
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

REGULAR QUANTAL RESPONSE EQUILIBRIUM

Jacob K. Goeree

California Institue of Technology

Charles H. Holt

University of Virginia

Thomas R. Palfrey

Princeton University

1 8 9 1

C
A

L
IF

O
R

N
IA

 I

N
S T IT U T E O F T

E
C

H
N

O
L

O
G

Y

SOCIAL SCIENCE WORKING PAPER 1219

March 2005



Regular Quantal Response Equilibrium1

Jacob K. Goeree Charles H. Holt Thomas R. Palfrey

Abstract

The structural Quantal Response Equilibrium (QRE) generalizes the Nash
equilibrium by augmenting payo�s with random elements that are not re-
moved in some limit. This approach has been widely used both as a the-
oretical framework to study comparative statics of games and as an econo-
metric framework to analyze experimental and �eld data. The framework of
structural QRE is exible: it can be applied to arbitrary �nite games and
incorporate very general error structures. Restrictions on the error struc-
ture are needed, however, to place testable restrictions on the data (Haile
et al., 2004). This paper proposes a reduced-form approach, based on quan-
tal response functions that replace the best-response functions underlying
the Nash equilibrium. We de�ne a regular QRE as a �xed point of quantal
response functions that satis�es four axioms: continuity, interiority, respon-
siveness, and monotonicity. We show that these conditions are not vacuous
and demonstrate with an example that they imply economically sensible re-
strictions on data consistent with laboratory observations. The reduced-form
approach allows for a richer set of regular quantal response functions, which
has proven useful for estimation purposes.
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1. Probabilistic Choice in Individual Decision Making

Probabilistic choice models were introduced by mathematical psychologists to explain

why observed decisions appear to be more random as the strength of a stimulus becomes

weaker (e.g. Luce, 1959). For example, a subject in an experiment may be asked which of

two lights, 1 or 2, is brighter or which of two sounds is louder. Subjects seldom make mistakes

when one signal is a lot stronger than another, but the probability that the subject recognizes

which signal is stronger falls to nearly one half as the difference in the two intensities goes

to zero. One way to model this is that the perceived intensity of signal j = 1, 2 is the actual

intensity πj plus a random shock εj. Thus the subject reports that signal 1 is stronger if its

perceived strength is higher:

π1 + µε1 > π2 + µε2,

where µ > 0 is an error parameter that measures the importance of the epsilon shocks.

In this example, the epsilon shocks represent perception errors that may cause decisions to

be different if the same person receives the same stimuli again. In other contexts, epsilon

shocks appended to economic payoffs may reflect individual heterogeneity in risk aversion,

envy, altruism, etc. Of course, it may be possible to model some of these preference shocks

explicitly, e.g. when they are correlated with observable demographics. But such models

will always leave out some elements, and some degree of “noise” will therefore remain.1

Regardless of the interpretation of the epsilon shocks, option 1 is chosen if:

π1 − π2

µ
> ε2 − ε1.

The probability that this inequality holds can be expressed as F ((π1 − π2)/µ), where F (·)
is the distribution function of the difference in the shocks. For example, if the difference

in shocks is uniformly distributed around zero, the probability that option 1 is chosen is a

1A third source of noise is due to differences in individuals’ experiences that causes their beliefs to differ.
The latter does not come up in individual choice experiments, but may play a role in interactive contexts
(see section 2).
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piecewise linear function of the payoff difference, with a slope that depends on the error rate.

A desirable feature of a probabilistic choice model is that the stronger stimulus is selected

more frequently, which occurs if neither shock is more likely to be larger than the other. In

this case, F (0) = 1/2 and since F (·) is increasing, option j is more likely to be chosen if

and only if πj > πk where k 6= j, j, k = 1, 2. One obvious way to ensure this monotonicity

condition is to assume that the two shocks are independently and identically distributed. The

i.i.d. assumption is sufficient but not necessary, e.g. in the above example with two options,

monotonicity is guaranteed when F (0) = 1/2. Indeed, there are many other natural ways to

ensure monotonicity without imposing i.i.d. For example, the epsilon shocks could be joint

normal random variables with mean zero and arbitrary variance-covariance matrix. However,

allowing for completely arbitrary error distributions can lead to nonsensical formulations of

stochastic choice, as we show with a simple example in section 3.2.

2. Probabilistic Choice in Games: Background

Stochastic choice has been a central theme in game theory since its initial development

by von Neumann (1928) and von Neumann and Morgenstern (1944). Here we briefly discuss

some of the historical background for the relationship between stochastic choice and equi-

librium in games. Hopefully this will add some perspective about the development of ideas

leading up to the quantal response equilibrium discussed next.

First, and most obvious to anyone vaguely familiar with game theory, is the notion of a

mixed strategy. Players randomize intentionally and the probability mixtures they use are

not arbitrary, but are highly restricted by the structure of the game. In two-person zero-

sum games, a player mixes in order to ensure the highest guaranteed expected payoff, the

minimax payoff. This concept was introduced by Von Neumann and Morgenstern (1944),

and is closely related to simultaneous developments of the notion of a statistical decision

function in theoretical statistics (Wald, 1945).
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The idea of using stochastic choice via a mixed strategy as a solution to an optimization

problem contrasts sharply with the introduction of decision errors in the analysis of refine-

ments, as in Selten (1965, 1975) and Myerson (1978). The highly sophisticated concepts they

developed (perfection and properness), are based, ironically, on the notion that players do

not always maximize, and so the only reasonable equilibria are ones that are robust to “trem-

bles” by opponents. Also in contrast with mixed strategies, these error-based refinements

are defined in terms of asymptotic properties when the errors become negligible.

Third, statisticians realized early on that mixed strategies (or errors, for that matter)

could be transformed into pure strategies (purified) by introducing private information that

may cause one player’s action to be random from another player’s point of view. The first

discoveries of this sort emerged in tandem with the theory of statistical decision functions

(Dvoretsky, Wald, and Wolfowitz, 1951), and these ideas resurfaced in a game theoretic

context via the work of Harsanyi (1973). These purification results involved extending a

game of complete information to one of incomplete information by introducing additive

payoff disturbances.2 Harsanyi (1973) demonstrated that this purification process yields a

refinement of the Nash equilibrium when the payoff disturbances become arbitrarily small.

