Common Value Auctions with Insider Information

John H. Kagel; Dan Levin
Econometrica, Vol. 67, No. 5. (Sep., 1999), pp. 1219-1238.

Stable URL:
http://links jstor.org/sici?sici=0012-9682%28199909%2967%3A5%3C1219%3ACV AWII%3E2.0.CO%3B2-Q

Econometrica is currently published by The Econometric Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/econosoc.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Fri May 5 12:29:09 2006
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COMMON VALUE AUCTIONS WITH INSIDER
INFORMATION!

By JouN H. KAGEL AND DAN LEVIN

Bidding is studied in first-price common value auctions where an insider is better
informed than other bidders (outsiders) about the value of the item. With inexperienced
bidders, having an insider does not materially reduce the severity of the winner’s curse

«compared to auctions with a symmetric information structure (SIS). In contrast, super-expe-
rienced bidders, who have largely overcome the winner’s curse, satisfy the comparative
static predictions of equilibrium bidding theory: (i) average seller’s revenue is larger with
an insider than in SIS auctions, (ii) insiders make substantially greater profits, conditional
on winning, than outsiders, and (iii) insiders increase their bids in response to more rivals.
Further, changes in insiders’ bids are consistent with directional learning theory (Selten
and Buchta (1994)).

Keyworps: Common value auctions, asymmetric information structure, winner’s curse,
learning.

THIS PAPER INVESTIGATES BIDDING in first-price, sealed bid common value
auctions, with an asymmetric information structure (AIS). Two types of AIS
auctions have been analyzed in the literature. In both cases a single insider (1)
has superior (often exact) information about the value of the item. In one case
I’s have a double informational advantage; they are better informed, and less
informed bidders (outsiders; O’s) only have access to public information. In this
case, O’s employ mixed strategies earning zero expected profits in equilibrium
(Wilson (1967), Weverberg (1979), Englebrecht-Wiggans, Milgrom, and Weber
(1983), Hendricks, Porter, and Wilson (1994)). In the second case, I’s do not
have access to the private information O’s have, which provides O’s with
positive expected profits in equilibrium (Wilson (1985), Hausch (1987)).

The AIS auction studied here corresponds to the second category. The
primary motivation for this was to maintain comparability with the vast amount
of “baseline” data on auctions with a symmetric information structure (SIS).> I’s
were provided with a signal equal to the true value of the item, while O’s
received private information signals distributed around the true value as in
previous SIS experiments. This design yields a number of interesting compara-

'Research was partially supported by grants from the Economics Division and Information
Science and Technology Division of the National Science Foundation. Earlier versions of this paper
were presented at the ESA meetings in Tucson, the CREED conference on experimental economics
in Amsterdam, and the Barcelona conference on Auctions, Theory and Empirics. We thank
participants at these meetings and the referees and editor of this journal for helpful comments. We
alone are responsible for any errors.

2AIS common value auctions have been used to analyze oil and gas drainage lease auctions.
Arguably, as in our design, less informed bidders in drainage lease auctions have some proprietary
information as they have conducted their own seismic readings and their own analysis of the data,
conclusions of which are not available to the insider.
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1220 J. H. KAGEL AND D. LEVIN

tive static predictions that differ in important ways from the double informa-
tional advantage model. First, and foremost, for the parameter values employed,
AIS auctions increase expected revenue relative to SIS auctions. In contrast, in
the double informational advantage model, the insider always reduces the
seller’s expected revenue.® Further, unlike the double informational advantage
model, O’s earn informational rents, albeit, substantially smaller rents than in
corresponding SIS auctions. Increases in the number of O’s result in I’s bidding
higher in our model. In contrast, in the double informational advantage model,
I’s bidding strategy is unaffected by increases in the number of O’s. Finally,
both models imply that, conditional on winning, I’s expected profits are larger
than O’s and larger than in SIS auctions.

Our experimental design also permits us to investigate possible ways in which
the winner’s curse is attenuated or eliminated in field settings. Inexperienced
bidders in SIS auctions are subject to a strong winner’s curse, consistently
bidding above the expected value of the item conditional on winning and
earning large negative average profits. (Kagel, Levin, Battalio, and Meyer (1989),
Dyer, Kagel, and Levin (1989), Lind and Plott (1991). Such losses clearly
characterize markets that are out of equilibrium. In field settings with a common
value element, one or more agents are often better informed than others.
Although this will typically create a stronger adverse selection effect than in a
SIS setting, it is entirely plausible that the need to hedge against a known
insider is more intuitive and transparent than the need to correct for winning
against equally well informed rivals. Thus, having an insider may actually reduce
the severity of the winner’s curse for inexperienced bidders. This would be true,
for example, if O’s view the situation as being closer in structure to a'lemon’s
market (see Akerlof (1970)), where it seems reasonably clear there is no
rampant winner’s curse (our culture warns us to beware of used car salesmen).*
On the other hand, inexperienced subjects may bid higher, rather than lower, in
order to make up for their informational disadvantage, thus exacerbating the
winner’s curse.

Our main experimental results are: Super-experienced bidders, who have
learned to overcome the worst effects of the winner’s curse, generally satisfy the
comparative static predictions of the theory. In contrast, for inexperienced O’s
the winner’s curse is alive and well in AIS auctions as bids are consistently above
expected value conditional on winning the item. More importantly, the introduc-
tion of an insider does not result in significantly lower bidding than in SIS
auctions. However, the theoretical prediction that I’s earn larger profits condi-
tional on winning than O’s do holds (superior information is valuable outside of
equilibrium). Finally, I’s adjustments to past outcomes are generally consistent

*Note that increased seller’s revenue is not a general characteristic of AIS auctions in which O’s
maintain some proprietary information. However, it is true for the parameter values of our
experiment and in other cases as well (see Kagel and Levin (1998) and Campbell and Levin (1997)).

