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Selection dynamics are often used to distinguish stable and unstable
equilibria. This is particularly useful when multiple equilibria pre-
vent a priori comparative static analysis. This paper reports an ex-
periment designed to compare the accuracy of the myopic best-
response dynamic and an inertial selection dynamic. The inertial
selection dynamic makes more accurate predictions about the ob-
served mutual best-response outcomes.

Stability arguments are often used to select among multiple equilibria.
This approach to the equilibrium selection problem is based on the
interpretation of an equilibrium point as a potential convention that
might arise among players interacting repeatedly. Mutually consistent
behavior is not deduced from the description of the situation, but
rather is the outcome of some evolutive process.
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An equilibrium point is unstable if it does not correspond to an
asymptotically stable fixed point of some explicit selection dynamic.
An unstable equilibrium point is unlikely to emerge as the result of
an evolutive process and is an unlikely convention. Hence, the analyst
should select from the set of stable equilibria. When there is a unique
stable equilibrium, this approach may appear to preserve the analyst’s
ability to abstract from the evolutive process itself with its undesirable
dependence on historical accident.!

However, the asymptotic stability of an equilibrium point depends
on the assumed selection dynamic (compare Lucas [1987] and Wood-
ford [1990], e.g., and see Guesnerie and Woodford [1993] for a sur-
vey of alternative stability concepts). Moreover, selection dynamics
need not converge to any fixed point corresponding to any equilib-
rium of the model. Even in simple settings it is possible to construct
examples of selection dynamics that predict cyclical or chaotic be-
havior.

A venerable selection dynamic is the myopic best-response dy-
namic, which dates back at least to Cournot’s (1838) duopoly analysis
of firms that best respond to the other firm’s last action. Alternative
selection dynamics are often used when the myopic best-response
dynamic fails to converge to a fixed point. Selection dynamics based
on a best response to slowly changing beliefs, inertial beliefs, will
often converge when the myopic best-response dynamic does not
(see, e.g., Bray 1982; Marcet and Sargent 1989; Thorlund-Peterson
1990). The selection dynamics we consider here are “relaxation algo-
rithms,” which include the myopic best-response dynamic, the par-
tial adjustment dynamic, and least-squares learning (see Sargent
1993).

Lucas (1987, p. 241) discusses stability theory based on adaptive
behavior and concludes that to be useful “stability theory must be
more than simply a fancy way of saying that one does not want to
think about certain equilibria. I prefer to view it as an experimentally
testable hypothesis, as a special instance of the adaptive laws that we
believe govern all human behavior.”

This paper examines human behavior in a generic game with multi-
ple equilibria in which the myopic best-response dynamic and inertial
selection dynamic make different predictions about stability. The in-
ertial selection dynamic makes more accurate predictions than the
myopic best-response dynamic in our experiment.

! For those who think that path dependence is a fact of life, see Van Huyck, Battalio,
and Beil (1991), Van Huyck, Cook, and Battalio (1993), and Van Huyck et al. (in
press).
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I. Analytical Framework

Let e', . . ., e" denote the actions taken by n players, where n is odd
and greater than one. Let ¢ denote this action combination, and let
M (¢) denote the median of e. The game I'(w) is defined by the follow-
ing payoff function and action space for each of these n players,
which are indexed by i:

m(ehe™) = ¢~ cyle’ — wM(e)[1 — M(o)]l, )

where w € (1, 4], ¢' € E = [0, 1], ¢~ denotes {¢!, yeim ettt
"}, ¢, and ¢, are positive parameters, and |-| is the absolute value
function. Assume that the payoff functions and feasible actions are
common knowledge.

Before we proceed with our analysis of game I'(w), two remarks on
why we chose this particular game are in order. First, in game I'(®),
a player’s best response to a given median M is b(M) = oM (1 — M),
which is a best-response function that has been widely studied in the
literature on nonlinear dynamics. The parameter o “tunes” b(M).
Figure la and b graphs b(M) for I'(2.47222) and I'(3.86957), respec-
tively. Second, we use the median to determine payoffs rather than
the sum or the mean, in order to capture the anonymity of a many-
person economy without using enormous group sizes in our experi-
ments (see Van Huyck, Cook, and Battalio [1993] for a discussion
and Rassenti et al. [1993] for a comparison).

The principle of individual rationality prescribes that a player
should not use dominated strategies. Let A(E"~') denote the set of
probability distributions on E"~! = [0, 1]""!. A strategy ¢' € E is
dominated by another strategy x' € E if, for all s™" € AE"™?), m (e,
57 < m(x', s7Y). In I'(w), ¢' in the interval (.25w, 1] are not a best
response to any element of A(E""!) and, hence, are dominated strat-
egies.

Common knowledge that players are individually rational requires
the serial deletion of dominated strategies. The set of serially undomi-
nated action combinations in game I'(w) is [0, .25w]" when w = 2 and
[0, 1 — (1/w)]" otherwise. Let U(w) denote the two-dimensional space
of serially undominated action combinations. Figure la and b graphs
U(2.47222) and U(3.86957), respectively; the set U(w) is indicated by
grey shading.

The principle of individual rationality does not make very precise
predictions in game I'(w). Requiring a mutual consistency condition
allows one to make more precise predictions. An action combination
e* constitutes a strict equilibrium if it satisfies the following mutual
best-response condition:

w(e, e71¥) < m(e'*, e i¥) (2)
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F1G. 1.—a, Graph of (M) and U(2.47222) for I'(2.47222). The intersection of b(M)
and the 45-degree line is a strict equilibrium, NE. b, Graph of (M) and U(3.86957)
for I'(3.86957); U(w) is denoted by grey shading.

for all ¢! € [0, 1] and for all i. An observed action combination is a
mutual best-response outcome if it satisfies (2).

An action combination is a symmetric equilibrium if it satisfies con-
dition (2) and assigns the same action to all the players. All the strict
equilibria of I'(w) are symmetric. Hence, it is convenient to denote
the equilibria by the ordered pair (¢, M). The requirement that ® €
(1, 4] results in two strict equilibria: a corner equilibrium (0, 0) and
an interior equilibrium (1 — (1/w), 1 — (l/w)). Figure 1 indicates
these equilibria with NE. The equilibria occur at the intersection of
b(M) and the 45-degree line.