In this landmark paper, three key roles played by stochastic choice in game theory (mixed

strategies, equilibrium refinements, and private information) were tied together.

The application of stochastic choice models arrived late to experimental game theory.

Articles by Harless and Camerer (1994) and Hey and Orme (1994) use stochastic choice

models to analyze data from one-person games of incomplete information, designed to stress-

test the axioms of expected utility. The former considers completely random “trembles” while

the latter looks at stochastic choice models of the sort developed by econometricians, where

decision errors are payoff related. That is, mistakes are inversely related to expected payoffs.

Trembles in multi-person decision problems were considered by McKelvey and Palfrey (1992)

2Of course, it was known before that one could purify mixing by adding payoff-irrelevant information, such
as the private observation of a randomizing device. The innovation here was that the private information
actually could change the payoff of the game, and players were using strictly optimal strategies.
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in their analysis of data from centipede games, but, as in Harless and Camerer (1994), the

errors were unrelated to payoffs. In the next section, we discuss a more general approach

that allows for payoff sensitive errors and for a wide range of error structures generated by

additive, privately-observed, payoff disturbances.

3. Structural Approach to Quantal Response Equilibrium

Despite the widespread use of probabilistic choice, or “quantal response,” models in the

econometric analysis of individual choice data (e.g. McFadden, 1981), the theoretical analysis

of strategic choice has, until recently, relied almost entirely on assumptions of non-stochastic

decision making. In particular, the notion of a Nash equilibrium rests on an assumption of

perfect rationality, where the choice of one strategy over another is independent of the mag-

nitude of the payoff difference, and inferior strategies are played with zero probability. About

a decade ago, a number of economists began incorporating noise elements into the analysis of

games. An early example is provided by Rosenthal (1989) who assumes that players’ choice

probabilities are linearly increasing in expected payoffs, as in the uniform probabilistic choice

model mentioned in section 1. The Quantal Response Equilibrium introduced by McKelvey

and Palfrey (1995), provides a general framework to extend the probabilistic choice approach

to the case of multiple decision-makers. We summarize that framework below.

Let Γ = [I, {Si}n
i=1, {πi}n

i=1] be a normal-form game, where:

1. I = {1, . . . , n} is the set of players.

2. Si = {si1, . . . , siJi
} is player i’s set of strategies and S = S1 × · · · × Sn is the set of

strategy profiles.

3. πi : S → < is player i’s payoff function.

Let Σi ≡ ∆Ji be the set of probability distributions over Si. An element σi ∈ Σi is a mixed

strategy, which is a mapping from Si to Σi, where σi(si) is the probability that player i
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chooses pure strategy si. Let Σ =
∏

i∈I Σi be the set of mixed strategy profiles. Given a

mixed-strategy profile σ ∈ Σ, player i’s expected payoff is πi(σ) =
∑

s∈S p(s)πi(s), where

p(s) =
∏

i∈I σi(si) is the probability distribution over pure-strategy profiles induced by σ.

For each i and each j ∈ {1, . . . , Ji}, and for any σ ∈ Σ, denote by πij(σ) the expected

payoff to i of adopting the pure strategy sij when the other players use σ−i. It is assumed

that for each pure strategy sij, there is an additional privately observed payoff disturbance,

εij and we denote i’s disturbed payoff by:

π̂ij(σ) = πij(σ) + µiεij (3.1)

where the error rate µi is a strictly positive real number.

For each i, player i’s profile of payoff disturbances, εi = (εi1, . . . , εiJi
), has a joint distrib-

ution with several properties. First, one assumes absolute continuity, specifically the distri-

bution of εi can be represented by a density function fi(εi) and the marginal densities exist

for each εij. Furthermore, the disturbances are independent across players (not necessarily

across strategies) and unbiased, in the sense that E(εi) = 0 for all i. Call f = (f1, . . . , fn)

admissible if fi satisfies the above properties for all i.

The assumed choice behavior is that each player chooses strategy sij when π̂ij(σ) ≥ π̂ik(σ)

for all k = 1, . . . , Ji. Given this choice behavior, π = (π1, · · · , πn) and f = (f1, · · · , fn)

together induce a distribution over the actual choices by each player. To be more specific,

for any π, define Bij(π) to be the set of realizations of εi such that strategy sij has the

highest disturbed expected payoff, π̂. Then

Pij(π) =
∫

Bij(π)

f(ε)dε (3.2)

is the induced choice probability that player i selects strategy j. Pi, which maps πi into Σi

is called i’s structural Quantal Response Function. Since P (π) ∈ Σ and π = π(σ) is

defined for any σ ∈ Σ, P ◦ π(σ) = P (π(σ)) defines a mapping from Σ into itself.
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Definition 1. Let f(ε) be admissible. A structural Quantal Response Equilibrium of

the normal-form game Γ is a mixed-strategy profile σ∗ such that σ∗ = P (π(σ∗)), with P

defined in (3.2).3

Existence of a QRE is proven by McKelvey and Palfrey (1995) and follows from Brouwer’s

fixed-point theorem since P , and hence P ◦ π, is continuous.

Proposition 1. There exists a structural Quantal Response Equilibrium of the normal-

form game Γ for any admissible f(ε).

The main difference with the decision-making context discussed previously is that, in a

quantal response equilibrium, the exogenously given intensities are replaced by endogenously

determined expected payoffs. For example, in a two-by-two game, players’ expected payoffs

π = (π11, π12, π21, π22) are:

π11 = P21π1(s11, s21) + P22π1(s11, s22)

π12 = P21π1(s12, s21) + P22π1(s12, s22)

π21 = P11π2(s11, s21) + P12π2(s12, s21)

π22 = P11π2(s11, s22) + P12π2(s12, s22) (3.3)

where, for each i, j = 1, 2:

Pij = Prob
[ πij − πik

µi

> εik − εij, k 6= j
]
. (3.4)

For example, assuming identical and independent extreme-value disturbances implies that

Pij is given by the familiar logit formula:

Pij =
exp(πij/µi)

exp(πij/µi) + exp(πik/µi)
, i, j = 1, 2, k 6= j. (3.5)

Note that (3.5) is not an explicit solution, since the payoffs on the right-side are themselves

functions of the choice probabilities. To compute the (logit) quantal-response equilibrium,

3In other words it is a Bayesian-Nash equilibrium of the Bayesian game defined by Γ and f .
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the probabilities used to calculate the expected payoffs in (3.3) must match the probabilities

that follow from (3.4) as determined by the expected payoffs. That is, the equations given

by (3.3) and (3.4) must hold simultaneously.