““Presentation format” effects of this sort have been found in a number of game theoretic
contexts. See, for example, Andreoni (1995), Cooper, Garvin, and Kagel (1997), and Schotter,
Weigelt, and Wilson (1994).
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with Selten and Buchta’s (1994) “directional learning theory,” with some impor-
tant differences in the quantitative pattern of the adjustment process relative. to
previously reported results.

1. STRUCTURE OF THE AUCTIONS

Each experimental session consisted of a series of auctions in which a single
unit of a commodity was awarded to the high bidder in a first-price sealed bid
auction. The value of the item, x,, was unknown at the time bids were
submitted. In each auction period, x, was drawn randomly from a uniform
distribution on [x, X].

In SIS auctions, each bidder received his own private information signal, x,
drawn iid from a uniform distribution on [x, — &, x, + £]. In AIS auctions one
bidder—the insider—chosen at random in each auction, received private infor-
mation signal x =x, and was told x =x,. Each of the other bidders, the O’s,
received a private information signal as in the SIS auctions. I’s did not know the
realizations of O’s signals. O’s knew they were O’s, that there was a single I
who knew x,, and the way that other O’s got their signals (but not their
realizations). The total number of bidders (n) and the values of & and [x, X]
were publicly posted prior to each auction.

At the end of each auction all bids were posted from highest to lowest along
with the corresponding signal values (bidders identification numbers were sup-
pressed) and the value of x,. In AIS auctions, the value of & associated with
each bidder’s private information signal was also reported so that bidders could
readily identify I’s bid. Profits were calculated for the high bidder and reported
to all bidders.

To cover the possibility of losses, bidders were given starting capital balances
of $10.00. Losses were subtracted from this balance and profits added to it. If a
subject’s balance became nonpositive, they were no longer allowed to bid. To
hold n constant, while dealing with the possibility of bankruptcies, there were
typically several extra bidders in each session, with the active bidders in each
auction determined randomly or through a rotation rule. Bidder identification
numbers were suppressed throughout, so subjects did not know who they were
competing against in any given auction.’ Bidders were paid their end of session
balances in cash, along with a $4 or $5 participation fee.

All inexperienced sessions began with &= $6 and progressed to higher values
of e. Each of these sessions employed a minimum of two “dry runs” to
familiarize subjects with the procedures and the consequences of bidding too
much. The instructions pointed out that, given x, &, and the endpoint values,
subjects had their own upper and lower bound estimates for x, (min{x + ¢, x};
max{x — &, x}), which were reported to them along with x. Thus, under both

SThese procedures were maintained with super-experienced bidders, thereby preserving some
degree of independence between auctions within a given experimental session.
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TABLE 1

J. H. KAGEL AND D. LEVIN

TREATMENT CONDITIONS

Number of
Condition Experience® Number of Bidders Experimental Sessions Information Structure
1 None 4 2 Asymmetric
2 Super Experienced 4 4 Asymmetric
3b None 4 5 Symmetric
4¢ Super Experienced 4 8 Symmetric
5 None 7 2 Asymmetric
6%e Super Experienced 7 8 Asymmetric and
Symmetric
754 None 7 5 Symmetric

?In super-experienced bidder sessions all bidders had participated in two or more first-price sealed bid auction sessions
with equal numbers of bidders.

®Data have been previously reported in Garvin and Kagel (1994).

°Data have been partially reported in Levin, Kagel, and Richard (1996).

Includes some periods with n = 6. Earlier work shows that pooling » = 6 and 7 is justified (Kagel and Levin (1986),

Kagel, Levin, and Harstad (1995)).

In 7 of 8 sessions both SIS and AIS auctions were conducted using the same subjects.

Min(x — x) = $200; Max(¥ — x) = $330.

information conditions, imperfectly informed bidders always had a “safe haven”
strategy of bidding max{x —. ¢, x}, which completely protected them from losses.

Bidding was studied under two different values of n (4 and 7), five different
values of & (6, 12, 18, 24, and 30), and two different levels of bidder experience
(inexperienced and super-experienced). Super-experienced bidders are defined
as having been in at least two previous SIS or AIS first-price auction series.
Table I cross-classifies experimental sessions by subjects’ experience, the num-
ber of active bidders, and information structure.

Subjects were primarily senior undergraduate economics majors and MBA
students at the University of Houston and the University of Pittsburgh. In
establishing a pool of super-experienced bidders, all bidders were invited back,
with the exception of the few bidders who went bankrupt early on in both of the
first two auction sessions. Each experimental session lasted approximately two
hours and had a minimum of 20 auctions.

2. THEORETICAL CONSIDERATIONS

Our focus here and throughout the data analysis is on x, €[x +2¢,X —2¢]
(referred to as region 2) for which we have clear bounds on behavior in the AIS
auctions.

A. The Winner’s Curse

For SIS auctions, we define a bidder as falling prey to the winner’s curse when
her bid is so high that it yields negative expected profits conditional on having
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the highest signal value, i.e., bids greater than
n—1
n+1

where x{ is the highest of the n private signals. In auctions where x] always
wins the item, bidding above (1) insures negative expected profit. In auctions
where symmetry is not satisfied, but all bidders bid above (1), negative expected
profits are insured as well. One or both of these initial conditions is reasonably
well satisfied in our data so that bidding above (1) serves as a good ex ante
indicator of a winner’s curse.

