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We investigate the use of standard statistical models for quantal choice in a game
theoretic setting. Players choose strategies based on relative expected utility and
assume other players do so as well. We define a quantal response equilibrium
(QRE) as a fixed point of this process and establish existence.

For a logit specification of the error structure, we show that as the error goes to
zero, QRE approaches a subset of Nash equilibria and also implies a unique selection
from the set of Nash equilibria in generic games. We fit the model to a variety of
experimental data sets by using maximum likelihood estimation. Journal of Eco-
nomic Literature Classification Numbers: C19, C44, C72, C92. ©1995 Academic

Press, Inc.

1. INTRODUCTION

We investigate the possibility of using standard statistical models for
quantal choice in a game theoretic setting. Players choose among strategies
in the normal form of a game based on their relative expected utility, but
make choices based on a quantal choice model, and assume other players
do so as well. For a given specification of the error structure, we define a
quantal response equilibrium (QRE) as a fixed point of this process.

Under this process best response functions become probabilistic (at least
from the point of view of an outside observer) rather than deterministic.
Better responses are more likely to be observed than worse responses, but
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best responses are not played with certainty. The idea that players make
infinitesimal errors underlies some of the refinement literature (Myerson,
1978; Selten, 1975). Introduction of noninfinitesimal errors has been spe-
cifically studied by Van Damme (1987, Chap. 4), Rosenthal (1989), and
Beja (1992). Rosenthal assumes that the probability of adopting a particular
strategy is linearly increasing in expected payoff. Beja, in contrast, assumes
that players attempt to implement a ‘“target™ strategy but fail to do so
perfectly. Recent work by El-Gamal et al. (1993), El-Gamal and Palfrey
(1995, 1994), McKelvey and Palfrey (1992), Ma and Manove (1993), Chen
(1994), and Schmidt (1992) also explores the equilibrium implications of
error-prone decisionmaking in specific settings.

It is important to emphasize that this alternative approach does not
abandon the notion of equilibrinm, but instead replaces the perfectly ratio-
nal expectations equilibrium embodied in Nash equilibrium with an imper-
fect, or noisy, rational expectations equilibrium. The equilibrium restriction
in our model is captured by the assumption that players estimate expected
payoffs in an unbiased way. That is, an estimate by player i about the
expected payoff of action a;; will on average equal the expected payoff of
action g;; calculated from the equilibrium probability distribution of other
player’s action choices, given that they are adopting estimated best re-
sponses. Thus players expectations are correct, on average.

This model is a natural extension of well-developed and commonly used
statistical models of choice or quantal response that have a long tradition
in statistical applications to biology, pharmacology, and the social sciences.
Accordingly, we call an equilibrium of our model a quantal response equilib-
rium. The name is borrowed from the statistical literature on quantal choice/
response models in which individual choices or responses are rational, but
are based on latent variables (in our case a player’s vector of estimated
payoffs) that are not observed by the econometrician. The added complica-
tion is that the underlying latent variables assumed to govern the discrete
responses are endogenous.

A valuable feature of this alternative approach to modeling equilibrium
in games is that it provides a convenient statistical structure for estimation
using either field data or experimental data. For a particular specification
of the error structure, we compute the QRE as a function of the variance
of the player estimation errors in several games that have been studied in
laboratory experiments. We use these data to obtain maximum likelihood
estimates of the error variance. This is possible because, in contrast to the
traditional Nash equilibrium approach which makes strong deterministic
predictions, this model makes statistical predictions.

We find that the statistical predictions of the QRE model depend in
systematic ways on the precision of the players’ estimates of the expected
payoffs from different actions. Therefore, to the extent that we can find
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observable independent variables that a priori one would expect to be
correlated with the precision of these estimates, one can make predictions
about the effects of different experimental treatments that systematically
vary these independent variables. An obvious candidate that we investigate
here is experience. As a player gains experience playing a particular game
and makes repeated observations about the actual payoffs received from
different action choices, he/she can be expected to make more precise
estimates of the expected payoffs from different strategies. This is only
slightly different from the simple observation that, for an econometrician,
standard errors of regression coefficients can be expected to decrease in
the number of observations. We refer to this as learning.'

The rest of the paper consists of four sections. Section 2 lays out the
formal structure and establishes existence of QRE in finite games. Section
3 specializes the QRE model to the case of logistic response, where the
errors follow a log Weibull distribution. This is called the Logit Equilibrium.
We establish several properties of the logit equilibrium correspondence
and use these properties to define a generically unique selection of Nash
equilibrium as the limit point (as the error variance goes to zero) to the
unique connected equilibrium manifold defined by the graph of the equilib-
rium correspondence as a function of the estimation error. Section 4 com-
pares QRE to other equilibrium concepts in traditional game theory and
establishes a formal connection between our approach and traditional game
theory by demonstrating an equivalence between a QRE of a game and a
Bayesian equilibrium of an incomplete information version of the game.
Section 5 presents the estimation of the model and the measurement of
learning effects, using data from experimental games.

2. QuanTAL RESPONSE EQUILIBRIUM

Consider a finite n-person game in normal form: There is a set N =
{1, . . . , n} of players, and for each player i € N a strategy set S; =
{si,. . ., sy} consisting of J; pure strategies. For each / € N, there is a
payoff function, u;z: S — R, wherc § = ien S

Let A; be the set of probability measures on S;. Elements of A, are of
the form p;: S, — R where E,I/Esip,(sij) = 1, and p(s;;) = 0 for all s5;; € §,.
We use the notation p;; = p;(s;;). So A, is isomorphic to the J; dimensional

' The term “learning” means different things to different people. El-Gamal has suggested
that what we call learning is close to what some economists call “learning-by-doing.” However,
we do not model the detailed mechanics of learning as is done in some of the literature on
repeated games, where learning is modeled as either by fully Bayesian updating or as a myopic
but deterministic process such as fictitious play or Cournot dynamics.
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Simplex A,‘ = {p, = (pils e ey p,’_]'): E}pll = 1, Pij = 0}. We write A =
Iy A;, and let J = Z,cyJ;. We denote pointsin Aby p = (py, . . . , p,),
where p; = (pi, . . . ,piy) € A;. We use the abusive notation s;; to denote

the strategy p; € A; with p;; = 1. We use the shorthand notation p =
(p:,p-i)- Hence, the notation (s;;, p-;) represents the strategy where i adopts
the pure strategy s;;, and all other players adopt their components of p.

The payoff function is extended to have domain A by the rule u,(p) =
Zies p(S)u(s), where p(s) = ey pilsi). A vectorp = (p;, . . . ,p) €A
is a Nash Equilibrium if for all i € N and all p; € A;, u(p!, p-)) = ulp).

