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We combine Nagel's “stefg* model of boundedly rational players with a “law of effect”
learning model. Players begin with a disposition to use one of thekstéps of behavior, and
over time the players learn how the available rules perform and switch to better performing
rules. We offer an econometric specification of this dynamic process and fit it to Nagel's
experimental data. We find that the rule of learning model vastly outperforms other nested
and nonnested learning models. We find strong evidence for diverse dispositions and reject
the Bayesian rule-learning modéburnal of Economic Literatur€lassification Numbers:
C70, C52, D83. ©1996 Academic Press, Inc.

1. INTRODUCTION

While there is ample evidence that people rarely choose Nash equilibrit
strategies the first time they play a given game, there is evidence that some pe
tend to learn to play a Nash equilibriuhidow do people learn to play? What
do people learn (simple behaviors or complicated rules)? How do people m:
their initial choice, and how is the information they accumulate incorporate
into the dynamic learning process? A growing literature on learning in games
addressing these questions.

* Partial funding of this research was provided by grant SBR-9308914 from the National Scier
Foundation. The author thanks Rosemarie Nagel for permission to use her experimental data for
study and for many stimulating conversations, Xioahua Lu for substantial programming and resez
assistance, and Paul Wilson for statistical consultation. The author is also indebted to Daniel Fr
man for many helpful suggestions on earlier drafts. All errors and omissions are the author’s s
responsibility. E-mail: stahl@mundo.eco.utexas.edu.

1 Cheung and Friedman (1994), EI-Garesél. (1993, 1994), Mookherjee and Sopher (1994), Roth
and Erev (1995), Van Huyogt al. (1995) to mention just a few.

2 Crawford (1995), Friedmast al. (1995), Fudenberg and Kreps (1993), Fudenberg and Levin
(1993), Jordan (1991), Kalai and Lehrer (1993), Milgrom and Roberts (1991), Rosenthal (199
Selten (1990, 1991). Selten and Buchta (1994), etc.
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FIGURE 1

In a simple adaptive behavior model, an individual is endowed with an initia
“propensity” to choose a particular behavior, and the observed payoffs for va
ious choices affect future propensities: behaviors which lead to more favorab
outcomes are more likely to be repeated in the future. This is the “Law of Ef
fect” in psychology (see Bush and Mosteller, 1955, and Roth and Erev, 1995
Simple adaptive behavior models can predict reasonably well and lead to op
mal behavior in stationary, single-decision-maker problems. However, in game
that generate nonstationary sequences of observations, such simple models
severely limited.

The main distinction between a single decisionmaker problem and a game
that an intelligent human player of a game will attempt to anticipate the actions ¢
the other players. Therefore, a successful learning model for games must en
a model of other players, as well as best-response computations.

The Bayesian approach to learning hypothesizes that playerpharg(be-
liefs) of the dynamic strategies of other players, update theees using Bayes
theorem, and choose a best response given these beliefs (e.g., Blume and Ea
1992; Jordan, 1991; Kalai and Lehrer, 1993; and Nyarko, 1991). This extreme
complicated process is highly unrealistic and there is no evidence that real peo
use it (Holt, 1993).

Rosenthal (1993) and others (e.g., Holland, 1976; Arthur, 1990, 1993; ar
Aumann, 1986) have proposed that players begin with a set of “rules-of-thumt
and that the propensity to employ a particular rule-of-thumb is reinforced a
in the adaptive behavior model. In other words, the definition of “behavior” is
broadened to include rules-of-thumb as well as simple actions.

More generally, we could consider a measurable class of functions (or rule
that map from a player’s information to the set of feasible actions. Propensitie
would be defined as a measure on this class, and the reinforcement princi
would define a learning dynamic, as illustrated in Fig. 1. Kuan and White (1994
and Chen and White (1994) investigate the general stochastic properties of st
learning dynamics. A wide variety of behavioral rules could be encompassed
such a general model. For example, maximin, maximax, and best response
uniform.

However, to operationalize such a general theory, we must address three s
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stantive issuedrirst, what is the empirically relevant class of ruleS&8cong
what are the initial propensities: Do all individuals have the same initial prope
sities, or is there significant diversity among individuals#rd, what are the
specific dynamics: how is reinforcement quantified, how much weight is give
to old information and new information, how much experimentation/search
employed, how are new rules introduced, and how significant are computatio
errors?

In this paper, we suggest an approach to these issues for strategic situat
in which each player is given a summary statistic of the other player’s choic
in the previous period of play. Our approach yields a tractable empirical moc
of rule learning, and we confront this model with data from a guessing gar
experiment. Crawford (1995) also addresses this class of games but usir
simple adaptive behavior model.

Nagel's (1995) experiment and model motivate our approach. There is a fin
number of players. Each chooses a real number in the [0,100] interval. The m
of all the submitted numbers is computed, and the player that is clogeshies
the mean wins a prize; all others get nothing. We will focus on two treatments
Nagel in whichp = 1/2 and 2/3 respectively. The game is dominance solvab
with 0 as the solution. However, in actual experiments, the mean is alwa
well above 0 and only slowly decreases over several trials. Figure 2 disple
a kernel estimate of the density function for Nagel's data using a bandwic
of 2.3 One of the striking features is that in the first period there appear to |
modes in the distribution near pGand 5(?2, suggesting that the participants
used rules-of-thumb corresponding to different depths of reasoning as sugge
by Nagel* Nagel computed a nonparametric test of this hypothesis and fou
that the period-1 choices were significantly concentrated in intervals around !
50p, 5002, and 5. Further, the written comments from the participants lenc
support to this “depth-of-reasoning” explanation.

Nagel proposed the following model of boundedly rational behaviorstde
0 rule chooses the previous mean, with 50 being the default mean for the fi
period® A player using the step-0 rule essentially has no understanding of t
game, but tends to follow the crowd. Thtepd rule chooses a best response
to the previous mean. A player using the step-1 rule essentially believes that
other players will use the step-0 rule. Tétep2 rule chooses a best response tc
the step-1 rule. A player using the step-2 rule essentially believes that all oth
will use the step-1 rule, etc.

For periods 2 to 4, it appears from Fig. 2 that the distribution becomes mc

3 We present this figure as a convenient and suggestive display of the data, not as a formally te
kernel estimate. We used a bandwidth of 2 because the resulting distribution best reveals the m
that Nagel's nonparametric tests showed were significant.