For AIS auctions, O’s bidding above
n®—1
n+1°
(where n° is the number of O’s bidding) can expect to earn negative profits just
competing against other O’s. Further, if all O’s bid according to (2), and I’s
employ their best response to these bids then, conditional on winning, O’s would
earn average losses of over $1.50 per auction. As such, bidding above (2)
provides a first, very conservative, definition of the winner’s curse. A second
definition of the winner’s curse which accounts for I’s best responding to O’s
bids is developed below.

(D Elx |x=x"]=x— e,

2) E[xo|x=x{’°] =x—

B. Auctions with Symmetric Information Structure (SIS)
In SIS auctions the symmetric risk neutral Nash equilibrium (RNNE) bid
function y(x) in region 2 is given by®
3) y(x)=x—e+g(x), x+es<x<i-—e,
where
2¢
n+1

Equilibrium bidding combines strategic considerations similar to those involved
in first-price private value auctions and item valuation considerations. The latter
involves anticipating the adverse selection effect associated with winning. Both
factors promote bidding below x in region 2, with expected profit for the high
bidder approximately equal to 2¢&/(n + 1).

n
gx) = exp[—z—g[x—()_c+a)]].

3. AUCTIONS WITH ASYMMETRIC INFORMATION STRUCTURE (AIS)

Let b(x) and B(x,) be the bid functions for O’s and I’s, respectively, and
define A(B) and H(B) to be their inverse. When both 4(B) and H(B) are in
region 2, bidding in AIS auctions yields the following system of differential

Derivation of the RNNE bid function over the entire support can be found in an appendix to
Levin, Kagel, and Richard (1996).
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equations, where we assume symmetry among the O’s:
h(B)+&—H(B)

@) W(B) -~ =0,

26 .
(4b)  [H'(B) -k (B)IH(B)—BlO™ '+ [h(B) - 1]n—f(1 — o)

+h'(B)[R(B) — (B+&)]=0,

where

h(B) + e—H(B)
= <1,

2e

and H' and A&’ represent the first derivatives of the inverse bid functions. This
system of differential equations defies analytical solution under the initial
condition that the lowest possible bid is x (namely, 2(x) =x — & and H(x) =x).”
Numerical solution of this system of differential equations is nontrivial since the
slopes of both I’s and O’s bid functions approach zero in a neighborhood
around x (see Marshall, et al. (1994); these zero slopes mean that the solution
to (4a-b) need not be unique). Instead, we use an alternative approach based on
boundedly rational bidding strategies which, as it winds up, provides a good
approximation to the Nash equilibrium in region 2.

Assume that because O’s are boundedly rational, their bids in region 2 are
restricted to a bidding strategy of the form

(5a) b(x) =x — Be, 0<B<l1.
Inspecting (4a), I’s best response to this bidding strategy is
(5b) B(x,)=x,—a(Ble=x,—[(1+B)/nle.

We will refer to this pair of bid functions as a B-discount bid factor ( B-DBF), as
it involves O’s and I’s discounting their bids, relative to their signal values, by
the bid factors Be and ae.

In the special case where B =1, (5a-b) become

(6a) b(x)=x—¢,

2¢
(6b) B(x,)=x,— —.
n

0<0O

Note that (6a—b) satisfy the necessary conditions, (4a-b), for equilibrium in
region 2. That is, (6a—b) constitute an equilibrium in region 2 in cases where
O’s, because of bounded rationality (e.g., limited computational abilities), are
restricted to employing the bid function (5a). Also note that Laskowski and
Slonim (in press) show that the unique pair of Nash equilibrium bid functions
satisfying (4a-b) converges to (6a—b) as region 2 becomes larger and larger.®

"Note that for x — £ <x <x + £ equation (4b) changes, but 4a remains unchanged.
80’s bid function, (5a), corresponds to Laskowski and Slonim’s assumption of a translation
invariant bid function.
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Further, examination of bidding in region 2, for both inexperienced and experi-
enced O’s, shows that equation (5a) provides a remarkably good fit to the data,
yielding R? values of .99 or better and with coefficient estimates for x always
within one standard deviation of 1.00 (see Tables III and V below).’

Finally, we can establish a second, tighter definition of the winner’s curse that
accounts for I’s best responding to O’s bids. This involves calculating the values
of B, and «, (where a,=[1+ B,]1/n) for equations (5a-b) that result in zero
expected profit for O’s. These are: for n =4, ay=.421 and B, =.690 and for
n=17, a;=.261 and B,=.825. One can show that if O’s employ a bid factor
B <.By, and I’s best respond, O’s would earn negative expected profits. These
B, values are larger than the bid factors required to avoid the winner’s curse in
SIS auctions with the same total number of bidders.

Equilibrium under B-DBF has several interesting comparative static predic-
tions:

1. As n increases from 4 to 7, I’s must employ larger bid factors, while O’s
bid factors remain unchanged.!’

2. I's earn higher expected profits, conditional on winning, than O’s do. For
example, with n =4 and ¢ = $18, O’s expected profit, conditional on winning, is
$4.07. For I’s, it is $9.00.1!

3. Expected profits, conditional on winning, are substantially lower for O’s in
AIS than' in corresponding SIS auctions. For example, with n =4 and &= $18,
these average around $7.20 in the SIS auctions versus $4.07 in the AIS
auctions."

4. I’s earn higher expected profits, conditional on winning, than in corre-
sponding SIS auctions. However, the expected differences here are smaller than
the differences reported in (2) and (3) above. For example, with &= $18 and
n =4, the expected difference is $1.80 versus expected differences of $4.93
between I’s and O’s in (2) and of $3.13 between SIS auctions and O’s in (3).

