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Abstract

This paper reports data for coordination game experiments with random matching. The experi-
mental design is based on changes in an effort-cost parameter, which do not alter the set of Nash
equilibria nor do they alter the predictions of adjustment theories based on imitation or best response
dynamics. As expected, however, increasing the effort cost lowers effort levels. Maximization of a
stochastic potential function, a concept that generalizes risk dominance to continuous games, pre-
dicts this reduction in efforts. An error parameter estimated from initial two-person, minimum-effort
games is used to predict behavior in other three-person coordination games.
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1. Introduction

After the prisoner’s dilemma, the coordination game is perhaps the most widely dis-
cussed paradigm in game theory. Interest in coordination games stems from the presence
of multiple Nash equilibria that can be Pareto ranked, which raises the possibility of
“getting stuck” in an outcome that is undesirable for all players. For this reason, this
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class of games is of interest to macroeconomists (Bryant, 1983; Cooper and John, 1988;
Romer, 1996). Since (generically) all equilibria are strict, standard refinements leave the

set of Nash equilibria unchanged, which has prompted game theorists to search for new
selection criteria. An array of alternative theories of behavior in coordination games have

been put forward, both static and dynarhic.

Some theorists argue that coordination game experiments are useless for game the-
ory because the Nash equilibrium and its refinements have no predictive power in this
case and, as a consequence, “anything goes.” We feel that the opposite is true: the un-
expected empirical regularities observed in coordination experiments (such as the ones
reported in this paper) can guide further theoretical work. For instance, previous ex-
periments have shown that coordination problems cannot be ruled out by an assump-
tion that agents somehow find the Pareto-dominant equilibrium. Indeed, some of the
most widely cited results from laboratory experiments provide cases where subjects end
up at the Nash equilibrium that ivorst for all concerned (Van Huyck et al., 1990;
Cooper et al., 1992; and the survey of Ochs, 1995). Since much of the theoretical work
was motivated by the need to explain coordination failures in the laboratory, it is now time
to return to the laboratory and carry out experiments designed explicitly to evaluate some
of these theories.

This paper reports the results of several new coordination experiments. The first game
to be considered is one in which pairs of subjects choose an effort level, and the resulting
payoff is theminimum of the efforts minus the cost of one’s own effort. This payoff struc-
ture can arise from a joint production process in which the group output is proportional
to the minimum of the individual inputs, as is the case with perfect complementarity. The
different treatments are based on a change in the common cost per unit of effort. As long as
this cost is less than one, the best response to any set of others’ efforts is just the minimum
of those efforts, so (non-critical) changes in the cost of effort will not alter the set of Nash
equilibria in pure strategies, nor will they change the predictions of any dynamic theory
that is based on adjustment toward the best response to efforts observed in the previous
period. Changes in the cost of effort do affect the relative costs of “errors” in overshooting
or undershooting the minimum of other’s efforts, so theories like risk dominance and max-
imum stochastic potential (discussed below) that take into account the costs of errors will
be sensitive to the effort cost parameter.

The qualitative predictions that follow from maximizing the stochastic potential are
supported by this first experiment. The data are used to estimate the “noise” parameter of
the model, which is then used for out-of-sample prediction in six new sessions with three-
person games. These sessions include both minimum-effort and median-effort coordination
games.

The paper is organized as follows: the theoretical motivation for the experimental design
is discussed in more detail in Section 2, and laboratory results for two- and three-person

1 static approaches include Pareto dominance (Harsanyi and Selten, 1988), risk dominance (Harsanyi, 1995;
Carlsson and van Damme, 1993), and “noisy” equilibrium models (Anderson et al., 2001; Carlsson and Ganslandt,
1998). Dynamic models of coordination behavior can be roughly divided into evolutionary models (Kandori et
al., 1993; Young, 1993; Crawford, 1991; Anderson et al., 2004), adaptive learning models (Crawford, 1995;
Van Huyck et al., 1997), and “noisy” learning models (Battalio et al., 2001; Camerer and Ho, 1999).
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games are presented in Sections 3 and 4, respectively. Section 5 describes the estimation
of the equilibrium model, and the final section concludes.