Write X; = R/, to represent the space of possible payoffs for strategies
that player i might adopt, and X = II., X,. We define the function u:
A—- X by

u(p) = (wi(p), - . . ,ux(p)).

where
Ei,‘(P) = ui(si)‘a p-i).

Next, we define quantal response equilibrium as a statistical version of
Nash equilibrium where each player’s utility for each action is subject to
random error.? Specifically, for each i and each j € {1, . . . , J}, and for
any p € A, define

ii(p) = w(p) + &;.

Player i's error vector, & = (&3, . . . , &), is distributed according to a
joint distribution with density function fi(e;). The marginal distribution of
f; exists for each g;; and E(g;) = 0. We call f= (f;, . . . , f,) admissible if
fi satisfies the above properties for all i. Our behavioral assumption is that
each player selects an action j such that &; = &, Vk = 1, . . . ,J;. Given
this decision rule (i chooses action j if &;; is maximal®), then for any given
u and f this implies a probability distribution over the observed actions of
the players, induced by the probability distribution over the vector of
observation errors, &. Formally, for any # = (u;, . . . , u,) with i; € R’
for each i, we define the ij-response set R; C R’i by

2One interpretation of this is that player i calculates the expected payoff, but makes
calculation errors according to some random process. An alternative interpretation is that
players calculate expected payoffs correctly but have an additive payoff disturbance associated
with each available pure strategy. This latter interpretation is discussed in Section 5.

3 Standard arguments show that results do not depend on how ties (&,;, = ;) are treated
(Harsanyi, 1973).
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R,','(—l:,') = {8,‘ c Qljrlﬂ,-j + 8,'/‘ = Eik + E,-ka = 1, . e ,J,}.

Given p, each set R,;(ui(p)) specifies the region of errors that will lead i
to choose action j. Finally, let

oy @) = [, . fle)de

R,‘j(“,’)

equal the probability that player i will select strategy j given . We then
define for any admissible f and game I' = (N, S, u) a quantal response
equilibrium as a vector # € A such that 7; = J & @y f(€) de, where
U = u (m). Formally, v

DeFiniTiON 1. Let I' = (N, S, u) be a game in normal form, and let f
be admissible. A quantal response equilibrium (QRE) is any 7 € A such
thatforalli, e N, 1 =7 =],

m; = oy(u(m)).

We call g;: R/ — A’ the statistical reaction function (or quantal response
function) of player i. Several results about statistical reaction functions can
be verified easily:

1. o € A is nonempty.

2. o, is continuous on R’

3. oy is monotonically increasing in ;.

4. If,foralliandforallj k=1,. .., J;, ¢, and g are i.i.d,, then
for all u, for all i, and forallj, k=1, . . . ,J,

Eij > aik = 0',](_(;) > O’ik(—l'_‘)'

The first two properties of o imply Theorem 1.
THEOREM 1. For any I and for any admissible f, there exists a QRE.

Proof. A QRE is a fixed point of o - u. Since the distribution of ¢ has
a density, o - u is continuous on A. By Brouwer’s fixed point theorem,
o+ u has a fixed point. ®

The third and fourth properties say that ‘‘better actions are more likely
to be chosen than worse actions.” Property three specifically compares the
statistical best response function if one of i’s expected payoffs, u;;, has
changed and every other component of u; has stayed the same. In this case,
the region R;; expands and each other u;; weakly decreases. Note that this
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is not the same as saying that 7 changed in such a way that u;; increased,
since the change in 7 could, in principle, change the value of all components
of u;. The fourth property states that o orders the probability of different
actions by their expected payoffs.

3. THE LociT EQUILIBRIUM

In the rest of the paper, we study a particular parametric class of quantal
response functions that has a tradition in the study of individual choice
behavior (Luce, 1959). For any given A = 0, the logistic quantal response
function is defined, for x; € R%, by

eAXU

o) =F——
U( ) zilzi e“ik

and corresponds to optimal choice behavior® if f; has an extreme value

distribution, with cumulative density function F(e;) = e™¢ *i™ and the &;'s

are independent. Therefore, if each player uses a logistic quantal response

function, the corresponding QRE or Logit Equilibrium requires, for each

i js
i
mij Ei-zl e
where x;; = ().

For the logistic response function, we can parameterize the set of possible
response functions o with the parameter A, which is inversely related to
the level of error: A = 0 means that actions consist of all error, and A =
o means that there is no error. We can then consider the set of Logit
Equilibria as a function of A. It is obvious that when A = 0, there is a
unique equilibrium at the centroid of the simplex. In other words, m;, =
1//; for all i, k. On the other hand, when A — oo, the following result shows
that the Logit Equilibria approach Nash equilibria of the underlying game.

We define the Logit Equilibrium correspondence to be the correspon-
dence 7*: R, = 24 given by

* See, for example, McFadden (1976).
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THEOREM 2. Let o be the logistic quantal response function. Let {A;,
Az, . . .} be a sequence such that im,_.. A, = w. Let {p\, p, . . .} be a
corresponding sequence wih p, € w*(A,)} for all t, such that lim,,. p, = p*.
Then p* is a Nash equilibrium.

Proof. Assume p* is not a Nash equilibrium. Then there is some player
i and some pair of strategies, s;; and s;¢, with p*(s;,) > 0, and u(s;;, p*;) >
ui(six, p*i). Equivalently, u, p*) > ;( p*). Since u is a continuous function,
it follows that for sufficiently small ¢ there is a T such that for + = T,
u(p") > uu(p') + & But as t » o, o (u(p"))/a;(@(p')) — 0. Therefore
p'(six) — 0. But this contradicts p*(s;,) > 0. =

The following theorem establishes several properties of the equilibrium
correspondence. The proof is in the Appendix.

THEOREM 3.  For almost all games T = (N, §, u).

1. #%()) is odd for almost all \.
2. @* is upper hemicontinuous.’

3. The graph of w* contains a unique branch which starts at the
centroid, for A = 0, and converges to a unique Nash equilibrium, as A goes
to infinity.

The third property is particularly interesting and is similar to properties of
the ““tracing procedure” of Harsanyi and Selten® (1988). The third property
implies that we can define a unique selection from the set of Nash equilib-
rium by “tracing’ the graph of the logit equilibrium correspondence begin-
ning at the centroid of the strategy simplex (the unique solution when
A = 0) and continuing for larger and larger values of A. We have already
seen that all limit points of QREs as A — o are Nash equilibria. Results
in differential topology are used in the Appendix to show that for almost
all games there is a unique selection as A — . We call this Nash equilibrium
the Limiting Logit Equilibrium of the game.