4 See also Stahl (1993) and Stahl and Wilson (1994, 1995).

5 Nagel tested and rejected 100 as the default value in favor of 50.
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FiG. 2. Kernel Estimates of Nagel Data: Bandwidth = 2.

concentrated around 58, with no strong tendency for convergence to the Nash
equilibrium at 0° Nagel performed statistical tests showing that the shift of the
distribution toward the step-2 rule is significant. On the other hand, Nagel's te

6 For periods 2 to 4, the data are divided by the previous mean and multiplied by 50y'sc&0
be interpreted as the behavioral rule of choosilidimes the previous mean in every period—i.e., a
stepk rule. This interpretation implicitly assumes that 50 is the default value for the previous mean i
period 1.
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of the prevalence of the stéprules in periods 2 to 4 fails to reject the hypothesis
that the choices were not significantly concentrated around the predictions
the step-0 to step-3 rules inclusive. It is possible, as Nagel argues, that this
failed because different behavioral rules enter after the initial period. Howev
it also could be that computational error or individual diversity increase, or th
learning behavior itself increases the likelihood of type-Il errors for this test.

Nagel's hierarchial models suggests not only a set of behavioral rules |
also suggests a set of initial propensities (or archetypal “dispositions”) for o
learning model: each archetypal disposition has the strongest propensity for
of the rules. We define a one-parameter class of such dispositions, and estir
that parameter from the data.

We also hypothesize computational errors and individual diversity within ea
type category, so the choice of a player employing the ktepe is a random
variable distributed normally with expectation equaptaimes the mean of all
players’ choices in the previous period and a standard deviation estimated fr
the data.

Our model hypothesizes that the propensities to use the various rules cha
from period to period due to reinforcement according to relative performanc
At the beginning of each period after the first, the participants know the previo
mean. Therefore, they can assess how each rule would have done, taking acc
of the potential for computational errors. Specifically, we assume that the re
vant reinforcement variable for a rule is proportional to the expected payoff
the rule, which is equal to the probability density that the rule would have ge
erated the winning number. Then, the current period’s propensity is a weight
average of last period’s propensity and the recent reinforcement. These weic
are estimated from the data and interpreted later.

Nagel finds support for an alternative “directional” learning model (similar t
that of Selten and Buchta, 1994), in which each individual’s choice is a multip
of the previous mean, and this multiplicative factor is adjusted up (down) if
was too low (high) in the previous period. We will compare this alternative wit
our model in Section 4.2. Nagel also interprets the evidence as providing ol
weak support for increasing depth of reasoning.

When confronted with the data, we find that our learning model vastly ou
performs the simple adaptive behavior model and other nested models. We"
persuasive evidence for heterogeneous initial dispositions. We strongly rej
the hypothesis that a player with a stegdisposition uses the stdprule inevery
period. In other words, a player learns more than just the previous mean wh
gets incorporated into the stégrules; he learns which rules perform better anc
switches to them. We also formulate, test, and subsequently reject a Baye:
learning model.

In Section 2 we present the formal modeling and in Section 3 we present 1
econometric methodology. In Section 4 we present the results and tests, anc
conclude in Section 5.
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2. THE MODEL

2.1. The Game

Suppose there ard players. A parametes € (0, 1) is announced at the
beginning of the first period and is fixed for all periods. At the beginning of a
period, a player chooses a real numbeAie= [0, 100]. LetX; denote the mean
of all the choices for periotl. The player whose choice is closestd® wins
a prize. If there are ties, the winner is chosen randomly with equal probabilit
from those who chose the closest number; otherwise, a player receives nothil
After the first period, every player is fully informed about the meanatiches
the mean of the previous period. There are four periods in all.

2.2. The Behavioral Rules

Letk € 0,1, ..., K index a set oK + 1 behavioral rules, and Ifi.: A —
A(A) denote theule that maps the previous mean of the choices of all players
into a probability density on the set of current actions. If the mean in périod
wasX;, then the probability density of 1 under rulek is denotedfy (X;.1; X;).

We specify that the mean d§(-; X;) is p*- X;, corresponding to Nagel’s “steig-
rule described in the Introduction. Further, we defige= 50, since 50 is the
mean of the uninformed prior.

Thus, fx(pX:; X_1) is the probability density for rul& evaluated at thex
postbest choice for periotl Since the probability that rulle would have been
the best rule to use is directly related to this density, it is an obvious candida
for aperformance measurklowever, since making a choice and evaluating pas
performance are two different operations, we want to allow for the possibility o
a different error process as well as the possibility of spillover reinforcement ¢
“nearby” rules.

To this end, letk: A — A(A) denote a probability density that has the same
expected value a§ but perhaps a different standard deviation. We will gse
as the performance measure for rkle

We must specify a family of distributions that we can identify from the ex-
perimental data. Since several participants chose extreme points (0 and 10
we cannot use a family with a zero density at the extreme points; this rules o
the beta distribution. For econometric simplicity, we choose the family of nor.
mal distributions truncated to the [0,100] interval, with meanand a standard
deviation given by

ok=S +1Ir1-6-mg for k > 0. h)

This specification of the standard deviation with absolute and relative compc
nents allows for the possibility that the standard deviation decreases as the me
decreases but does not go below a minimum level. While the theory specifi
thatm, = p*-%,_, for periodt, the(s,, r1) parameters will be estimated from the
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data;f is a constant function of the treatment paramgteé = (1— p)/(1+ p).
This value of solves the equatiofl + 6) p*™* = (1 — 6) p¥. By measuring the
relative standard deviation in units@éfone relative standard deviation below

is the same point as one relative standard deviation atmye Consequently,
r, measures the relative gap between successive behavioral rules in a ma
that is invariant tqo.

Since a step-0 type has no real understanding of the game, we allow
different parameter values for the step-0 standard deviation: nasgely s, +
ro - M. It turns out that in all models in which we included theterm, the
maximum likelihood estimate af was exactly 0, so in the interest of efficient
estimation of the other parameters of the model wesset 0 for all models
reported in this paper. We also tested and strongly rejected the hypothesis
S =S andrg =ry.

For the performance measugg we specify the standard deviation similarly
ass, +ry- 6 -mgfork > 1, andrs - mg for k = 0. We can interpret this perfor-
mance “bandwidth” as computational error in computing performance, and,
as a neighborhood reinforcement effect (i.e., second-best rules get reinfor
somewhat also).

2.3. Propensities and Dispositions

A player begins a period with a vector of propensities towarddhie1 rules:

o = (wo, . .., wk ), With the interpretation that the probability of choosing rule
k is given by exgwy)/ Zszo explw;). Since ultimately only the probabilities
matter, the equivalence classes of initial propensities can be associated with
K -dimensional simplex. Propensities for later periods will be determined by tl
dynamics specified in the next subsection. Each individual’s behavior will t
uniquely determined by his/her initial propensities and the dynamics. We w
call an individual’s initial vector of propensitiestisposition

Unfortunately, with only four periods and > 3, it will not be possible to
identify the disposition of each individual. Instead, we consider only a finite s
of dispositions. The evidence presented by Nagel suggests that a reasonabl
of dispositions is the set corresponding to Ke- 1 rules.

