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A learning theory is proposed which models the influence of experience on end behavior in finite 
Prisoner's Dilemma supergames. The theory is compared with experimental results. In the 
experiment 35 subjects participated in 25 Prisoner's Dilemma supergames of ten periods each 
against anonymous opponents, changing from supergame to supergame. The typical behavior of 
experienced subjects involves cooperation until shortly before the end of the supergame. The 
theory explains shifts in the intended deviation period. On the basis of parameter estimates for 
each subject derived from the fn'st 20 supergames, successful predictions could be obtained for 
the last five supergames. 

1. Introduction 

In a finite Prisoner's Dilemma supergame the same game is repeated for a 
fixed number of times known to both players in advance. It is well known 
that such games have a definite game theoretical solution which prescribes 
non-cooperative behavior in all periods of the supergame. However, experi- 
mental behavior does not conform to this theoretical prediction. Early 
experiments with finite Prisoner's Dilemma supergames [Rapoport-Dale 
(1966), Morehous (1966), Lave (1965)] already have shown that subjects 
sufficiently often choose the cooperative alternative. At first glance, the 
situation seems to be similar to comparable experiments where the number 
of periods is not known to players in advance. However, such games are 
more akin to the infinite Prisoner's Dilemma supergame which permits 
equilibrium points resulting in cooperative behavior. 

More recently, experiments have been performed where subjects played the 
same finite Bertrand Duopoly or Prisoner's Dilemma supergames many times 
against changing anonymous opponents: the subjects played against this 
opponent within one supergame, but could not expect to meet the same 
opponent again in a later supergame [Stoecker (1980, 1983)]. The results 
show that subjects develop a pattern of behavior which may be described as 
tacit cooperation until shortly before the end of the supergame followed by 
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non-cooperative choices until the end. As soon as one of the players deviates 
to non-cooperative behavior the other reacts with non-cooperative choices 
and cooperation is not established any more. This pattern of cooperation 
followed by an end-effect is observed in almost all supergames between 
experienced players. Obviously, straightforward game theoretical reasoning 
cannot explain experienced behavior in finite Prisoner's Dilemma super- 
games. One could try to account for this by the assumption that the players' 
utility is different from the monetary rewards. Players may for example value 
cooperation as such and therefore refrain from non-cooperative behavior in 
spite of monetary incentives. Such explanations fail to be convincing in view 
of the end-effect which indicates that monetary incentives are stronger than 
the desire to be cooperative for those who deviate to non-cooperative 
behavior. A more detailed discussion of this point can be found elsewhere 
[Selten (1978)]. 

An attempt to explain cooperation followed by an end-effect as the result 
of fully rational behavior may be based on the idea of slightly incomplete 
information on the other player's payoff [Kreps, Milgrom, Roberts and 
Wilson (1982)1. However, such theories predict the mature pattern of 
behavior already for inexperienced subjects. This does not agree with 
experimental observations. Subjects first have to learn cooperation and only 
afterwards do they discover the end effect. Descriptive theories cannot ignore 
the limited rationality of human subjects. 

In this paper we shall present a learning theory approach to the 
explanation of end behavior in finite Prisoner's Dilemma supergames. We 
assume that players are motivated by monetary rewards. However, we do 
not assume optimizing behavior. Our theory is based on a Markov learning 
model where subjects change their intention to deviate from cooperation in a 
certain period with transition probabilities depending on experience in the 
last supergame. 

There are obvious analogies between learning and evolution. The evolution 
of cooperative behavior in the infinite Prisoner's Dilemma supergame has 
been discussed in Axelrod's (1984) stimulating book. We shall not comment 
on this work in detail, since here we are concerned with the end-effect, a 
phenomenon which is excluded by the nature of the infinite supergame. 

We shall also present the result of an experiment where each of 35 subjects 
participated in 25 Prisoner's Dilemma supergames of ten periods each. The 
data exhibit remarkable individual differences between subjects. Therefore, 
the parameters of the learning model are fitted separately for each subject. 

If one allows for random perturbances which occasionally result in 
reactions which are excluded by the model, the learning theory could be 
viewed as roughly in agreement with the behavior of 34 of 35 subjects (one 
subject behaves in a rather chaotic way). The intention to deviate from 
cooperation can be moved forward or bfickwards in time or remain constant 
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from one supergame to the next. The learning model always excludes either 
the forward shift or the backwards shift. In only 21 out of 585 cases could a 
reaction in the excluded direction be observed in the data. 

A careful look at the data suggests a distinction between different groups 
of subjects which differ with respect to the degree of conformance between 
the learning model and observed behavior. In the last 13 supergames where 
all of the 34 subjects already had some experience with the end effect, 18 
subjects never showed any response excluded by the model. However, four of 
these subjects had constant intentions to deviate in these supergames and 
therefore could be explained in a simpler way. A slightly more general model 
would be compatible with all responses of nine further subjects in the last 13 
supergames. Each of the remaining seven subjects exhibits only one response 
in the direction excluded by the model in these supergames. 

Statistical computations support the impression that the general ideas 
underlying our learning model provide a reasonable picture of observed 
behavior. Computer simulation based on individually estimated parameters 
produces results which tend to agree with the experimental observations. 

2. Experimental procedure 

The experiments are based on the Prisoner's Dilemma game shown in fig. 
1. The payoffs shown are in German Pfennigs (one German Mark equals 100 
Pfennig). In each supergame the game of fig. 1 was repeated ten times. Each 
subject played 25 supergames. They were told that they played against the 
same opponent within one supergame but against different opponents in 
different supergames. 