4. REeLATION TO OTHER EQUIiLIBRIUM NOTIONS

One may be tempted to conjecture Theorem 2 can be extended to prove
that limit points of Logit Equilibria as A grows will not only be Nash
equilibria, but will also be trembling-hand perfect. But that is not true.
Consider the game in Table L

S This is always true, not just generically.
® These properties of the tracing procedure are proven rigorously in the work of Schanuel
et al. (1991).
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TABLE 1
A GAME wiTH A UNIQUE
PERFECT EQUILIBRIUM AND
A DIFFERENT UNIQUE LIMITING
LoGIT EQUILIBRIUM
A>0B>0

L M R

U 11 0.0 11

M 0.0 0,0 0,B

L1 Al 1,1

This game has a unique perfect equilibrium (D, R), and the Nash equilib-
ria consist of all mixtures between U and D for Player 1 and L and R for
Player 2. The limit of Logit Equilibria selects p = (.5,0, .5), g = (.5, 0, .5)
as the unique limit point. Along the limit, for finite A, pp > py, and gz >
q: > g but as A becomes large p, and g, converge to 0. So M is eliminated
in the limit.’

Note that the Limiting Logit Equilibrium does not depend on the magni-
tudes of A and B. However, the Logit Equilibria for intermediate values
of A are quite sensitive to A and B. Figures 1 and 2 illustrate the logit
Equilibrium graph as a function of A for the casesof A = B=5and A =
B = 100.

One might consider the fact that the limiting QREs are not always perfect
equilibria to be a drawback of the QRE definition. Alternatively, it could
be viewed as “independence of irrelevant alternative™ property of the
limiting QRE. For large values of A, strategies that have sufficiently small
probability in the QRE do not affect the play of the rest of the game.

A rational-choice justification of the logistic quantal response function,
based on McFadden’s (1973) random utility maximization model, leads to
a connection with the literature on “purification” of Nash equilibria.® For
any x € R™_ let the vector of expected utility payoffs to player i be x + &,,
where &, = (g4, . . . , &,,) i1s a vector of draws from a distribution with
commonly known density f. If ¢; is known to / but to no one else and i is
maximizing expected payoffs given his/her information, then the ordering
assumptions imply that {’s statistical best response function to any x will

7 In the game without strategy M it is obvious that the unique limit point of Logit Equilibria
is (0.5, 0.3).

# See Harsanyi, 1973 in particular. This has its roots in the work of Dvoretsky et al. (1951).
See also Radner and Rosenthal (1982).
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Fic. 1. QRE for game of Table 1, with A = B = 5.

be given by o. The connection to the purification literature is through the
Bayesian equilibrium of the game (N, S, u) where &; is viewed as a random
disturbance to #'s payoff vector (Harsanyi, 1973). Suppose that for each
s € § each player { has a disturbance of ¢;; added to u,(s;;, s-;) and that each
&;; is independently and identically distributed according to f. Alternatively
viewed, each player has a randomly determined “‘predisposition” for each
of his/her different available strategies which takes the form of an extra
term added to every payoff associated with that strategy. This is illustrated
in Table II for a 3 X 3 game.

This differs only slightly from the Harsanyi (1973) setup which assumes
a separate disturbance &s) for i’s payoff to each strategy profile, s, while
we assume that this disturbance for i is the same for payoffs of all strategy
profiles in which i uses the same strategy. That is, we assume g(s;, s_;) =
es;,s.;) foralli and for all s_;, 5s2; € S_,. This violates Harsanyi’s condition
(1973, p. 5) that requires the existence of a density function for &(s). In
spite of this, it is easy to see that the main results in Harsanyi (1973) are
still true under the weaker assumption that for each i/ a density function
exists for &; = (g4, . . . , €). See Radner and Rosenthal (1982). This
weaker assumption is met in our model.
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Therefore, our model inherits the properties of Bayesian equilibrium in
Harsanyi’s disturbed game approach:

1. Best replies are “‘essentially unique™ pure strategies.

2. Every equilibrium is “‘essentially strong’” and in essentially pure
strategies.

3. There exists an equilibrium.

The idea of smoothing out the best response correspondence by assuming
that players might adopt inferior strategies with declining, but positive,
probability is the main feature of the bounded-rationality equilibrium model
studied in Rosenthal (1989). Rosenthal considers a linear version of the
quantal response equilibrium model and analyzes the equilibrium corre-
spondence as a function of the slope of the (linear) response function. His
analysis produces equilibrium graphs of the sort we use in later sections
to estimate the response parameter of our logit specification of the response
function. He points out that there is also a connection between the statistical
response function approach and the *‘control cost” model explored by Van
Damme (1987, Chap. 4). The control cost model assumes that it is costly to
implement strategies that deviate from a uniform distribution over available
actions. Thus, in the control cost approach good strategies will be played
more often than bad strategies, but bad strategies may still be used with
positive probability.

The quantal response equilibrium is also related to Beja’s (1992) imper-
fect equilibrium. The approach taken there is that each player has a *‘target™
(mixed) strategy that he/she attempts to play but fails to implement that
strategy perfectly. The target strategy maximizes expected payoff, given
the probability distribution of strategies induced by the imperfect imple-
mentation of target strategies by the other players. This idea of “‘equilib-
rium” imperfect implementation of target strategies also appears in Chen
(1994), El-Gamal er al. (1993), El-Gamal and Palfrey (1994, 1995), Ma and
Manove (1993), McKelvey and Palfrey (1992), and Schmidt {1992).°

The QRE concept does not use the notion of target strategies but, like
Beja (1992), does assume that the probability of implementing a particular
strategy is increasing in the expected payoff of the strategy. Furthermore,

° There are a number of other papers that use explicit models of the error structure that
can be interpreted as imperfect implementation. Logit and probit specifications of the errors
are common (Palfrey and Rosenthal, 1991; Palfrey and Prisbrey, 1992; Harless and Camerer,
1992; Stahl and Wilson, 1993; and Anderson, 1993). However, most of these are nonequilibrium
models in the sense that a player’s choice strategy does not take account of other players’
errors (or their own) and therefore is not an optimal response to the probability disribution
of other players’ actions. An exception is Zauner (1993) who uses a Harsanyi (1973) equilibrium
mode! with independent normal errors to explain data from the centipede game (McKelvey
and Palfrey, 1992).
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these expected payoffs are calculated from the equilibrium distribution of
joint strategies.