5. Seller’s expected revenue is higher in AIS than in corresponding SIS
auctions for both n =4 and 7. For example, with n =4 and &= $18 seller’s
expected revenue in AIS auctions is x, — $6.16 compared to x, — $7.20 in SIS
auctions. With #n =7 and & = §18 these values are x, — $3.40 in AIS compared
to x, — $4.50 in SIS auctions. Note, sellers would be unambiguously better off in
SIS compared to AIS auctions if I’s won all the time. However, in our AIS
auctions, the seller gains additional revenue because when O’s win, they only
win with relatively high signals, which yields more revenue than when I’s win.

°Further, Kagel and Richard (1998) show that for SIS auctions a piecewise linear bid function,
with a single piece (5a) for region 2, provides a far better fit to the data than does the Nash bid
function (bidders totally ignore g(x)).

WO ywilson’s (1985) model, which is closest in structure to ours, yields similar results for I’s.

positive economic rents for O’s result from the private nature of their information.

2 For SIS auctions we assume x, is in region 2 and employ the approximation that profits,
conditional on winning, are equal to 2&/(n + 1).
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These higher revenues more than offset the lower revenues when I’s win (see
Kagel and Levin (1998), for details of this argument).

Finally, with B-DBF bid functions, assuming that O’s avoid the winner’s curse
and B in (5a) is no greater than 1.00, predictions 1-5 hold even if play does not
converge to equilibrium.”® Thus, the comparative static predictions 1-5 are
quite robust.

3. EXPERIMENTAL RESULTS
A. Auctions with Inexperienced Bidders

Table II presents summary statistics for inexperienced bidders for both AIS
auctions and SIS auctions (top and bottom part of Table II, respectively). For
inexperienced subjects within session experience covaries systematically with &,
as all sessions started with 6 to 8 auctions with &= $6 and then switched to
&= $12. Thus, differences between different values of & may reflect within
session learning and/or bankruptcy and elimination of the most aggressive
bidders. In what follows we first address the question of whether an insider helps
inexperienced bidders to overcome, or at least attenuate, the winner’s curse
relative to SIS auctions. We then examine which, if any, of the predictions of the
B-DBF bidding model hold for inexperienced bidders.

First, looking at the top of Table II (part A) we see that the winner’s curse is
alive and well. Consider auctions with &= $6, which were used to start each
session. With n =4, almost 60% of the high O’s bids were above our first
measure of the winner’s curse (equation 2), so that these bids would have lost
money, on average, just competing against other O’s. Further, 94% of the high
O bids were subject to a winner’s curse under our second, tighter measure of the
winner’s curse. With n =7, the adverse selection effect is stronger and the
winner’s curse was more pervasive: 100% of the high O bids and 85.2% of all O
bids fell prey to the winner’s curse just considering competition with other O’s
(equation 2). The net result was large negative profits for O’s when they won
(—$1.68 per auction with n=4; —$3.68 with n=7). Although somewhat
diminished in frequency, a strong winner’s curse is also reported for higher
values of & as O’s continued to earn negative profits throughout, with at least
47% of all bids subject to the winner’s curse, by the tighter measure, for any
value of &. o

Comparing the bidding of O’s in the AIS auctions (Table IIA) to bidding in
SIS auctions (Table IIB), the raw data suggests a more extreme winner’s curse in
AIS auctions with n =7, but just the opposite result with n = 4. Rather than
belabor the raw data, we go directly to Table III, which compares estimated bid
functions between SIS and AIS auctions. Dummy variables are used to capture

BSee our working paper (Kagel and Levin (1998)) for details. The single exception is that we
cannot bound O’s bid factor.

“Random effects error specifications were employed in all cases, with subject as the random
error component.
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the response to changes in & since it is clear that bid factors do not change
proportionately with e.

Looking at O’s bid functions, with the exception of the n=4, ¢=$24
treatment, the bid factors are too small to avoid the winner’s curse.’> More
relevant, however, are differences in bid factors between AIS and SIS auctions.
These are found in the regressions pooling data for O’s and SIS auctions, with
the DASY *EPS dummies testing for differences in the bid factors for different
values of &. For n =4, the DASY*EPS6 and DASP*EPSI2 dummies are both
negative, but neither coefficient is, by itself, significantly different from zero, and
a test of the null hypothesis that all three coefficients are zero cannot be
rejected either ( y%2=0.68, d.f. =3). For n =7, both DASY*EPS dummies are
positive, but here, too, neither dummy is significantly different from zero by
itself, and a test of the null hypothesis that both coefficients are zero cannot be
rejected ( x2=0.59, d.f. =2). As such, we conclude that, contrary to our initial
conjecture, the existence of an insider did not induce significantly less aggressive
bidding for inexperienced O’s.

Raw data for inexperienced I’s is shown in the right-hand most columns of
Table ITA, with estimated bid functions reported in the right-hand most columns
of Table III. Note, first, that the functional form of I’s bid function is consistent
with equation (5b), indicating that they are close to best responding to O’s.'®
However, I’s employed a significantly smaller bid factor than the one employed
in our tighter winner’s curse measure, so that O’s actually faced an even
stronger adverse selection problem, and higher incidence of the winner’s curse,
than our second tighter measure implies.!” I’s smaller bid factors were, however,
consistent with the overly aggressive bidding by O’s, although I’s did deviate
marginally from best responses. The latter resulted in average losses with
&= $12 (for which we have the most data) of 3.6¢ per auction with n =4 and
4.9¢ with n="7.18

The right-hand most column in Table III tests for differences in I’s bid
factors in auctions with n =4 versus n = 7. Both of the DN*EPS dummies are

1 Estimated bid factors and minimum bid factors needed to avoid the winner’s curse (accounting
for I’s bids) are as follows: n =4, £=$6 (2.67 vs. 4.14; p <.04), =812 (6.92 vs. 8.28; p <.07),
£=$24 (16.38 vs. 16.56); n=7, £=3$6 (2.03 vs. 4.95; p<.01), e=$12 (6.84 vs. 9.90; p <.01)
(1- talled significance levels reported).