In specifying a disposition corresponding to the skepHe, we clearly want
the stepk rule to be the most likely rule to be chosen, but we want the othe
rules to have some positive chance of being chosen, because if they ha
zero chance of being chosen, then a wide class of learning dynamics (includ
Bayesian updating) would never give them a positive chance. With this in mir
we define a one-parameter class of prior dispositions.

Letw(k, j, t) denote the propensity of a player to use rjla periodt given
he/she has a typle-disposition. Then, we define(k,k,1) = u > 0, and
w(k, j, 1) = 0for j # k. With this specification, &ype-k dispositionwill have
aexpgu)/[K +exp(n)] > 1/(K + 1) probability of choosing the stelprule, and
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a 1/[K + exp(n)] < /(K + 1) probability of choosing a step+tule (j # k).
The parameter, which will be estimated from the data, can be interpreted ac
the strength of the initial propensities: the largeithe more likely it is that the
designated rule will be chosen over the other rules.

To summarize, we specify a one-parameter family of dispositions correspon
ing to theK + 1 rules. A disposition specifies the initial vector of propensities
to use each of th& + 1 rules. An individual with a typé-disposition is more
likely to use rulek than any other rule. Thus, an individual is fitted into one of
K + 1 types. To the extent that there is more diversity among individuals tha
theseK + 1 types, we hope that the noise parameteyssy, r1, S, ro, rz) will
capture that diversity.

2.4, The Dynamics

The law of effect asserts that good performing rules should be more likely t
be used in the future and bad performing rules should be less likely to be us
in the future. In the guessing game, there are only two outcomes (win or lose
so the appropriate performance measure is the likelihood of winning condition
onrulej: g;.

For periods > 1, we define the dynamic on propensities by:

w(kv jv t) = ﬂow(kv J9t - 1) + /81 g] (p)_(tfl; )_(I72)‘ (2)

The By coefficient represents the weight given to the most recent propensity.
0 < Bo < 1, then the propensity is discounted heavily (or forgotten readily). In
the absence of performance information, the propensities would decay towa
zero, and all rules would tend to be chosen with equal likelihood. On the othe
hand, if 8 > 1, then the propensity is accentuated in the future, and in the
absence of performance information the rule with the highest initial propensit
would tend to be used almost always. Thecoefficient represents the weight
givento current performance. The rule for whigk _; has the largest probability
density will receive the most reinforcementglfis large, then the new propensity
will concentrate on the most recent best rule, whilggifis small then new
performance information will be incorporated slowly.

Given these propensities, the probability that a player with a kyglisposition
uses rulej in periodt is defined as

ok, j,1) = explw(k, j, ) Y explw(k, £, 1)]. ©)
L

Note that because of the logarithmic specification of propensities, the prob
bilities would not be affected by the addition of a constant term to Eq. (2) fo
renormalization purposes.



BOUNDEDLY RATIONAL RULE LEARNING 311

2.5. The Log-Density Mixture Model

Leti € {1,..., N} index players, and lex(i, t) be the choice of player
in periodt. Then, conditional on having a typedisposition, the probability
density of player’s choice is

K
Pa, k) =D ok [, 1) - fxA, ); %) 4
j=0

Hence, the probability density of playis four choices (one for each period),
conditional on having a typk-disposition, is

4
PG,k =[] pd kv (5)
t=1

Let ax denote the proportion of the population of players that have altype
disposition fork € {0, 1, ..., K}. Each of these types has the potential to lear
that other rules are better.

However, it is conceivable that some players do not learn at all. Indeed, t
data reveal that several players chose 100 in rounds 3 and 4, which canno
rationalized by any rule. Rather than throw out these “outliers” from the data s
we introduce another type that chooses randomly from a uniform distribution
every period; we call such players-1” types and letr_; denote the proportion
in the populatior!. We also defineP (i, —1) = 0.01, the density of the uniform
distribution overA. Naturally, eachy, is nonnegative an}__, « = 1.

Then, the unconditional probability of playes choices is

K
P =) aP(i.k, (6)

k=1

and the log-density of the whole data setis
L) =) In(Py). )
i

3. THE STATISTICAL METHODOLOGY

The log-densityl defined by Eq. (7) is a function of the parameters of the
model: theay's, Bo, B1, i, o, S1, F1, S, 2, andrs. We seek to find values for

7 These “irrational” choices suggest that these players were more interested in aggravating t
peers than in winning. While such behavior is not itself a random draw from a uniform distributio
the —1 type behavior is a parsimonious way to capture this as well as all other behavior that is |
consistent with any of the stdprules.
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these parameters that maximizeand we will call these parameter values the
maximum density estimatesd denote them &

When we proceeded to maximide we encountered a heteroscedasticity
problem. Specifically, because the choices of the individuals decrease subst
tially over the periods, and because the data indicate a substantial decrease in
standard deviation over the periods, the densities (being divided by the stand:
deviation) are an order of magnitude larger in the last period than in the first p
riod. This imbalance means that the fourth period data have a disproportione
influence on the coefficient estimates.

To correct for this problem, we transformed the data by multiplying the choice
in periodt by 50k;_;. Thus, in terms of the transformed data, a dtepde
will generate a mean choice of p9in every period and a standard deviation of
50s,/%;_1 410 for periodt. Note that the relative standard deviation component
becomes independent of the period, while the absolute component becon
significant only in the later period. All results reported below are based on th
transformed data.

We maximizel using the simplex algorithm of Nelder and Mead (1965), using
a variety of starting values to increase our confidence that a global maximu
was achieved. The simplex method requires only function evaluations. Althouc
it is not very efficient in terms of the number of function evaluations required
the method is easier to implement than other algorithms sometimes used w
mixture models, such as the EM-algorithm.

Nonparametric confidence intervals for parameter estimates were estimat
using the bootstrap percentile method described by Efron (1982, Chap. 1(
While itis possible to obtain conventional standard error estimates by evaluatir
the information matrix derived from the log-likelihood function, interpretation
of t-ratios obtained from these estimates is problematic due to the nonnormali
of the underlying distributions.