2. Pareto dominance, risk dominance, and maximum stochastic potential

The experiment involves a series of single-period coordination games with groups of
randomly matched subjects who make independent “effort” choices. Efforts were restricted
to a continuous intervdle, ¢1, i.e. fractional efforts were allowed. Let playes effort be
denoted bye; € [e,e], i =1,...,n. The payoffs for a symmetrig;-person minimum-
effort game are:

mwi(e1,...,ey)=minfey, ..., ey} —ce;, =1, ...,n, (1)

wherec is the effort cost. As long as is less than 1, payoffs are maximized when all
players choose the highest possible effort. Note, howeveratiyatcommon effort level
constitutes a Nash equilibrium, since a costly unilateral increase in effort will not raise the
minimum, and a unilateral decrease will reduce the minimum by more than the cost when
¢ < 1. This argument does not depend on the number of players, so non-critical changes
in ¢ andr will not alter the set of Nash equilibria in pure strategies, despite the reasonable
expectation that efforts should be high for sufficiently low effort costs and low numbers of
participants?

The theoretical construct most commonly used to “select” an equilibriunxi2 2oor-
dination games is Harsanyi and Selten’s (1988) notion of risk dominance. One appealing
feature of risk dominance is its sensitivity to cost that determines the losses associated with
deviations from best responses to others’ decisions. To illustrate the concept of risk dom-
inance, consider the two-person minimum-effort game shown in Table 1 in which efforts
are constrained to be the integers 1 or 2. When both players are choosing efforts of 1, the
cost of a unilateral deviation to 2 is just the cost of the extra efforthich will be referred
to as the “deviation loss.” Similarly, the deviation loss at tBg2) equilibrium is 1— ¢,
since a unilateral reduction in effort reduces the minimum by 1 but saves the marginal ef-
fort costc. The deviation loss from the low-effort equilibrium is greater than that from the
high-effort equilibrium ifc > 1 — ¢, or equivalently, ifc > 1/2, in which case we say that
the low-effort equilibrium is risk dominaritRisk dominance, therefore, has the desirable
property that it selects the low-effort outcome if the cost of effort is sufficiently figh.

There is, however, no consensus on how to generalize risk dominance for games with
more players, a continuum of decisions, etc. A related concept that does generalize is the

2 Anderson et al. (2001) show that there are a continuum of (two-point) mixed Nash equilibria, but that each
of these has the perverse comparative statics property that an increase in the effort castatiie probability
associated with the higher of the two effort levels over which randomization occurs.

3 The application of risk dominance for asymmetric two-person games is equivalent to comparing the product
of the two players’ deviations losses at each equilibrium.

4 Laboratory experiments based orx2 coordination games show that the risk dominant outcome may have
a lot of drawing power even though play usually starts out near the Pareto-dominant equilibrium (see e.g. Straub,
1995).
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Table 1
A 2 x 2 coordination game

Player 2's effort
1 2

Player 1's 1 ¢, 1—c 1—¢, 1-2¢
effort 2 1-2c,1—¢ 2—2c,2—-2c

notion of maximization of a “potential” of a gantelLoosely speaking, the idea behind
potential is to find a function that is maximized by a Nash equilibrium for the game. More
precisely, a potential function for a game is a function of all players’ decisions with partial
derivatives that match those of individual players’ payoffs with respect to their own deci-
sions. The class of games that admit a potential function includes some well-known and
interesting example% For instance, it is straightforward to show that the potential func-
tion for the 2x 2 coordination game in Table 1 is given By:= p1p2 — (1 —¢)(p1+ p2),
wherep; denotes the probability with which playechooses the low effort 1 Hence, the
potential is maximized in the low-effort outcomgi(= p2 = 1) whenc > 1/2 and it is
maximized in the high-effort outcome{ = p> = 0) whenc < 1/2. For the 2x 2 coordi-
nation game shown in Table 1, risk-dominance and maximum potential thus coincide, and
this equivalence holds more generally for any symmettic2game.

In contrast to risk-dominance, the notion of maximum potential can be generalized to
more general settings. For instance, for thplayer minimum effort game given in (1),
the potential function is simply the common production function that determiseg)i@
player’s payoff, minus the sum afl players’ effort costs:

n
V(el,...,en)=min{el,...,en}—cZei. (2)
i=1
The inclusion of all effort costs is needed to ensure Hayde; = dn; /de;, i =1,...,n,
for all feasible vectors of decisions, when these derivatives exist. The maximization of po-
tential will obviously require equal effort levels. At any common effertthe potential
in (2) becomesy = e — nce, which is maximized at the lowest effort when > 1, and
is maximized at the highest effort whem < 1. In two-person games, this condition re-
duces to the risk dominance comparisorcafith 1/2. Hence, the Nash equilibrium that
maximizes potential in this game is sensitive to parameters that may affect actual behavior.
The notion of maximum potential can be used to evaluate results from previous
coordination-game experimeritddowever, laboratory data often show some amount of

5 Rosenthal (1973) first used a potential function to study properties of a Nash equilibrium. Monderer and
Shapley (1996) provide a general treatment.

