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Abstract

This paper reports data for coordination game experiments with random matching. The
mental design is based on changes in an effort-cost parameter, which do not alter the set
equilibria nor do they alter the predictions of adjustment theories based on imitation or best re
dynamics. As expected, however, increasing the effort cost lowers effort levels. Maximizatio
stochastic potential function, a concept that generalizes risk dominance to continuous gam
dicts this reduction in efforts. An error parameter estimated from initial two-person, minimum-
games is used to predict behavior in other three-person coordination games.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

After the prisoner’s dilemma, the coordination game is perhaps the most widel
cussed paradigm in game theory. Interest in coordination games stems from the p
of multiple Nash equilibria that can be Pareto ranked, which raises the possibil
“getting stuck” in an outcome that is undesirable for all players. For this reason
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class of games is of interest to macroeconomists (Bryant, 1983; Cooper and John
Romer, 1996). Since (generically) all equilibria are strict, standard refinements lea
set of Nash equilibria unchanged, which has prompted game theorists to search f
selection criteria. An array of alternative theories of behavior in coordination games
been put forward, both static and dynamic.1

Some theorists argue that coordination game experiments are useless for gam
ory because the Nash equilibrium and its refinements have no predictive power
case and, as a consequence, “anything goes.” We feel that the opposite is true:
expected empirical regularities observed in coordination experiments (such as th
reported in this paper) can guide further theoretical work. For instance, previou
periments have shown that coordination problems cannot be ruled out by an as
tion that agents somehow find the Pareto-dominant equilibrium. Indeed, some
most widely cited results from laboratory experiments provide cases where subjec
up at the Nash equilibrium that isworst for all concerned (Van Huyck et al., 199
Cooper et al., 1992; and the survey of Ochs, 1995). Since much of the theoretica
was motivated by the need to explain coordination failures in the laboratory, it is now
to return to the laboratory and carry out experiments designed explicitly to evaluate
of these theories.

This paper reports the results of several new coordination experiments. The firs
to be considered is one in which pairs of subjects choose an effort level, and the re
payoff is theminimum of the efforts minus the cost of one’s own effort. This payoff str
ture can arise from a joint production process in which the group output is propor
to the minimum of the individual inputs, as is the case with perfect complementarity
different treatments are based on a change in the common cost per unit of effort. As
this cost is less than one, the best response to any set of others’ efforts is just the m
of those efforts, so (non-critical) changes in the cost of effort will not alter the set of
equilibria in pure strategies, nor will they change the predictions of any dynamic th
that is based on adjustment toward the best response to efforts observed in the p
period. Changes in the cost of effort do affect the relative costs of “errors” in oversho
or undershooting the minimum of other’s efforts, so theories like risk dominance and
imum stochastic potential (discussed below) that take into account the costs of erro
be sensitive to the effort cost parameter.

The qualitative predictions that follow from maximizing the stochastic potentia
supported by this first experiment. The data are used to estimate the “noise” param
the model, which is then used for out-of-sample prediction in six new sessions with
person games. These sessions include both minimum-effort and median-effort coord
games.

The paper is organized as follows: the theoretical motivation for the experimental d
is discussed in more detail in Section 2, and laboratory results for two- and three-p

1 Static approaches include Pareto dominance (Harsanyi and Selten, 1988), risk dominance (Harsan
Carlsson and van Damme, 1993), and “noisy” equilibrium models (Anderson et al., 2001; Carlsson and Ga
1998). Dynamic models of coordination behavior can be roughly divided into evolutionary models (Kan
al., 1993; Young, 1993; Crawford, 1991; Anderson et al., 2004), adaptive learning models (Crawford

Van Huyck et al., 1997), and “noisy” learning models (Battalio et al., 2001; Camerer and Ho, 1999).
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games are presented in Sections 3 and 4, respectively. Section 5 describes the es
of the equilibrium model, and the final section concludes.