This fixed-point element complicates the computation of (logit) QRE in all but the

simplest games, but also captures the intuitive notion that players react to others’ noisiness.

Indeed, in some games this type of feedback causes the logit equilibrium to be arbitrarily far

away from the Nash equilibrium. For example, for some parameterizations of the traveler’s

dilemma (Capra et al., 1999), the Nash equilibrium is at the lower end of the strategy set

while the logit equilibrium puts almost all mass at the upper end.

3.1. Restrictions Implied by Additivity

Existing results on the theory of probabilistic choice show that the additive disturbance

model in (3.1) puts some restrictions on the choice probabilities. These conditions, listed

in Proposition 2 for later reference, are easy to interpret.4 Translation Invariance implies

that if a constant is added to all payoffs, choice probabilities do not change. Symmetry says

that the effect of an increase in strategy k’s payoff on the probability of choosing strategy j

is the same as the effect of an increase in strategy j’s payoff on the probability of choosing

strategy k. Finally, Strong Substitutability implies (among other things) that if the payoff

of strategy k rises, the probability of choosing any of the other strategies j 6= k falls.

Proposition 2. The structural quantal response functions defined in (3.2) satisfy:

(i) Translation Invariance: Pij(πi + ceJi
) = Pij(πi) for all c ∈ < and πi ∈ <Ji , where

eJi
= (1, · · · , 1).

(ii) Symmetry: ∂Pij/∂πik = ∂Pik/∂πij for all i, j = 1, · · · , Ji and πi ∈ <Ji .

(iii) Strong Substitutability: (−1)`∂`Pij/∂πik1 · · · ∂πik`
≥ 0 for all 1 ≤ ` ≤ Ji − 1,

k1 6= · · · 6= k` 6= j and πi ∈ <Ji .

4See, e.g., Anderson, de Palma, and Thisse (1992) for a derivation and discussion of these properties.
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Proof. Translation Invariance and Strong Substitutability follow more or less directly from

the definition of the structural quantal response functions:

Pij =
∫ ∞

−∞

∫ πij−πi1
µi

+x

−∞
· · ·

∫ πij−πiJi
µi

+x

−∞
f(z1, . . . , x, . . . , zJi

) dzJi
· · · dz1dx,

where x corresponds to εij in (3.4). Since the expression for Pij involves only payoff dif-

ferences, adding a constant to all payoffs changes nothing in the limits of integration, or

elsewhere. Differentiating with respect to ∂πik1 · · · ∂πik`
and multiplying by (−1)` removes `

integrals and leaves us with Ji − ` integrals of a (positive) density function. We next prove

Symmetry.

∂Pij

∂πik

= − 1

µi

∫ ∞

−∞

∫ πij−πi1
µi

+x

−∞
· · ·

∫ πij−πiJi
µi

+x

−∞
f(z1, . . . , x, . . . ,

πij − πik

µi

+x, . . . , zJi
) dzJi

· · · dz1dx,

where the integral with respect to zk was removed. Now transform t = (πij − πik)/µi + x,

and rewrite:

∂Pij

∂πik

= − 1

µi

∫ ∞

−∞

∫ πik−πi1
µi

+t

−∞
· · ·

∫ πik−πiJi
µi

+t

−∞
f(z1, . . . ,

πik − πij

µi

+ t, . . . , t, . . . , zJi
) dzJi

· · · dz1dt

=
∂Pik

∂πij

,

where the last step follows from the definition of Pik. Q.E.D.

In the next section we show that the restrictions of Proposition 2 are not sufficient to rule

out unintuitive results.

3.2. Empirical Restrictions of Structural QRE

The quantal response equilibrium has been primarily used to analyze data patterns gen-

erated in laboratory experiments, e.g. auctions, bargaining, market entry, voting, voluntary

contributions, rent seeking, coordination, and social dilemma games (e.g. McKelvey and
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Palfrey, 1995; Anderson, Goeree, and Holt, 1998, 2001). In past studies, the incorporation

of noise elements has resulted in much better explanations of laboratory data than other

equilibrium models. For example, changes in payoff parameters that have no effect on Nash

equilibrium predictions often have large, dramatic effects on subjects’ decisions, and these

effects can be explained by a quantal response equilibrium (e.g. Capra et al., 1999; Goeree

and Holt, 2001). In all of these applications, the theoretical analysis and the estimation

were based on an assumption that the epsilon shocks are i.i.d. Even though the most gen-

eral versions of probabilistic choice and quantal response models do not restrict the nature of

the shock distributions (beyond admissibility), such restrictions are needed to obtain useful

empirical predictions.

Indeed, Haile et al. (2004) showed quite generally that any pattern of choice probabilities

can be rationalized with an additive random utility model if one relaxes the i.i.d. assumption

and if one has the freedom to customize the joint distribution of payoff disturbances. In order

to assess the methodological implications of the Haile et al. (2004) result, it is useful to

consider how fully general probabilistic choice models can be indeterminate in single-person

decision-making problems like the early perception experiments.

We next present two simple examples to illustrate how, in the absence of restrictions

on the joint distribution of disturbances, a standard, single decision-maker, two-alternative,

probabilistic choice model can be rigged so that the probability of choosing the low-payoff

outcome is arbitrarily close to 1. Suppose payoffs are π11 = 1 and π12 = 2. The probability

of choosing option 1 is given by5

P11 = Prob [ 1 + ε11 > 2 + ε12 ],

and the probability of choosing option 2 is P12 = 1 − P11. The epsilon shocks are not

required to be independently and identically distributed, but each will have mean 0.6 We

5Without loss of generality we will take µ1 = 1 in the examples to follow.
6Note that without the mean 0 restriction required by admissibility, it would be trivial to find a distrib-

ution of disturbances such that Prob [ 1 + ε11 > 2 + ε12 ] = p for any p ∈ (0, 1). Simply let ε11 be uniform
over [0, 1] and let ε12 be degenerate at ε12 = −p.
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next show that for any p ∈ (0, 1) we can find an admissible f(ε11, ε12) such that P11 = p, if

the ε1j are either (i) independently but not identically distributed or (ii) identically but not

independently distributed.