5. Data

In this section we explore how well the logistic version of QRE explains
some features of data from past experiments on normal form games that are
anomalous with respect to standard game theory. We focus on experiments
involving two-person games with unique Nash equilibria where there are
not outcomes Pareto preferred to the Nash equilibrium. This avoids games
where there are supergame equilibria which achieve more than the Nash
equilibrium for both players (for example, the prisoner’s dilemma game).

The experiments that we analyze were run across a span of more than
30 years. In order to have some comparability across experiments, we
express payoffs in terms of the expected monetary payoff in real (1982)
dollars.

For each experiment, we calculate a maximum likelihood estimate of A
in the logistic version of the QRE and see how well the model fits the data.

Lieberman (1960)

Lieberman [1960] conducted experiments on the following two person
Zero sum game:

B, B, B;
A | 15 0 -2
A | 0 -15 -1
Ay | 1 2 0

The payoffs represent payments, in 1960 pennies, from Player 2 to Player
1. For our estimates, the payoff matrix of the above game is multiplied by
3.373 to express the 1960 payoffs in 1982 pennies.

This game can be solved by iterated elimination of strictly dominated
strategies. It has a unique Nash equilibrium at (A3, B;). In this experiment,
Lieberman reports the choice frequencies as a function of time. Each subject
participated in 200 plays of the game, with a single opponent.

The data, broken down into 20 experience levels of 10 periods each, as
well as the QRE estimates for each experience level and the negative log
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TABLE III
DATA AND ESTIMATES FOR LIEBERMAN (1960) ExPERIMENTS: N = 300 FOR
EacH EXPERIENCE LEVEL

Predicted
Actual Data A N
Al A3
Periods | A, A; B, B, B, B, A -

1-10 0260 0.720 | 0.300 0.667 | 0277 0.696 | 0.176 | 212.0
11-20 0.167 0.806 | 0.227 0.760 | 0.196 0.781 | 0.252 | 177.0
21-30 0.113 0.880 | 0.160 0.833 | 0.138 0.838 | 0.329 | 1343
31-40 0.093 0.887 | 0.120 0.853 | 0.106 0.869 | 0.390 | 1344
41-50 0.060 0.907 | 0.073 0907 | 0.066 0.906 | 0.500 | 109.5
51-60 0.060 0.873 | 0120 0.860 | 0.087 0.886 | 0.435 | 1447
61-70 0.060 0853 { 0.113 0.867 | 0.083 0.890 | 0.448 | 152.7
71-80 0.060 0907 | 0.047 0933 | 0.054 0916 | 0.547 98.9
81-90 0.047 0.893 | 0.067 0920 | 0.056 0915 | 0542 { 1123
91-100 | 0.027 0.920 | 0.080 0.907 | 0.053 0918 | 0.553 | 105.6

101-120 | 0.053 0907 | 0.047 0933 | 0.051 0920 | 0.564 99.5
111-120 § 0.027 0920 { 0.047 0933 | 0037 0932 | 0.635 94.2
121-130 | 0.040 0927 | 0.040 0.920 | 0.040 0.929 | 0.616 97.1
131-140 | 0.033 0927 | 0.047 0953 | 0.040 0.929 | 0.616 80.2
141-150 | 0.053 0913 | 0.060 0900 | 0056 0915 | 0.542 | 1123
151-160 | 0.053 0.900 | 0.053 0920 | 0.052 0.919 | 0558 | 109.3
161-170 | 0.027 0946 | 0.060 0.927 } 0.045 0925 | 0.592 834
171-180 | 0.053 0.900 | 0.033 0.927 | 0.042 0927 | 0.604 | 1071
181-190 | 0.027 0.933 | 0.020 0973 | 0.023 0.946 | 0.737 67.0
191-200 | 0.040 0.920 | 0.047 0.933 { 0.044 0926 | 0.598 93.7

likelihood (—X*), are reported in Table III. The data and estimates from
each period are also superimposed on the QRE graph in Fig. 3. The notable
feature of the data is that during early rounds the row player overplays
strategy A,, and the column player overplays strategy B; relative to the
Nash equilibrium prediction. Figure 3 shows the QRE for the Lieberman
experiment as a function of A. We see that the QRE has the feature that,
for small values of A, A; and B, are overplayed. The frequency of these
strategies decreases as A gets larger and Nash equilibrium is approached.
If one hypothesizes that the amount of error individuals make decreases
as they gain more experience with the game, then one would expect the
time series to correspond to QRE solutions with gradually increasing A.
This is similar to what occurs in the Lieberman data and we also see that
the maximum likelihood estimates for A in Table III generally increase
with the period number. The Nash model is easily rejected since it predicts
Ay, A,, By, and B, will never be used. The random model (i.e., constraining
A = 0) has —R* = 329 and is rejected in every time period.
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FiG. 3. QRE as a function of A for Lieberman experiment.
O’Neill (1987)

O’Neill conducted experiments on the following two person zero sum
normal form game:

Bl Bz B3 B4

A, 5 -5 -5 -5
A1 -5 -5 5 5
A3 | -5 5 -5 5
Ayl -5 5 5 -5

The entries represent the payoff, in pennies, from Player 2 to Player 1.
Each subject participated in 105 plays of the game. Details of the procedures
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TABLE IV

DATA AND ESTIMATES FOR O'NEILL

Number Frequency | Rand NE QRE
A, 949 0.362 0.250 0.400 0.360
A, 579 0.221 0.250 0.200 0.213
Ay 565 0.215 0.250 0.200 0.213
Ay 532 0.203 0.250 0.200 0.213
B, 1119 0.426 0.250 0.400 0.426
B, 592 0.226 0.250 0.200 0.191
B, 470 0.179 0.250 0.200 0.191
B, 444 0.169 0.250 0.200 0.191
A 0 w1313
—4* 7278 7016 7004

can be found in O’Neill (1987). In our estimates, the payoffs are multiplied
by 0.913 to express them in 1982 pennies.

The game has a unique Nash equilibrium at (.4, .2, .2, .2) for both players
and has the feature that the equilibrium is invariant to the choice of utility
function, since the payoffs of the game take on only two values. Table IV
gives the aggregate data for the O’Neill experiments.