While imposing the mutual consistency requirement has signifi-
cantly increased the precision of our prediction, it still leaves an equi-
librium selection problem. Moreover, deductive selection principles,
such as payoff dominance and symmetry, fail to reduce the set of
equilibria, since both of the strict equilibria are efficient and symmet-
ric.2 Hence, even if subjects are individually rational, giving them
common information about I'(w) is not likely to produce mutually
consistent behavior.

II. Selection Dynamics and Asymptotic Stability

If an equilibrium point is viewed as a potential convention that might
arise among the players when they interact repeatedly, then some

2 For the reader familiar with our previous work, we note in passing that the best
response to a uniform prior on M is w/6.
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F1G. 2.—a, Path of a selection dynamic for I'(2.47222) with the property that the
interior equilibrium is stable and the corner equilibrium is unstable; M denotes the
initial condition. b, Path for I'(3.86957) under the same selection dynamic as fig. 2a.
Neither equilibrium is stable.

equilibria can be ruled unstable and, hence, unlikely conventions. An
equilibrium point is unstable if it does not correspond to an asymptot-
ically stable fixed point of some selection dynamic. The selection dy-
namics we consider here are “relaxation algorithms,” which include
the myopic best-response dynamic, the partial adjustment dynamic,
and least-squares learning (see Sargent 1993).

Specifically, consider the following dynamical system:

M, = b(Mj),

e (3 e (3)
Mi=M;_ + o, (M,_, — Mj_,)

fort = 2, where 0 < o, = 1 for all ¢ and M; can be interpreted as the
expectation of the “representative agent.” For ¢t = 1, let M, = b(M}),
where M¢ is an initial condition.

An example is the myopic best-response dynamic. Suppose that
players choose their current action as a best response to last period’s
median action. Then o, = 1 for all ¢, and dynamical system (3) can
be reduced to the following difference equation:

My =oM((1-M,). (4)

This difference equation has been studied recently in Baumol and
Benhabib (1989), Boldrin and Woodford (1990), and Eckalbar
(1993).

Figure 2a illustrates the use of the myopic best-response dynamic
(4) as a selection dynamic for I'(2.47222). Notice that for an initial
condition close to the corner equilibrium, the dynamic diverges to-
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ward the interior equilibrium. However, initial conditions close to the
interior equilibrium converge to the interior equilibrium. Hence, the
myopic best-response dynamic implies that the corner equilibrium is
unstable and the interior equilibrium is stable.

This distinction between unstable and stable equilibria in I'(w) is
useful to an economist conducting a priori comparative static analysis.
If ¢' is effort, then does increasing o increase effort? The unstable
corner equilibrium (0, 0) is not a function of w, but the stable interior
equilibrium (1 — (1/w), 1 — (1/w)) is an increasing function of w.
Hence, appealing to something like Samuelson’s correspondence
principle would allow the analyst to conclude that increasing o does
increase effort (see Brock and Malliaris [1989] on Samuelson’s corre-
spondence principle).

However, increasing o globally in game I'(w) leads to complex dy-
namics under the myopic best-response dynamic. Let A(w) denote
the attractor set under the myopic best-response dynamic. For w in
(1, 3), A(w) contains the single element {1 — (1/w)}; but for w in [3,
4], the dynamics get complicated. For w in [3, 3.449499), globally
attracting two-period cycles appear. This bifurcation continues until
A4) = E.

Figure 2b illustrates the path for game I'(3.86957) under the myo-
pic best-response dynamic starting at .075, which is the same initial
condition used in figure 2a. (Simulations reported in the text were
produced by a Mathematica package available on request.) While the
path still diverges from the corner equilibrium, it does not converge
to the interior equilibrium. Instead it wanders in the space [.122,
.967]%. Neither the corner nor the interior equilibrium is stable.

There is an uncountable number of initial values yielding bounded
time paths that never repeat any past behavior in I'(3.86957) no matter
how long a set of time periods one permits the calculation to encom-
pass. This phenomenon, an aperiodic series that does not repeat it-
self, is sometimes called chaos, and the attractor set [.122, .967] is
sometimes called a strange attractor. Here it will be denoted
A(3.86957). Note that the attractor set is a subset of the set of serially
undominated actions, that is, A (»)? C U(w).

The prediction that the interior equilibrium is unstable when
equals 3.86957 depends crucially on the assumption o, = 1. In order
to characterize the local stability of the interior equilibrium for the
partial adjustment dynamic generally, let o, = a € (0, 1]. The linear-
ized system for the partial adjustment dynamic around the interior
equilibrium is v, = Awu,_,, where u, is the vector (M, — [1 — (1/w)],
M; — [1 — (l/w)]) and A is the Jacobian matrix for the system. Since
A can be diagonalized, the solution to the linearized system is
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U, =

1—l 2 - [)\'{‘1 O][a —a(2—w)] u,
o

— 5
0 M 1[l-a a-—1 - %)

1 1

where A} = 0 and Ay = 1 + a — aw are the eigenvalues of A. For
the linearized system to converge to zero, both A\¥~! and A~ ! must
converge to zero as k — «. Hence, asymptotic stability requires |1 +
a — ao| <1

To check our simulation results for the myopic best-response
dynamic, note that when a = 1 the stability condition becomes 1 <
o < 3. Hence, when w = 2.47222 the interior equilibrium is locally
stable, and when @ = 3.86957 the interior equilibrium is predicted
to be locally unstable.

When a < 1, we call the partial adjustment dynamic inertial since
it responds sluggishly to changes in the current value of M,. How
much inertia must there be in the dynamics before the interior equi-
librium of I'(3.86957) is predicted to be locally stable? Manipulating
the stability condition gives the requirement that a < 2/(w — 1). So
the interior equilibrium is stable if « < .7. While introducing inertia
can stabilize the interior equilibrium, no amount of inertia can stabi-
lize the corner equilibrium.

The final version of (3) considered here sets o, = 1/¢. Specifically,
consider the following dynamical system:

M, = bMy),

L t—1 1 (6)
Mt:_t_Mt—l-i-;Mt—l

fort =2. Fort = 1,let M, = b(M¢), where M ¢ is an initial condition.
We shall denote this dynamical system the L map, which is mnemonic
for Lucas (1987).