The bootstrap method is based on the notion of replicating error processes
resampling estimated residuals. Since our model is a probabilistic choice mod
residual terms are not explicitly estimated, and so the simulation step requir
some modification. We firstmaximize the log-likelihood, Eq. (7), using the actua
dataset to obtain a vector of parameter estimgte¥hen, to generate pseudo-
dataxs for each player, a uniform [@] pseudorandom deviate is generated
via the multiplicative congruential method and compared to the estimgtes
ke{-1,0,...,3}, todetermine the player’s disposition type. If the type- 5
then a uniform [0,100] pseudorandom deviate is generated for every period ast
player’s choice. Otherwise, a uniform [0,1] pseudorandom deviate is generat
and compared to the(k, j, 1), using/t, to determine the rule used by the player
for period 1. If the rule is step-(k > 0), then normal pseudorandom deviates
(with mean 5@ and standard deviation®) are generated until one lies in the
[0,200] interval, and this one becomes the player’s choice.

Sequentially, for periods= 2, 3, and 4 and dispositioris> 0, the propensity
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weightsw(k, j, t) are computed according to the dynamic, Eq. (2), ugirichen,
auniform [0,1] pseudorandom deviate is generated and comparedtdthet)

to determine the rule used by the player for pertodjiven the disposition
type already determined (above). If the rule is stefk > 0), then normal
pseudorandom deviates (with meam equal top* times the mean of period
t — 1 of the pseudodata and standard deviatignare generated until one lies
in the [0,100] interval, and this one becomes the player’s choice.

Since the original data consist of seven sessions with differing sizes and tre
ments, we simulate seven sessions of pseudo-data with the same numbe
players and the same treatment as in the original. Once seven sessions of pse
choicess have been simulated, the model is reestimated using these pseudo-
to obtain a bootstrap estimafe. Then the process is repeated a large numbe
of times to producé bootstrap estlmateS/Ss}s 1 which approximate the sam-
pling distribution of the original estimatog, Let 3(j) andBs(j) denote thejth
elements off andps, respectively. Nonparametrlc 95%-confidence intervals fo
B(j) are obtained by sortm{;BS(J)}S=1 by algebraic value and then deleting
0.025x Svalues from each end of the sorted array; the new endpoints give t
confidence interval. In the results reported below, we cl$se1000 to ensure
adequate coverage.

The bootstrap estimates are also used to compute standard error estimate
“t-ratios” which are reported below. The bootstrap standard-error estimates
obtained by computing the sample standard deviatiofBgfi )}S_;- As noted
earlier, the interpretation afratios and standard errors is problematic due to th
nonnormality of the underlying distributions.

Since the model presented in Section 2 explicitly includes the treatment |
rameterp, we maximizelL for the pooled data from two treatments: one with
o = 1/2 and the other withh = 2/3. We present tests for treatment effects ir
Section 4.4. The first treatment consisted of three separate experimental ses:
with a total of 48 players, while the second treatment consisted of four sessi
with a total of 67 players. (See Nagel for the details of the experiment.)

4. RESULTS

We first present the model with = 3, i.e., step-0 to step-3 behavioral rules.
To simplify the presentation, we first consider the test of the hypothesis tf
the parameters of th& andgk functions are the same: i.ep, = 5, 1, = ry,
andrs = ro. The maximized value of the unrestricted log-density function wa
304.528, while the maximized value of the restricted log-density function wi
301.928. Twice the difference is 5.200, which has a chi-square distribution w
3 degrees of freedom, giving prvalue of 0.158. Thus, we fail to reject the
hypothesis. In other words, we have discovered that a single error process
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TABLE |
Parameter Estimates of Model wikh = 3

Estimate Std Dev  t-Ratio 95% Conf. Interval

a1 0.0566 0.0240 2.362 0.0153 0.1118
ag 0.4153 0.0713 5.825 0.2749 0.5520
a1 0.2109 0.0672 3.142 0.0839 0.3375
ap 0.2787 0.0633 4.403 0.1477 0.4038
a3 0.0384 0.0342 1.125 0.0000 0.1177
ro 0.5168 0.0612 8.444 0.4086 0.6607
ry 0.9469 0.1080 8.769 0.7182 1.1471
S1 0.1356 0.1333 1.017 0.0000 0.4811
Bo 0.6037 0.1331 4.536 0.3391 0.8630
Jeil 0.1721 0.0340 5.060 0.1201 0.2549
m 3.154 1.132 2.787 2.015 6.237

Estimated Maximum Log-Density = 301.928.

account for diversity in both the choice mechaniéfy) and the reinforcement
mechanism(gy). Our remaining analysis imposes the restriction tiat s;,
r, =rq, andrz =ry.

Table | presents the maximum density estimates of the parameters for tt
model. The estimated proportions of the initial disposition types in the populatio
(the ’s) are all positive. For types -1, 0, 1, and 2, the lower bound of the
95% (and 99%) confidence interval for thés is strictly positive; hence, we
can conclude that thesegs are significantly different from zero at all normal
significance levels. (We will return to the issue of the statistical significance ©
a3 momentarily.) The relative standard deviation estimate for the step-0 rule
fo, is 51.7%, while the relative standard deviation estimate for the higher ste
rules,f; - 0, is 31.6% and 18.9% fgs = 1/2 and 2/3 respectively. The absolute
standard deviation estimatg, is 0.2, and so becomes a factor only in periods 3
and 4 when the average choices become small also. To test the significéfce of
we estimated the model under the restriction hat 0, and twice the resulting
log-likelihood ratio was 14.774, which hagpavalue less than.2 x 10~4; thus,
we conclude thag; is significantly different from 0.

The estimatgi = 3.15 means that the probability of a player behaving ac-
cording to his/her true disposition in period one is 0.887, while the probability
of any other behavior is 0.038. Thus, with an initial disposition toward ktep-
rule, that rule is 23 times more likely to be used than any other rule.

The dynamic parametergd and ;) are both positive and less than 1. Thus,
the past propensity tends to be discounted and learning is slow. Noting that t
maximum density of a normal distribution with standard deviation1/v/27 o,
and given the parameter estimates $pandr;, the maximum density fogy
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ranges from 4.97 to 18.9, ghgx ranges from 0.86 to 2.22, allowing substantial
switching to the best-performing rule.

Table Il displays the estimatedk, j, t) functions by session and by period. It
is evident from this table that there is substantial learning of which rules perfol
best. In the first period, each dispositional type has a strong propensity tow
its own type behavior. In periods 2 and 3, since the step-2 rule performed bes
the previous period, there is a strong tendency for each type to switch to rule
In period 4, this trend toward rule 2 continues for sessions 1, 4, 6, and 7, wt
there emerges some tendency toward rule 3 for sessions 2, 38and 5.