O’Neill interpreted the data as providing support for the minimax hypoth-
esis!’ and did not view as important the finding that Player 1 underplayed
strategy (A,) while Player 2 overplayed strategy (B);). He claims that ““Play-
ers’ average selecting frequencies for the moves . . . were almost exactly
as predicted.” However, in the quantal response equilibrium we predict
systematic differences (A, < B)). The other discrepancy from the theoretical
prediction involves the overplay of strategy B, relative to B; and B4. O’Neill
attributes this to a flaw in the experimental design,'' which seems quite
plausible. Given the symmetry of payoffs with respect to the last three
strategies, it is hard to image any other explanation. Figure 4 displays a
plot of the QRE predictions of the strategy frequencies of A, A;, By, and
B; for various values of A. As can be seen from this figure, the QRE predicts
{A; underplayed, B, overplayed} for intermediate values of A and always
predicts A, > B;. Table IV gives the maximum likelihood estimates (¥*)
of A for the QRE. One can easily reject both the random (Rand) and Nash
(NE) predictions in favor of the QRE at the 0.01 level using a likelihood
ratio test.

1 Brown and Rosenthal (1990) reexamined these data and found a number of discrepancies
with the theory.

! Subjects chose strategies by selecting cards. Strategy 1 was a joker, and the others were
Ace, Deuce, and Trey, respectively. A conjecture is that Strategy 2 was over played because
of an Ace effect.
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In addition to estimating the logit QRE model using the aggregate data,
we also have broken the observations down into seven different experience
levels. Each subject played 105 games, so each experience level corresponds
to a 15-game sequence (games 1-15,16-30, . . .). The results are displayed
in Table V, and the estimated move frequencies are superimposed on the
QRE graph in Fig. 4. There is no discernible trend in the estimated values
of A, in contrast to what we found in the Lieberman experiment.

Rapoport and Boebel (1992)

Rapoport and Boebel conducted experiments on a variation of O’Neill's
game. The game was also two person, zero sum, and had the following
payoff matrix.

B] Bz Bg B4 B5
AW L L L L
AL L W WwW W
AL W L L W
A JL W L W L
As|L W W L L

Rapoport and Boebel (RB) ran two versions of the game: in one W was
worth (to the row player) $10 and L was worth —$6, while in the other W
was worth $15 and L was worth —$1. These versions are both equivalent
from the point of view of the quantal response model. The subjects were
paid for a randomly chosen 3 out of 120 rounds, leading to expected payoffs
(to row) of 25 cents for a win versus —15 cents for a loss in Game 1, and
37.5 cents for a win versus —2.5 cents for a loss in Game 2. In our estimates,
we multiply these payoffs by 0.713 to express them in 1982 pennies.

This payoff matrix has a unique Nash equilibrium at (.375, .250, .125,
.125, .125) for each player. The aggregate data for the RB experiments are
given in Tables VI and VII. They found that Player 1 underplayed the
strategy A, and overplayed A,, whle Player 2 underplayed B, and over-
played B;. Figure 5 gives the QRE as a function of A for the RB experiments,
and the maximum likelihood estimates are given in Tables VI and VII.
The QRE does a fair job of predicting the behavior of Player 1, even
picking up the reversal in frequency between the first two strategies for
Experiment 1. It does not do as well with Player 2. The QRE does not
explain Player 2’s overplay of strategy B;, although it does predict the
underplay of strategy B,. The random and Nash models are easily rejected
in favor of the QRE. .

RB compare the performance of alternative models to Nash equilibriu
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FiG. 4. QRE as a function of A for O’Neill experiment.

including the totally random (equiprobable) choice model (corresponding
to A = 0, in our setup) and a win-weighted model, which says that players
are more likely to choose strategies with more possible wins than those with
less possible wins. This corresponds roughly to a nonequilibrium quantal
response model where players believe opponents are choosing randomly.
They find that the Nash model outperforms both of these alternative mod-
els. In contrast, we find that an equilibrium quantal response model signifi-
cantly outperforms the Nash model in both of their experiments.

Table VIII breaks down the Rapoport—-Boebel data to identify experi-
ence effects. Each subject participated sequentially in two sessions of one
of the games, and each session consisted of 120 plays of the game. Each
subject switched roles (row to column or column to row) between session.
We break each session down into two experience levels, so that we have
a total of four experience levels for each of the two games. The data and
estimates are displayed on the QRE graph in Fig. 5.
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TABLE VI
DATA AND ESTIMATES FOR RAPOPORT-BOEBEL,
EXPERIMENT 1

n;; fij Rand NE QRE
A, 702 0.293 0.200 0375 0.286
A, 732 0.305 0200 0250 0.302
A; 295 0.123 0200 0.125 0138
Ay 287 0.120 (0.200 0.125 0.138
As 384 0.160 0200 0.125 0.138
B, 845 0352 0.200 0375 0412
B> 432 0.180 0.200 0250 0.169
B; 523 0218 0.200 0.125 0.140
By 238 0.099 0200 0.125 0.140
Bs 362 0.151 0.200 0.125 0.140
A 0 «  0.2478
—* 7725 7475 7401

In Game 2 the trend from low A to higher A is strong and systematic,
indicating monotonic convergence to the Nash equilibrium. By the second
half of the second session, the data have converged to Nash play to the
point where the QRE model is not (statistically) better than the Nash
model. We do not find such a trend in the first game. Specifically, the
estimated value of A is quite low throughout the game. This difference
between play in the two games suggests that the statistical evidence for

TABLE VII
DATA AND ESTIMATES FOR RAPOPORT-BOEBEL.
EXPERIMENT 2

n; f Rand NE QRE

Ay 736 0.307 0.200 0375 0.309
Az 778 0.324 0.200 0.250 0.296
Aj 239 0.100 0200 0.125 0.132

A,y 275 0.115 0200 0.125 0.132
As 372 0.155 0.200 0.125 0.132
B, 831 0.346 0200 0375 0410
B, 463 0.193 0.200 0.250 0.184
B, 485 0.202 0200 0.125 0.135
B, 279 0.166 0.200 0.125 0.135

Bs 342 0.142 0200 0.125 0135

A 0 o 03274
- 7725 7400 7345




TABLE VIII
DATA AND ESTIMATES FOR RAPOPORT-BOEBEL EXPERIMENTS, BROKEN DOWN BY PERIOD AND SESSIONS

Qe
Game  Sess.  Periods A, A, As A, B, B, Bs B, N QRE Nash Rand

1-60 Actual 0308 0307 0113 0120 0350 0218 0202 0.092 | 0.439 1836 1843 1931
1 1 Predicted 0327 0289 0128 0.128 0406 0.199 0.132 0.132

61-120 Actual 0293 0272 0162 0100 0333 0177 0190 0.140 | 0.211 1878 1896 1931
1 1 Predicted 0271 0303 0142 0.142 0410 0.160 0143 0.143