Subjects were placed in separate rooms. They did not communicate with 
each other. The experimenters asked for each decision by intercom and 
announced the opponent's decision at the end of each period. Subjects kept 
records of previous decisions and gains. 

Player 2 

H P  N P  

Player 1 

H P  

N P  

60 - 5 0  

60 

145 10 

- 5 0  

145 

10 

Fig. 1. The game used in the experiment - payoffs for player 1 are shown in the upper left 
corner and payoffs for player 2 are shown in the lower right corner. The strategies were 

introduced as high price (HP, hoher Preis) and low price (NP, niedriger Preis). 
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The experimenters did not only ask for the subjects' decisions but also for 
expectations on opponents' decisions. Moreover, the subjects were required 
to write down reasons for each period-decision. 

Subjects came to the laboratory for two afternoon sessions of four hours 
each. Part of the time was used for introductory explanations and for tests 
on altruism and risk-taking. These 'tests are not described here since their 
results will not be used in the evaluation of the experiments. The actual 
playing of the 25 supergames took about four hours. After some experience 
one period took less than a minute. It is important to point out that payoff 
incentives are quite high relative to such a short time span (see fig. 1). 

The experimenters tried to create the impression that 26 subjects partici- 
pated in each session and that they never would meet the same opponent 
again in a later supergame. Actually, in each session there were only 12 
subjects. Unknown to the subjects the experimental design separated the 12 
subjects into two groups of six. Each subject played only against changing 
opponents among the other five subjects in his group (see appendix A). 

It was intended to have six groups of six subjects. However, in one of the 
second sessions one of the subjects did not come and was substituted by a 
fixed strategy administrated by the experimenter. This strategy prescribes 
cooperation until a non-cooperative choice of the opponent is observed and 
non-cooperative behavior from then on. This means cooperation up to the 
end if the opponent does not deviate in the first nine periods. There were 
actually three subjects who followed this policy and explicitly explained it in 
their written reasons. 

The subjects were male and female economics and business administration 
students of the University of Bielefeld in their first year. 

3. Experimental resnlts 

In the course of the experiment subjects learned a pattern of behavior 
involving cooperation followed by a non-cooperative end-effect. In order to 
make this statement precise we introduce the following definitions. 

Definition 1. The play of a supergame is called cooperative if the following 
three conditions are satisfied: 

(a) In the first m periods, where m is at least four, both players choose the 
cooperative alternative HP. 

(b) In period m + l  (for m<10) at least one player chooses the non- 
cooperative alternative NP. 

(c) In all periods m + 2, . . . ,  10 (if there are any) both players choose the non- 
cooperative alternative. 

Note that this definition does not exclude the case m= 10 where both 
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players cooperate from the beginning to the end. Admittedly, the requirement 
m > 4  is to some extent arbitrary. However, it is necessary to have some 
criterion in order to distinguish plays with an end-effect from plays where no 
cooperation has been reached at all. Moreover, in the experiment no 
additional case would have to be classified as cooperative if in (a) the 
condition m > 4 is weakened to m > 1. 

An end-effect may also occur in plays where cooperation has been reached 
only after initial non-cooperation. In order to capture this possibility we 
adopt the following definition of an end-effect play: 

Definition 2. An end-effect play is characterized by three conditions, (a'), (b) 
and (c). 

(a') Both players choose the cooperative alternative in at least four consecu- 
tive periods k, . . . ,  m. 

The conditions (b) and (c) are the same as in the definition of a 
cooperative play. By definition, a cooperative play is also an end-effect play. 

We say that a supergame belongs to round n if it was played as the nth 
supergame by the subjects. Since there were 36 players [including one 
simulated player for rounds (9) to (25)] each round has 18 plays. Table 1 
shows for every round how many plays were end-effect plays and how many 
of those were cooperative ones. This is indicated for each of the six groups of 
interacting subjects separately. 

Table 1 shows that for experienced subjects most plays tend to be 
cooperative; however, there are some subjects who sometimes tried to gain 
an advantage by choosing the non-cooperative alternative in the first period 
hoping that the other player would not retaliate. Such behavior results 
mostly in end-effect plays which fail to be cooperative in the sense of the 
definition given above. Group 1 contains one subject who seemed to have 
great difficulty understanding the situation until round (21). In the first 20 
rounds his behavior was highly irregular. In the last five rounds 99 percent 
of the plays are end-effect plays and 96 percent are cooperative plays. 
Appendix B gives a detailed account of the observed end-effect behavior for 
all subjects separately. 

The learning model to be explained later contains an intended period of 
deviation as an internal state of the subject. In all cases where a subject 
deviated before the opponent or simultaneously with the opponent the 
intended deviation period is nothing else than the observed deviation period. 
However, if the opponent deviated before the subject the intended deviation 
period is not uniquely determined by the decisions observed in the play. This 
situatioh occurs in 198 out of 621 cases. In 84 of these cases the reasons 
written down by the subjects indicated the intended deviation period. In the 
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Table 1 

Number of end-effect plays (EEP) and cooperative plays (CP) by rounds and subject groups. 

