparing the results from altruism study to those from the experiment on risk prefer-

ences, the Afriat Confidence Indices have a much smoother distribution, reflecting the fact

that the budget line crossings were less “focal” compared to the altruism study. The “con-

fidence interval” for rational risk preferences means 75% of subjects can be characterized as
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passing stringent GARP tests, with 15% presenting significant violations of GARP and 10%

revealing the test was not sufficiently diagnostic.

As such, mainly through the higher frequency of violations in the risk preferences experi-

ment, the altruism experiment yielded greater confidence in the validity of GARP. However,

the budget sets in the altruism experiment were placed in such a way that most observed

choices would fail any stronger notion of GARP. As such, the lower frequency of violations

is not due to faulty design, but rather arises from the structure imposed by individuals on

their choices.

5.4 The Optimal Placement Index

Consider the choices a on budget A in the left panel of Figure 12 and suppose that, ex post,

we wanted to alter the placement of budget set B without changing relative prices to test

whether the choice a satisfies WARP. In this case, we would obviously choose a budget that

would intersect A at point a, corresponding to budget set C. How much more efficient is C

than B at testing rationality? As seen on the right panel of Figure 12, on budget B there

is a fraction d/D of choices available that would violate WARP, while on budget C there is

a fraction e/E of available choices that would violate WARP. Hence, we define the Optimal

Placement Index to indicate the relative efficiency of the placement for budget set B to test

WARP for choice a as

θa,b =
d/D

e/E
=
d

e

E

D

How about choice b on budget B in Figure 12? Here the budget A has no ability to

find a violation of WARP, conditional on the observation of b. In this sense, the test has no

power to show that b was chosen irrationally. Hence, we can say θba = 0. As such, we can

calculate two directed Optimal Placement Indices for any pair of budget sets. We discuss

how to aggregate across these directed power measures in the next subsection.

To relate this calculation to the power measures introduced in the previous section, notice

that the numerator of the index θτ,−τ corresponds to the Bronars’ WARP Power Measure

(BWPM) for budget set B−τ conditional on the choice xτ . Further, denoting by B̃−τ the
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Figure 12: The Optimal Placement Index
The Optimal Placement Index measures the power of the implemented test (d/D) relative to the power of
an optimally designed test (e/E) assuming the Bronars’ M1 alternative hypothesis of choice behavior on

unobserved budget sets.

budget set with prices p−τ and wealth m̃−τ = pτxτ , we can see that the denominator of

the index θτ,−τ corresponds to the BWPM for budget set B̃−τ conditional on the choice

xτ . The Optimal Placement Index then represents a ratio of the BWPM measure under

the experiment as currently designed to the maximum BWPM that would be attainable by

shifting the income levels for a single budget set in the experiment.18

Note that if a choice lies on two budget constraints, then this approach will assign a

directed OPI to that point of θab = 1. It is also possible, however, for the index to take

on a value of zero. Suppose, for instance, that choices are like those in Figure 12 above.

Then θab = 0 since, ex post, neither budget offers an opportunity to show the choice on the

other budget is a violation of WARP. However, as with the Afriat Power Index, the Optimal

Placement Index will always show power if at least one pair of choices can be ranked by

revealed preference.

Extending this notion to a setting with two budget sets and more than two goods is im-

18As formulated, the Optimal Placement Index is only operable for WARP, not GARP. While it could in
principle be generalized to GARP, taking the perspective of shifting all budget sets relative to one another
would not be feasibly for computational reasons. Moreover, with only two goods it is impossible to have a
violation of GARP without also having a violation of WARP, although this is not the case with more goods.
As a result, this power index is more demanding of the budgets than GARP requires, implying that the true
power of the test is likely to be higher than this index might imply.
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mediate by comparing the BWPM with the supremum attainable BWPM. By comparing the

relative magnitude of the rejection region with the acceptance region, this analysis provides

an analog to the difference power index presented in Beatty and Crawford (2011).

5.4.1 Aggregating the Optimal Placement Index Across Budget Sets

Since GARP tests analyze choices at more than two budgets, so we must aggregate the

directed placement indices to provide a summary characterization of a given test’s efficiency.

To begin, for every budget t, calculate the value of θt,τ for all τ 6= t other budgets (if a

budget τ does not cross budget t or has zero power given the relative prices for any income

level then θt,τ = 0).