1-60 Actual 0273 0350 0103 0.123 0353 0133 0258 0102 | 0.184 1840 1881 1931
1 2 Predicted 0256 0304 0147 0147 0407 0.154 0.146 0.146

61-120 Actual 0295 0292 0113 0135 0372 0192 0222 0063 | 0293 1841 1855 1931
1 2 Predicted | 0300 0296 0.134 0.134 0412 0.178 0.137 0.137

1-60 Actual 0258 0367 0105 0143 0332  0.115 0245 0.140 | 0.149 1850 1906 1931
2 1 Predicted | 0233 0302 0155 0155 0396 0.148 0152 0.152

61-120 Actual 029 0347 0118 0110 0355 0198 0208 0.108 | 0.308 1827 1844 1931
2 1 Predicted 0304 0297 0133 0133 0411 0181 0136 0.136

1-60 Actual 0355 0313 0082 0100 0355 0215 0187 0.110 | 0.644 1803 1808 1931
2 2 Predicted 0344 0279 0126 0126 0398 0215 0129 0.129

61-120 Actual 0323 0270 0093 0105 0343 0243 0168 0.107 | 1.124 1842 1843 1931
2 2 Predicted 0358 0268 0125 0125 039 0230 0127 0.127

Note. Data for As and Bs can be inferred from the remaining data and are omitted. The first 10 periods of each session were practice rounds
and are excluded from the analysis.
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strategic equivalence is somewhat weaker than Rapoport and Boebel’s
reported finding of “no evidence to reject the hypothesis of strategic equiva-
lence” (1992, p. 279).

Ochs (1995)

Ochs recently conducted experiments on the following three two-person
non-zero-sum games:

Bl BZ Bl Bz Bl Bz

A 11,0 0,1 A 190 01 A 14,0 0,1

A, (0,1 1,0 A; 10,1 1,0 A; 10,1 1,0
Game 1 Game 2 Game 3

These experiments are designed so that the only difference between the
three tables is the payoff to Player 1 in the upper left cell. In all three
tables, there is a unique Nash equilibrium. Since the Nash equilibrium for
Player 1 depends only on the payoffs to Player 2, this means that the Nash
equilibrium probability that Player 1 chooses A, or A; is the same (.5, .5)
in all three games and that the only differences are in the predicted behavior
of Player 2. The Nash equilibrium specifies that Player 1 chooses A, with
probability .5 in all three games and Player 2 chooses strategy B, with
probability 0.5 in Game 1, 0.1 in Game 2, and 0.2 in Game 3.

In converting the above payoffs to 1982 pennies, we encounter a difficulty
that did not arise in the previous, constant sum experiments. The subjects
in the Ochs experiments were paid using a lottery procedure, and the
probability of winning the large payoff in the lottery was determined by
the total percentage of the maximum possible points that the player accumu-
lated over the course of the experiment. Since the maximum possible num-
ber of points for each subject was different, this means that the exchange
rate of points to expected payoff was different for each player. Most tradi-
tional theories of behavior in games are not affected by a positive scalar
multiple of a player’s payoffs. The quantal response equilibrium does
change if one or both players’ payoffs are multiplied by a positive scalar.
We express each player’s payoffs in terms of expected 1982 money payoff
to that player. Since there was a $10 difference between the high and low
payoffs in the lottery for each player, and there were a total of 640 games
for each player, this means that the maximum payoff for a player is 1.5625
cents. Multiplying by 0.713 to express the payoff in 1982 pennies, this yields
the following two games, which represent the Ochs games 2 and 3, in
(expected) 1982 pennies for each player.
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Fic. 6. QRE as a function of A for Game 2 of the Ochs experiment.

B, B, B, B,

A | 1.1141, 0.0000 0.0000, 1.1141 | A, | 1.1141, 0.0000 0.0000, 1.1141
A, | 0.0000, 1.1141 0.1238, 0.0000 | A, | 0.0000, 1.1141 0.2785, 0.0000

Game 2 Game 3

The aggregate data from Game 1 are close to the Nash equilibrium
predictions and the Logit model makes the same prediction for all values of
A. We do not analyze that data. Data from the other games are informative.
Figures 6 and 7 show the QRE as a function of A for these two games. As
QRE predicts, both A; and B, are overplayed in early rounds and this
overplaying declines over time, suggesting learning is taking place. This is
reflected in the overall (increasing) trend in the estimated A for each game.
The Nash model is soundly rejected in both games, using the aggregate
data, consistent with Ochs’ own conclusions.

Tables IX and X present the data and estimates for Games 2 and 3,
respectively, broken down into four experience levels (each level corre-
sponding to 16 plays of the game). These data and estimates are also
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superimposed onto Figs. 6 and 7. In both games, the QRE fitted significantly
better'? than the Nash model in early rounds and significantly better than
the random model in later rounds. In Game 2, QRE fits better than both
the random and Nash models in both early and later rounds. In the early
rounds of Game 3, we cannot reject the random model. By the later rounds
of Game 3, we cannot reject the Nash model.

6. CONCLUSION

This paper proposed a general statistical theory of equilibrium in normal
form games based on the notion that better strategies are played more
often than worse strategies, but best strategies are not always played. The
resulting quantal response equilibrium imposes a consistency requirement
that the expected payoff to a strategy in equilibrium be calculated based
on the equilibrium quantal response probabilities. A parametric version of

12 Significance is at the 1% level based on a x* test with one degree of freedom.
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TABLE IX
DATA AND ESTIMATES FOR OcHs. GAME 2
Actual Predicted —Q*
Period n A B; A B A QRE Nash Rand

1-16 128 0.541 0.326 0.645 0347 1.951 1721 1938 1774
17-32 128 0.649 0.228 0.645 0228 3.763 1517 1664 1774
33-48 128 0.578 0.250 0.648 0.241 3.475 1605 1725 1774
48-52 64 0.626 0.200 0.636 0.197 4.638 743 792 887

All 448 0.595 0.258 0.649 0.254 3.241 5612 6119 6210

this equilibrium, based on logit response functions, was analyzed and used
to fit experimental data from a variety of two-person normal form games.

This model predicts systematic deviations from Nash equilibrium, in spite
of the fact that the error structure of the model is unbiased, in the sense
that the assumed errors are not the result of a systematic deviation from
induced preference by the players.!> Accordingly, this model is able to
account for many of the systematic deviations from Nash equilibrium in
the experiments which we reanalyze. The qualitative predictions of the
direction of these systematic deviations from Nash equilibrium are borne
out in most of the data. In addition, the estimated error rates (i.e., inverse
of the parameter A in the logistic quantal response functions) are generally
declining with subject experience, consistent with an interpretation that
learning is taking place.