Figure 3 graphs the L map for our examples. Unlike the myopic
best-response dynamic, which starts each new step on the 45-degree
line, the L map starts the next step between b(M) and the 45-degree
line. The initial point of each step is denoted with a small dot. The
first step starting at M{ (denoted M in the figure) is the same for both
dynamics; compare figure 2a and b with figure 3a and b. But the
second step under the L map begins halfway between b(M¢) and the
45-degree line, and the third step begins a third of the way between
b(Mj3) and the 45-degree line and so on. The L map predicts that the
corner equilibrium is unstable and the interior equilibrium is stable
for both I'(2.47222) and I'(3.86957).
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F16. 3.—a, L map for I'(2.47222). b, L map for I'(3.86957)

The L map has the desirable property that its attractor set contains
the unique element {1 — (1/w)} for w € (1, 4]. The interior equilib-
rium is always globally stable under the L map in I'(w). Hence, one
would conclude that increasing o in I'(») will increase the observed
median level of effort, M.

III. Adaptive Behavior

We consider both the myopic best-response dynamic and the L map
to be selection dynamics rather than reasonable models of adaptive
behavior. In our view, a realistic model of adaptive behavior would
have to allow for heterogeneity and random exploration. A dynamical
system consisting of stochastic difference equations for each player
can have properties different from those of a representative deter-
ministic difference equation system. Searching through the vast num-
ber of possibilities and then actually characterizing the solution paths
or attractor sets are daunting tasks.

Fortunately, Milgrom and Roberts (1991) have developed an ele-
gant and general theory of adaptive learning that does not require
one to commit to any specific system of stochastic difference equa-
tions. A sequence of actions is consistent with adaptive learning if
player i eventually chooses only actions that are nearly best responses
to some probability distribution over the other agents’ actions, where
near zero probability is assigned to actions that have not been played
for a sufficiently long time. If behavior is consistent with this concept
of adaptive learning, then, as Milgrom and Roberts show, the ob-
served sequence of actions will converge to the set of serially undomi-
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nated action combinations (see also Bernheim 1984; Moulin 1986;
Gul 1990). One of the important results of their analysis is that con-
vergence to equilibrium can be almost solely a property of the game
being studied: “nearly everything” converges to equilibrium in Cour-
not’s duopoly model and in their general equilibrium with gross sub-
stitutes model.

If human behavior in I'(w) is consistent with adaptive learning,
then the observed sequence of actions will converge to U(w). Notice
that all the relaxation algorithms are consistent with adaptive learning
(recall figs. 1-3). While these selection dynamics make much
stronger—even implausible—assumptions about behavior, they do
make more precise predictions in I'(w). Since the area contained in
U(w) varies inversely with o, Milgrom and Roberts’s general theory
can also make very precise predictions in I'(w). In fact, as ® — 1, the
set U(w) — [0, 0]% which is the unique equilibrium of the limiting
game I'(1). Conversely, U(4) = [0, 1], which is the space of feasible
outcomes.

IV. Experimental Design

Our experiment consists of two treatments: sessions 1-2 are
G(2.47222) and sessions 3—8 are G(3.86957). The game G(w) is de-
rived from I'(w) using the parameters ¢, = $0.50 and ¢, = $1.00 in
equation (1). Payoffs were rounded to the nearest ten-thousandths
of a dollar. The sessions repeated G(w) 40 periods, which was an-
nounced at the beginning of the session. (The initial session, session
3, was run for 70 periods.)

Figure 4 is a halftone image of the main screen used in the experi-
ment. On the computer the box and two “gutters” are in blue. Hence,
we call this graphical user interface the “blue box.” Once the subject
has clicked on the blue box, he can slide the mouse on the mouse
pad and read the payoffs associated with all feasible combinations of
(¢', M). The gutters above and to the right of the blue box allow the
subject to adjust either ¢’ or M against a fixed value of M or ¢, respec-
tively. This is useful when searching for a best response to M or
checking the security of ¢'. We believe that the blue box interface is
an effective way to communicate a best-response function to under-
graduate students.

While the rotation of the mouse ball is an analog process, the moni-
tor used VGA graphics to display this information. The box formed
by the intersection of the vertical and horizontal line in figure 4 is
4 X 4 pixels; the rotation of the mouse ball moves at a ratio of
one—two hundredth of an inch per pixel, and the blue box itself is
360 x 360 pixels. Hence, the blue box interface restricts the action
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F16. 4.—Graphical user interface used to communicate the best response function.
Using a mouse, subjects can change “YOUR CHOICE” and “MEDIAN CHOICE”
independently or both simultaneously.

space to 90 feasible choices. This restricts the players to a finite action
space.

Let® = {1, ..., 90} denote the subjects’ finite set of actions. The
function f: ® — E mapping subjects’ actions into the unit interval is
f(e') = (90 — ¢')/89. Notice that this flips the best-response function
and the 45-degree line and moves the corner equilibrium to the lower
right corner of the blue box. We framed the game this way to increase
the chances of observing an interesting initial condition. Let ®" de-
note the set of all possible action combinations. There were five play-
ers in each session, so there were 90° elements in ®°.

The strict equilibria for G(2.47222) are (37, 37) and (90, 90). The
strict equilibria for G(3.86957) are (24, 24) and (90, 90). The values
for » were chosen to ensure that the interior equilibria existed in
pure strategies and, hence, remained strict given the 90 X 90 grid,
which is why we have inflicted 2.47222 and 3.86957 on the reader.
Using f to map e back to the unit interval implies that effort in the
interior equilibrium increases from approximately .5955 to .7416 as
o goes from 2.47222 to 3.86957. Both equilibria have a payoff of
$0.50 per subject per period.

When the action space is ®, the set of serially undominated actions
is {35, 36, . .., 89, 90} and {4, 5, . . ., 89, 90}, respectively. Hence,
individual rationality or behavior consistent with adaptive learning
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implies that subjects will not choose ¢' € {1, 2, . . ., 34} in G(2.47222)
and will not choose ¢' € {1, 2, 3} in G(3.86957) either initially or after
behavior has converged.

The discreteness introduced by using a graphical user interface has
some important implications for our analysis. The analysis no longer
predicts chaos since it is impossible to construct a bounded path that
never repeats any past value. There are only 90 elements in ®, so M,
must repeat itself at least once in 91 periods. Analysis of G(3.86957)
reveals that the myopic best-response dynamic converges to a stable
seven cycle when M, € ®\{1, 24, 67, 90}. The attractor set is the
sequence {6, 72, 34, 10, 59, 12, 53}. The attractor set for M, € {24,
67} is the interior equilibrium and for M, € {1, 90} is the corner
equilibrium.