We turn now to the issue of whether thhgparameter estimate with zero as its
left-hand endpoint of the 95% confidence interval is significantly positive or nc
First, we separately estimate the respective restricted model (with the param
set to zero) and calculate the likelihood-ratio statistic. Twice the difference
the maximized log-density function is 1.320. If this statistic were distribyted
with one degree of freedom, then we would conclude that it is not significant
different from zero. Unfortunately, the likelihood-ratio statistic has unknow
distribution under the null hypothesis since the null values of the paramets
are on the boundary of the parameter space (see Everitt and Hand, 1981,
Titteringtonet al., 1985). Conventional Wald and Lagrange multiplier tests als
have unknown distributions at the edge of the parameter space.

To circumvent this problem, we use the bootstrap procedure to approxim
the sampling distribution of the likelihood-ratio statistic. The choice data we
simulated as outlined above for the bootstrap procedure (efgeRticdwas used
to simulate the pseudo-data under the null hypothesis). Both the restricted
unrestricted models were estimated on these psuedo-data yielding maximi
log-likelihood valued. andL? . respectively. These values were then uset

restricted free

to compute a bootstrap estimate of the likelihood-ratio statigtic= 2(L}., —

rsticted- 1HE entire process was repeated 1000 times to produce bootst
estimates{ 1% Since these values approximate the sampling distributic
of the original likelihood-ratio statistic, it is straightforward to determine the
significance of the original likelihood-ratio statistic by first sorting the value
and then determining the percentile of the original statfstic.

The bootstrap results for the = 0 hypothesis indicate that the 5% critical

value for the likelihood-ratio statistic is 2.844, and that 1.320 hasvalue of

8 Therefore, it did not seem reasonable to consitler 3.

9 Our bootstrapped hypothesis test is methodologically identical to the Monte Carlo approach ¢
ployed by Aitkenet al. (1981), who in effect used only 19 bootstrap replications. Hall (1986) provide
theoretical results which show that using a small number of replications in the bootstrap may incre
the probability of type-Il errors. Several authors have suggested using at least 100 replications
testing null hypotheses regarding parameter values, and as many as 1000 replications for constru
confidence intervals. Note that merely examining the confidence interval ignores the variation in
other parameters; thus, the bootstrapped likelihood-ratio statistic provides a more powerful test.
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TABLE I
Rule Probabilities (k, j, t)

Disposition Step 0 Step 1 Step 2 Step 3
All Sessions: Period 1

0 0.8865 0.0378 0.0378 0.0378

1 0.0378 0.8865 0.0378 0.0378

2 0.0378 0.0378 0.8865 0.0378

3 0.0378 0.0378 0.0378 0.8856

Session 1

Period 2

0 0.4917 0.0834 0.3517 0.0732

1 0.0692 0.5292 0.3324 0.0692

2 0.0283 0.0322 0.9113 0.0283

3 0.0732 0.0834 0.3518 0.4916
Period 3

0 0.1861 0.0723 0.6757 0.0659

1 0.0573 0.2219 0.6567 0.0640

2 0.0253 0.0310 0.9154 0.0283

3 0.0581 0.0713 0.6657 0.2049
Period 4

0 0.0895 0.0595 0.7974 0.0537

1 0.0440 0.1174 0.7857 0.0529

2 0.0255 0.0339 0.9100 0.0306

3 0.0443 0.0590 0.7902 0.1065

Session 2

Period 2

0 0.5842 0.1265 0.2124 0.0770

1 0.0710 0.6929 0.1733 0.0629

2 0.0507 0.0737 0.8308 0.0449

3 0.0923 0.1341 0.2252 0.5485
Period 3

0 0.2440 0.1014 0.4003 0.2543

1 0.0735 0.3042 0.3805 0.2418

2 0.0456 0.0597 0.7448 0.1499

3 0.0559 0.0734 0.2897 0.5810
Period 4

0 0.0728 0.0442 0.2223 0.6608

1 0.0361 0.0877 0.2205 0.6557

2 0.0306 0.0372 0.3751 0.5571

3 0.0224 0.0272 0.1367 0.8138
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TABLE Il
Continued

Disposition Step 0 Step 1 Step 2 Step 3

Session 3
Period 2
0 0.4904 0.0839 0.3545 0.0712
1 0.0688 0.5305 0.3337 0.0670
2 0.0280 0.0322 0.9125 0.0273
3 0.0738 0.0848 0.3582 0.4832
Period 3
0 0.1954 0.0738 0.6405 0.0904
1 0.0603 0.2272 0.6244 0.0881
2 0.0275 0.0328 0.8995 0.0402
3 0.0583 0.0695 0.6034 0.2687
Period 4
0 0.0780 0.0434 0.2563 0.6223
1 0.0388 0.0866 0.2552 0.6195
2 0.0320 0.0357 0.4213 0.5110
3 0.0246 0.0274 0.1618 0.7862
Session 4
Period 2
0 0.5955 0.1349 0.1958 0.0737
1 0.0701 0.7167 0.1549 0.0583
2 0.0550 0.0837 0.8156 0.0457
3 0.0970 0.1475 0.2141 0.5414
Period 3
0 0.2791 0.1408 0.5117 0.0684
1 0.0795 0.3993 0.4598 0.0615
2 0.0462 0.0736 0.8444 0.0358
3 0.0924 0.1471 0.5348 0.2257
Period 4
0 0.1321 0.1045 0.7134 0.0500
1 0.0636 0.2014 0.6869 0.0481
2 0.0400 0.0634 0.8663 0.0303
3 0.0671 0.1062 0.7250 0.1017

0.262. Thus, at the 5% confidence level, we cannot reject the hypothesis 1
a3 = 0 (i.e., that there are no step-3 dispositions in the sample population). N
that, despite this conclusion, step-3 behavior emerges from learning in three
of seven sessions.
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TABLE Il
Continued

Disposition Step 0 Step 1 Step 2 Step 3

Session 5
Period 2
0 0.5654 0.1132 0.2504 0.0710
1 0.0722 0.6521 0.2148 0.0609
2 0.0432 0.0581 0.8624 0.0364
3 0.0911 0.1225 0.2710 0.5154
Period 3
0 0.2673 0.0950 0.3755 0.2622
1 0.0828 0.2933 0.3673 0.2565
2 0.0520 0.0584 0.7285 0.1611
3 0.0612 0.0687 0.2715 0.5986
Period 4
0 0.1049 0.0520 0.2254 0.6177
1 0.0524 0.1042 0.2255 0.6179
2 0.0447 0.0443 0.3846 0.5264
3 0.0335 0.0332 0.1439 0.7894
Session 6
Period 2
0 0.5207 0.0830 0.3212 0.0751
1 0.0752 0.5404 0.3115 0.0729
2 0.0324 0.0347 0.9015 0.0314
3 0.0786 0.0842 0.3257 0.5116
Period 3
0 0.2228 0.0745 0.6166 0.0862
1 0.0700 0.2332 0.6114 0.0855
2 0.0324 0.0342 0.8938 0.0396
3 0.0683 0.0721 0.5964 0.2633
Period 4
0 0.1746 0.1492 0.5943 0.0818
1 0.0821 0.2813 0.5596 0.0770
2 0.0579 0.0990 0.7889 0.0543
3 0.0877 0.1500 0.5976 0.1647