TABLE X
DATA AND ESTIMATES FOR OcHs, GAME 3
Actual Predicted —*
Period n A B A B A QRE Nash Rand

1-16 128 0.527 0.366 0.615 0.383 1.856 1747 1822 1774
17-32 128 0.573 0.393 0.6106 0405 1.568 1735 1870 1774
33-48 128 0.610 0.302 0.614 0.301 3.306 1640 1708 1774
48-52 128 0455 0.285 0.500 0.200 o 1679 1679 1774

All 512 0.542 0.336 0.619 0.331 2.656 6864 7079 7098

13 This is in contrast to the model we used elsewhere (McKelvey and Palfrey, 1992) to explain
departures from equilibrium in the Centipede Game by introducing altruistic preferences.
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While the QRE model picks up some of the gross departures of the
aggregate behavior from the Nash equilibrium predictions, there are also
aspects of the model that remain unexplained. For example, we have ex-
pressed payoffs in a common currency (1982 pennies) in an attempt to see
if there is any consistency across experiments in the estimated values of A.
Despite this normalization, we find some differences across experiments
in the range of A that is estimated. Also, while we see a tendency for A to
increase with experience, this does not occur in all cases, and in many cases,
despite the length of the experiments, A remains significantly different from
the Nash equilibrium even in the later periods of the experiment.

These discrepancies suggest several research directions in which to pro-
ceed from here. In light of the above observations, one direction is to
attempt to endogenize the learning. The experimental evidence suggests A
may grow over time. It may be possible to infer this from optimizing (but
still error prone) behavior by individuals. Also, if one tried to incorporate
into the equilibrium the decision to choose A as part of a labor~leisure
tradeoff (Smith and Walker, 1993) that might explain why A does not
approach infinity and might generate testable predictions about how the
‘“equilibrium” values of A would be related to the magnitude of the payoffs.

A second direction is to incorporate heterogeneity across players. There
is some convincing evidence emerging that models which impose homoge-
neity of subject behavior are inadequate.'* Conceptually, it is not a difficult
extension of the QRE to allow for different error rates across individuals (in
fact the formal definition permits this), but this complicates the estimation.

A third direction is to extend this approach to extensive form games.In
McKelvey and Palfrey (1994) we extend the basic model presented here
to games in extensive form and apply the analysis to several experimental
multistage games, including signalling games. A specific application of the
extensive form quantal response model can also be found in Fey er al
{(in press).

APPENDIX

This appendix proves the properties of the quantal response correspon-
dence stated in Theorem 3.

let N={1,...,n}, and foreachi € Ndefinem, =J, — 1 and M; =
{1, ..., ,m}. Write N., = N —{i}and m = Z,cy m;. Let S = Il,cn S; and
u;: S — R be the payoff function for player i € N. As before, A, is the set
of mixed strategies on S;. A mixed strategy is a function p,:S; — [0, 1],

14 See El-Gamal and Grether (1993), Holt (1993), Stahl and Wilson (1993), and McKelvey
and Palfrey (1992).
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satisfying p,(s;x) = 0, for all i € N and s, € §;, and E»\‘.-kES, pi(si) = 1 for
all i € N. Write p;; = pdsix), for s;x € S;, and pyy, = pis,. Define

D, = {pf € R":p, =0forallk € M,, and kEEM Pik = 1},

and write DY for the interior of D;. Using the identity P, = po =1 —
EkeM Pix. @ mixed strategy p, € A, can be identified by the first m; compo-
nents, i.e. , by a vector in D;. Write D = .y D, and D° for the interior
of D. A vector p = (p, . . ., p,) € D is referred to as a mixed profile.

Define S ;=1Ilcy ;. For any s., € S, and sy, s; € S;, define
Uid(s-1) = uiSix, S-1) — udsy, s-;). Write uyo(s_;) = Uiy, (s-). Define X =
D° X (0, »), and f: X — R™ with components given by, for any i € N and
k € K,

fulp, A) = %10 {p‘k} + Uiro(P),

where
il p) = wigp i) = N gg Uil(s-)p-i(s-i)

ps)= H pj(sj)-

JEN,

Note that 7*(A) = {p: f(p, A) = 0}. The logistic QRE graph, 2 = {(r*(A),
A):0 < A < o}is given by 2 = f7(0), where 0 is the m-dimensional vector
of zeros. Since fis a continuous function, it follows that f~'(0) is a closed
set. This establishes property 2 of Theorem 3, that @ is upper hemicontinuous.

The domain X, of f, is a manifold of dimension m + 1. It follows from the
pre-image theorem (see e.g. Guillemin and Pollack, 1974, p. 21) that if 0 is a
regular value of f: X — R™ that f ' (0) is a one-dimensional manifold. Writing
€ € R™, with components ¢, it follows by Sard’s theorem that almost all
values of € are regular values of f (see Guillemin and Pollack, 1974, p. 39).
Hence f~'(€) is a one-dimensional manifold for almost all € € R™. But

1 i
fup,A) =gy — 108 <p k) + [tuo(p) — €] =0

1 i
3 log (p ") + f0(p) =
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where 1;, is defined by f;.0(s-;) — & for all s; € S_;. It follows that for
all u, and almost all perturbations, & of u the QRE graph, 3 of i is a one-
dimensional manifold. Hence, for almost all games, 2 is a one-dimen-
sional manifold.

Note that the above argument can be extended to the case when the
domain of fis bounded: For any ¢ = (¢,c) with 0 < ¢ <, define X, C X
by X. = D° X [¢,c]. Then X, is a (m + 1)-dimensional manifold with
boundary. It follows from the pre-image theorem for manifolds with bound-
ary (see e.g. Guillemin and Pollack, 1974, p. 60) that if 0 is a regular value
of both f: X. — R™ and 9f:9X. — R™, then 2, = f7'(0) N X, is a one-
dimensional manifold with boundary. Now by Sard’s theorem, it follows
that for almost all values of £ that ¢ is a regular value of both fand df (see
Guillemin and Pollack, p. 62). Hence f (&) is a one-dimensional manifold
with boundary for almost all £ € R™. But then by the same argument as
above, it follows that for almost all games 9 is a one-dimensional manifold
with boundary.

Now pick M > 0 so that for all p € A, sup|uid p)| = M. Define a, =
e and b, = ™. Then it follows that for any (p, A) € 2, that

-A-M=log <&ﬁ> =A-M=aApp=piy = bApp.