(i) Independent but not Identical Marginal Distributions: Since π11 − π12 = 1, the idea

is to let ε11 exceed ε12 by more than 1 with probability p. To ensure that ε11 has

mean zero, it has to be sufficiently negative with the complementary probability, 1−p.

For example, let ε12 = 0 with probability 1, and let ε11 = 2 with probability p and

ε11 = −2p/(1− p) with probability 1− p. Then

P11 = Prob [ 1 + ε11 > 2 ] = p.

(ii) Identical but not Independent Marginal Distributions: Here the idea is to let ε11 be

perfectly correlated with ε12, such that ε11 exceeds ε12 by more than 1 for a large

set of ε12 values. For example, let ξ be a random variable, uniformly distributed on

[0, 2/(1−p)]. Furthermore, let ε12 = ξ and ε11 = (ξ+2) mod (2/(1− p)). That is, ε11 is

just equal to ε12+2, except when this shift to the right puts ε11 above the upper bound

of the support of the distribution of ε12, in which case it is inserted in the lower part

of the support. Hence ε11 = ε12 +2 > ε12 when ε12 is between 0 and 2/(1− p)− 2, and

ε11 = ε12 + 2− 2/(1− p) < ε12 otherwise. By construction, the marginal distributions

of ε11 and ε12 are both uniform on [0, 2/(1− p)]. So

P11 =
2/(1− p)− 2

2/(1− p)
= p.

To summarize, without further restrictions on the error distributions, probabilistic choice

models can be constructed to predict any observed behavior. In particular, when the i.i.d.

assumption is dropped, the choice probability of the less attractive option can be made

arbitrarily close to 1. While the examples above concern a one-person game with only two
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possible strategies, the logic of the construction can be extended in a straightforward way

to allow for an arbitrary number of players and strategies (Haile et al., 2004).

This raises important questions about fitting the Quantal Response Equilibrium to data,

because QRE can fit the aggregate frequencies of any data set perfectly if one allows ar-

bitrary error structures. However, this does not imply that probabilistic choice models,

or QRE in particular, are without empirical content. It simply means that (economically

sensible) assumptions about the epsilon shocks are needed before one can reach meaningful

conclusions. Haile et al. (2004, p.2) emphasize this point as well: “Any restrictions on

outcomes obtainable from a QRE comes only from a priori restrictions on the distributions

of payoff perturbations.”

Before we can discuss the necessary restrictions on the structure of the payoff pertur-

bations, we first determine what economically meaningful properties the implied quantal

response functions should satisfy, which is the topic of the next section. In section 5 we then

derive conditions on the shock distributions that implement these properties.

4. Regular Quantal Response Equilibrium

When the QRE concept is applied to analyze experimental data, one typically imposes

restrictions that require choice probabilities to be monotone in expected payoffs. Indeed,

in most papers, attention is further restricted to an i.i.d. logit probabilistic choice model.

Sometimes a different error parameter, µ, is estimated for different treatments, but this

one-dimensional degree of freedom is generally not sufficient to generate any outcome as

will be shown below. Also theoretical work on quantal-response comparative statics has

often assumed an i.i.d. error structure, although sometimes more general results are possible

(e.g. with the F (0) = 1/2 restriction in the two-option case). The intuitive assumption of

monotonicity has always been imposed, since otherwise economically uninteresting outcomes

arise, as the examples above demonstrate.
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Definition 2. Pi : <Ji → ∆Ji is a regular quantal response function if it satisfies the

following four axioms.

(A1) Interiority: Pij(πi) > 0 for all j = 1, ..., Ji and for all πi ∈ <Ji .

(A2) Continuity: Pij(πi) is a continuous and differentiable function for all πi ∈ <Ji .

(A3) Responsiveness: ∂Pij(πi)

∂πij
> 0 for all j = 1, ..., Ji and for all πi ∈ <Ji .

(A4) Monotonicity: πij > πik ⇒ Pij(πi) > Pik(πi) for all j, k = 1, . . . , Ji.

Intuitively, regular quantal response functions are generalizations (smoothings) of best re-

sponse functions, and as such, replace strict rational choice with a weaker version. Non-

regular quantal response functions that violate Monotonicity would seem to indicate a weak

form of anti -rationality, which is not the intent of the approach.

Axioms (A1)-(A4) are economically and intuitively compelling. Interiority ensures that

the model has full domain, that is, it is logically consistent with all possible data sets. This

is important for empirical application of the model. Continuity is a technical restriction,

which ensures that Pi is non-empty and single-valued. Furthermore, it seems a natural

assumption since arbitrarily small changes in expected payoffs should not lead to jumps

in choice probabilities. Responsiveness requires that if the expected payoff of an action

increases, ceteris paribus, the choice probability must also increase. Monotonicity is a weak

form of rational choice that involves binary comparisons of actions: an action with higher

expected payoff is chosen more frequently than an action with a lower expected payoff. One

implication, which follows directly from Continuity and Monotonicity, is that strategies with

the same expected payoff are chosen with equal probability: πij = πik ⇒ Pij(πi) = Pik(πi)

for all j, k = 1, . . . , Ji.

Define P (π) = (P1(π1), . . . , Pn(πn)) to be regular if each Pi satisfies the regularity axioms

(A1)-(A4). Since P (π) ∈ Σ and π = π(σ) is defined for any σ ∈ Σ, P ◦ π defines a mapping

from Σ into itself.
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Figure 1: An asymmetric matching pennies game.

Definition 3. Let P be regular. A Regular Quantal Response Equilibrium (R-QRE)

of the normal-form game Γ is a mixed-strategy profile σ∗ such that σ∗ = P (π(σ∗)).