4.1. Comparison with Alternative Nested Models

4.1.1. The No-Rule-Learning HypothesisWe can formally test the hypothesis
of no “rule learning” by restrictinggy = 1 andg; = 0. The maximum density
estimate ofu is 1.81, implying initial dispositions that have 67% probability of
true type behavior and a 11% probability of each other type of behavior. Not
that the restricted model still permits learning in the sense of incorporating ne
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TABLE Il
Continued

Disposition Step 0 Step 1 Step 2 Step 3

Session 7
Period 2
0 0.5459 0.1017 0.2829 0.0695
1 0.0728 0.6116 0.2534 0.0622
2 0.0378 0.0473 0.8827 0.0323
3 0.0872 0.1091 0.3034 0.5004
Period 3
0 0.2483 0.1134 0.5767 0.0616
1 0.0732 0.3331 0.5364 0.0573
2 0.0379 0.0547 0.8777 0.0279
3 0.0817 0.1178 0.5987 0.2018
Period 4
0 0.1175 0.0761 0.7489 0.0575
1 0.0577 0.1497 0.7361 0.0565
2 0.0347 0.0450 0.8863 0.0340
3 0.0588 0.0762 0.7498 0.1153

information into a fixed rule, but no systematic switching that depends on p:
rule performanceé® The maximized value of the restricted log-density functior
was 263.210. Twice the difference is 77.436, which givert distribution with

4 degrees of freedom would haveavalue less than 1G5; hence, under thg?
assumption, we would strongly reject the hypothesis of no rule leathing.

4.1.2. Simple Adaptive Behavior The simple adaptive behavior model, men-
tioned in the Introduction, is nested within our mod&):= 1, 81 = 0, u = o0,
anday = O fork # 1. That s, there is only the step-1 rule, hence no learning ¢
rules, only updating of this step-1 rubg:; = (1—A) pX; + AX;, wherexg andxg
are initialized to 502 Because of the outliers, we also include- & type in the
model. The maximized log-density function is 115.359, which is enormous
less than our model. Thus, we can strongly reject the simple adaptive beha
model in favor of our model.

10 The random iid switching allowed by theparameter can be suppressed by setiirg co; doing
this, the maximized log-density function drops to 224.364.

11 Given our experience, bootstrapping will not alter this conclusion, so we did not expend t
considerable resources to bootstrap this test.

12|t ) > 0, then this adaptive expectations model is not nested; however, the maximized log-den:
estimatel. is 0, so the estimated model is nested. Since the corresponding likelihood ratio statisti
so large, the issue of the number of degrees of freedom can be resolved liberally without affecting
conclusion.
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4.2. Comparison with Alternative Non-nested Models

4.2.1. Homogeneous vs Heterogeneous Dispositior@@onsider aiomogeneous
rule-learning modelvhich differs from our mixture model only in that each par-
ticipant is assumed to be one of two types: typk(defined as before) or typge

for “learner.” All learners are assumed to have the same initial disposition. Le
vk denote the probability that the latter type uses the ktege in period one.
After period one, learning is assumed to occur according to the same dynan
(Bo, B1) and the same noise parametérs s, r1). (The four new parameters
replace the: parameter of our mixture model, and we also elimirate . ., a3,
leaving a total of eight parameters to be estimated.) The maximized log-densi
value was 294.635, which is less than the maximized log-density value of tf
heterogeneous mixture model by 7.293. Since these models are not nested,
cannot use &? test of significance.

Therefore, we conducted a Monte Carlo simulation of the likelihood ratic
statistic (Schork, 1992). Similar to the bootstrap procedure discussed above,
generated 1000 pseudo-data sets using the parameter estimates of the alte
tive homogeneous rule-learning model. For each pseudo-data set, we estime
the original model and the alternative model and computed the log-likelihoo
difference. These Monte Carlo results indicate that the 5% critical value of th
log-likelihood difference is 1.110, and since the largest simulated log-likelihoot
difference was 5.774, the statistic 7.293 hag-@alue less than 0.001. Thus,
we have strong evidence in favor of heterogeneous dispositions as opposec
homogeneous dispositions.

4.2.2. Adaptive Ratio-Forecasting The simple adaptive behavior model con-
sidered in Section 4.1.2 did not perform well for reasons similar to why simi:
lar price-level forecasting predicts badly in an inflationary economy. Since th
meanx; is falling, it would be better to attempt to forecast the rate of fall:
y(t + 1) = X1/X. We call thisadaptive ratio forecastingand specify a one-
parameter forecasting rule:

yt+1) = A%/%_1+ @A —1)y@®),  with y(1) = 1 and%, = 50.

The choice is the best response to this forecast: = py (t + 1)%. We also
include the—1 type.

The maximum log-density function for this model is 190.132, which is a
substantial improvement over simple adaptive expectations. However, this is si
substantially less than our model, and while this alternative is not nested withi
our model, the difference is large enough to persuade us (without conductir
Monte Carlo simulations) to reject adaptive ratio forecasting in favor of oul
model.
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4.2.3. A Two-Lag Forecasting Rule Recognizing that the class of rules in our
model use only the most recent mean choice, we decided to investigate a m
consisting of a type that operates like the step-1 rule in the first period, k
thereafter uses the two most recent means. For perod, the expected mean
of the population for periotl 4 1 is given

Xe(t + 1) = )‘-l)_(t + A-Z)_(tfl'

In addition, we included a1 type. The maximized log-density function was
216.805, an improvement over the above alternative, but still substantially Ie
than our model.

4.2.4. Nagel's Learning Hypothesis Nagel (1995) suggested a qualitative “di-
rectional” learning model in which each individual’s choice is a multiple of the
previous mean, and this multiplicative factor is adjusted up (down) if it was tc
low (high) in the previous period. This notion is similar to our learning mode
in that players who start by using the step-0 rule will eventually use a low
multiplicative factor, and players who start by using the step-3 rule will tend 1
use a higher multiplicative factor in periods 2 and 3 (and sometimes in peri
4 as well). To make a rigorous comparison, we must first develop a parame
ized version of Nagel's suggestion. We will include a typk to accommodate
outliers, as we did in our model.