16R2 values of .99 or better and coefficient estimates for x, always within two standard devLatlons
of 1.00, both here and for experienced bidders as well.

17ps estimated bid factors versus best response values associated with O’s earning zero expected
profits are: n =4, £=$6 (0.67 vs. 2.53, p <.01), &= $12 (1.39 vs. 5.05, p <.01), &= $24 (4.10 vs.
10.10, p <.01); n =7, £=$6 (0.27 vs. 1.57, p < .17), &= $12 (1.33 vs. 3.13, p <.07) (1-tailed tests for
estimated probabilities being significantly below predicted values).

18 Expected losses are calculated on the basis of estimated bid factors. Given O’s estimated bid
factor we can compute, analytically, I’s best response bid factor and I’s expected profits. Given I’s
and O’s estimated bid factors, we compute, analytically, actual expected earnings. The difference
between these two earnings measures constitute expected losses. These procedures are consistent
with those of Fudenberg and Levine (1997) for estimating deviations from best responses in normal
form, complete information games.
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TABLE III

ESTIMATED BID FUNCTIONS: INEXPERIENCED BIDDERS
(STANDARD ERRORS OF ESTIMATES IN PARENTHESES)

Outsiders & SIS Insiders
n=4 n=17 n=4 n=17 n=4&7
Variable O’s O’s & SIS O’s O’s & SIS Variable
X 1.001 1.003 1.000 0.998 x, 0.995 0.988 0.997
(0.004) (0.002) (0.007) (0.002) (0.003) (0.007) (0.002)
EPS6 —-2.672 -—-2791 -2031 -2.102 EPS6 —-0.673 —0.268 —1.042
. (0.826)** (0.744)** (0.943)* (0.527)** 0599 (1.323) (0.729)
DEPS12 —-4249 -3816 —4.807 -—5.102 DEPS12 —-0.724 —-1.064 —0.760
) (0.675)** (0.518)** (0.484)** (0.287)** 0.521)  (0.552)*  (0.495)
DEPS24 —13.707 —14.052 — — DEPS24 —3.429 — —-3.519
(0.939)** (0.614)** (0.720)** (0.673)**
DASY*EPS6 — —0.161 — 0.215 DN*EPS6 — — —-0.103
(0.997) (0.834) (0.993)
DASY*EPS12 — —0.633 — 0.537 DN*DPS12 — — —0.365
(0.936) (0.761) (0.896)
DASY*EPS24 — 0.099 — — R? .999 995 .999
(1.217)
R? 998 997 991 998  Number of 46 27 73
Observations
Number of 141 461 168 810 Number of 12 9 21
Observations Subjects
Number of 13 50 16 60

Subjects

Notes: + significantly different from zero at p < .10 level, 2-tailed test; *significantly different from zero at p < .05 level,
2-tailed test; **significantly different from zero at p < .01 level, 2-tailed test. EPS6 = intercept of bid function. DEPS12 =1
if EPS = 12; 0 otherwise. DEPS24 = 1 if EPS = 24 or 30; 0 otherwise. DASY = 1 if AIS auction; 0 if SIS auction. DN =1 if
n="7,0if n=4.

negative, indicating somewhat larger bid factors with » = 4 than »n = 7, contrary
to the theory’s prediction. However, neither coefficient is statistically significant
by itself, and they are not significant in combination. This lack of responsiveness
may well reflect the fact that both O’s and I’s had yet to converge to any sort of
sustainable equilibrium.'

Table IV reports the change in seller’s revenue, normalized for variation in
x,, between AIS and SIS auctions. In three of five cases seller’s revenue is lower
in AIS compared to SIS auctions, contrary to the 8-DBF model’s prediction. Of
the two remaining cases, there is essentially no change in revenue for n =7 and
£=1$6, and the increase in revenue for n =4, £=3$24 is not significant at

YGiven the obvious failure to converge to equilibrium, one might question why we have not
broken up the data analysis, considering early versus later auctions separately. However, differences
between early versus later auctions coincide with changes in &, and our data analysis already
distinguishes between different values of &.
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TABLE IV

CHANGE IN SELLER’S REVENUE: AIS vs. SIS AUCTIONS WITH INEXPERIENCED BIDDERS (IN DOLLARS)

n=4 n=17
Mean Profits Mean Profits
(@?) (€]
Change in Change in
Revenue: Revenue:
AIS - SIS AIS - SIS
Auctions? Auctions?
(¢ stat)® AIS SIS (¢ stat)® AIS SIS
e=$6 —1.425 —-0.975 —2.400 0.045 —3.680 —3.635
(—1.588) (8.474) (7.995) (0.054) (3.386) (10.616)
e=$12 —1.098 —0.005 —1.130 -0.715 —1.550 —2.265
(—1.063) (7.879) (25.331) (0.622) (16.128) (28.846)
e=$24 3.503 —3.257 246 — — —
(1.060) (67.716) (61.256) '

#Change in seller’s revenue, normalized for variation in x,, is bidder profits in SIS auctions less bidder profits in AIS
auctions.

t statistics calculated for populations with unknown and unequal variances (Guenther (1964)). Auction period is unit of
observation.

conventional levels.”’ This failure of the model’s prediction can be directly
attributed to the winner’s curse. Recall that seller’s revenue, normalized for
variation in x,, is simply the converse of bidder’s profits. The relatively strong
winner’s curse for inexperienced bidders in both AIS and SIS auctions results in
approximately the same negative average profits, conditional on winning. How-
ever, when I’s win an item they earn positive profits. The net effect is an overall
reduction in seller’s revenue in AIS compared to SIS auctions.”?