Since regularity of P includes continuity, P ◦ π is a continuous mapping. Existence of an

R-QRE therefore follows directly from Brouwer’s fixed-point theorem.

Proposition 3. There exists a Regular Quantal Response Equilibrium (R-QRE) of Γ for

any regular P .

4.1. Empirical Restrictions of Regular QRE: An Example

Axioms (A1)-(A4) collectively have strong empirical implications, even without any para-

metric assumptions on P . To illustrate the nature of these restrictions, consider the asym-

metric matching-pennies game in Figure 1, where Row’s payoff is X > −1 when the outcome

is (”Up”, ”Left”). Let p denote the probability with which the Column player chooses ”Left”

and q denote the probability with which the Row player chooses ”Up”. First, consider the

case X ≥ 1. It is readily verified that Row’s expected payoff of choosing ”Up” is lower

(higher) than of choosing ”Down” when p < 2/(X + 3) (p > 2/(X + 3)). Monotonicity

therefore implies that, if (p∗, q∗) defines an R-QRE, it must satisfy the inequalities:





q∗ ≤ 1/2 if p∗ ≤ 2/(X + 3),

q∗ ≥ 1/2 if p∗ ≥ 2/(X + 3).
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Figure 2: On the horizontal axis is Column’s probability of choosing ”Left”
and on the vertical axis is Row’s probability of choosing ”Up”. The dark
gray shaded area contains the set of possible regular QRE for X = 9, and the
light gray shaded area contains the set of possible regular QRE for X = 0.

Likewise, Column’s expected payoff of choosing ”Left” is higher (lower) than of choosing

”Right” when q < 1/2 (q > 1/2). Thus, (p∗, q∗) must satisfy:





p∗ ≥ 1/2 if q∗ ≤ 1/2,

p∗ ≤ 1/2 if q∗ ≥ 1/2.

The region defined by these inequalities defines the set of possible R-QRE. For the specific

case of X = 9, this area is shown by the dark gray shaded area in Figure 2. The measure

of the set of possible R-QRE is 1/2 ? 1/3 = 1/6 in this case, i.e. only 16.7% of all possible

outcomes is consistent with some R-QRE.7

The case −1 < X < 1 can be analyzed in a similar way. The set of regular-QRE for

X = 0, for instance, is given by the light shaded area in Figure 2. Note that the Row player

is predicted to choose “Up” more often than “Down” in an R-QRE when X > 1, while

the reverse is true for X < 1. In fact, we next show that if Row’s payoff of the (“Up”,

7The measure for general X ≥ 1 is (X − 1)/(4X + 12). The upper bound is 1/4 as X grows large, and
the lower bound is 0 when X = 1. In other words, for the symmetric matching pennies game any regular
QRE predicts that both players randomize uniformly.
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“Left”) outcome rises, Row’s probability of choosing “Up” increases. This intuitive “own

payoff” effect contrasts with the Nash equilibrium prediction of no change in Row’s choice

probabilities (since they are determined by the requirement that Column is indifferent).

Proposition 4. In a regular QRE of the asymmetric matching pennies game in Figure 1,

Row’s probability of choosing ”Up” is strictly increasing in X and Column’s probability of

choosing ”Left” is strictly decreasing in X.

Proof. The equilibrium probabilities satisfy:





q∗ = P11((X + 1)p∗ − 1, 1− 2p∗)

p∗ = P21(1− 2q∗, 2q∗ − 1)
(4.1)

Responsiveness implies that Pij is strictly increasing in πij, and since Pi2(πi1, πi2) = 1 −
Pi1(πi1, πi2), Pi1 is strictly increasing (decreasing) in its first (second) argument. It follows

from the top line that q∗ is a strictly increasing function of p∗, while the bottom line implies

that p∗ is a strictly decreasing function of q∗. Hence, the solution to the fixed-point condi-

tions (4.1) is unique. Moreover, the bottom equality of (4.1) implies that either q∗ rises with

X and p∗ falls, q∗ falls with X and p∗ rises, or both q∗ and p∗ remain constant as X rises.

The latter two cases are impossible, however, since the top equality of (4.1) implies that q∗

rises with X if p∗ remains constant or rises with X. Hence, in a regular QRE, an increase

in X results in a strict increase of q∗ and a strict decrease of p∗. Q.E.D.

The own-payoff effect predicted by regular QRE accords with data from laboratory experi-

ments that employ an asymmetric matching-pennies structure, e.g. Ochs (1995), McKelvey,

Palfrey, and Weber (2000), Goeree and Holt (2001), and Goeree, Holt, and Palfrey (2003).

5. Regularity within the Structural Approach

In the definition of structural QRE in section 3, axioms (A1)-(A3) are satisfied by any

choice probabilities generated by admissible payoff disturbances satisfying a full support
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condition.8 But in general, it is the Monotonicity axiom (A4) that can be violated for some

disturbance distributions (such as the ones in the examples of section 3.2). However, as an

axiom about economic choice behavior, Monotonicity seems quite reasonable. So, a natural

question to ask is: “What admissible distributions of payoff disturbances generate regular

quantal response functions?”

McKelvey and Palfrey (1995, 1996) point out that a sufficient condition for Monotonicity

is i.i.d., but this restriction can obviously be relaxed. For example, a joint normal distribu-

tion with identical means, variances, and covariances will generate monotone responses. In

McKelvey and Palfrey (1994), a condition called “label independence” is identified to ensure

regularity. Label independence means that choice probabilities depend on expected payoffs

only and not on the labels of the strategies. For example, suppose there are three options

with payoffs π11 = 1, π12 = 2, and π13 = 3 and corresponding choice probabilities P11 = 1
6
,

P12 = 1
3
, and P13 = 1

2
. Label independence implies that if payoffs change to π11 = 2, π12 = 3,

and π13 = 1, the choice probabilities become P11 = 1
3
, P12 = 1

2
, and P13 = 1

6
. In other words,

when the payoffs are permuted so are the choice probabilities.