There are two natural aggregations for the θt,τ indices across τ for budget t. The first

is to define θMAX
t = max{θt,1, θt,2, ..., θt,t−1, θt,t+1, ..., θt,Ti}. This θMAX

t represents the least

possible improvement in the test’s power at that budget set, or equivalently, the maximum

efficiency of those tests given the observed choice xt. An alternative way to define the index

would be to begin by averaging across the other budgets, defining θAV Gt = 1
Ti−1

∑
τ 6=t θt,τ .

This θAV Gt is the expected ratio of the BWPM under the currently designed experiment to

the maximum of the BWPM attainable by changing the income for one randomly selected

budget set given the observed choice xt.

To construct an overall power index for individual i, we propose averaging across θt,

defining θ· = 1
Ti

∑Ti
t=1 θ

·
t. This average represents the expected benefit to randomly selecting

a reference budget set to use as the basis for shifting the experimental design.19

In aggregate, then, we have two definitions for an individual subject’s Optimal Placement

Index: the Average Budget OPI and the Maximum Budget OPI. The Average Budget OPI

presents the most diffuse measure of power, but may be a bit too conservative as it requires

19We also considered an aggregation that takes the maximum across θt, defining θ· = max{θ·t}. This
aggregated θ· would represent the highest efficiency in terms of the BWPM for the experiment as currently
designed compared to the maximum BWPM attainable by shifting one level of income for one budget set
conditional on all observed choices. In practice, this maximum is often truncated at unity and is consequently
relatively uninformative. Further, the aggregated index’s value would be determined by the placement of
other budget sets relative to only a single budget set, whereas taking the average incorporates information
about the placement of all budget sets.
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every budget set to have power against every other budget set, weighing a heavy penalty

against designs that include budget sets that are shifted outward. The Maximum Budget

OPI balances this by evaluating the efficiency of the most efficient WARP test for all budgets,

though at the cost of ignoring the frequency with which such an efficiency is achieved.

5.4.2 Strengths and Weaknesses of the Optimal Placement Index

The analysis above is based on the optimal placement of budget constraints only for prede-

termined price vectors. As Bronars has shown, the test that will expose the individual to

the greatest chance for a GARP violation is the budget that puts the most area under the

budget in question. If preferences are normal, then this same conclusion follows naturally

from Proposition 1 of Blundell, Browning and Crawford (2003), while Beatty and Crawford

(2011) establish a similar result by invoking Selton (1991)’s measure of predictive success.

Since the price vector could be shifted to produce a budget set with a greater chance for

a GARP violation, this constraint prevents the placement of these budget sets from being

truly optimal.20

Underlying its definition, the optimal placement index implicitly assumes the Bronars

measure for choices over non-observed budget sets. This assumption is maintained in Beatty

and Crawford’s difference power index. As Dean and Martin (2012) do with a bootstrap

approach, we could leverage an approach discussed in the section 4 to take observed choices

into account when defining the relative power under different placements.

Lastly, as with the Jittering and Afriat Power Indices, there is no objective magnitude for

which the Optimal Placement Index indicates an “efficient test.” As such, its interpretation

requires an intuitive notion of efficiency, with Optimal Placement Index values across studies

being informative solely as an ordinal ranking for the efficiency of a test designs.

20If we were to optimally choose relative prices as well as placement, the maximally efficient budget set
would not be well defined as it would be arbitrarily close to the original budget set. We could define the
supremum of the power for such an optimally placed budget set as the largest budget share in the consumption
bundle chosen on that budget set. We could also define WARP violations subject to a maximum Afriat
Confidence Index of some critical value. With more than two goods, such an optimally placed budget set
itself would not be uniquely defined as there will be a continuum of budget sets with equivalent power.
Despite this multiplicity, the maximum such power will be attained by any of these budget sets and Optimal
Placement Index itself would remain well-defined.
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5.4.3 The Distribution of the Optimal Placement Index

Figure 13 shows the sample distributions of the Optimal Placement Index. The Average

Optimal Placement Indices for both studies are quite small, with the median Average OPI

for both experiments falling under 15%. The Maximum OPI shows the median participant

in each experiment faced at least one budget with 55%-60% efficiency. Comparatively, the

Average OPI indicates the experiment analyzing altruistic behavior was slightly more efficient

than the study of risk preferences. The Maximum OPI is less stark in its ranking, but does

have substantially more subjects whose Maximum OPI was above 75%. Again, subjects who

keep all of the tokens for themselves appear as a mass in the distribution. With an OPI of

100%, these subjects having been given the most stringent test possible at all budget sets,

but still have not violated GARP.