B. Super-Experienced Bidders

Table V reports data for super-experienced bidders. Looking at the top half of
Table V (part A), the data for AIS auctions, the negative average earnings for
inexperienced O’s have been replaced by positive average earnings. Further,
using our tighter definition of the winner’s curse, it has been reduced to the
point that it hardly exists in auctions with n» =4 and has been reduced substan-
tially, compared to inexperienced bidders, with n =7. (We have dropped our
looser winner’s curse measure, equation (2), since these numbers were less.than

X The reader may also notice the substantially larger variance in mean profits in SIS compared to
AIS auctions. Our working paper (Kagel and Levin (1998)) shows that this is a derivative implication
of our AIS model that is closely related to the propensity to raise seller’s revenue compared to SIS
auctions.

' The winner’s curse also results in reversals of the SIS model’s prediction regarding the ability of
public information to raise seller’s revenue (Kagel and Levin (1986)) and English auctions to raise
revenue compared to first-price auctions (Levin, Kagel, and Richard (1996)). There are different
mechanisms at work in these cases compared to the present case, but what they have in common is
that a key comparative static prediction of the theory fails in the presence of the winner’s curse.
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TABLE VI

ESTIMATED FUNCTIONS: SUPER-EXPERIENCED BIDDERS
(STANDARD ERRORS OF ESTIMATES IN PARENTHESES)

Outsiders and SIS Auctions Insiders
n=4 n=17 n=4 n=17 n=4&7
Outsiders Outsiders
ariable Outsiders & SIS Outsiders & SIS Variable
X 1.001 1.001 1.000 1.000 X, 0.994 1.000 0.996
(0.001)  (0.001)  (0.001) (0.001) (0.003)  (0.003) (0.002)
EPS18 —15.933 —-14973 -16.025 —15.625 EPSI18 —4.466 —4.007 —4.920
(0.360)** (0.357)** (0.331)** (0.333)** (0.746)** (0.71D)** (0.655)**
DEPS30 —11.307 -10.869 —10.563 —11.330 DEPS30 —2.648 —1.740 -—2.634
0.231)** (0.373)** (0.247)** (0.266)** (0.613)** (0.727)* (0.611)**
DEPS12 5.470 4302 — — DEPS12 2.193 — 2.161
(0.188)** (0.562)** (0.470)** (0.469)**
DASY*EPS18 — —1.165 — —0.332 DN*EPS18 — — 1.587
(0.590)* (0.437) (0.589)**
DASY*EPS30 — —1.584 — 0.425 DN*EPS30 — — 2.454
(0.672)* (0.557) (0.864)**
R? 999 999 999 999 R? 999 .999 999
Number of 309 805 523 1562 Number of 101 88 189
Observations Observations
Number of 24 67 60 114 Number of 23 50 73
Subjects Subjects

Notes: + significantly different from zero at p < .10 level, 2-tailed test; *significantly different from zero at p < .05 level,
2-tailed test; **significantly different from zero at p < .01 level, 2-tailed test. EPS18 = intercept of bid function. DEPS30 = 1
if EPS = 30; 0 otherwise. DEPS12 = 1 if EPS = 12; 0 otherwise. DASY =1 if AIS auction; 0 if SIS auction. DN=1ifn=6
or 7; 0if n=4.

N
1% with n=4 and less than 6% with n =7 for all values of ¢.) This sharp
reduction in the winner’s curse is the result of more aggressive bidders declining
invitations to return for additional sessions, and less aggressive bidding by those
who did return. Further, no new, inexperienced, bidders were permitted to enter
the auctions, as might occur in field settings.

Table VI reports estimated bid functions for super-experienced bidders.”> O’s
bid factors were more than enough to avoid the winner’s curse (accounting for
I’s bids) in all cases: for n = 4, estimated versus required bid factors are $10.46
versus $8.28 (&= $12), $15.93 versus $12.42 (¢ = $18), and $27.24 versus $20.70
(&= $30); for n = 7 the corresponding values are $16.01 versus $14.85 (&= $18)
and $26.58 versus $24.75 (& = $30). Further, comparing O’s bids with bids in SIS
auctions, for n =4, O’s bid less as both DASY*EPS dummies are significantly
below zero at the .05 level. In contrast, for n =7, there are no significant
differences in O’s bids versus bids in SIS auctions. Larger bid factors for O’s
than in SIS auctions with n =4 may well be the result of I’s bid factors being

ZRegressions testing for differences in bid functions between early versus late auctions within a
given experimental session, holding & constant, show no systematic differences in bidding by either
I’s or O’s. Thus, there were no systematic, statistically significant adjustments in bidding within these
sessions.
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far smaller than what best response dictates (see below). Note, however, that in
both cases O’s were not best responding to I’s bids, or to overly aggressive bids
of other O’s, as this calls for bidding close to x — ¢. However, the opportunity
cost of an individual O’s failure to best respond was relatively small, averaging
less than 10¢ per auction, in large measure because no individual O stood much
of a chance of winning.”?

Looking at Table V again, consistent with one of the most basic equilibrium
predictions, conditional on winning, I’s earned significantly greater profits than
O’s did for all values of ¢ and n (these differences are statistically significant in
4 of,5 cases).?* I’s profits, conditional on winning, were larger than in SIS
auctions for both n =4 and n =7 with &= $18, treatments for which we have
the most data, with significantly higher profits for I’s in the n = 7 case (+ = 1.99,
df =88, p<.05, 1-tailed test).” However, average profits for I’s were lower
(but not significantly so), compared to profits in SIS auctions for &= $30. I’s
failure to earn consistently higher profits, conditional on winning, than in SIS
auctions may be partially accounted for by that fact that under our design these
differences are relatively small.