The instructions were read aloud while the subjects followed along
on their monitors (see App. A for the text of the instructions). The
instructions covered the general information about the experiment
as well as the use of the graphical user interface. There were three
screens used in the experiments: the instructions screen, containing
a copy of the instructions; the record screen, where the history of
play was recorded; and the main screen, where subjects studied the
payoff matrix and made their decisions.

After the instructions, a questionnaire was given to the subjects.
The questionnaire had two sections. The first required the subjects
to use their main screen to determine the payoffs for various combi-
nations of their individual choice and the median choice for their
group. These values were a subset of the values in the table forming
a coarser grid over the payoff surface. Specifically, rows and columns
1, 15, 30, 45, 60, 75, and 90 of the payoff table were included on
the questionnaire. The second section had the subjects calculate the
median for two sets of five numbers.

The experiment was conducted in the Texas A&M University eco-
nomic science laboratory. The laboratory uses networked 386SX per-
sonal computers linked over an IBM token ring with Novell software.
Seating at the terminals was determined by lot. Forty subjects partici-
pated in the experiment, five in each session. All were recruited from
undergraduate economics courses at Texas A&M. The sessions took
about 2 hours to conduct. If the subjects coordinated on either the
corner or the interior equilibrium for all 40 periods, they would each
earn $20.

V. Experimental Results

Figures 5 and 6 report the empirical distribution function for period
1 of the G(2.47222) and G(3.86957) sessions, respectively. The data
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F16. 5.—Period 1 empirical distribution function for G(2.47222) sessions. The T-
statistic of 0.378 rejects uniform play at the 10 percent level of statistical significance.
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F1c. 6.—Period 1 empirical distribution function for G(3.86957) sessions. The T-
statistic of 0.167 fails to reject uniform play at usual significance levels.
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have been transformed back into the unit interval using f(e). Recall
that the set of strictly dominated actions in G(2.47222) is (.618, 1]
and in G(3.86957) is (.967, 1]. No subject played a strictly dominated
action in the initial period, which can be seen in the figures by noting
that the cumulative frequency achieves the value of one at .618 and
966, respectively.

Figure 5 reveals that 80 percent of the initial play in G(2.47222)
occurs between .40 and .62. When one is reading figure 5, it is helpful
to know that the figure plots the period 1 results of two sessions of
five subjects each, so each action accounts for .1 of the cum. For
example, the step to .1 at zero denotes one subject whose initial action
was consistent with the corner equilibrium. The Kolmogorov 7-
statistic for a null hypothesis of uniform play is .378, which exceeds
a critical value of .369 at the 10 percent significance level (see Conover
1980). Hence, we reject uniform play in the G(2.47222) sessions.

The period 1 empirical distribution function for the G(3.86957)
sessions is closer to the uniform distribution (see fig. 6). Recall that
the figure plots the period 1 results of six sessions of five subjects
each. The Kolmogorov T-statistic for a null hypothesis of uniform
play is .167, and the critical value is .218 at the 10 percent significance
level. Hence, we fail to reject uniform play in G(3.86957). Comparing
figures 5 and 6 leads us to conclude that the principle of individual
rationality did influence behavior in the initial period of the exper-
iment.

While four subjects chose an action consistent with the corner equi-
librium, only one subject chose an action consistent with the interior
equilibrium. Hence, we doubt that subjects imposed a mutual consis-
tency condition on their initial behavior.®> None of the sessions re-
sulted in a mutual best-response outcome in period 1.

Figures 7 and 8 graph the observed medians for sessions 1 and 2
in the phase space. Sessions 1 and 2 used G(2.47222). The initial
median, denoted M(1) in the figure, is used as an initial condition
for the L map, and the path of the L map is also graphed. The large
dots denote a pair (M,, M,,,) observed in the session, and the thick
line connecting the large dots indicates the actual sequence of play.
Note that if M, and M, were the same, then the data point would lie
on the 45-degree line at M(1); if My = b(M,), the initial data point
would lie on b(M) at the vertical ray from M(1). As the figures illus-
trate, both the data and the L map quickly converge to the interior
fixed point of the L map.

® It takes only a few seconds for someone familiar with the blue box technology to
find all the symmetric equilibria of the game. So it was certainly possible for the subjects
to check for mutual consistency.
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Behavior in session 1 results in a median consistent with the interior
equilibrium from period 4 through the end of the session and mutual
best-response outcomes from period 7 through the end of the session.
Behavior in session 2 results in a median consistent with the interior
equilibrium from period 6 through the end of the session. However,
subject 4 in session 2 wanders about—even playing a strictly domi-
nated action six times—and, hence, the session results only in a few
mutual best-response outcomes. The other four subjects are all play-
ing an action consistent with the interior equilibrium by period 12
(see App. B). As predicted by all the selection dynamics considered
above, the interior equilibrium of G(2.47222) appears to be a stable
equilibrium.

Sessions 3—8 used G(3.86957). The function G(3.86957) discrimi-
nates between the myopic best-response dynamic, which predicts that
both equilibria are unstable, and the L map, which predicts that the
corner equilibrium is unstable and the interior equilibrium is stable.
Figures 9-14 graph the observed median for sessions 3—8 in the
phase space. As the figures reveal, the observed behavior does not
contradict the prediction that the interior equilibrium is stable. More-
over, the data strongly reject the prediction that the interior equilib-
rium is unstable. Both the L map and the data quickly converge on
the interior fixed point of the L map.

Behavior in session 3 results in a median consistent with the interior
equilibrium from period 3 through the end of the session and a
mutual best-response outcome in periods 9 and 14-18 and from pe-
riod 22 through the end of the session. Behavior in session 6 results
in a median consistent with the interior equilibrium from period 22
through the end of the session, and four of five subjects give a best
response from period 26 through the end of the session. The behav-
ior in the other four sessions is bracketed by the examples of session
3, which converged quickly to a mutual best-response outcome, and
session 6, which converged occasionally to a mutual best-response
outcome. Subjects in sessions 4, 5, 7, and 8 implement a mutual best-
response outcome from period 28 to the end of the session (see App.
B).