For all other players, we assume that in the first period they use one of f
stepk rules,k =0, 1, ..., 3, and letwx denote the proportion using the stiep-
rule. Then, the probability of playeis first period choice is

K
Bl D =) e filx(i, 1); 50), ®
k=0

where f () is the same as in our model. Roe 2, 3, and 4, the expected choice
of playeri is y (i, t)%_1, where

yi, ) =rp@i,t—1) + A —)pX_1/%_» and  y(,1) = x(i, 1)/50.
9
In other words, the player adjusts his/her multiplicative factor in the direction «
the most recent best factor. We specify that the chricgt) is distributed as a
normal random variable, truncated to the [0,100] interval, with me@nt)x;_;
and standard deviatian=s+r - y (i, t)X;_;.

There are 10 parameters to estimate (feig; ro, S, r1, S, r, andi). The
maximized log-density is 267.705, which is a substantial improvement over t
other alternative models, but still 34.223 less than our model. To investigs
how significant this difference is, we conducted a Monte Carlo simulation
this likelihood ratio statistic (as described in 4.2.1). These Monte Carlo resu
indicate that the 5% critical value of the log-likelihood difference-i51.063,
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and since the largest simulated log-likelihood difference was 10.679, the statis
34.223 has g-value less than 0.001. Thus, we reject the directional learnin
hypothesis in favor of our model.

4.2.5. Testing for StegtBehavior We also considered the model with a step-4
behavioral rule (i.e.K = 4). For that model the maximized value of the log-
densityL was 301.895, which is slightly less than the log-density with= 3
(301.928). Furthermore, the maximum density estimate,ofvas identically
zero. Note that these models are not nested since the set of rules as well as
number of dispositions changes; hentegloes not have to decrease in going
from K = 4 to K = 3. On the contrary, by concentrating thdunctions on a
smaller set of rules, the data are fit better, &ndcreases by 0.033.

To test the significance of this difference, we conducted a Monte Carlo simt
lation of this likelihood ratio statistic (as described in 4.2.1). These Monte Carl
results indicate that the 5% critical value of the log-likelihood difference is 13.08
and since the smallest simulated log-likelihood difference was 0.017, the statis
—0.083 has gp-value less than 0.001. Thus, we can reject the hypothesis th:
K = 4 in favor of the hypothesis th# = 3.

4.3. Comparison with Bayesian Rule Learning

By modifying the reinforcement function of our model, we can transform
the model into one with Bayesian rule learning. Specifically, if insteag] af
Eq. (2) we use logf;), then the rule probabilities become

o 9k, £t = Do fi(t — DA

Then, specifyinggy = B1 = 1, Eq. (8) becomes Bayes formula for the posterior
probability that rulej is best conditional on the periad- 1 observation and the
prior belief for period — 1. In other words, this modified model allows players
to have different priors but then update according to Bayes rule.

When we estimate this alternative model wigh and 8; unrestricted, we
find a maximized log-density of 293.284, which is less than our original mode
(301.928), indicating that our specification of the reinforcement function fits
the data bette'? The maximum density estimates g§ and g, are 0.406 and
0.717 respectively. Thus, relative to Bayes rule, the participants in this expel
ment discounted the past too much and did not give adequate weight to curre
performance.

Restricting8y = 81 = 1, the maximized log-density falls to 280.993. Twice
the difference is distributeg? with 2 degrees of freedom, and hap-aalue less

ok, j,t) =

®

13 Our Monte Carlo simulation indicates that this difference is statistically significant at all commonly
accepted levels.
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TABLE IlI
Treatment Effects

p=1/2 p=2I3 Combined

a1 0.0643 0.0464 0.0566
@0 0.3168 0.5200 0.4153
a1 0.1855 0.2185 0.2109
7] 0.3765 0.2022 0.2787
a3 0.0568 0.0129 0.0384
ro 0.4996 0.5301 0.5168
r 0.8132 1.052 0.9469
S 0.1753 0.0001 0.1356
Bo 0.4426 0.7076 0.6037
B1 0.1520 0.1842 0.1721
“w 5.132 2.500 3.154

L 140.930 167.075 301.928

No. of Subjects 48 67 115

than 5x 10°%. Therefore, we strongly reject the Bayesian rule learning mode

One might object to this formulation of a Bayesian rule learning model for tf
following reason. Suppose players experiment in the first period. Then, our id¢
tification of their prior would be contaminated, and the restriction fhat 1
would be unwarranted, especially for the first period. To investigate this pc
sibility, we reestimated the model allowirgy to be less than or equal to one
for the update from period 1 to period 2, but restricted to equal one for all su
sequent updates. The maximum density estingateas equal to one, clearly
demonstrating that this modification does not improve the Bayesian rule lea
ing model. We therefore reject both formulations of Bayesian rule learning
an explanation of this data.

4.4, Treatment and Session Effects

Does our model fully account for the effect p? Since the data involve 48
players with theo = 1/2 treatment, and 67 players with the= 2/3 treatment,
we can formally test treatment effects. The results are displayed in Table |
Since 2x [L 1z + L3 — L] = 14.156 has g2 distribution with 10 degrees of
freedom and g-value of 0.166, we cannot reject the hypothesis of no treatme
effects. Thus, the effect of the treatment parameter of behavior appears tc
adequately captured by the theory.

We can ask whether all sessions in one treatment were statistically indist
guishable. To do this, we estimated the model on each session separatel
priori we might expect some differences to show up since (1) there are fewer
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servations per session upon which to estimate the 10 parameters to the efficiel
of the estimates declines, and (2) extensive data mining enhances the chance
type-Il errors.

Indeed, we canreject atthe 5% level the hypothesis that ail thel /2 sessions
are identical; on the other hand, we cannot reject any one of the ghred/2
sessions as being statistically different from the popled 1/2 group** Further,
we cannot reject at the 5% level the hypothesis that alptke2/3 sessions are
identical, and we cannot reject any one of the foue 2/3 sessions as being
statistically different from the pooled = 2/3 group.

Summing the session-by-session maximum density estimates and compar
this sum to the pooled data for both treatments (all 7 sessions), we can rejec
the 5% level the hypothesis that all the sessions are identical; on the other ha
on an individual session basis we can reject only Session 1 as being statistice
different from the pooled data.

Because Nagel's data include only four observations per player, it would nc
be possible to obtain useful estimates of individual player differences (such :
learning rates), so the theoretical model proposed incorporates individual diffe
ences only through the four archetypal initial dispositions. Given this constrain
we would expect that individual differences among the players might manife:
themselves as differences among sessions. Thus, we are comfortable with th
test results.