Turning to Table VI, for n = 4, I’s bid factors were consistently smaller than
the best (risk neutral) response to Os’ bids. These opportunity costs averaged
54.7¢ per auction with &= $18 and 59.1¢ per auction with &= $12 (18.3% and
30.4% of best response earnings).”® Notably, for the parameter set for which we
have the most data, and with which our super-experienced subjects had the most
experience (n =7 and &= $18), there is essentially no difference between best
response and actual bidding, with average opportunity costs of 2.7¢ per auction
(just under 2% of best response earnings).”’ Unfortunately, we cannot deter-
mine whether this superior performance is a function of greater experience or a
matter of chance.?

The comparative static prediction regarding I’s response to increased num-
bers of rivals is satisfied as well. Looking at the raw data in the right-hand most
column of Table V, I’s average bid factor is smaller for n =7 versus n =4 for
both values of &. This is consistent with the regression results reported in the

23Opportunity costs were relatively large in percentage terms, averaging close to 30% of best
response earnings. Opportunity costs for O’s were calculated using estimated bid factors from Table
VI and running Monte Carlo (MC) simulations in which a single O unilaterally adjusts his bid
factor.

*For n=4: £=$12, t =520, p< .01, £=$18, t =345, p < .01, £=$30, 1 =1.76, p < .10; for
n=7T e=3$18,t=5.15, p <.01, £=$30, t = 0.33 (1-tailed ¢ tests in all cases). Auction period is the
unit of observation in each case.

¢ statistic calculated for populations with unknown and unequal variances (Guenther (1964)).

% Qur expected cost measures implicitly assume that all O’s use the same bid factor (see footnote
18 above). Further analysis shows that these cost estimates are robust to the observed heterogeneity
in O’s bid factors.

7ps estimated bid factor is 4.01 versus a best response bid factor of 4.70 (Z = 1.20, p > .10).

28However, these results are not unlike those found in private value auctions, in which bidding
above the RNNE is substantially greater, in both absolute and percentage terms, as the number of
bidders decreases (Kagel, Harstad, and Levin (1987)).
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TABLE VII

CHANGE IN SELLER’S REVENUE: AIS vs. SIS AUCTIONS WITH SUPER-EXPERIENCED BIDDERS

n=4 n=17
Mean Profits Mean Profits
(€] [CD)

Change in Change in

Revenue: Revenue:

AIS — SIS AIS - SIS

Auctions?® Auctions?

(t stat)® AlS SIS (¢ stat)® AIS SIS

£=$18 1.759 2.063 3.822 0.739 1.492 2.231

(2.057* (8.561) (49.972) 1.573)* (6.770) (19.221)
e=$30 2.734 6.148 8.876 0.919 4.517 5.436

(1.097) (24.334) (59.731) (0.425) (17.978) (15.839)

*Change in seller’s revenue, normalized for variation in x,, is bidder profits in SIS auctions less bidder profits in AIS
auctions.

¢ statistics calculated for populations with unknown and unequal variances (Guenther (1964)). Auction period is unit of
observation.

*Significantly different from 0 at p < .05, one-tailed test;* significantly different from 0 at p < .10, one-tailed test.

right-hand most column of Table VI, which show the coefficients for both
DN*EPS dummies to be positive and significantly different from zero at p <.01.
In our design, I’s are, effectively, participating in a first-price private value
auction. There is an extensive experimental literature demonstrating that sub-
jects in first-price private value auctions increase their bids when faced with
more rivals, as the theory predicts (Kagel and Levin (1993), Kagel (1995)). This
strategic sensitivity extends to I’s bidding in AIS common value auctions.

Table VII reports average revenue in AIS versus SIS auctions. In all four
cases average revenue is higher in the AIS auctions, with these differences
statistically significant for both n =4 and 7 when & = $18 (for which we have the
most data). Thus, this prediction of the theory is satisfied with experienced
bidders who have generally learned.to avoid the winner’s curse:

C. Learning and Adjustments in Insider’s Bids Over Time

This section examines adjustments in I’s bids over time in relation to Selten
and Buchta’s (1994) (SB) “direction learning” theory, first applied to bidding in
private value auctions.”” Within direction learning theory players are assumed to
be boundedly rational and to respond “sensibly” to the direct reinforcement
effects of their bids in the previous auction period. As applied to our auctions,
direction learning theory predicts: (a) If I wins, her bid factor will increase in
reaction to money left on the table, (b) if she loses and O’s winning bid is below
x,, so that there is a lost profit opportunity, I’s bid factor will decrease in the
next period, and (c) if I loses and O’s winning bid is above x,, so that there was

PAdjustment processes in SIS auctions have been discussed extensively elsewhere (Garvin and
Kagel (1994); Kagel and Richard (1998)). O’s adjustments no doubt follow a similar pattern.
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no opportunity to earn a profit (the outpriced case), there will be no systematic
effect on I’s bid in the next auction period.* We anticipate, as earlier studies
have found (SB and Cason and Friedman (1997)), that (b) dominates (a),
promoting higher bids over time. Finally, there is no formal consideration within
direction learning theory for threshold effects; e.g., when I wins but her bid is
only slightly above (say less than 5 cents) the next highest bidder, she might well
feel “Wow, that was too close” and decide to reduce her bid factor in the next
period. Threshold effects of this sort seem eminently reasonable for case (a), so
we test for them as well.*!