The data clearly reject the hypothesis that the interior equilibrium
is unstable. The median in all six sessions with G(3.86957) converged
to the interior fixed point of the L map. The corner equilibrium is
unstable and the interior equilibrium is stable for both treatments in
our experiment.

Does increasing o increase the median level of effort? Initially,
sessions 3 and 8 actually have a lower median level of effort than
sessions 1 and 2 (compare figs. 9 and 14 with figs. 7 and 8). However,
the predicted relationship emerges in period 2 and is then never
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violated. The data are consistent with the a priori comparative static
prediction that increasing w increases observed effort after some tran-
sition to equilibrium.

VI. Conclusion

The inertial selection dynamic accurately predicts the behavior ob-
served in our experiment. The myopic best-response dynamic does
not. Given our results, an accurate selection theory must characterize
the interior equilibrium of I'(w) as a stable fixed point of the selection
dynamic. Observed behavior is inertial, and an accurate selection dy-
namic must reflect this inertia. Whether this inertia is increasing with
the reciprocal of time, as in the L map, is a question for future re-
search.

It is also an open question whether the L map is an accurate model
of adaptive behavior. A point theory rather than an area theory or a
distribution theory can accurately explain the observed behavior in
our experiment. Hence, one is tempted to use the L map as a model
of adaptive behavior (see also Boylan and El-Gamal [1993, p- 212],
who use a Bayesian analysis to conclude that an inertial selection
dynamic, specifically fictitious play, is “infinitely more likely” than the
myopic best-response dynamic). Marimon and Sunder’s (1993) mixed
results in favor of least-squares learning make us cautious about giv-
ing in to this temptation.

Finally, this experiment does not contradict the traditional view of
stability analysis. Behavior always converged to the unique stable
fixed point of the inertial selection dynamic. It does so remarkably
quickly. In game I'(w), it seems reasonable to abstract from the evolu-
tive process and to conduct comparative static exercises. One can be
confident that the transition to equilibrium will be brief.

Appendix A

Text File for Graphical User Interface
WELCOME!

This is an experiment in the economics of strategic decision making. Various
research foundations have provided funds for this research. If you follow
the instructions and make good decisions, you may earn a considerable
amount of money, which will be paid to you in cash.

THE LOGITECH MOUSE

You will be making choices using a Logitech mouse, which should be in the
middle of your table. If you cannot find the mouse, please raise your hand.
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Hold the mouse in a relaxed manner with your thumb and little finger on
either side of the mouse. Rest your wrist naturally on the table surface. To
move the mouse, let your hand pivot from the wrist. Use a light touch.

In order to participate in this experiment, you will need to be able to
POINT, move the cursor on to an object by sliding the mouse, and CLICK,
push any one of the mouse buttons. We will call pointing at an object and
then clicking your mouse CLICKING ON an object displayed on the screen.

In order to display the next page, slide your mouse so that the pointer is
on PAGE DOWN, located on the blue bar below, and click any button. To
review a page, CLICK ON PAGE UP.

NO TALKING

As part of the scientific method in this experiment it is important that you
remain silent and do not look at other people’s work. If you have any ques-
tions or need assistance of any kind, please raise your hand and an experi-
menter will come to you. If you talk, laugh, exclaim out loud, etc., you will
be asked to leave the experiment and you will not be paid. We expect and
appreciate your cooperation.

GENERAL

In this session there will be five participants in each experiment. There will
be 40 market periods. In each period, every participant will pick a value of
X. The values of X you may choose are the whole numbers from 1 to 90.
The value of YOUR CHOICE of X and the value of the MEDIAN CHOICE
of X chosen by all the participants within the experiment will determine the
payoff you receive for that period.

THE MEDIAN

The MEDIAN CHOICE is determined as follows. The choices made by the
five participants are ordered from smallest to largest in numerical order.
The median value is the third from the bottom or the third from the top of
the ordered choices. For example, to find the median of the five numbers—

93, 92, 94, 99, 92
—arrange the numbers in ascending order—
92, 92, 93, 94, 99

—find the third choice, either counting from the first number forward or
the last number back, of the ordered choices and that is the median value.
In this example, the median value is 93.
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MAIN SCREEN

You are provided with a screen which tells you the potential payoffs you may
receive. This screen, labeled MAIN SCREEN at the top, contains three active
boxes that may help you to make your decision. In addition, CLICKING ON
the light blue bar at the top of the screen on the word RECORD SCREEN
will take you to the RECORD SCREEN or CLICKING ON INSTRUC-
TIONS, will bring you to this INSTRUCTION screen. By CLICKING ON
the word RETURN in the lower right hand corner you can return from
these two screens to the MAIN SCREEN. Also displayed are the current
PERIOD and the current BALANCE of your earnings are displayed in the
upper corners of the screen.

The three active boxes are the large blue square, the vertical bar on its
left, and the horizontal bar above it. By CLICKING ON one of these three
boxes you can view the payoff associated with any hypothetical combination
of YOUR CHOICE of X and the MEDIAN CHOICE of your experiment.
The horizontal bar represents all the possible MEDIAN values, the vertical
bar represents all the possible values of YOUR CHOICE, and the large blue
square represents all their possible combinations. The payoff, in dollars, asso-
ciated with any possible combination of YOUR CHOICE and the MEDIAN
CHOICE of your experiment is displayed to the right of the large blue
square.

CLICKING ON any of these three boxes will add several things to the
screen display. A vertical green line and a horizontal green line intersecting
at a small yellow square to form a set of cross hairs in the large blue square.
Two small green boxes, one in the vertical bar next to the YOUR CHOICE
label on the left of the MAIN SCREEN and one in the horizontal bar under
the label MEDIAN CHOICE at the top of the MAIN SCREEN. And exact
values under the labels YOUR CHOICE and MEDIAN CHOICE at the right
of the large blue square. The vertical green line and green box in the horizon-
tal bar represent the hypothetical MEDIAN CHOICE. The horizontal green
line and green box in the vertical bar represent YOUR CHOICE. The small
yellow square is located at the intersection of the hypothetical MEDIAN
CHOICE and the value of YOUR CHOICE. Each intersection represents a-
potentially different payoff.