Group 

IP  III IV V VI Total I 

Round EEP CP EEP CP EEP CP EEP CP EEP CP EEP CP EEP CP 

(1) 2 2 1 3 2 
(2) 1 1 1 1 
(3) 1 1 1 1 1 2 2 1 6 4 
(4) 1 1 2 2 3 1 2 2 8 6 
(5) 1 1 1 1 2 1 1 5 3 
(6) 1 1 2 2 3 1 1 1 7 5 
(7) 1 1 1 2 2 2 1 1 1 7 5 
(8) 1 1 2 2 2 2 3 1 2 2 I I 7 
(9) 3 3 3 2 1 1 2 2 2 1 2 2 13 11 

(10) 2 2 3 3 1 1 1 1 2 1 2 2 11 10 
(11) 2 2 3 3 1 1 2 2 1 2 2 II 10 
(12) 2 2 3 2 2 2 2 2 2 2 2 ! 3 10 
(13) \ 2 2 2 2 3 3 3 3 3 3 3 3 16 16 
(14) 2 2 2 1 3 3 3 3 3 3 3 3 16 15 
(15) 2 2 3 1 3 3 3 3 3 3 3 3 17 15 
(16) 2 2 3 2 3 3 3 3 3 3 3 3 17 16 
(17) 2 2 3 2 3 3 3 3 3 3 3 3 17 16 
(18) 2 2 3 2 3 3 3 3 3 3 3 3 17 16 
(19) 2 2 3 2 3 3 3 3 3 3 3 3 17 16 
(20) 2 2 3 2 3 3 3 3 3 3 3 3 17 16 
(21) 3 3 3 1 3 3 3 3 3 3 3 3 18 16 
(22) 3 3 3 2 3 3 3 3 3 3 3 3 18 17 
(23) 3 3 3 3 3 3 3 3 3 3 3 3 18 18 
(24) 3 3 3 3 3 3 3 3 3 3 3 3 18 18 
(25) 3 3 2 2 3 3 3 3 3 3 3 3 17 17 

aThis group contains the simulated player for rounds (9) to (25). 

remaining 114 eases an estimate of the intended deviation period was based 
on reported expectations together with observed behavior and reasons from 
previous rounds. 

Table 2 shows the means and standard deviation of intended deviation 
periods in end-effect plays for all 35 subjects who participated in rounds (13) 
to (25) for rounds and groups separately. In the last 12 rounds all subjects 
can be described as experienced in the sense that each of them had been in at 
least one end-effect play in an earlier round. In the computations deviation 
period 11 was assigned to those eases where the subject did not intend to 
deviate at all. 

It can be seen that the end-effect has a clear tendency to shift to earlier 
periods in the last 13 supergames. For each of the six groups the Spearman 
rank correlation coefficient between the mean of the intended deviation 
period and the number of the supergame is negative and significant at the 0.1 
percent level (two-sided) for the last 13 supergames. 
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Even if it is very clear from the data that there is a tendency of the end- 
effect to shift to earlier periods, it is not clear whether in a much longer 
sequence of supergames this trend would continue until finally cooperation is 
completely eliminated. It is also possible that the mean of the intended 
deviation period would have a tendency to decrease in such a way that it 
finally converges to a stable limit. It is interesting to note that some groups 
show a very strong shift to earlier periods. In round (25) the means of groups 
I and IV are at 5.5 and 6.0, respectively, whereas this mean is at 9.0 for 
group III. 

4. A learning theory of end-effect behavior 

Our learning model contains the intended deviation period k as the 
internal state of the subject. A subject is assumed to change his internal state 
from round t to round t + 1 according to constant transition probabilities. Each 
subject is characterized by three parameters ~, fl and y.  

If the subject observes t h a t  in round t his opponent deviated earlier than 
he intended to deviate, then with probability ct he will shift his intended 
deviation period k to k - 1 .  The probability that the subject's internal state 
remains k in this case is 1 -  ct. 

If the subject observes that in round t his opponent deviated at the same 
period k as he did, then with probability fl the subject's intended deviation 
period will be shifted to k -  1 and with probability 1 - f l  it will stay where it is. 

If the subject  observes that in round t he deviated before the opponent, 
then with probability y he will shift the intended deviation period to k+  1 
provided we have k<  10. With probability 1 - y  he will not change his 
internal state. There is no change for k = 10. The assumptions of the learning 
model are summarized by table 3. 

In the explanations given above it was assumed that in round t the subject 
experienced an end-effect play. It is assumed that no change of intention 

Table 3 
Transition probabilities from round to round for the intended deviation period 

of a subject, k is the intended deviation period in round t. 

Subject's intended deviation 
period in round t 

Intended deviation period in round t + 1 

One period One period 
sooner Unchanged later 

Later than his opponent 

Together with his opponent // 

Sooner than his opponent 

1--Gt 

1 - ?  for k<10, ~, for k<10, 
1 for k = 10 0 for k-- 10 
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takes place after a round which did not result in an end-effect play. This 
convention is unimportant for our theoretical derivations and simulations 
but it has some minor significance for the interpretation of our data. 

We now proceed to discuss our motivations behind the assumption of 
transition probabilities. A subject who has observed that his opponent 
deviated earlier than he himself intended to do will think that it might have 
been better to deviate earlier. The same is true to a lesser degree if the 
opponent deviated in the same period as he did. Therefore, it is reasonable to 
assume ~>f l>0 .  In both cases there is no reason to shift the intention to 
deviate to later periods. 