6 Forinstance, all % 2 games admit a potential function, as do some versions of public goods games, Cournot
oligopoly games, etc. See Monderer and Shapley (1996) and Anderson et al. (2004) for further examples.

7 Playeri's payoff of choosing the low effort with probability; is: ; (p;, pj) = pipj — pi(L—c) — pj +
(2 —2¢), and it is straightforward to check thav; /op; = dn; /op; fori =1, 2.

8 The most widely cited coordination experiment is that of Van Huyck et al. (1990), who conducted games with
14 to 16 players and an effort cost of either O g2 1sonc was either zero or about seven. Compared to the
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“randomness,” which cannot be explained by any deterministic theory of this type. We will
use the idea of maximum “stochastic potential” and derive its implications for the para-
meters of the experiments reported below. We also explain its relationship with the logit
quantal response equilibrium (McKelvey and Palfrey, 1995).

If a game has a potential functioW, the stochastic potential is based on a con-
sideration of probability distributions of decisions that determine the expected value of
potential (Anderson et al., 2001). In particular, the stochastic potential for given distribu-
tions of players’ decisions is the expected value of the ordinary potential, defA$ied
plus terms that will make the maximand sensitive to noise in the choice distributions.
These terms that determine the value of dispersion correspond to the physical concept
of “entropy.” In the case of a continuous density functigixe;), entropy is defined as
— [ fiIn(f;) de;. The entropy for the system is the sum of the entropy terms for individ-
ual players’ distributions, weighted by an error paramgatethus the stochastic potential
ist E{V} — Y, [ fiIn(f;) de;, where the sum is over all player indices and the integral
is over the range of feasible effort choices. Since entropy is maximized by complete ran-
domness (a uniform distribution of decisions), the distribution that maximizes expected
potential plusu times entropy will be more dispersed as the error parameter increases. In
the other limit asu — 0, the entropy term becomes irrelevant and the maximization of
stochastic potential becomes equivalent to the maximization of ordinary potential, which
leads to a Nash equilibrium in this context. Thus the maximization of stochastic potential
provides a generalization of Nash that is parameterized by an error parameter

For the case of a two-player minimum effort game, the expected value of the poten-
tial function in (2) contains a term that is the expected value of the minimum of two
decisions. If playei uses a continuous choice densffye;), with corresponding distri-
bution functionF; (¢;), then the distribution function for the minimum of the two efforts
is: 1— (1 — Fi(e1))(1 — Fa(e2)). The stochastic potentials, is calculated by adding
weighted entropy terms to the expected value of the minimum and subtracting the expected
effort costs’

¢ 2

e , @
V5:/ (1—E(e))de—cZ/(l—Fi(e))de
=1 i=1%

e =

2 e
~ 1) [ fieog(fie) e. @)
i=1 e

critical nc value of 1, these parameter choices appear rather extreme, which may explain why their data exhibit a
huge shift in effort decisions. By the last round in the experiments in whtch 0, almost all (96%) participants
chose the highest possible effort, while over three-quarters chose the lowest possible effart whasraround
seven. One purpose of Van Huyck et al's experiment was to show that a Pareto-inferior outcome may arise in
coordination games. Other experiments were conducted with 2 players, but the payoff parameters were such that
nc exactly equaled the critical value 1, and, with a random matching protocol, the data showed a lot of variability.

9 Recall that the expected value of a random variable with distribution fungtican be written as the integral
of 1— F (ignoring possible boundary terms that are independent)of
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Anderson et al. (2001) show that maximization of the stochastic potential requires symme-
try across players, i.&1(e) = F2(e) = F(e), as is the case without noise. Maximization of
the stochastic potential with respect to the common distribuki@) is a straightforward
calculus-of-variations problem, and the necessary condition can be expt8ssed:

nf'(e) = f(e)(1— F(e) —c), 4)

which is a differential equation in the common distribution function. Consider the intuition
behind (4). If the other player is using an effort distributiéite), then an increase in effort

ate will raise the minimum with probability + F(e) and increase the cost at a rateso

the 1— F(e) — ¢ term is the derivative of the expected payoff with respect to one’s own
effort. It follows that (4) can also be written as a differential equation in the equilibrium
density functionyf’(e) = 7¢(e) f (), which defines the continuous version of the “logit
equilibrium” (McKelvey and Palfrey, 1995} Anderson et al. (2001) show that a solution

to (4) exists, is unique, and that an increase in the effort cost lowers efforts in the sense of
first-degree stochastic dominance. Thus the prediction of this stochastic-potential approach
is consistent with the intuitive notion that reductions in the effort cost will increase efforts,
although not necessarily all the way to the maximum possible effort.