Pio
But
Pik EbAp=>1—pp= 121;4, Pik = bAm;py
= pip = 1/(bym; + 1)
and

Pik = a\pio = pix = a/(bym; + 1) = ¢,.

Since a, < 1, it follows that for all 0 = k = m; (i.e., including k = 0) the
above inequality holds. Define

W={(p,))E X:psx=c,foralli EN,0=<k=m}

Thus, we have shown that 2 € W N X. Similarly, 2, € W N X.. In
otherwords, the QRE graph can only “exit” X at the minimum and maxi-
mum values of A.

We wish to show that in generic games, the QRE graph can be used to
make a unique selection of a Nash equilibrium. To do this, we must establish
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two facts. First, we establish that for sufficiently small A, there is a unique
solution. Then we show that this branch of the correspondence converges
to a unique Nash equilibrum as A goes to .

Lemma 1. For sufficiently small A, %(A) is a singleton.

Proof. To see this, define the mapping ¢: R"” — R™ to have components
du(p) = exp[—Auik,p_)J/ {;; eXP[—)\uf(l,pi)]} (*)

Then, for any A, (p, A) € 2 if and only if p is a fixed point ¢. We will
show that, for A sufficiently small, ¢ is a contraction mapping. We use three
facts to prove the result, each of which follows from easy arguments.

Fact 1. For any p, g € A° (the interior of A), max,|p, — ¢ = max,
|pi/px = il qul-

Fact 2. Since the derivative of e at x = 0 is 1, then for all D > 1, there
is a & such that whenever |x|, |x,] < 8, lexp[x,] — exp[x2]| = D - |x; — x|

Fact 3. There is an M > 0 such that max|lu{p) — wulq)l = M -
maxu|puc = qil-

Pick any D > 1 and let 6 be defined as in Fact 2 and M be defined as
in Fact 3. We pick A to satisfy

1. Aug(p) < éforalli k, [, and any p.
2. A<1/(D-M).

Write p = A - D - M. Then pick any p, ¢, € A. Then, letting ||-| represent
the sup norm, we let

lo(p) — d(g)ll = maxi|di(p) — du(q)|
= maxu| ¢l p)/ du(p) — dul @) din(q)|
= max;|exp[Au(p)] — exp[Auil(q)]|
=< A D - maxi|uid p) — tiui(q)|
=A-D-M-maxylpic — gl = o llp — 4l,
where p < 1. The steps follow, respectively, by the definition of |||, Fact

1, Equation (*), Fact 2, Fact 3, and the definition of ||-||. It follows that, for
A = A, ¢ is a contraction mapping. Hence it has a unique fixed point. ®

We now have shown enough to prove Property 1 of Theorem 3, that for
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almost all A there are an odd number of logistic QREs. From the above
argument, seting ¢ = (c,c), we have shown that 2. is a compact, one-
dimensional manifold with boundary, which for small enough ¢, has a unique
intersection with A = c. Any such manifold has a finite number of connected,
compact components, each of which must have an even number of boundary
points. We have also shown that any boundary point must be at A = ¢ or
A = c. Since there is exactly one solution at A = ¢, there must be an odd
number of solutions at A = c.

We now show the first assertion of Property 3 of the theorem, that as
A — oo, the branch R of the manifold that passes through A converges to
a unique Nash equilibrium.

LEMMA 2. Let A be chosen so that 1*(A) is a singleton. Then for almost
all games u, as A — ©, the branch B of the manifold that passes through
A converges to a unique Nash equilibrium.

Proof. 1t follows from the arguments above that for almost all games
there exists an increasing sequence {A;} with A < X, for all , such that if
we define C; = (é, A,’), X,' = XC‘, and 9,,' = Q'Ci - 9,,

1. 2 is a one-dimensional manifold with a unique point, say (p, A),
for which A = A and a unique connected branch 9 that passes through
(@A)

2. 93, is a compact one-dimensional manifold with boundary, which
has a finite number of connected components.

3. Letting B, be the connected branch of 2; which begins at (p, A),
it follows that %, is a compact connected one-dimensional manifold with
boundary for all {, which has a unique intersection, say (p;, A;), with A = A;.

Now for any i, define of; = {(p, A) € B:A > A} and A, to be the closure
of the projection of $4; onto D. Then {A;} is a decreasing sequence of sets.
We show that for almost all games, N;A; must be a unique point. First of
all, since D is compact and each A, is closed and nonempty, N;A; cannot
be empty. Suppose, by way of contradiction, that N;A; contains two distinct
points. Since generic games contain a finite number of Nash equilibria, we
may assume that the game defined by u has a finite number of Nash
equilibria. By Theorem 2, any point in N;A; must be a Nash equilibrium.
But if p* and g* are both in N;A;, then we can construct a sequence
{(pi, A)} C B with pyi-y — p*, py — p*, A; — ©, and a homeomorphism,
¢: R — B, satisfying $(i) = (p¥, A), and &2i) = (g¥, n;). In particular,
start with any 8, and find (p¥, A;) € B with A; > 1/8, and ||p, — p*| <
8. Since 9B is a connected, it is path connected (Guillemin and Pollack,
p. 38, Exercise 3), so one can construct ¢[0, 1] — & with ¢0) = (p,A)
and ¢(1) = (p¥, A1). Since ¢[0, 1] is compact, it is bounded. Pick 68; so that
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1/8, exceeds the bound and find (pf, A;) € B with A; > 1/8; and |p; —
g*| < &. By the same reasoning as above, one can construct ¢[1,2] — B
with &(1) = (pf. A1), and $(2) = (p5, Az). Proceeding in this fashion, one
can construct the sequence {(p;, A;)} C ® and a homeomorphism, ¢:R —
% with the properties specified. Now for each i, ¢[i, i + 1] is a compact
one-dimensional manifold with boundary. Moreover, we can pick ¢ so that
Si — 1,0y N @i, i + 1) = ¢i).

We have constructed an infinite sequence of compact manifolds with
boundary, each of whose projection on D connects a point near p* to a
point near g*. Further, for any A;, at most a finite number of these manifolds
intersect with X; (since a 8 N X, is a compact one-dimensional manifold
with boundary, which can consist of at most a finite number of components.)
It follows that any separating hyperplane H, = {p* € D: p - (p* — g*) =
t} between p* and g* must have a nonempty intersection with M;A; (by
compactness of H,.) But, since there are an infinity of such separating
hyperplanes, this means that N; A;, is infinite and hence there are an infinite
number of Nash equilibria, which is a contradiction. =

We have established that there is a unique branch of 9 that selects a
unique Nash equilibrium as A goes to infinity. This establishes Property 3.
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