The Optimal Placement Index reveals very similar power properties to the Afriat Con-

fidence Index. The experiment evaluating preferences over altruism, by taking account of

focal features in that space (such as equality, equity, and selfishness), is able to generate a

very tight test of GARP. In exploring preferences over risk, however, the lack of focal features

results in a “looser” test. Under the Optimal Placement Index, this latter experiment would

seem to have less power. However, the heterogeneity in preferences results in much more

frequent violations, which is why the Afriat Confidence Index reveals these experiments to

have relatively strong power despite this inefficiency.

6 A Field Guide to Characterizing Experimental Power

While the indices presented above all focus on measuring the power of a test’s design, each

does so from a rather different perspective. Bootstrapping the data helps characterize the role

of heterogeneous preferences as potentially driving GARP violations. The Afriat Confidence

Index and Jittering Index both characterize how close choice behavior in the experiment is

to generating violations, though they differ in the metric that measures this closeness. The

Optimal Placement Indices only incorporates observed choices as an anchor to measure the

efficiency of the design.
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(b) Maximum Optimal Placement Indices

Figure 13: Distribution of Optimal Placement Indices
This chart presents the cross-sectional distribution of the Optimal Placement Indices (OPIs) for choices

observed in the experimental studies by Andreoni and Miller (2002) and Andreoni and Harbaugh (2009).
The Average OPI corresponds to the average ex post efficiency of the design in terms of BWPM for each

budget. The Maximum OPI corresponds to the maximum ex post efficiency for each budget. For each
individual, the OPI measures are averaged across all budgets, indicating the average efficiency of the design

for that individual across budget sets.

Considering multiple perspectives in evaluating the power of these tests gives a more

detailed characterization of the features of observed choices that result in violations of GARP.

However, these different perspectives, while all informative, may be redundant for some

experimental contexts. As such, some guidance as to which measures to implement, and

when, could help researchers seeking to take advantage of these measures.

The empirical results presented throughout the paper highlight the role of underlying

preferences in determining the degree to which a power index accurately reflects the power

of the experimental test of GARP. When preferences are concentrated around modal types,

power measures that ignore individual heterogeneity (such as the unconditional bootstrap)

can overstate the design’s power. Similarly, if choices are clustered at corner solutions,

the Optimal Placement Index may consider a relatively easy test to be perfectly efficient

whenever the corner solution sits at the intersection of two budget sets. When choice behavior

is more diffuse, as is the case with most experimental choice settings, it is more difficult to
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design “sharp” tests that maximize the power. However, even sight perturbations to observed

choices can yield violations of revealed preference axioms, so these designs will still be rated

highly by the Jittering Index and the Afriat Confidence Index.

Ideally, the power index should be matched with the source of variation in the data.

For choice settings in which decisions are exposed to idiosyncratic noise, perhaps due to

rounding or complexity in the problem, the Jittering Index or Afriat Confidence ought to

provide similar characterizations of power. In contexts where choice behavior is relatively

well structured but not very noisy, perhaps due to the presence of latent types with strong

preferences, Optimal Placement Indices can characterize the efficiency of the experimental

design and the weighted Bootstrap can illustrate how far you would need to relax this

structure to yield violations.

As an initial metric to evaluate an experiment’s power, we recommend the Afriat Con-

fidence Index due to its ease of computation and close relationship with the Critical Cost

Efficiency Index, a statistic that’s already commonly reported for revealed preference tests.

If an experiment’s power is found to be lacking due to relatively high Confidence Indices,

designers may wish to dig further, possibly starting with the Optimal Placement Index to

characterize the design’s efficiency. While the jittering and bootstrap measures are the most

informative characterizations of power, their computational intensity would argue that they

are best used in those settings where neither the Afriat Confidence nor the Optimal Place-

ment Indices yield conclusive results.

7 Discussion and Conclusion

This paper presents, analyzes, and compares several approaches to measuring the power of

revealed preference tests. We first characterize different measures of choices by a representa-

tive individual in the population as well as conditional on the observed decisions and propose

sampling strategies for drawing representative choice profiles from the population. We then

distill these measures into statistics that characterize the power of the test both overall and

at an individual-subject level.
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In terms of measures over choice, our generalized conditional bootstrap and nonparamet-

ric kernel-based jittering measures provide novel mechanisms for characterizing the distri-

bution of choice from observed behavior. Several approaches could extend these measures

to budget sets that do not occur in the population, for instance, by sampling from budget

shares in a manner similar to Dean and Martin (2012) but weighting the sampling measure

by characteristics of the budget sets themselves.