One final issue is how (boundedly rational) subjects are supposed to find the maximum
of stochastic potential. In Anderson et al. (2004), we specify a continuous gradient-based
adjustment process with Brownian motion, i.e. the time rate of change in a player’s decision
is equal to the slope of the expected payoff function (locally) plus a continuous-time normal
random error. We show that any stable steady state of this process produces a distribution
of decisions that maximizes stochastic potential (i.e. produces a logit equilibtum).

3. Laboratory resultsfor the two-person minimum effort game

Contrary to the continuous nature of most real-world effort decisions, most coordination
experiments conducted to date involved only a few possible effort choices. To gain realism,
and to reduce the possibility of “extreme” behavior (i.e. boundary decisions), subjects in
the experiments reported here choose frarardinuousinterval: [110, 170]. We chose this

10 Recall that the Euler condition for maximizing! (F, f, x)dx is: 81/8F = 81/ F — d/dx{31/3f} =0, or

in the present context:2(1 — F) +2c + 2d/dx{u + puln f} = —-2(1— F — ¢) + 2uf’/f =0, wheref’ denotes

the derivative of the density function. This result can be rearranged to obtain the expression in (4).

11 The correspondence between this differential equation and the logit equilibrium can be seen by integration to
express the densitf(e) as proportional to exgr®(e)/w).

12 The concepts of logit equilibrium and maximization of stochastic potential differ in a subtle way. In particular,
the variational condition in (4) is a first-order condition, and therefore, a logit equilibrium may be alocal minimum

of the stochastic potential. Anderson et al. (2004) show that local minima are unstable for a dynamic gradient-
based adjustment process with Brownian motion, whereas local maxima are stable. Since we have proved that
the logit equilibrium is unique for this game (Anderson et al., 2001), it is globally stable for the evolutionary
adjustment process. Incidentally, the noisy evolutionary adjustment process explains the symmetric adjustment
patterns in Fig. 2 (see Goeree and Holt, 1999). It is worth noting that there is a one-to-one correspondence
between logit equilibria and extreme points of stochastic potential, whereas this equivalence does not hold for the
twin concepts of the Nash equilibrium and (deterministic) potential. For example, there is a continuum of Nash
equilibria for the coordination game, but only one maximizes potential whea1/2.
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particular range with the objective of avoiding a highly focal number like 50 or 100, and
we did not want 150 to be at the midpoint of the range. (Although focalness plays no role in
our theory, we believe that it can be important, especially in coordination gdm@ssen

the knife-edge properties af= 1/2 for two-person coordination games, we conducted
one treatment witle = 1/4 and another witle = 3/4. As noted above, this change does

not alter the predictions of theories based on best responses to others’ decisions, e.g. pure-
strategy Nash equilibria.

The experimental design involved six sessions, each with 10 student subjects recruited
from undergraduate economics classes at the University of Virginia. No subject had previ-
ously participated in a coordination game. Upon arrival, participants were seated in visually
isolated booths. We began by reading the instructiériEhe payoffs were explained in
words and with symbols, e.g.: “you will receive a penny amount that equals the minimum
of the two efforts chosen, minus the cost of your own effort, which is 0.25 times your own
effort choice.” There were no numerical examples in the instructions, in order to avoid focal
suggestions. Questions were asked and answered privately to avoid suggestive statements.

Subjects were told that there would be 10 periods of random pairings. At the start of each
period, subjects were prompted to choose effort levels. Effort choices were restricted to the
interval [110, 170], with fractional efforts allowed, which they could select by using deci-
mal points. Subjects were then randomly matched and each person was informed privately
about own earnings and the “other person’s decision.” The process took about oA hour.

Three sessions were conducted under the high-cost treatmerd/@) and three under
the low-cost treatmentc(= 1/4).1® The period-by-period averages for each session are
shown as thin lines in Fig. 1, and the averages for all sessions in each treatment are shown
as thick lines. The data exhibit a couple of interesting features. First, the averages of all
sessions begin near the midpoint of the range of feasible effort choices on the vertical axis.

Figure 2 shows the histograms of the effort decisions in the first and in the last three
periods for the high-cost treatment (light) and low-cost treatment (dark). The null hypoth-
esis that the initial distributions are equal cannot be rejected at the 5 percent level using a
standard Kolmogorov—Smirnov testSecond, even though all sessions start out similarly,

a clear separation is apparent by the fifth period. For later periods, the null hypothesis

13 Furthermore, this choice facilitates the comparison of our results with those of Van Huyck et al. (1990) who
let subjects choose integer effort levels that ranged from 1 to 7.