Now consider a subject who in round t deviated in a period k <  10 and 
observed that his opponent did not deviate from cooperation up to period k. 
He does not know exactly in which period the opponent intended to deviate. 
Therefore, it could have been better to deviate in a later period. We may for 
example look at k=8.  The subject does not know whether the opponent 
intended to deviate in period 9, 10 or not at all. In the latter two cases a 
deviation in period 9 would have been more advantageous. It is plausible to 
assume that this kind of uncertainty produces a tendency to shift the 
deviation periods towards the end of the supergame. Of course, for k=  10 
there is no such uncertainty and the subject must conclude that it was right 
to deviate in the last period if he observed that the opponent cooperated up 
to the end. 

In the mathematical learning models considered in the  literature [see for 
example Restle-Greeno (1970), Bush-Mosteller (1955)1 it is generally clear 
whether reinforcement of behavior has taken place or not. However, in a 
situation where a subject deviated earlier than his opponent i n  a period 
k < 10 he does not know whether his decision was right or wrong. 

Unobserved features of the opponent's behavior prevent him from having 
a clear experience of success, or failure. However, he knows that here is a 
possibility that his decision was wrong. 

Our specification of the general ideas explained above contain certain 
simplifying assumptions. We exclude the possibility that the intended devia- 
tion period shifts by more than one period. It is, of course, easy to construct 
a more general learning model where shifts of two or three periods are 
permitted. However, the scarcity of data forces us to restrict our attention to 
models with as few parameters as possible. 

In a situation where a subject deviated earlier than his opponent his 
uncertainty on the nature of his experience is the greater the earlier his 
deviation was. The more periods there are after the deviation until the end of 
the supergame, the more chances there are that the deviation was too early. 
Therefore, one could think of making ~ dependent on k in such a way that 
increases with decreasing k. This would be a theoretically attractive modifi- 
cation of the model but also here the necessary increase of the number of 
parameters prevents us from comparing such models with the data. 
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5.  T h e o r e t i c a l  c o n s i d e r a t i o n s  

In the following we shall look at the consequences of our theory in an 
idealized situation which is not that of the experiment. 

Consider a very large population of subjects where the parameters ~, fl and 
are the same for all subjects. With this population we imagine a fictitious 

experiment over a very long sequence of supergames. At each round the 
subjects are paired randomly. 

We may ask the question how in this system the probabilities of intended 
deviation periods evolve. In order to describe the process which governs the 
evolution of these probabilities we introduce the following notations: 

is the probability that in round t a randomly chosen subject has the 
intention to deviate in period k, where k = 11 stands for the intention not to 
deviate at all (k = 1, . . . ,  11), 

m = l  

is the probability that in round t a randomly chosen subject has the 
intention to deviate in periods 1,. . . ,  k, and 

• , fl a n d  ), 

are the parameters of table 3. 
It is useful to look at the situation in a way which is similar to that of a 

Markov chain. We may ask the following question: what are the proba- 
bilities that a subject will intend to deviate in period k - 1 ,  k or k +  1 in 
round t + 1 if he intended to deviate in period k in round t? These 'transition 
probabilities' can be arranged in a matrix where columns correspond to 
intended deviation periods in round t and rows correspond to intended 
deviation periods in round t + 1. A part of this matrix is shown in table 4. 

With the help of table 3 it can be seen easily that the transition 
probabilities are in fact those shown in table 4. From what has been said up 
to now it is clear that the probabilities p~+l are determined by the following 
equation system: 

t + l  P~I - [(1 - ct)Srlo +(1 - fl)p~ ~]Pl 1, 

if+ 1 = [~ ,~1  o + flP~x]P~x + [ ( 1  - or)St9 + ( 1  - fl)P~o 10 

+ (1 -- ~,)(1-- St~o)]P~o +) , (1 -  ~)p~, 
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P~+ 1 - [ofY9 "~" f l f lO]P~ o + [(1 --  oOSts + ( 1 - -  fl)p~ 

+ (1 - y ) (1 -  Stg)]p~ + y(1 - Sts)p~, 
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P~+ 1 = [aSt2 + ~P'3]P'3 + [ ( 1 -  a)p~ + (1-- fl)f2 

+ ( 1 -  ~)(1 - St2)Jp~ + ~ ( 1 -  p~)p~, 

= . [ ) I + ( 1 - y ) ( 1 - P ~ ) ] P ~ .  

Table 4 
Transition probabilities for a subject between rounds t and t +  1 (explanation in the 

text). 

Round t 

Round 
t+  1 (11) (10) (9) (8) (7) 

(11) (1 -a)Stto + 0 0 0 0 
(1 -fl)f11 

(10) aS~ o +.Sp~. 1 ( 1 -  a)St9 + ? ( 1 - ~ )  0 0 
(1 --fl)flO + 
( 1 - ? ) ( 1 - ~ o )  

(9) 0 ~ +flfxo (1-a)Sts + y ( 1 - ~ )  0 
(1 -- fl)f9 "}- 
(1 -?)(1 -ff9) 

(8) o o 

(7) o o o 

(1-a)Stv + 
(1 - p)#. + 
(1 -?)(1 -SZs) 

~ ,  +P#. 

?(1 -ff~) 

(1-~)s'~+ 
(1 - p ) ~  + 
(1 -y)(1 -ff~) 

Starting from an initial distribution (pl, .-.,PI1) the probabili ty vector 
(P~,..-, P~x)can be computed for every round t. We may ask the question 
whether this probability vector converges to a stable equilibrium distribution. 