The proof of Proposition 5 below shows that label independence of the choice probabilities

can be ensured by requiring the additive payoff disturbances to be interchangeable random

variables, which includes i.i.d. as a special case (Karlin, 1966).9 Let ΨJi
denote the set of all

possible permutations of Ji objects. We say that the density of payoff disturbances satisfies

interchangeability if, for all ψ ∈ ΨJi
, f(ε1, . . . , εJi

) = f(εψ(1), . . . , εψ(Ji)).

Proposition 5. The quantal response function defined in (3.2) is regular if f(ε) satisfies

admissibility and interchangeability.

Proof. Admissibility of f(ε) guarantees axioms (A1)-(A3). To prove Monotonicity, we first

8Without full support, the inequalities in conditions (A1) and (A3) hold only weakly. For example,
interiority and strict responsiveness are violated with uniformly distributed disturbances.

9We are grateful to David Levine for pointing out that the conventional terminology for label independence
is interchangeability.
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demonstrate that interchangeability implies label independence:

Pij(πiψ(1), · · · , πiψ(Ji)) = Prob
[
πiψ(j) + εij ≥ πiψ(k) + εik, k = 1, · · · , Ji

]

= Prob
[
πiψ(j) + εiψ(j) ≥ πiψ(k) + εiψ(k), k = 1, · · · , Ji

]

= Piψ(j)(πi1, · · · , πiJi
), (5.1)

where we used interchangeability of the random variables εi in going from the first to the

second line. Label independence implies that Pij(π) = Pik(π) if πij = πik, as can be seen

by restricting ψ to be a pairwise permutation of j and k in (5.1). Recall from Proposition 2

that Pij rises with πij and falls with all the πik for k 6= j. Likewise, Pik falls with πij when

j 6= k. Together with Pij = Pik when πij = πik this implies that Pij > Pik when πij > πik,

because as πij rises from πik, Pij strictly increases and Pik strictly decreases. Q.E.D.

Interchangeability is not a necessary condition in the sense that the quantal response function

defined in (3.2) may be regular without it. Consider, for instance, the case of two options

and let ε11 and ε12 be independent normal random variables, both with mean zero but

with different variances σ2
11 and σ2

12 respectively, so that the difference ε12 − ε11 is normally

distributed with mean zero and variance σ2 = σ2
11 + σ2

12. The quantal response functions are

given by P11 = Φ((π11 − π12)/σ) and P12 = Φ((π12 − π11)/σ), where Φ(·) is the cumulative

distribution function of a standard normal variable. In this example, Monotonicity of the

quantal response functions holds even though ε11 and ε12 are not interchangeable random

variables.

We next show with a simple three-option example that without interchangeability, reg-

ularity may fail to hold. The construction used in section 3.2 suggests that non-monotone

response functions may only arise if one makes unrealistic assumptions about the distur-

bances (see Haile et al., 2004). However, more reasonable assumptions about disturbances

can lead to non-monotone choice probabilities with three or more alternatives. Consider the
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following individual choice problem with disturbed payoffs (where we normalized µ1 = 1):

π̂11 = 1 + ε11,

π̂12 = 2 + ε12,

π̂13 = 3 + ε13.

Further suppose the disturbances are independent and normally distributed, each with mean

0, but with different variances. Let the variance of ε11 be 10 and the variances of ε12 and

ε13 be 0.01. Then alternatives 1 and 3 will each be chosen with probability approximately

1/2, and alternative 2 will be chosen with probability close to 0. However alternative 2 has a

higher expected payoff than 1. The intuition is that alternatives with highly variable payoffs

can be chosen with fairly high probability even when their expected payoff is low.

Modifying this example shows that the highest ranked alternative may not be the one

that is most likely to be chosen. Simply change the variance of ε12 from 0.01 to 10. Now

alternatives 1 and 2 are each chosen with probability approximately 3/8, while alternative 3 is

chosen with probability approximately 1/4. Indeed, if we change alternative 1’s disturbance

variance from 10 to 100, then the worst (in expected payoff) alternative is chosen with

probability 1/2 and the other two are chosen with probability 1/4. By continuity, it is easy

to see that one could find a variance for ε11 somewhere between 10 and 100 so that the choice

probabilities of the alternatives are in reverse order of their expected payoffs.

These examples suggest that it may be possible to find some plausible non-interchangeable

error structures for games (or individual choice problems) that could lead to non-monotone

choice probabilities. To our knowledge, however, there is no systematic empirical evidence

of such behavior.

6. Reduced-Form Approach to Regular QRE

In the previous section we have shown that regularity can be salvaged within the struc-

tural approach by imposing interchangeability of the additive payoff disturbances. The
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resulting label independence of the choice probabilities is an appealing property, which im-

plies that choice probabilities depend on expected payoffs but not on the precise labeling

of the strategies. However, as Proposition 2 makes clear, the additive structural approach

also imposes other conditions on the choice probabilities: Translation Invariance, Symmetry,

and Strong Substitutability. These latter conditions do not translate into sensible empiri-

cal restrictions on possible QRE outcomes (see section 3.2), since they are not related to

Monotonicity. Moreover, they result from a modeling assumption (of additive payoff distur-

bances) but are not derived from economic principles. As a consequence, they may lead to

implausible or empirically false restrictions in certain contexts.

For example, Translation Invariance is not plausible in settings where the magnitudes of

perception errors or preference shocks depend on the magnitudes of expected payoffs. For

instance, a 25 cent error is unlikely for a decision involving pennies, but such an error would

be common in decisions involving hundreds of dollars. One way to model scale-dependent

shocks, when payoffs are positive, is to have them be multiplicative so that the person selects

the decision with the highest product: (πij)
1/µiεij, where the shock has mean 1. This product

can be transformed into a sum by taking a natural log, which shows that the option for which

log(πij)/µi +log(εij) is the highest is chosen. If the logs of the shocks have identical extreme-

value distributions, then the πij/µi term in (3.5) is replaced log(πij)/µi and the resulting

probabilistic choice function obeys a power law:

Pij =
(πij)

1/µi

∑Ji
k=1(πik)1/µi

, i = 1, · · · , n, j = 1, · · · , Ji. (6.1)

This formulation was first derived by Luce (1959) from simple choice axioms. Note that the

choice probabilities in (6.1) are invariant when multiplying the payoffs by a positive constant,

but not when adding a constant. Power-law choice rules have been shown to provide better

fits to laboratory choice data when the experiment involves large changes in payoff scale

across treatments, e.g. from several dollars to several hundred dollars (Laury and Holt,

2002). In particular, they found that the variation in choice data did not diminish with
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increases in the payoff scale, so multiplicative nature of the shock specification provided a

better fit. The power-law choice model was also used by Goeree, Holt, and Palfrey (2002)

to analyze data from different first-price auction treatments.