14 see http://www.people.virginia.edu/~cah2k/datapage.html for the instructions and data.

15 The instructions stated that the 10 periods of random matching would be followed by “a different experiment.”
In fact, these two-person coordination games were followed by a series of 6-9 one-period games of chicken,
matching pennies, etc.

16 This created somewnhat of a dilemma, since earnings are much lower under the high-cost treatment. We dealt
with this issue by increasing the fixed payment from the customary level of $6 to a level, $12, that would ensure
reasonable earnings for the first hour, even for the high-cost treatment. (The $6 initial payment was used in
session 1, with the low-effort-cost treatment, but the higher initial payment was used in all subsequent sessions.)
Including the fixed payment, most subjects’ earnings were in the $7 to $9 range in 0.25 treatment, and in the $16
to $18 range in the 0.75 treatment. These earnings were augmented in the one-period games that followed.

17 Furthermore, comparing the empirical distribution functions with a uniform distribution results in a
Kolmogorov—Smirnov statistic of 0.2 for both treatments, while the critical value is 0.22 for a sample size of
30 and a confidence level of 10 percent. Hence, the null hypothesis that the first-period empirical distributions are
equal to a uniform distribution for the two treatments cannot be rejected at the 10% level.
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Effort
170
Low Cost
160 Sessions
150 c=1/4
140
130 High Cost
Sessions
120 c=3/4
110

1 2 3 4 5 6 7 8 9 10
Period

Fig. 1. A coordination game: average effort decisions by peKegt. Fine lines are session averages. Bold lines
are averages across all sessions in a treatment.
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Fig. 2. Effort choice frequencies in period 1 (top) and periods 8-10 (botides) Light bars correspond to high
effort cost, dark bars correspond to low effort cost.
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average
effort
170
, | low cost session
80 (c = 0.25)
150
140 -
high cost session
130
(c = 0.75)
120
110 5 10 15 ,
period

Fig. 3. Average efforts for two sessions with twenty periods.

of no treatment effect can be rejected at the 5 percent level of significance using a non-
parametric test® In the last three periods, all decisions in the low-cost sessions are above
the midpoint (140), while almost all decisions are below the midpoint with a high cost,
as shown in Fig. 2. Finally, the average effort trajectories seem to spread symmetrically
around the midpoint: the upward trend for the three low-effort-cost sessions is reflected by
an essentially symmetric downward trend for the three high-effort-cost sessions.

A casual impression that one might get from Fig. 1 is that the data have not fully con-
verged by period 10. In particular, there may be some tendency for data averages to move
closer to the boundaries with more periods. To test this conjecture, we ran two additional
sessions that lasted for twenty periods. The procedures used for these new sessions were
somewhat different because we used computerized interactions to save time. The average
effort levels by period are shown in Fig. 3. Note that there is no tendency to move to-
wards the boundaries after periods 6 to 7. If anything, these two sessions most resemble
the least extreme sessions in Fig. 1 (i.e. the two sessions with data averages closest to the
midpoint 140).

4. Minimum and median-effort experimentswith three players

Past research on coordination games seems to suggest that two is the critical number of
players for efficient coordination. For instance, in the minimum-effort coordination exper-

18 The intuition behind the test is clear. There are “six-take-thee@0 possible ways that the effort averages
could have been ranked, and of these the most extreme ranking was observed, with all threedsisns having
the highest ranks. The probability of this outcome under the null is, theref26-0.05.
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iments of Knez and Camerer (1994), coordination gets steadily worse with larger groups
and the biggest decrease in efficiency occurs when going from two to three players. Their
explanation is that with more than two players, beliefs about others’ behavior become am-
biguous: while two players only have to worry about each others’ beliefs about one another,
the introduction of additional players forces everyone to think about beliefs opponents have
about others.

Knez and Camerer’s observation pertaing to1/2, in which case moving from two to
three players is an important step. The concept of maximizing potential generalizes their
intuition to group sizes larger than two: depending on the value phverage effort levels
may be either low or high with two players (see Fig. 1), and the same is true for three
(or more) players. To test this prediction, we ran two new minimume-effort coordination
sessions, now with cohorts of twelve subjects being randomly matched in groups of three.
The effort-cost was /2 in the high-cost treatment and10 and in the low-cost treatment,
so thatnc is greater than 1 in the high-cost treatment and less than one in the low-cost
treatment® The period-by-period average effort levels for both treatments are shown in
Fig. 4. Both sessions start out at the same level, which falls in the same range (between
140 and 150) as in the sessions with random pairings. As predicted, however, average effort
levels in the high-cost session fall while average effort levels rise in the low-cost session.