We shall not try to give a rigorous theoretical answer to the question of 
convergence. However, we have run a large number of numerical compu- 
tations whose results show a definite pattern which will be described in the 
following. It must first be pointed out that the difference equations have the 
following property: If p~=0 holds for k=m, . . . ,  11 for some t= to then the 
same conditions will be satisfied for every t > to. For this reason alone, the 
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result of the simulation cannot be completely independent of the initial 
conditions. 

However, if Plo and P~I are sufficiently high, the results of our compu- 
tations do not depend on the exact initial conditions. The results obtained 
for p ] l=  1 do not change as long as the initial conditions remain in a 
neighbourhood of this extreme case. The size of this neighbourhood depends 
on the parameters but for most cases it seems to be quite large. 

Table 5 shows numerical results for selected parameter combinations. All 
these computations have been run starting from the initial condition p]~ = 1. 
Our experimental results suggest that subjects learn to cooperate before they 
learn to show any end-effect. Therefore, the assumption p~ = 1 is quite 
reasonable. 

All the computations with p~t = 1 converged to a stationary distribution 
which was always mostly concentrated either at the end or at the beginning 
of the supergame. In table 5 either the first three or the last three periods 
obtained at least 97 percent of the total mass of the probability. 

The parameter combinations of table 5 are arranged in groups with 
constant fl and ? and increasing ct. If ct is small in comparison to ? - /3  the 
distribution is mostly concentrated near the end of the supergame. With 
increasing ct this concentration becomes less pronounced until a critical value 
of ~ is reached beyond which the stationary distribution is mostly concen- 
trated at the beginning of the supergame. As can be seen in table 5 the 
critical value for ~t is a little below ?-/3. It can be checked analytically 
without much difficulty that for ~+/3=? the distribution pl=p2=0.5 is 
stationary. In fact, in cases with ct+/3=? the process converges to this 
distribution. 

The results of these computations suggest an abrupt change of the 
stationary distribution at the critical value of ~. In table 5 the critical values 
of ~ are enclosed by intervals of the length of 10 -3. It can be seen that 
within this small interval the stationary distribution reached by the process 
changes drastically. The change is somewhat less pronounced if the interval 
is narrowed down to the length of 10 -7 but even there Ps and P6 are 
practically 0 before and after the change from a concentration at the end to 
a concentration at the beginning. 

In the experiments a group of interacting subjects had only six members 
and the parameter values varied considerably from subject to subject. 
Moreover, the experimental pairings of subjects are not random, but follow a 
repetitive scheme (see appendix A). Nevertheless, the model applied to the 
experimental situation can be looked upon as a Markov chain with a 
suitably defined state space. The highest among the intended deviation 
periods of the subjects cannot increase from one supergame to the next, but 
if • and fl are positive and 2 is smaller than one for all subjects, then there 
always is a positive probability that the highest intended deviation time will 
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T a b l e  5 

S t a b l e  p r o b a b i l i t y  d i s t r i b u t i o n s  o v e r  i n t e n d e d  d e v i a t i o n  p e r i o d s  f o r  s e l e c t e d  

p a r a m e t e r  c o m b i n a t i o n s .  
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a ~ ~ P l  P2 Pa " '" Pa P9 P l o  

0 . 1 0 0  0.1 0.1 1 .000 . . . . .  

0 . 1 0 0  0.1 0.4 - -  - -  - -  0 .017 0 . 2 5 0  0 .733 

0 . 2 0 0  0.1 0.4 - -  - -  - -  0 .038 0 .346  0 .615 

0 . 2 6 4  0.1 0.4 - -  - -  - -  0 .135 0 . 5 2 0  0 .340  

0 .265  0.1 0.4 0 .119  0.509 0 .371 - -  - -  - -  

0 . 3 0 0  0.1 0.4 0 . 5 0 0  0 .500 . . . .  

0 . 3 0 0  0.1 0.5 - -  - -  - -  0 .034  0 .356  0 .610  

0 .355  0.1 0.5 - -  - -  - -  0 .105 0 .520  0 .373  

0 . 3 5 6  0.1 0.5 0 .098  0 .512 0 . 3 9 0  - -  ~ - -  

0 . 4 0 0  0.1 0.5 0 .500  0 .500 . . . .  

0 . 5 0 0  0.1 0.5 0 .990  0 .010  . . . .  

0 . 2 0 0  0.2 0.5 - -  - -  - -  0 .086  0 . 4 0 0  0.511 

0 . 3 0 0  0 .2  0.5 0 . 5 0 0  0 .500  . . . .  

0 . 4 0 0  0 .2  0.5 0 .667  0.333 . . . .  

0 . 1 0 0  0.1 0.6 - -  - -  - -  0 .005 0 .167  0 .829 

0 . 2 0 0  0.1 0.6 - -  - -  - -  0 .007 0 .201  0.791 

0 . 3 0 0  0.1 0.6 - -  - -  - -  0 .013 0 .256  0.731 

0 .400  0.1 0.6 - -  - -  - -  0 .030  0 . 3 6 4  0 .606  

0 .449  0.1 0.6 - -  - -  - -  0 .095 0 .533  0 .370  

0 . 4 5 0  0.1 0.6 0 .087  0 .522 0.391 - -  - -  - -  

0 . 200  0 .2  0.6 - -  - -  - -  0 .044  0 .333  0 .622  

0 . 3 0 0  0 .2  0.6 - -  - -  - -  0 .083 0 .417  0 .498  

0 .353  0 .2  0.6 - -  - -  - -  0 .188  0 . 5 1 6  0 .282  

0 . 3 5 4  0 .2  0.6 0 .151 0 .500 0 .349  - -  - -  - -  

0 . 4 0 0  0.2 0.6 0 . 5 0 0  0 .500 . . . .  