In a moment you will view the MAIN SCREEN by CLICKING ON the
words MAIN SCREEN in the light blue bar at the top of the screen. While
you are in the MAIN SCREEN try CLICKING ON the three active boxes.
You return to the INSTRUCTIONS by CLICKING ON the word RETURN
on the light blue bar at the top of the screen, during the actual experiment
this RETURN box will not be on the MAIN SCREEN.

CLICK ON the words MAIN SCREEN, now.

By CLICKING ON the large blue square you select both a hypothetical
MEDIAN CHOICE and a value for YOUR CHOICE to be displayed. When-
ever you return to the MAIN SCREEN from one of the other two screens
the last values you had selected will still be displayed. By CLICKING ON
either of the two bars you are selecting only one of the two values. The other
value is determined as follows.
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If you have already made a selection for both values in the current period
the last selection you made will be displayed. At the beginning of Period 1
the unselected value will be set equal to one. For all subsequent periods, if
the value of YOUR CHOICE is unselected, YOUR CHOICE will be set equal
to one (1). For all subsequent periods it is set equal to the value you selected
for YOUR CHOICE in the previous period. If the value of the hypothetical
MEDIAN CHOICE was unselected then it is set equal to one in the first
period and for subsequent periods it is set equal to the previous period’s
actual MEDIAN CHOICE.

In summary, the value of the hypothetical MEDIAN CHOICE and the
value of YOUR CHOICE are both represented in three ways. First, by a
green line in the large blue square. Second, by a green box in the horizontal
or vertical bar. And third, by a numeric display of the exact value under the
appropriate label to the right of the large blue square.

The difference in the three active boxes is in what they control. CLICKING
ON the horizontal bar allows you to change the hypothetical value of the
MEDIAN CHOICE by moving its green box to the right or left with the
mouse while leaving the value of YOUR CHOICE unchanged. CLICKING
ON the vertical bar allows you to change the value of YOUR CHOICE by
moving its green box up or down with the mouse while leaving the hypotheti-
cal value of the MEDIAN CHOICE of your experiment’s choices unchanged.
CLICKING ON the large blue box allows you to change both a hypothetical
value for the MEDIAN CHOICE and the value of YOUR CHOICE by mov-
ing the small yellow square right, left, up, down or diagonally with the mouse.
As you change the hypothetical MEDIAN CHOICE, the value of YOUR
CHOICE, or both, the representations of these values on the screen will
change to reflect these values and the payoff associated with the new hypo-
thetical combination will be displayed on the right.

IF you CLICK while in any of these active boxes the arrow cursor will
return to the screen and an ACCEPT box will appear on the right hand side
of the screen. This then gives you three options. First, it will allow you to
select a different active box by CLICKING ON that box. Second, you may
view either of the other two screens, the RECORD SCREEN or the IN-
STRUCTIONS by CLICKING ON the appropriate title in the light blue bar
near the top of the screen. The third option is to make your choice of X for
the current period.

This begins by making sure that the value you have chosen for X is cur-
rently displayed as YOUR CHOICE on the screen and CLICKING ON the
ACCEPT box, you will then have an opportunity to go back to the active
boxes and change the value of YOUR CHOICE should you make a mistake
or wish to change the value of YOUR CHOICE for the current period. This
is discussed fully in the next section, MAKING YOUR CHOICE.

MAKING CHOICES

When the ACCEPT box appears on your screen, CLICKING ON the AC-
CEPT box will bring up on the screen two CONFIRM? boxes. A red box
labeled NO and a green box labeled OK. If you CLICK ON the OK box the
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value currently displayed as YOUR CHOICE will be your choice of X for
that period. CLICKING ON the NO box cancels your choice if you wish to
return to the active boxes and change the value for YOUR CHOICE. Once
you have confirmed your choice by CLICKING ON the OK box the value
of YOUR CHOICE cannot be changed for the current period.

REMEMBER, you are only choosing YOUR CHOICE. The hypothetical
MEDIAN CHOICE that is displayed on your screen is there to inform you
of the payoffs associated with various combinations of MEDIAN CHOICE
values and values of YOUR CHOICE. The actual median, the one that along
with YOUR CHOICE determines your actual payoff, is determined by all
five of the values of X chosen by the five participants in your experiment for
that period.

THE OUTCOME

When all the participants in all the experiments have made their choices for
a period, the MEDIAN for each experiment will be calculated and the indi-
vidual payoffs for each participant will be determined. This period outcome
will be displayed on your MAIN SCREEN as follows. A red vertical line will
indicate the actual value of the MEDIAN CHOICE for your experiment for
that period and a green line the value you chose for YOUR CHOICE. The
associated payoff for this combination will be displayed on the right of the
blue square, and will be added to your balance as your EARNINGS for that
period.

The computer will display the outcome for ten seconds and then switch to
the record screen.

RECORD SCREEN

At the beginning of the experiment a loan of $5.0000 will be made to each
participant. This loan will be repaid at the end of the experiment by de-
ducting $5.0000 from each participant’s BALANCE at the end of the last of
the 40 periods, called the TOTAL BALANCE.

Should any participant’s BALANCE become negative during the course
of the experiment, the experiment will end. The $5.0000 loan will be sub-
tracted from the BALANCE at the end of that period to obtain the ENDING
BALANCE which, rounded to the nearest cent, will then be paid to you in
cash.

The record screen displays the period outcomes and updates your earnings
balance. The following information is displayed on the record screen: PE-
RIOD, YOUR CHOICE, MEDIAN CHOICE, PERIOD EARNINGS, and
BALANCE.

We will now view the record screen. It will only contain the loan since you
haven’t made any choices, but once the screen is full you can PAGE UP,
LINE UP, PAGE DOWN, or LINE DOWN to review previous outcomes.
Remember to CLICK ON RETURN to return to these instructions. CLICK
ON RECORD SCREEN to view the record screen.

During the experiment a period ends once everyone has left the record
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screen by CLICKING ON RETURN. Remember that you can always return
to the record screen from your MAIN SCREEN.

We have now completed the instructions. Again, it is important that you
remain silent and do not look on other participant’s work. At the end of the
experiment you will be paid your ENDING BALANCE, the value of your
BALANCE at the end of PERIOD forty (40) minus the $5.0000 interest free
loan, in cash.

If you have a question, please raise your hand.