Another characteristic of coordination experiments done to date is that when payoffs
are determined by thmedian effort, the dynamics exhibit strong history-dependence: i.e.
final outcomes are largely determined by initial play (Van Huyck et al., 1991). In all of
the twelve sessions that they report, the median choice remained the same in each period
and the final outcome was completely determined by first-period play. In addition, sub-

Effort Low Cost

170 Session
c=.1

160

150

140

130 High Cost
Session

120 c=.5

110

1 2 3 4 5 6 7 8 9 10
Period

Fig. 4. A three-person minimum-effort coordination game: average effort decisieyisAverages by period for
¢=1/10 (top) anct = 1/2 (bottom).

19 we would liked to have sat = 1/6 (instead ofc = 1/10) in the low-cost treatment to preserve symmetry
aroundnc = 1, but we felt that, since the experiments were done by hand, this would complicate payoff calcula-
tions too much and slow down the experiments (especially since effort choices could be any fractional amount).
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jects’ behavior showed little variation over time, in contrast with the adjustment patterns
in minimum-effort games (see also Crawford, 1995).

The payoff structure of Van Huyck et al. (1991) differs from (1) in two ways. The mini-
mum of all efforts is replaced by the median, and, more importantly, a cost is added that is
guadratic in the distance between a player’s effort and the median of all effort choices. The
latter change may have an effect on behavior and could be part of the reason why the data
show such strong history-dependence. We will consider a three-person median-effort coor-
dination game with a payoff structure that is more closely related to (1) and that admits a
potential. In particular, all three players receive the median, or middle, effort choice minus
the cost of their own effortr; (e1, e2, e3) = mediares, e2, e3} — ce;, with ¢ the effort-cost
parameter.

As before, the potential function is simply the common production function that deter-
mines asingle player’s payoff, minus the sum afl players’ effort costs:

n

V(el,...,en)=mediar{el,...,en}—cZei. (5)
i=1

In contrast to the minimum-effort game, there is no symmetric pure-strategy equilibrium
that maximizes (5): if all three players choose a common effort levele, one player

could lower the total costs by deviating to the lowest possible effaithout affecting the
median. Instead the (expected) potential is maximized by the Nash mixed-strategy equilib-
rium in which players pick thiowest effort, e, with probability p* and the highest efforg,

with probability 1— p*. A straightforward calculation shows that = (1— (1—2¢)1/2)/2

for ¢ < 3/8 andp* = 1 otherwis€?%-21 Of course, introducing noise via the stochastic po-
tential function yields less extreme and more continuous comparative statics. In the next
section, we compare point predictions that follow from maximizing stochastic potential
using a noise parameter estimated out-of-sample.

We conducted four sessions with median-effort-based payoffs, using effort-cost parame-
ters ofc = 0.1, ¢ = 0.4 (2 sessions), and= 0.6, respectively. Figure 5 shows the period-
by-period averages for each treatment. Average efforts start at roughly the same level, but
rise in the session with the lowest effort cost and fall in the one with the highest cost. The
sessions with the intermediate effort cost have relatively flat trajectories, which is consis-
tent with history-dependence, but the final effort levels for all sessions are inversely related

20 When players choosewith probability p andz with probability 1— p, the potential is given byV (p) =
p3e(1—3c) 4+ 3p2(1 — p)(e(1— 2¢) + c&) + 3p(L— p)2(e(1 — 2¢) + ce) + (1L — p)3&(1 — 3¢). The first-order
condition for maximization yields a quadratic equatiop(2— p) = ¢, thatis solved by* = (1— (1—2¢)1/2) /2.
Note that when the others choosewith probability p* and e with probability 1— p*, a player's expected
payoff of choosing an effort levek, becomes¢(e) = (p*)2e + 2p* (1 — p*)e + (1 — p*)2e — ce, which is
independent ot since p* solves *(1 — p*) = ¢. So choosing: with probability p andé with probability

1 — p, constitutes a symmetric mixed-strategy Nash equilibrium. The potential evaluaggdiatV (p*) =
(1—3c)(@+e)/2+ (1— 2¢)%2(2 — ¢)/2, which is only greater than or equald(l — 3c) whenc < 3/8. So the
potential is maximized gb* = (1 — (1 — 2¢)1/2)/2 whenc < 3/8 and atp* = 1 whenc > 3/8.