The Luce power-law rule in (6.1) can be generalized easily to allow for negative payoffs.

For instance, let g : < → <+ be a strictly positive and strictly increasing function, and

define:

Pij =
g(πij/µi)∑Ji

k=1 g(πik/µi)
, i = 1, · · · , n, j = 1, · · · , Ji. (6.2)

For general g(·) functions, these choice probabilities do not satisfy Translation Invariance nor

Symmetry, and, hence, cannot be derived via the structural approach. Note that the choice

probabilities in (6.2) do satisfy Strong Substitutability. However, also this condition may

not be desirable since there is no a priori reason why the probability of choosing strategy

1, say, should fall when the payoff of strategy 3 rises.10,11 Responsiveness implies that the

probability of choosing a certain strategy should go up if its payoff rises, but there is no

reason that the probabilities with which the other strategies are chosen should all go down.

To summarize, while the structural approach can be amended to ensure monotonicity

(Proposition 5), this approach restricts the quantal response functions in undesirable ways

likely to be contradicted by laboratory and field data. We therefore introduce a more general

approach to modeling regular quantal response equilibrium, which we call the reduced-form

approach. This approach takes axioms (A1)-(A4) as primitives and allows for any quantal

response functions that satisfy these axioms without requiring that they are derived from

some underlying model of stochastic utility maximization.12

10Indeed, in the structural empirical Industrial Organization literature, Symmetry and Strong Substi-
tutability are often seen as weaknesses of the Logit model because of the implied substitution patterns. One
solution in this literature is to define demand over product attributes (rather than products) and to allow for
interaction effects between consumer demographics and product attributes. This solution is not applicable
in the context of abstract (matrix) games studied here.

11The choice probabilities in (6.2) also satisfy the IIA property, which may be undesirable in some contexts.
12Our terminology of reduced-form versus structural quantal response functions follows the econometrics

literature where the reduced-form approach typically involves the specification of a demand function, while
in the structural approach this demand function is derived from optimal consumer choice behavior based on
underlying (parametric) utility functions.
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The main point of this section is that there are many quantal response functions that

satisfy the regularity conditions (A1)-(A4), but that cannot be derived via the structural

approach. One class of examples is generated by the generalized Luce model in (6.2), which

violates Translation Invariance and Symmetry but satisfies Strong Substitutability because of

an underlying independence-of-irrelevant-alternatives (IIA) property. Also Substitutability

is not implied by Regularity, however, as the next example illustrates.

Proposition 6. The following quantal response functions

P11(π11, π12, π13) =

eπ11

1+π2
12+π2

13

eπ11

1+π2
12+π2

13
+ eπ12

1+π2
11+π2

13
+ eπ13

1+π2
11+π2

12

,

P12(π11, π12, π13) =

eπ12

1+π2
11+π2

13

eπ11

1+π2
12+π2

13
+ eπ12

1+π2
11+π2

13
+ eπ13

1+π2
11+π2

12

,

P13(π11, π12, π13) =

eπ13

1+π2
11+π2

12

eπ11

1+π2
12+π2

13
+ eπ12

1+π2
11+π2

13
+ eπ13

1+π2
11+π2

12

,

are Regular, but violate Translation Invariance, Symmetry, and Strong Substitutability, and,

hence, cannot be generated by the structural approach.

Proof. Interiority and Continuity are obvious. To show Responsiveness, consider P11:

P11(π11, π12, π13) =

[
1 +

eπ12

eπ11

(1 + π2
12 + π2

13

1 + π2
11 + π2

13

)
+

eπ13

eπ11

(1 + π2
12 + π2

13

1 + π2
11 + π2

12

)]−1

.

Define f(π) = eπ(1 + π2 + π̃2) and note that its derivative is f ′(π) = eπ((1 + π)2 + π̃2), so

f(π) is a strictly increasing function of π. Hence, P11 is strictly increasing in π11. The proofs

of Responsiveness of P12 and P13 are similar. To show Monotonicity consider

P11(π11, π12, π13)

P12(π11, π12, π13)
=

eπ11

eπ12

(1 + π2
11 + π2

13

1 + π2
12 + π2

13

)
.

Again, since f(π) is strictly increasing in π, P11 > P12 (P11 < P12) if and only if π11 > π12

(π11 < π12). The proof that Monotonicity holds generally can be done in an analogous
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Figure 3: The quantal response functions P11 (solid line), P12 (short
dashes), and P13 (long dashes), as functions of π13 when π11 = 1
and π12 = 0. Note that P11 may be increasing in π13.

manner by considering P11/P13 and P12/P13. Translation Invariance is obviously not satisfied,

and the fact that Symmetry does not generally hold can be verified by direct computation.

The novel feature of this example is that substitutability does not generally hold. For

instance, ∂P11/∂π13 = 2e3/(3 + 2e + 3e2)2 > 0 when π11 = 1, π12 = 0, and π13 = −1. Figure

3 shows the dependence of the quantal response functions on π13 for −3 ≤ π13 ≤ 3, π11 = 1,

and π12 = 0, and illustrates the possibility that the probability of choosing option 1 may be

increasing in the payoff of option 3. Q.E.D.