2. Pareto dominance, risk dominance, and maximum stochastic potential

The experiment involves a series of single-period coordination games with grou
randomly matched subjects who make independent “effort” choices. Efforts were res
to a continuous interval[ e, ē ], i.e. fractional efforts were allowed. Let playeri ’s effort be
denoted byei ∈ [ e, ē ], i = 1, . . . , n. The payoffs for a symmetric,n-person minimum-
effort game are:

πi(e1, . . . , en) = min{e1, . . . , en} − cei, i = 1, . . . , n, (1)

wherec is the effort cost. As long asc is less than 1, payoffs are maximized when
players choose the highest possible effort. Note, however, thatany common effort level
constitutes a Nash equilibrium, since a costly unilateral increase in effort will not rais
minimum, and a unilateral decrease will reduce the minimum by more than the cost
c < 1. This argument does not depend on the number of players, so non-critical ch
in c andn will not alter the set of Nash equilibria in pure strategies, despite the reaso
expectation that efforts should be high for sufficiently low effort costs and low numbe
participants.2

The theoretical construct most commonly used to “select” an equilibrium in 2× 2 coor-
dination games is Harsanyi and Selten’s (1988) notion of risk dominance. One app
feature of risk dominance is its sensitivity to cost that determines the losses associat
deviations from best responses to others’ decisions. To illustrate the concept of risk
inance, consider the two-person minimum-effort game shown in Table 1 in which e
are constrained to be the integers 1 or 2. When both players are choosing efforts o
cost of a unilateral deviation to 2 is just the cost of the extra effort,c, which will be referred
to as the “deviation loss.” Similarly, the deviation loss at the(2,2) equilibrium is 1− c,
since a unilateral reduction in effort reduces the minimum by 1 but saves the margi
fort costc. The deviation loss from the low-effort equilibrium is greater than that from
high-effort equilibrium ifc > 1− c, or equivalently, ifc > 1/2, in which case we say tha
the low-effort equilibrium is risk dominant.3 Risk dominance, therefore, has the desira
property that it selects the low-effort outcome if the cost of effort is sufficiently high.4

There is, however, no consensus on how to generalize risk dominance for game
more players, a continuum of decisions, etc. A related concept that does generaliz

2 Anderson et al. (2001) show that there are a continuum of (two-point) mixed Nash equilibria, but tha
of these has the perverse comparative statics property that an increase in the effort cost willraise the probability
associated with the higher of the two effort levels over which randomization occurs.

3 The application of risk dominance for asymmetric two-person games is equivalent to comparing the
of the two players’ deviations losses at each equilibrium.

4 Laboratory experiments based on 2× 2 coordination games show that the risk dominant outcome may
a lot of drawing power even though play usually starts out near the Pareto-dominant equilibrium (see e.g

1995).
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Table 1
A 2 × 2 coordination game

Player 2’s effort

1 2

Player 1’s 1 1− c, 1− c 1− c, 1− 2c

effort 2 1− 2c, 1− c 2− 2c, 2− 2c

notion of maximization of a “potential” of a game.5 Loosely speaking, the idea behin
potential is to find a function that is maximized by a Nash equilibrium for the game. M
precisely, a potential function for a game is a function of all players’ decisions with p
derivatives that match those of individual players’ payoffs with respect to their own
sions. The class of games that admit a potential function includes some well-know
interesting examples.6 For instance, it is straightforward to show that the potential fu
tion for the 2× 2 coordination game in Table 1 is given by:V = p1p2 − (1− c)(p1 + p2),
wherepi denotes the probability with which playeri chooses the low effort 1.7 Hence, the
potential is maximized in the low-effort outcome (p1 = p2 = 1) whenc > 1/2 and it is
maximized in the high-effort outcome (p1 = p2 = 0) whenc < 1/2. For the 2× 2 coordi-
nation game shown in Table 1, risk-dominance and maximum potential thus coincid
this equivalence holds more generally for any symmetric 2× 2 game.