In translating these measures into indices, we seek to average over the underlying choice

process to develop a more intuitive characterization of power. Our most straightforward

index inverts the well-known Afriat Efficiency Index into the Afriat Power and Confidence

Indices, allowing us to characterize the degree to which our theory would need to be strength-

ened to be violated by observed choice behavior. The Optimal Placement Index, which asks

how well the experimental design performed relative to the best possible design that could

have been dynamically generated after each choice, provides a nice tool for comparing the

efficiency of two different GARP tests. The Jittering index adopts a modicum of structure

on the distribution of within-subject variation in choice, addressing the question of how

noisy the data must be in order for a design to have power. The intuitive appeal of each of

these metrics is tempered by the fact that there is no clear guidance on power or a natural

threshold to appeal to as “high power.” As such, beyond intuitive characterizations of when

a test is “good enough,” the metrics are better thought of as ordinal rather than cardinal

measures of power.

In sum, the tension in controlling for, and the parallels between measuring, goodness-of-

fit and power are clear in revealed preference tests, whether using survey or experimental

data. In this paper, we hope to have provided some guidance to researchers to both design

and analyze tests that maximize our ability to make the correct inferences about economic

models of maximizing behavior.
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Appendix: Design Details for Experimental Data

In this section, we describe the experimental studies used in the paper to illustrate the prop-

erties of different power measures and indices. The first experiment considers individual

preferences for altruism, which are characterized by a set of “modal” preferences, where an

individual’s choices are commonly consistent with heterogeneous types. The second experi-

ment looks at risk preferences, which are much more diffuse, as an individual’s choices tend

not to be driven by any sense of normative behavior. As such, the two studies illustrate two

different settings in which to evaluate measurement of power for GARP: the first where the

type of an individual puts a lot of structure on the data, the second where the individual

choices are more fungible across budget sets.

Altruistic Preferences

The first sample we use is described in detail in Andreoni and Miller (2002) and Andreoni and

Vesterlund (2001). Briefly, the experiment was designed to explore individual preferences

for altruism by asking subjects to make a series of choices in a Dictator game, under varying

incomes and costs of giving money to another subject. In particular, subjects made eight

choices by filling in the blanks in statements like this: “Divide M tokens: Hold at X

points, and Pass at Y points (the Hold and Pass amounts must sum to M),” where the

parameters M , X, and Y were varied across decisions. The subject making the choice would

receive the “Hold” amount times X, and another subject would receive the “Pass” amount

times Y . All points were worth $0.10.

Let πs be payoff to self, and πo be payoff to other. The hypothesis is that individuals

have well-behaved preferences Us = U(πs, πo).The experimental parameters imply a budget

constraint for any choice of
1

X
πs +

1

Y
πo = M.

The parameters chosen provided the budgets shown in Figure 9. As can be seen, the pie to

be divided ranged from $4 to $15 and the relative prices ranged from 3 to 1/3. After subjects

made all 8 choices, one choice was selected at random by the experimenter and carried out.

47



Data was collected on 142 subjects and each subject’s choices were tested for violations of

GARP.21 The result was that 13 of the subjects (9.1%) had violations of GARP. Applying the

Afriat Efficiency Index, only 3 of these were found to be large violations (as we show below).

This is a rather striking failure to contradict the neoclassical model of preferences, but

leaves open the question of how discriminating the GARP test was at uncovering potential

violations.22

Risk Preferences over Gains

In addition to the altruism study, we analyze the power properties for one of the treatments in

Andreoni and Harbaugh (2009), who explore rationality of risk preferences and aversiveness

over gains and losses. In their experiment, individuals face a lottery that has a probability p

of winning x > 0, and wins zero otherwise. The subjects are offered to choose p and x from

a linear budget, say

r1p+ r2x = m, where r1, r2, and m > 0. (12)

That is, to get a bigger prize, one has to accept a smaller chance of winning it. If these

preferences over risk are rational and well-behaved, then (p;x) choices should satisfy the

axioms of revealed preference.

The experiment is split into two treatments. In the first treatment, the prize x is positive

(representing gains) and subjects are asked to choose their most prefered combination of

probability of winning and magnitude of the prize. In this setting, the standard formulation

of revealed preferences and their implications hold and so we focus our analysis on that treat-

ment. In the second treatment, the prize is negative (representing losses) and subjects are

asked to choose their least prefered combination of risk and loss. Since the power properties

of both treatments are quite similar, our analysis focuses on the first treatment, allowing us

to forgo a discussion on the parallel axioms of revealed aversiveness.

21Andreoni and Miller (2002) report data on 176 subjects, but their session 5 is set aside here for brevity.
22Andreoni and Miller (2002) reported both the Bronars Method 1 power index and the panel index. We

repeat them here for completeness.
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