Appendix B

TABLE Bl
Data

f(e') = (90 — ¢)/89

Period  Subject 1  Subject 2  Subject 3  Subject 4  Subject 5 Median

Session 1
1 35 44 35 52 75 44
2 35 40 39 . 37 40 39
3 35 38 40 37 39 38
4 90 36 41 37 37 37
5 36 37 38 37 38 37
6 38 37 38 37 37 37
7 37 37 37 37 37 37%*
8 37 37 37 37 37 37%*
9 37 37 37 37 37 37*
10. 37 37 37 37 37 37*
11 37 37 37 37 37 37*
12 37 37 37 37 37 37%*
13 37 37 37 37 37 37%*
14 37 37 37 37 37 37%*
15 37 37 37 37 37 37%*
16 37 37 37 37 37 37*
17 37 37 37 37 37 37*
18 37 37 37 37 37 37*
19 37 37 37 37 37 37*
20 37 37 37 37 37 37%
21 37 37 37 37 37 37%*
22 37 37 37 37 37 37%*
23 37 37 37 37 37 37%*
24 37 37 37 37 37 37%*
25 37 37 37 37 37 37*
26 37 37 37 37 37 37*
27 37 37 37 37 37 37%*
28 37 37 37 37 37 37*
29 37 37 37 37 37 37%*
30 37 37 37 37 37 37%*
31 37 37 37 37 37 37%*
32 37 37 37 37 37 37*
33 37 37 37 37 37 37*

34 37 37 37 37 37 37*



TABLE B1 (Continued)

Period  Subject 1  Subject 2  Subject 3  Subject 4  Subject 5 Median

35 37 37 37 37 37 37%
36 37 37 37 37 37 37%*
37 37 37 37 37 37 37%*
38 37 37 37 37 37 37*
39 37 37 37 37 37 37%*
40 37 37 37 37 37 37*
Session 2
1 42 41 90 53 45 45
2 35 35 48 42 45 42
3 36 37 35 34 45 36
4 37 38 35 40 45 38
5 37 38 37 41 45 38
6 35 38 37 37 45 37
7 37 37 37 39 44 37
8 37 37 37 35 37 37
9 37 37 37 38 37 37
10 90 37 37 31 37 37
11 37 37 37 45 37 37
12 37 38 37 37 37 37
13 37 37 37 37 37 37*
14 37 37 37 43 37 37
15 37 37 37 31 37 37
16 37 37 37 52 37 37
17 37 37 37 47 37 37
18 37 37 37 39 37 37
19 37 37 37 71 37 37
20 37 37 37 37 37 37%
21 37 37 37 32 37 37
22 37 37 37 37 37 37
23 37 37 37 40 37 37
24 37 37 37 61 37 37
25 37 37 37 55 37 37
26 37 37 37 37 37 37%
27 37 37 37 11 37 37
28 37 37 37 37 37 37%
29 37 37 37 81 37 37
30 37 37 37 39 37 37
31 37 37 37 47 37 37
32 37 37 37 37 37 37
33 37 37 37 38 37 37
34 37 37 37 37 37 37%*
35 37 37 37 37 37 37%*
36 37 37 37 33 37 37
37 37 37 37 83 37 37
38 37 37 37 49 37 37
39 37 37 37 42 37 37



TABLE B1 (Continued)

Period  Subject 1  Subject 2  Subject 3  Subject4  Subject 5 Median
Session 3
1 90 65 59 83 35 65
2 90 20 30 20 46 30
3 43 9 30 24 4 24
4 1 14 24 37 53 24
5 24 15 24 24 40 24
6 24 24 24 26 37 24
7 24 24 24 24 15 24
8 24 24 24 30 24 24
9 24 24 24 24 24 24*
10 24 24 24 25 24 24
11 24 24 24 32 23 24
12 24 24 24 25 24 24
13 24 24 24 17 24 24
14 24 24 24 24 24 24*
15 24 24 24 24 24 24*
16 24 24 24 24 24 24%*
17 24 24 24 24 24 24*
18 24 24 24 25 24 24
19 24 24 24 23 24 24
20 24 24 24 23 24 24
21 24 24 24 23 24 24
22 24 24 24 24 24 24%*
23 24 24 24 24 24 24*
24 24 24 24 24 24 24*
25 24 24 24 24 24 24*
26 24 24 24 24 24 24*
27 24 24 24 24 24 24%
28 24 24 24 24 24 24*
29 24 24 24 24 24 24%
30 24 24 24 24 24 24*
31 24 24 24 24 24 24*
32 24 24 24 24 24 24*
33 24 24 24 24 24 24*
34 24 24 24 24 24 24*
35 24 24 24 24 24 24*
36 24 24 24 24 24 24%*
37 24 24 24 24 24 24*
38 24 24 24 24 24 24*
39 24 24 24 24 24 24*
40 24 24 24 24 24 24*
Session 4
1 25 69 41 40 48 41
2 35 32 20 45 1 32
3 11 29 20 45 12 20
4 33 20 17 45 32 32
5 12 32 16 12 12 12
6 53 29 20 45 6 29
7 25 20 20 15 42 20
8 30 32 32 90 30 32
9 25 32 19 45 12 25
10 22 32 22 45 28 28
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Period  Subject 1  Subject 2  Subject 3  Subject 4  Subject 5 Median

11 20 20 17 90 28 20
12 12 20 20 36 26 20
13 25 32 30 32 26 30
14 25 14 33 14 22 22
15 17 39 24 15 24 24
16 24 24 24 24 24 24%
17 24 24 24 24 24 24*
18 24 24 24 24 24 24*
19 24 24 24 24 24 24*
20 24 24 24 24 24 24*
21 24 24 24 24 24 24*
22 24 24 24 24 24 24*
23 24 24 24 24 24 24*
24 24 24 24 24 24 24*
25 24 24 24 24 24 24*
26 24 24 24 24 24 24*
27 24 24 24 24 24 24*
28 24 24 24 24 24 24*
29 24 24 24 24 24 24*
30 24 24 24 24 24 24*
31 24 24 24 24 24 24*
32 24 24 24 24 24 24*
33 24 24 24 24 24 24*
34 24 24 24 24 24 24*
35 24 24 24 24 24 24*
36 24 24 24 24 24 24*
37 24 24 24 24 24 24*
38 24 24 24 24 24 24*
39 24 24 24 24 24 24*
40 24 24 24 24 24 24*
Session 5
1 11 45 20 40 13 20
2 11 30 50 20 20 20
3 20 32 17 10 32 20
4 90 32 28 32 32 32
5 35 22 33 9 51 33
6 11 11 90 13 41 13
7 28 35 54 9 50 35
8 21 49 18 22 38 22
9 . 25 17 29 17 36 25
10 23 28 24 28 19 24
11 20 24 26 24 19 24
12 21 24 24 28 22 24
13 24 24 25 24 24 24
14 24 24 24 24 24 24*
15 24 24 24 24 24 24*
16 24 24 24 24 24 24*
17 24 24 65 24 24 24
18 24 24 24 24 24 24*
19 24 24 24 24 24 24*
20 24 24 24 24 24 24*