0 . 5 0 0  0.2 0.6 0 .667  0.333 . . . .  

0 . 6 0 0  0.2 0.6 0 .993  0.007 . . . .  

0 . 1 0 0  0.1 0.7 - -  - -  - -  0 .003 0 .143  0 .854  

0 . 2 0 0  0.1 0.7 - -  - -  - -  0 .004  0 .167  0 .828 

0 . 3 0 0  0.1 0.7 - -  - -  - -  0 .006  0 .203  0.791 

0 . 4 0 0  O. 1 0.7 - -  - -  - -  0 .011 0 .259  0 .730  

0 . 5 0 0  0.1 0.7 - -  - -  - -  0 .028 0 .370  0 .602  

0 .543  0.1 0.7 - -  - -  - -  0 .073 0 .517  0 .409  

0 . 5 4 4  0.1 0.7 0 .072  0.515 0 .413  - -  - -  - -  

0 . 6 0 0  0.1 0.7 0 .500  0 .500 . . . .  

0 . 700  0.1 0.7 0 . 9 9 0  0 .010 . . . .  

0 . 4 4 0  0.2 0.7 - -  - -  - -  0 .164  0 .525  0 .302  

0 .441  0 .2  0.7 0 .133  0 .506 0 .361 - -  - -  - -  

0 . 529  0.2 0.8 - -  - -  ~ 0 .144  0 .530  0 .320  

0 . 5 3 0  0.2 0.8 0 .119  0.509 0 .371 - -  ~ - -  

0 .445  0.3 0.8 - -  - -  - -  0 .213 0 .510  0 .257  

0 .446  0.3 0.8 0 .165  0.495 0 . 3 4 0  - -  - -  - -  

0 .538  0 .4  0.9 - -  - -  - -  0 .227 0 . 5 0 4  0 .244  
0 .539  0 .4  0.9 0 .173  0 .492 0 .335  - -  ~ - -  

0 . 1 0 0  0.1 1.0 . . . .  0 . 100  0 .900  
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decrease by one. Therefore, with probability one the highest deviation time 
will finally decrease to one in an infinite sequence of supergames. This means 
that in the long run behavior converges to complete non-cooperation.1 

Even if the possibility of convergence to a stationary distribution exhibit- 
ing a stable end-effect is excluded by our model, if it is applied to a finite 
population of subjects, the computations for the idealized situation with an 
infinite population are not without interest. They suggest that in the finite 
situation convergence to non-cooperation may be very slow if the parameter 
values for ~ and /3 are relatively small and those for ~ are relatively large. 
Moreover, in the fight of the computations for the infinite case one must 
consider the possibility that the conclusion on convergence to non- 
cooperation is not robust with respect to slight misspecifications of the 
learning model. Suppose that the probabilities for the excluded transitions 
are not really zero, but only relatively small. It is reasonable to expect that 
under this condition a stationary distribution exhibiting a stable end-effect 
might be obtained for suitable parameter combinations in the finite case. 

However, it can be expected that the results obtained for the large group 
case with equal parameters are indicative for what can be expected to 
happen in the experimental situation if the model is correct. 

6. Subject differences 

After the theoretical considerations of the last section we shall now turn 
our attention to some important features of our experimental results. The 
behavioral assumptions of our model do not fit all subjects equally well. 

There are several deviations from the theoretical behavior which may 
occur. Some subjects occasionally change the intended deviation period by 
more than one step from one round to the next. Even if this is not a 
deviation from the spirit of our model, it is a deviation from the specification 
which had to be used in view of the scarcity of observations. A more serious 
deviation which occurred only rarely is a shift of the intended deviation 
period in the wrong direction. Some subjects do not show any reaction 
excluded by the model but they have a constant intended deviation period. 
An intended deviation period which does not change over time can be 
explained in simpler and possibly more adequate ways than by our model. 

Table 6 distinguishes several groups of subjects according to the confor- 
mance of their behavior to the model in the last 13 rounds. We restricted this 
evaluation to the second half of the experiment since there almost all subjects 
had learned to cooperate. Only a subject who has learned to cooperate can 
experience an end-effect play. 

It can be seen that only 20 percent of all subjects show a shift in the 

1We are grateful to an anonymous referee who directed our  attention to this point. 
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Table 6 

Grouping of subjects by conformance of behavior to the model in the last 13 rounds. Each 
subject is listed only once. 

Number of Number of Total number 
Subject category subjects deviations of cases 

No deviations from the model and varying 
intended deviation period 

Constant intended deviation period a 

Shifts of more than one step but no other 
deviations from the model 

Shifts in the wrong direction b 

Failure to learn cooperation c 

14 - -  158 

4 - -  48 

9 14 108 

7 7 81 

aThree of these subjects never intended to deviate as a matter of principle. 
~l'wo of these subjects also showed jumps of more than one step. 
cUnlike all other subjects this subject did not learn to cooperate in the first half of the 

experiment. He began to experience end-effect plays only in the last five rounds. 

wrong direction. For each of these seven subjects such a shift occurs only 
once .  