21 This median-effort game has a continuum of asymmetric Pareto-ranked Nash equilibria in which two players
choose a common effort level, and the third player chooses the lowest possible effofuch asymmetric
outcomes are unlikely to be observed when players are randomly matched and drawn from the same pool.



360 J.K. Goeree, C.A. Holt / Games and Economic Behavior 51 (2005) 349-364

Effort
170
Low Cost
160 Session
c=.1
150
140 Middle Cost
Sessions
130 c=4
120 High Cost
Session
110 c=.6
1 2 3 4 5 6 7 8 9 10

Period

Fig. 5. A median-effort coordination game: average effort decisikag. Averages by period for = 0.1 (top),
¢ = 0.4 (middle), anct = 0.6 (bottom).

to c. For later periods, the null hypothesis that the produtas no treatment effect can be
rejected at the 10 percent level of significance using a non-parametré test.

5. Estimation of thelogit equilibrium model

We used data from the two-person minimume-effort coordination-game experiment to
estimate the equilibrium model in (4) directly, by dividing the interval [110, 170] into
one-cent intervals and replacing the density function in (4) with probabiffi@hus (4)
becomes a set of simultaneous equations that determine the equilibrium probabilities for
each effort level, and for a given value pof the equations in (4) can be solved using
numerical methods. The likelihood is the product of the calculated probabilities of the
decisions actually observed and is maximized by iterating pvéihis yields an estimated
value ofu = 7.4(0.5), with the standard error in parenthedés.

Table 2 summarizes the data and logit predictions for the two-person minimum effort
experiment. It shows the average effort levels (standard deviations) in the final three pe-
riods by session and pooled over all three sessions in each treatment. For both values of
the effort cost, two of the three session averages are within one standard deviation of the
average predicted by the logit equilibrium that maximizes stochastic potential for the esti-
matedu = 7.4. There are, however, unexplained differences between different sessions in
the same treatment (cohort effects). Consider, for instance, session 2 of the high-cost treat-

22 There are 24 possible ways that the effort averages could have been ranked, and of these only two rankings
are as extreme as the one observed. The probability of this outcome under the null is, thef@fbee0D9.

23 Clearly, the data show some systematic time patterns in the early periods, which is why we only used the last
three periods to estimate the equilibrium valug.of

24 e did the estimation for sessions 1-6. We did not include session 7 and 8 (with 20 periods) in this estimation
because of procedural differences and in particular computerization, which makes these sessions less comparable
to the three-person game experiments.
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Table 2
Average effort levels in periods 8-10 (standard deviations)
First session Second session Third session Pooled Logit equilibrium
Low cost ¢ =1/4) 151 (10) 166 (5) 159 (12) 159 (11) 154 (12)
High cost ¢ = 3/4) 131 (11) 112 (5) 135(11) 126 (14) 126 (12)

ment, in which initial behavior in the first three periods is more extreme than in the other
high-cost sessions. Subsequent effort choices are lower and gravitate towards the lower
boundary 110, presumably because beliefs are more pessimistic. This history-dependence
is not picked up by equilibrium models such as the one implied by maximizing stochastic
potential. Nevertheless, the predictions that follow from maximizing stochastic potential
are remarkably accurate when we aggregate the sessions in the same treatment. The av-
erages for the two treatments end up at about 126 (14) for the high-cost treatment and at
159 (11) for the low-cost treatment, which is only slightly more extreme than the stochastic
potential predictions of 126 (12) and 154 (12) based on the estimated error parameter.

Next, consider the three-person minimum effort game. In order to get an ex ante pre-
diction for the average effort levels in the final periods, we shalljuse7.4, which was
estimated from the two-person experiment. The population density that maximizes the sto-
chastic potential is characterized by the three-person generalization of Eq. (4):

uf'(e) = f@e((1- F(e)® —c). (6)

Equation (6) can be derived as follows. Recall that, in general, the condition for stochastic
potential maximization is given by the logit-equilibrium conditionf’ (e) = ¢ (e) f (e).

An increase in effort raises costs at a ratend results in a higher minimum effort only

if the others’ efforts are higher, which occurs with probability— F)2. Hence marginal
payoffs arexr® = (1 — F)? — ¢, which together with the logit condition yields (6). Using

the estimated value of 7.4 for the error parameter, (6) can be solved numerically and the
resulting predictions for the average effort levels are: 154 ferl/10 and 129 for = 1/2,

with a standard deviation of 8 in each case. The average efforts for the high-cost session
end up quite close to the logit predictions. The low-cost session, however, provides an
example of “lock-in dynamics”: there is no more residual noise and behavior gets stuck at
the upper boundary after period 7.