TABLE B1 (Continued)

Period  Subject 1  Subject 2  Subject 3  Subject 4  Subject 5 Median

21 24 24 24 24 24 24*
22 24 24 24 24 24 24*
23 24 24 24 24 24 24*
24 24 24 24 24 24 24%
25 24 24 24 24 24 24*
26 24 24 24 24 24 24*
27 24 24 24 24 24 24*
28 24 24 24 24 24 24%
29 24 24 24 24 24 24*
30 24 24 24 24 24 24*
31 24 24 24 24 24 24*
32 24 24 24 24 24 24*
33 24 24 24 24 24 24%
34 24 24 24 24 24 24*
35 24 24 24 24 24 24*
36 24 24 24 24 24 24*
37 24 24 24 24 24 24*
38 ) 24 24 24 24 24 24*
39 24 24 24 24 24 24*
40 24 24 24 24 24 24*
Session 6
1 21 40 22 61 90 40
2 1 41 32 4 40 32
3 21 46 50 7 9 21
4 21 85 7 37 17 21
5 31 21 28 24 13 24
6 - 90 24 6 16 13 16
7 31 21 24 34 20 24
8 22 30 19 22 20 22
9 31 37 25 24 24 25
10 22 30 30 26 23 26
11 24 28 19 22 17 22
12 24 24 26 30 23 24
13 26 28 26 26 21 26
14 24 26 24 22 26 24
15 22 28 23 22 26 23
16 20 30 30 22 22 22
17 24 24 26 25 22 24
18 22 26 25 28 24 25
19 26 24 22 24 21 24
20 26 29 24 24 26 26
21 24 24 22 22 22 22
22 24 23 24 24 28 24
23 24 24 26 24 24 24
24 24 24 24 24 24 24*
25 24 15 23 24 26 24
26 24 24 24 24 24 24*
27 24 27 24 24 24 24
28 24 24 24 24 24 24%
29 24 34 24 24 24 24
30 24 24 24 24 24 24*
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TABLE B1 (Continued)

Period  Subject 1  Subject 2  Subject 3  Subject 4 Subject 5 Median

31 24 24 24 24 24 24*
32 24 26 24 24 24 24
33 24 24 24 24 24 24*
34 24 24 24 24 24 24 %
35 24 25 24 24 24 24
36 24 24 24 24 24 24 %
37 24 25 24 24 24 24
38 24 23 24 24 24 24
39 24 22 24 24 24 24
40 24 26 24 24 24 24
Session 7
1 39 45 5 24 4 24
2 27 10 28 24 41 27
3 19 13 18 24 89 19
4 34 48 21 24 25 25
5 22 15 17 22 25 22
6 28 17 17 24 23 23
7 22 17 26 20 21 21
8 23 26 19 24 23 23
9 25 22 29 24 23 24
10 25 32 17 24 23 24
11 24 20 27 24 23 24
12 24 22 24 24 24 24
13 24 24 24 24 24 24*
14 24 24 24 24 24 24 %
15 24 24 24 24 25 24
16 24 24 24 24 24 24 %
17 24 24 24 24 24 24*
18 24 24 24 24 23 24
19 24 24 24 24 24 24*
20 24 24 24 24 25 24
21 24 24 24 24 25 24
22 24 24 24 24 24 24*
23 24 24 24 24 30 24
24 24 24 24 24 24 24*
25 24 24 24 24 24 24*
26 24 24 24 24 25 24
27 24 24 24 24 23 24
28 24 24 24 24 24 24 %
29 24 24 24 24 24 24*
30 24 24 24 24 24 24 %
31 24 24 24 24 24 24*
32 24 24 24 24 24 24*
33 24 24 24 24 24 24*
34 24 24 24 24 24 24*
35 24 24 24 24 24 24 %
36 24 24 24 24 24 24*
37 24 24 24 24 24 24*
38 24 24 24 24 24 24 %
39 24 24 24 24 24 24*
40 24 24 24 24 24 24 %
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TABLE B1 (Continued)

Period  Subject 1  Subject 2  Subject 3  Subject 4  Subject 5 Median

Session 8
1 4 87 48 7 90 48
2 8 3 8 22 55 8
3 26 21 40 24 12 24
4 26 24 40 24 9 24
5 30 27 30 24 4 27
6 15 30 21 24 24 24
7 17 24 27 24 24 24
8 24 25 50 11 24 24
9 24 24 10 24 24 24
10 24 24 45 24 24 24
11 24 24 27 24 24 24
12 24 24 23 24 24 24
i3 24 24 24 24 24 24*
14 24 24 24 24 24 24*
15 24 24 24 24 24 24*
16 24 24 24 24 24 24*
17 24 24 24 24 24 24*
18 24 24 24 24 24 24*
19 24 24 24 24 24 24*
20 24 24 24 24 24 24%
21 24 24 24 24 24 24*
22 24 24 24 24 24 24%
23 24 24 24 24 24 24*
24 24 24 24 24 24 24*
25 24 24 24 24 24 24*
26 24 24 24 24 24 24*
27 24 24 24 24 24 24*
28 24 24 24 24 24 24*
29 24 24 24 24 24 24*
30 24 24 24 24 24 24*
31 24 24 24 24 24 24*
32 24 24 24 24 24 24%
33 24 24 24 24 24 24*
34 24 24 24 24 24 24%
35 24 24 24 24 24 24*
36 24 24 24 24 24 24%
37 24 24 24 24 24 24%
38 24 24 24 24 24 24*
39 24 24 24 24 24 24*
40 24 24 24 24 24 24*

* Denotes a mutual best-response outcome.
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