Three subjects always had the intention to cooperate until the last period. 
The protocols written by these subjects show that they did this on principle. 
Obviously, the learning model does not adequately describe the motivations 
of these subjects even if it formally fits their behavior. One subject always 
intended to deviate in period (8). He thought that this is the optimal 
deviation period. Since this opinion was based on experience rather than 
theoretical reasoning, his behavior may be adequately explained by the 
model. 

Up to occasional deviations, a learning theory approach like that of our 
model seems to offer a plausible explanation for the behavior of the vast 
majority of subjects. A fundamentally different theory may be required for 
those three subjects who never intended to deviate in rounds (13) to (25) as a 
matter of principle. The learning model cannot be compared with the 
behavior of the subject who failed to learn to cooperate in rounds (1) to (20). 
With these exceptions the learning model can be proposed as an idealized 
picture of observed behavior. The next section will try to throw further light 
on the extent to which the data agree with the learning model. 

7. Parameter estimates 

The observations for rounds (1) to (20) have been used in order to obtain 
parameter estimates ~, fl and ~ of ~, fl and ~, respectively, for all subjects with 
the exception of subject 1 who failed to learn to cooperate in rounds (1) to 
(20). On the basis of these parameter estimates Monte Carlo simulations 

ZE.B.O.-- C 
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have been run in order to generate predictions for rounds (21) to (25) which 
can be compared with the data. The Monte Carlo simulations will be 
discussed in section 9. 

As far as possible relative frequencies of transitions have been taken as 
parameter estimates. In the determination of relative frequencies shifts of 
more than one step in the fight direction have been counted as if they were 
shifts of one step. Shifts in the wrong direction have been counted as if they 
were cases of unchanged deviation periods. 

The parameter estimates are shown in table 7. In the three cases indicated 
by the superscript 'a', relative frequencies were not available due to lack of 
observations and estimates had to be obtained in another way. 

It is plausible to assume a > fl since there is more reason for a shift to an 
earlier deviation if the opponent has deviated earlier than in the ease that he 
has deviated at the same time. In fact, in 26 of the 31 cases where relative 
frequencies estimates & and /~ are available, the inequality a >/~ is satisfied. 
Therefore, it seems to be reasonable to take the following inequality as a 
point of departure: 

0 ~ / ~ 1 .  

Accordingly, an auxiliary estimate /~< &/2 is formed at the midpoint of the 
relevant interval delineated by this inequality if a relative frequency estimate 
is available for ~ but not for ft. Analogously, an auxiliary estimate a =  
(/~+ 1)/2 is formed if a relative frequency estimate is available for fl but not 
for ~. 

It can be seen that the estimates in table 7 vary considerably from subject 
to subject. This is also true for the 14 subjects whose behavior completely 
conforms to the model. For these 14 subjects a second set of parameter 
estimates has been obtained in the same way on the basis of the data from 
rounds (1) to (25). These estimates will be used for a comparison of the 
learning model with a simple alternative hypothesis to be explained in the 
next section. 

8. Comparison with a simple alternative hypothesis 

In the following we want to look at the question whether our model 
provides a better explanation of the data than a simple alternative hypothesis 
based on the assumption that no learning takes place at all. We compare the 
learning model with the simplest alternative theory of this kind. In the 
alternative hypothesis each subject is assumed to have a probability distri- 
bution over his intended deviation period which does not vary over time. 
The intended deviation period of each round is assumed to be stochastically 
independent from those of other rounds. 
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Table 7 
Parameter estimates based on rounds (1) 
to (20). Subjects are grouped according 
to the categories of table 6, in the same 

order. 

Subject a ~ 

2 1.00 0.67 0.50 
3 1.00 1.00 0.17 
6 0.50 0.30 0.25 
7 1.00 0.33 0.20 
9 0.60 0.00 0.00 

11 0.33 0.40 0.50 
12 0.50 0.00 0.00 
13 1.0(P 1.00 0.00 
18 0.22 0.00 0.50 
22 0.67 0.40 0.50 
28 0.25 0.00 0.00 
30 0.25 0.00 0.50 
31 0.57 0.33 0.57 
34 1.00 0.50 0.50 

15 0.00 0.00 0.00 
17 0.00 0.00 0.00 
21 0.00 0.20 0.50 
25 1.00 0.00 0.00 

16 0.43 0.00 0.67 
19 0.00 0.00 0.67 
20 0.75 0.50 0.14 
24 0.00 0.50 0.09 
27 0.00 0.13 0.00 
29 0.00 0.14 1.00 
32 0.38 0.00 0.00 
33 0.14 0.00 0.33 
35 1.00 1.00 0.75 

4 0.33 0.20 0.00 
5 0.50 0.00 0.00 
8 1.00 0.75 0.33 

14 0.17 0.08 a 1.00 
23 1.00 0.50 ~ 0.18 
26 0.50 0.50 0.33 
36 1.00 0.50 0.50 

aNo relative frequency estimate avail- 
able; auxiliary estimate according to & = 
(~ + 1)/2 or ~=~/2, respectively. 