Finally, consider the three-person median game. Since subjects have no method of co-
ordinating on asymmetric effort distributions when they are randomly matched and drawn
from the same pool, it seems sensible to characterize the entire population of players by
a common distribution functior, with corresponding density. The marginal payoff
function can be derived in the same manner as above. An increase in effort raises costs at
a ratec and affects the median only if one of the other players is choosing a higher effort
level and the other a lower effort level, which happens with probability12— F). Hence,
the condition for maximum stochastic potential becomes:

uf'(e) = [ 2F()(1- F(e) —c). (7

The predictions for the final-period average effort levels that follow from (7) (again with
u="7.4)are: 150 for = 0.1, 140 forc = 0.4, and 130 for = 0.6 with a standard deviation
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of 8 in each case. The observed average efforts in the last three periods for these sessions
were 157 ¢ =0.1), 136 and 138(=0.4), and 113{ = 0.6), respectively. There are some
deviations from the theoretical predictions, and in the low-cost sessions behavior might
have “locked in” at the upper boundary with more repetition (as it did in the three-person
minimum-effort game, see Fig. 4). However, the overall pattern is tracked fairly well and
the comparative statics predictions that follow from maximizing stochastic potential are
borne out by the dat?

6. Conclusion

Coordination games are of interest to both macroeconomists and microeconomists be-
cause the presence of multiple, Pareto-ranked Nash equilibria raises the possibility of
failure to coordinate on a “good” outcome. One direction of research has been to devise and
study mechanisms that facilitate profitable coordination. In addition, theorists have stud-
ied coordination games extensively because the presence of multiple equilibria provides
a useful platform for the analysis of strategic behavior. Not surprisingly, data from past
coordination experiments have provided a rich testing ground for theoretical advances, and
the original Van Huyck et al.'s (1990) experiments are some of the most widely cited in
the experimental economics literature. This paper reports a new set of experimental data
generated by changes in the economic variables, e.g. effort cost, which should affect the
likelihood of successful coordination. These new experiments were designed in light of
some recent theoretical advances in the analysis of equilibrium and dynamics with noisy
behavior, and one objective of this paper is to add a new set of stylized facts to guide
current theoretical work that is proceeding in several different and potentially promising
directions.

A second purpose of this paper is to shed light on how the well-known notion of “risk
dominance” in Z 2 games might be generalized. In the continuous minimum-effort game,

a unilateral increase in effort above some common level will reduce one’s payofpéy

unit effort, whereas a unilateral one-unit decrease in effort will reduce payofflay gince

the minimum effort is reduced by 1. Thus any common effort level is a Nash equilibrium,
but intuition suggests that the average effort levels should depend on the relative losses
from over-shooting or under-shooting the other’s effort, i.e. on whethisrgreater than

or less than 12. Risk dominance uses these “deviation losses” to predict which outcome
will occur in a two-decision game. One way to generalize risk dominance to economic
situations with a continuum of decisions is to consider the equilibrium that maximizes
a “potential function.” In the two-person coordination game, this procedure selects the
equilibrium with the highest possible effort when< 1/2 and with the lowest possible
effort whenc > 1/2. This paper presents the results of a laboratory experiment using effort

25 As noted above, the mixed-strategy Nash prediction for the median game involves randomizing between the
lowest and highest possible effort level whes 0.4. The effect of adding noise is to produce a bi-modal density
function with considerable mass near the boundaries. This bi-modal pattern is corroborated by the data for the
two sessions witle = 0.4. In the final three periods of these sessions, about two thirds (35 out of 54) of the effort
choices were within 10 of the upper and lower boundary.
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cost parameters of/4 and 34. The effort-cost treatment separates the data nicely, with
symmetric increases for low effort costs and decreases for high effort costs, as shown by
the dark lines in Fig. 1 that track the average efforts by treatment for each period.

The data clearly show some degree of randomness, reflecting noisy response to asym-
metries in deviation losses. To capture this randomness, we use a “stochastic potential”
function which includes an entropy term that is weighted by an estimated error parameter.
The intuition for stochastic potential is that it will be maximized by gradient-based adjust-
ments subject to normal random noise, just as the deterministic potential is maximized by
deterministic adjustments in the direction of higher payoffs. The final-period averages are
close to the levels that maximize stochastic potential. Follow-up experiments show that
this approach is also useful in organizing the data from different contexts, e.g. three-person
minimum and median effort-coordination games. Overall, this combination of theory and
experiment provides a coherent picture of behavioral responses to key economic incentives
and can be useful in designing mechanisms that facilitate coordination.
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