6.1. Comparing Structural and Reduced-Form Regular QRE

Proposition 6 shows that the reduced-form approach allows for more general regular

quantal response functions. However, the set of possible regular quantal response equilibria

generated by regular reduced-form response functions is not necessarily larger than that

generated by regular structural response functions.
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To see this, consider again the asymmetric matching pennies game in Figure 1 with

X = 9, for which the set of possible reduced form R-QRE are given by the dark gray shaded

area in Figure 2.13 We next demonstrate that any point in this area can be obtained as a

structural QRE with additive i.i.d. payoff disturbances. Let the εij for i, j = 1, 2 be i.i.d.

with admissible density f̃ . Furthermore, let f denote the density of the differences εi1 − εi2

for i = 1, 2, with cumulative distribution F . Note that f is symmetric so F (0) = 1/2. The

equations defining the structural QRE are





q∗ = F
(

12p∗−2
µ1

)

p∗ = F
(

2−4q∗
µ2

)

where, as before, p∗ is the equilibrium probability with which Column chooses “Left” and

q∗ is the equilibrium probability with which Row chooses “Up”. The fixed-point equations

can be inverted to yield 



µ1 = (12p∗ − 2)/F (−1)(q∗)

µ2 = (2− 4q∗)/F (−1)(p∗)

where F (−1) denotes the inverse of the distribution function, with F (−1)(p) < 0 when p < 1
2

and F (−1)(p) > 0 when p > 1
2
. Note that µ1 and µ2 so defined are positive for all q ∈ (1

2
, 1)

and p ∈ (1
6
, 1

2
).

To summarize, for the asymmetric matching pennies game of Figure 1, any of the reduced

form R-QRE can be obtained from any admissible i.i.d. structural QRE by choosing the

error rates appropriately. In particular, the same set of R-QRE can be obtained by assuming

a Logit or Probit model with different error rates for the two players.

Whether this equivalence is special to the 2 × 2 case is not immediately clear and it is

an interesting open question whether the set of R-QRE can be obtained from a structural

model with additive disturbances more generally. If so, then in terms of the equilibria that

can be generated, the reduced form approach would be essentially equivalent to the structural

approach with regularity imposed.

13Recall that the inequalities used to construct the shaded area were derived from Monotonicity arguments.
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7. Conclusion

Models of stochastic choice are widely employed by mathematical psychologists, applied

econometricians, and experimental game theorists. They were introduced to the psychology

literature by Luce (1959) and others to explain why a subject’s behavior becomes “noisier” as

the stimuli become weaker. In this context the stochastic elements represent intra-personal

variations in utility levels, or perception errors, which may cause a subject to choose dif-

ferently when faced with the same stimuli. In the econometrics literature (e.g. McFadden,

1981), stochastic choice models are usually applied to cross sectional data, containing de-

cisions of many individuals. Here the stochastic elements are interpreted as inter-personal

variation, or heterogeneity, in preferences. Experimental game theorists are mostly agnostic

about the interpretation of the stochastic elements. In the laboratory, noise may be due to

either distractions, perception biases, or miscalculations, or due to heterogeneous preference

shocks such as feelings of envy, spite, or altruism.

Regardless of the interpretation of the noise, the effect can be particularly important

in an interactive context where players’ payoffs are sensitive to others’ decisions. In some

versions of the traveler’s dilemma (Capra et al., 1999), for example, small amounts of noise

have a large “snowball” effect when endogenous interactions are considered. McKelvey and

Palfrey (1995) introduced the notion of a Quantal Response Equilibrium (QRE) to capture

the feedback effects of noisy behavior. The basic idea behind QRE is that players are

“better responders” rather than best responders, and they are aware that others are better

responders. In other words, QRE imposes a consistency condition on players’ beliefs about

others’ noisy behavior.

In past work, the structural QRE approach has been successfully applied to analyze data

from a wide variety of laboratory experiments. Almost all of these applications involve Logit

probabilistic choice models that result when extreme-value i.i.d. errors are assumed. One

advantage of the i.i.d. assumption is that choice probabilities are monotonic, i.e. options with

higher expected payoffs are chosen more frequently. This economically sensible criterion may

24



be invalidated when more general error structures are used. Without monotonicity, players

are not necessarily “better responders,” suggesting some form of anti-rationality, and any

outcome can be rationalized as Haile et al. (2004) have pointed out. As we argue in section

3.2, their critique applies to all (econometric) applications of stochastic choice models, not

just QRE, and underscores the importance of imposing restrictions on the error structure.

Even with a parametric specification for the error distribution, Haile et al. (2004) argue

that the fit to the data fails to be perfect only to the extent that the specification does not

allow for a sufficiently rich family of distributions. As a fix, they advocate using data from

alternative environments (treatments), which is done in most of the experimental economics

papers they cite where the same error distribution is used for all treatments. They note,

however, that this approach would still be “uninformative” if the estimation allows a new

distribution for each treatment. The force of this critique depends on the game being con-

sidered and the class of distributions one is limited to. For the generalized matching-pennies

game in section 4 with X = 9, the set of all possible regular QRE is given by the dark

shaded area in the upper left part of Figure 2. A second treatment with X = 0 produces an

analogous rectangle given by the light shaded area in Figure 2, with the only point of overlap

being the midpoint (1/2, 1/2). This sharp prediction would not depend on an assumption

that the error distributions are the same for the two treatments.14

In this paper, we propose two constructive solutions to the problem signaled by Haile

et al. (2004). First, we derive restrictions on the error distribution such that monotonicity

is guaranteed. In particular, we show that interchangeability of the additive random payoff

disturbances is a sufficient condition. It is important to note that interchangeability is weaker

than the commonly employed i.i.d. assumption. Interchangeability of the shocks implies that

choice probabilities are label independent, i.e. they are determined by expected payoffs only

and not by the labels of decisions. Such label independence seems to be a sensible restriction

in the context of abstract (matrix) games.

14See Chapter 11 in Holt (2004) for data from two treatments of a matching pennies game with reflected
rectangular prediction areas.
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Second, and more importantly, we introduce a reduced-form approach to QRE. Specifi-

cally, we define a regular quantal response equilibrium (R-QRE) as the fixed point of regular

quantal response functions, which are smoothed best response functions that satisfy interi-

ority, continuity, responsiveness, and monotonicity. In general R-QRE does impose strong,

testable empirical restrictions on data, and these restrictions are consistent with laboratory

observations. We believe the reduced-form approach is a simpler, more intuitive approach

to modeling stochastic choice in games. Furthermore, if one imposes regularity, the reduced-

form approach is more general than the structural approach and allows for a richer set of

parametric models for estimation purposes (e.g. the Luce probabilistic choice model).
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