T h e  c o m p a r i s o n  will  be r e s t r i c t ed  to  t hose  14 sub jec t s  w h i c h  never  s h o w e d  

a r e a c t i o n  e x c l u d e d  by  the  l e a r n i n g  m o d e l  in  t he  las t  13 r o u n d s  a n d  a l so  h a d  

v a r y i n g  i n t e n d e d  d e v i a t i o n  p e r i o d s  in these  r o u n d s .  F o r  each  o f  these  

sub jec t s  t h e  p r o b a b i l i t i e s  for  t he  ac tua l ly  o b s e r v e d  i n t e n d e d  dev i a t i on  p e r i o d s  

h a v e  b e e n  c o m p u t e d  u n d e r  t he  a s s u m p t i o n  o f  the  m o d e l  a n d  u n d e r  the  
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9. Monte Carlo simulations 

The Monte Carlo simulations which already have been mentioned in the 
section on theoretical considerations serve the purpose to examine the 
predictive potential of the learning model. Therefore, in table 7 the para- 
meters ~, fl and ? have been estimated individually for the subjects on the 
basis of observed behavior in the first 20 rounds. With these parameters, the 
last five rounds have been simulated starting from the observed values of 
intended deviation periods in round (20) as initial conditions. The pairing of 
the subjects followed the schedule of appendix A. The simulations only cover 
five of the six groups. The first group had one member who did not learn to 
cooperate before the last five rounds (see table 6). Therefore, for this subject 
no parameter estimates could be computed on the basis of the first 20 
rounds. 

The size of the end-effect is best described by the 'intended deviation time' 
which is defined as 11 minus the intended deviation period. 

For each of the five groups fig. 2 shows the means of the intended 
deviation times over the six subjects for each of the last five rounds. These 
means are indicated both for tlie actual experiment and for the eight Monte- 
Carlo simulations. 

It can be seen that the actual observed means are not too dissimilar from 
those generated by the Monte-Carlo simulations. It must be pointed out, 
however, that some shifts of more than one period occurred in the last five 
rounds. There was, for example, one subject in group III who shifted his 
intended deviation period from 11 to 6 from round (24) to round (25). Of 
course, the Monte-Carlo simulations cannot reproduce the effects of such 
jumps. This explains the special features in the drawing for groups III and V. 

A meaningful statistical comparison of the simulations and the observa- 
tions must be based on some features of the simulations which do not vary 
too much from realization to realization. It is plausible to conjecture that the 
rank order of the cumulative shifts of intended deviation periods over the 
last five rounds satisfies this criterion. The cumulative shift is the difference of 
the intended deviation periods in round (25) and in round (20). For each 
simulation run we obtain a rank order of these shifts over the six subjects of 
the group. In this way, the eight simulation runs for each group yield eight 
rank orders. Kendall's concordance coefficient W has been computed for the 
eight rankings in each of the five groups, separately. All five concordance 
coefficients are significant on the 0.01 level. This supports the conjecture that 
the rank order of cumulative shifts is a variable which can be predicted with 
some reliability if the model is correct. The predicted mean rank order has 
been computed by the sum of ranks following Kendall's proposal [Siegel 
(1957), Kendall (1948)]. 

For each of the five groups we have correlated the mean rank order of 
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cumulative shifts derived from the eight simulation runs with the rank order 
of cumulative shifts observed in the experiment. The Spearman Rank 
correlation coefficients are 0.880 (p<0.05), 0.548, 0.956 (p<0.01), 0.462 and 
0.926 (p < 0.05) for groups II , . . . ,  VI, respectively. 

The cumulative shift between round (20) and round (25) rather than the 
intended deviation period of round (25) has been chosen as the basis of the 
comparison between simulations and observations since the latter variable 
could reflect the initial conditions of round (20) more than the effects of the 
parameter values. On the other hand, the cumulative shift is a measure which 
can be expected to be more closely connected to the dynamics of the learning 
process. 

If the learning model had no predictive value one would expect positive 
and negative rank correlation coefficients between predicted and observed 
rank orders of cumulative shifts with equal probability. The binomial test 
rejects this null hypothesis on the 0.05 level (one-sided). Moreover, three of 
the five-rank correlation coefficients are significant at the 0.05 level. 

The result of the comparison of predicted and observed rank orders of 
cumulative shifts support the learning model as an idealized picture of end- 
effect behavior in repeated Prisoners' Dilemma supergames. 

Appendix A 

The six groups of interacting subjects were composed as shown in table 
A.1. Within each group of six interacting subjects the pairings were deter- 
mined according to the scheme in table A.2. The same pattern was repeated 
in rounds (6) to (10), (11) to (15), (16) to (20) and (21) to (25). 

For group II the numbers 1, 3, 5, 7, 9, 11 have to be replaced by 2, 4, 6, 8, 
10, 12, in that order. The pairings within the other groups are obtained 
analogously. 

Table A.1 
Composition of groups I to VI. 

Table A.2 
Pairings in group I for rounds (1) to (5). 

I 1, 3, 5, 7, 9, 11 (1) 1, 3 5, 7 9, 11 
II 2, 4, 6, 8, 10, 12 (2) : 1, 5 3, 11 7, 9 
III 13, 15, 17, 19, 21, 23 (3) 1, 7 3, 9 5, 11 
IV 14, 16, 18, 20, 22, 24 (4) 1, 9 3, 5 7, 11 
V 25, 27, 29, 31, 33, 35 (5) 1, 11 3, 7 5, 9 
VI 26, 28, 30, 32, 34, 36 

Group Subjects Round Pair 1 Pair 2 Pair 3 
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