4.5. Relative Expected Performance of Disposition Types

Given our estimated model, what would be the expected payoff to a playe
with a disposition typek in a large population of players? To answer this, we
simulated 100,000 runs of the experiment (like the bootstrap procedure) al
recorded the winners by disposition type. Table IV shows the results. The type
disposition which uses the step-2 rule initially has the highest expected payo
The type-1 disposition is in second place; type-0 and type-3 dispositions a
essentially tied for third place.

4.6. Descriptive and Predictive Performance

While our model achieves the maximum log-likelihood density of any model
that still does not tell us how well the model fits the data, and while Table I
shows the estimated behavior of the rule probabilitigs if does not show us
the corresponding differences in the real behavior. If we know the true initia
dispositions of each participant, then we could average the choices for al ster
types and plot these averages over time to get a visual picture of the behavio
types. However, the best we can do is compute the Bayesian posterior probabil

14 We can reject Session 1 at the 10% level.
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TABLE IV
Expected Payoff by Disposition Type

Type No. by Type Wins by Type Exp. Payoff
-1 650539 33119 0.0509
0 4774720 898157 0.1880
1 2425533 585512 0.2414
2 3203913 1190313 0.3715
3 442543 92899 0.2099
Totals: 11,500,000 2,800,000

thati had a stepk disposition:
&k = aP(i, k)P, 9

whereP(i, k) and P* are given by Egs. (5) and (6) evaluated at the estimate
parameter values. Since there are five valuels fo{—1, O, . . ., 3}, but only four
observations per participant, these calculated posterior probabilities contain li
information individually. However, consider the following aggregation. As ir
Section4.2.2and 4.2.4, lgti, t) = x;;/%_; denote participants multiplicative
adjustment factor relative to the previous mean. Then, let

Pdt) = (Z&ik : y(ht) / (Z &ik>, (10

which is the calculated population-averaged multiplicative adjustment factor f
a stepk disposition, using the posterior probabilities as weights. Note that tf
denominator is an estimate of the number of participants with aatiegposition.

If the model fits perfectly, then in period one we would hayél) = ok (for

k > 0), with gradual convergence with experience.

Figure 3 shows these plots disaggregated by treatmenrtsl/2 and 2/3) for
k € {0, 1, 2, 3}. In period 1, the (1) values correspond well to their theoretical
values; noting this, it is easy to trace out each #eprve. While step-2 and
step-3 behaviors are not dramatically different, step-0, step-1, and the m:
of steps-2&3 behaviors are quite distinct for the first two periods, and the
differences become less distinct for periods three and four as predicted by
model.

We also computed the theoretical expected values and standard deviatior
(1), given our parameter estimates and the observed nigalmscomparing
these theoretical values with those of Fig. 3, sipge) is also a random variable
of unknown distribution, we use a 1% significance level to compensate for t
increased likelihood of false rejection. Each of the 32 points plotted in Fig.
corresponds to an hypothesis thiatt) = y«(t); only two are rejected at the 1%
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level. If these tests were independent, the probability of two or more rejectior
would be 0.041. Therefore our model appears to fit the data well.

5. CONCLUSIONS

We have specified a “law-of-effect” learning model in which players use one
of a finite number of behavioral rules from Nagel’s stepierarchy. The ini-
tial vector of probabilities of using the rules is called a disposition, and we
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TABLE V
Summary of Maximized Log-Likelihood Density Estimates

Model Section L
Rule-learning K = 3) 4.0 301.928
Rule-learning K = 4) 425 301.895
Homogeneous rule-learning 421 294.635
Unrestricted “Bayesian” 4.3 293.284
Bayesian rule-learning 4.3 280.993
Directional learning 424 267.705
No-rule-learning 411 263.210
Two-lag forecasting 4.2.3 216.805
Adaptive-ratio forecasting 4.2.2 190.132
Simple adaptive behavior 4.1.2 115.359

hypothesize that associated with each rule is a disposition type for which 1
associated rule is the most probable rule. The learning dynamic specifies that
propensities of the better performing rules increase while the propensities of
worse performing rules decrease. We then confronted this model with Nage
experimental data.

We found that a model with step-0 to step-3 rules plus a completely randc
nonlearning type fits the data better than a model with step-0 to step-4 ru
plus a completely random nonlearning type. Further, we could not reject t
hypothesis that the initial dispositions were confined to the step-0 to step-2 rul
Nonetheless, over time some participants tend to switch to the step-3 rule. -
estimated dynamic parameters indicate that the initial disposition is discoun
substantially. Thus, while over a third of the population begins with random ple
they quickly abandon that rule the better performing step-2 rule. On the otf
hand, a type-2 disposition has the greatest expected payoff over four period
play.

There is strong evidence of rule learning as opposed to simple updating ad
tation. We examined a model with a homogeneous disposition for all participa
and rejected it in favor of heterogeneous initial dispositions. Our model perfort
vastly better than the simple adaptive behavior model and better than two v:
ants of adaptive behavior. We developed a parameterized specification of Nag
directional learning hypothesis, tested and subsequently rejected it in favor
our model. We also tested and rejected the Bayesian rule-learning hypoth
in favor of our model. For ease of comparison, Table V presents the maximu
density estimates for the models considered.

In contrast to Nagel (1995), we interpret the evidence as providing strol
support for increasing depth of reasoning. In the early periods, a sufficient p
portion of players use step-0 and step-1 rules, so the step-3 and higher rule
not perform well; thus, the learning dynamic decreases their likelihood, givir
the appearance of no increasing depth of reasoning in the aggregate. On the ¢
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hand, we find that type-0 and type-1 players do learn to switch to the step-2 rul
and in some sessions, by the fourth period the proportion of players using tl
step-3 rule increases. Theoretically, our learning model will eventually drift to:
ward higher and higher stdprules, but there are insufficient periods in this data
for a conclusive test of this predictidf.

One shortcoming of our model is that, due to having only four periods o
data, we did not allow for heterogeneous rates of learnfaga6d 8,) in the
population. When confronting data over many more periods, it will be possibls
to allow for heterogeneous learning rates within each disposition type and |
look for correlation between dispositions and learning rates.

In conclusion, we have found (1) that individuals are heterogeneous in the
initial behavior which can be characterized by Nagel's (1995) ktejgrarchy
of rules and (2) that a law-of-effect learning model for these ktapes explains
individual behavior over time far better than extant alternatives.

The approach of this paper may be applicable to a wide class of game
especially those in which each player need only predict a single summary statis
of what everyone else is doing (e.g., Van Huwtlal., 1990, 1991). It would be
interesting to contrast this approach with that of Crawford (1995). In ongoing
research (Stahl, 1996), our learning model is being extended to apply to typic
normal-form games.
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