Table VIII reports I’s qualitative responses for these three cases.*? For
super-experienced bidders changes in I’s bid factors are completely consistent
with directional learning theory: I’s winning and leaving money on the table
increased their bid factor 68% of the time with n =7 (p <.05), 69% of the time
with n=4 (p <.01).** In contrast, after a lost profit opportunity, bid factors
decreased 61% of the time with n =7 (p =.11), 64% of the time with n=4
(p <.01). However, the average absolute size of these responses was approxi-
mately equal (see the last column in Table VIII) so that in both cases, unlike the
results reported in SB and Cason and Friedman (1997) (CF), there was no
systematic tendency to respond more strongly to lost earning opportunities than
to money left on the table.

For auctions with n =4, data from sessions leading up to I’s super-experi-
enced status are reported in the bottom panel of Table VIIIL. Like the super-ex-
perienced bidders, I’s increased their bid factor following winning (68%, p < .10)
and decreased it following a lost profit opportunity (59%, p =.20). However,
unlike the super-experienced bidders, but like the results reported in SB and
CF, the reaction to lost profit opportunities was substantially stronger than to
money left on the table (the net effect of these changes being an average
reduction in the bid factor of 5% per auction). Since our super-experienced
bidders had substantially more experience than the subjects in SB and CS, this

3 Whether or not (c) is integral to SB’s model or is a result of the limited information feedback
subjects had in their experiment (they only learned the market price) is an open question. Garvin
and Kagel (1994) report strong observational learning effects as subjects increased their bid factors
substantially following auctions in which they would have lost money applying their bid factor to the
high bidder’s signal value. This is inconsistent with (c).

*'SB eliminate no change responses in evaluating their directional learning model. These
responses may capture some of these threshold effects. We see no motive for a similar threshold
effect in case (b).

32Since I is determined randomly in each auction, our analysis is based on changes in bid factors
(normalized for any changes in &) between different individuals across adjacent auction periods. An
alternative analysis, based on the same individual across nonadjacent auction periods yields similar
results, but fewer observations.

No change outcomes are excluded from these percentages. Probabilities calculated test the null
hypothesis of no systematic change in the bid factor versus a change whose sign is consistent with
directional learning theory.
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TABLE VIII
EFFECT OF PAST OUTCOMES ON CHANGE IN INSIDERS’ BIDs

Change in I’s bid factor: period ¢ — 1 to ¢?

Bidder ‘ Average

Experience Outcome in period ¢ — 1 Decrease  Increase  No Change Change
Super-experienced I wins: (“Money left on the table™) 11 23 1 0.059
bidders: n =7 I loses and O bids below x,, (lost 25 16 2 —0.049
profit opportunity)
I loses and O bids above x, 1 6 1 —0.041
(outpriced valuation)
I wins: (“Money left on the table™) 17 37 2 0.206
Super-experienced I loses and O bids below x,, (lost 21 12 2 -0.315
bidders: n =4 profit opportunity)
I loses and O bids above x,, 10 10 0 0.007
(outpriced valuation)
I wins: (“Money left on the table™) 9 17 0 0.058
Less-experienced I loses and O bids below x,, (lost 20 14 1 —0.165
bidders: n =4 profit opportunity)
I loses and O bids above x,, 16 21 1 —0.006
(outpriced valuation)

?Bid factor is computed as [x — b(x)]/&.

suggests that with experience subjects become attuned to the more subtle
strategic implications of winning and paying more than is necessary to win.

Testing for threshold effects in case (a), we regressed the changevin I’s bid
factor between periods ¢ and ¢— 1 against the amount of money left on the
table in period ¢ — 1. Direction learning theory implies a positive slope coeffi-
cient for the variable “money left on the table,” with the existence of the
predicted threshold effect indicated by a negative intercept value. There is no
evidence for a threshold effect as (i) the regressions for experienced bidders
have very low R? values (less than .05) and (ii) in all cases the intercept values,
although not significantly different from zero, have the wrong sign.

4. SUMMARY AND “CONCLUSIONS

We examined bidding in asymmetric information structure (AIS) auctions-and
compared it to bidding in symmetric information structure (SIS) common value
auctions. In the AIS auctions a single insider (I) knows the value of the item
with certainty, and outsiders (O’s) are provided proprietary information affili-
ated with the value of the item. The existence of a perfectly informed insider did
not significantly reduce the frequency or intensity of the winner’s curse for
inexperienced bidders compared to SIS auctions. Further, the only comparative
static prediction of the AIS model consistently satisfied for these inexperienced
bidders was that I’s earned greater profits than O’s. In contrast, super-experi-
enced O’s learn to overcome the worst effects of the winner’s curse, generally
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bidding below the expected value conditional on winning. In this case the
comparative static predictions of the theory are generally satisfied: (i) I’s earn
greater profits conditional on winning than O’s do, (ii) with increased numbers
of O’s, I’s bid more aggressively, (iii) O’s earn positive average profits, but these
are substantially less than earnings in SIS auctions, and (iv) AIS auctions
increase seller’s revenue compared to SIS auctions.

The predicted increase in seller’s revenue in AIS auctions seems, at first
blush, to be counterintuitive. This prediction of the model rests critically on the
fact that in our experimental design less informed bidders have some propri-
etary information. Although this is not a sufficient condition for AIS auctions to
raise revenue compared to SIS auctions, it clearly is a necessary condition. In
contrast, models that start with bidders having only public information predict
that the introduction of an insider will unambiguously reduce seller’s average
revenue. In many cases a model in which O’s have some proprietary information
is more realistic than one in which they only have public information. In these
circumstances, it may well be the case, as in our experiment, that the introduc-
tion of an insider increases seller’s revenue, and that both I’s and O’s earn
economic rents. This potential for insider information to raise average seller’s
revenue has not been explicitly recognized in the auction literature prior to this.
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