In contrast to risk-dominance, the notion of maximum potential can be generaliz
more general settings. For instance, for then-player minimum effort game given in (1
the potential function is simply the common production function that determines asingle
player’s payoff, minus the sum ofall players’ effort costs:

V (e1, . . . , en) = min{e1, . . . , en} − c

n∑
i=1

ei . (2)

The inclusion of all effort costs is needed to ensure that∂Vi/∂ei = ∂πi/∂ei , i = 1, . . . , n,
for all feasible vectors of decisions, when these derivatives exist. The maximization
tential will obviously require equal effort levels. At any common effort,e, the potential
in (2) becomes:V = e − nce, which is maximized at the lowest effort whennc > 1, and
is maximized at the highest effort whennc < 1. In two-person games, this condition r
duces to the risk dominance comparison ofc with 1/2. Hence, the Nash equilibrium th
maximizes potential in this game is sensitive to parameters that may affect actual be

The notion of maximum potential can be used to evaluate results from pre
coordination-game experiments.8 However, laboratory data often show some amoun

5 Rosenthal (1973) first used a potential function to study properties of a Nash equilibrium. Monder
Shapley (1996) provide a general treatment.

6 For instance, all 2× 2 games admit a potential function, as do some versions of public goods games, C
oligopoly games, etc. See Monderer and Shapley (1996) and Anderson et al. (2004) for further examples

7 Playeri ’s payoff of choosing the low effort with probabilitypi is: πi(pi ,pj ) = pipj − pi(1 − c) − pj +
(2− 2c), and it is straightforward to check that∂Vi/∂pi = ∂πi/∂pi for i = 1,2.

8 The most widely cited coordination experiment is that of Van Huyck et al. (1990), who conducted game

14 to 16 players and an effort cost of either 0 or 1/2, sonc was either zero or about seven. Compared to the
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“randomness,” which cannot be explained by any deterministic theory of this type. W
use the idea of maximum “stochastic potential” and derive its implications for the
meters of the experiments reported below. We also explain its relationship with the
quantal response equilibrium (McKelvey and Palfrey, 1995).

If a game has a potential functionV , the stochastic potential is based on a c
sideration of probability distributions of decisions that determine the expected va
potential (Anderson et al., 2001). In particular, the stochastic potential for given dis
tions of players’ decisions is the expected value of the ordinary potential, denotedE{V },
plus terms that will make the maximand sensitive to noise in the choice distribu
These terms that determine the value of dispersion correspond to the physical c
of “entropy.” In the case of a continuous density function,fi(ei), entropy is defined a
− ∫

fi ln(fi)dei . The entropy for the system is the sum of the entropy terms for ind
ual players’ distributions, weighted by an error parameterµ. Thus the stochastic potenti
is: E{V } − µ

∑
i

∫
fi ln(fi)dei , where the sum is over all player indices and the inte

is over the range of feasible effort choices. Since entropy is maximized by complet
domness (a uniform distribution of decisions), the distribution that maximizes exp
potential plusµ times entropy will be more dispersed as the error parameter increas
the other limit asµ → 0, the entropy term becomes irrelevant and the maximizatio
stochastic potential becomes equivalent to the maximization of ordinary potential,
leads to a Nash equilibrium in this context. Thus the maximization of stochastic pot
provides a generalization of Nash that is parameterized by an error parameterµ.

For the case of a two-player minimum effort game, the expected value of the p
tial function in (2) contains a term that is the expected value of the minimum of
decisions. If playeri uses a continuous choice densityfi(ei), with corresponding distri
bution functionFi(ei), then the distribution function for the minimum of the two effo
is: 1 − (1 − F1(e1))(1 − F2(e2)). The stochastic potential,VS , is calculated by addin
weighted entropy terms to the expected value of the minimum and subtracting the ex
effort costs:9

VS =
ē∫

e

2∏
i=1

(
1− Fi(e)

)
de − c

2∑
i=1

ē∫
e

(
1− Fi(e)

)
de

− µ

2∑
i=1

ē∫
e

fi(e) log
(
fi(e)

)
de. (3)

critical nc value of 1, these parameter choices appear rather extreme, which may explain why their data e
huge shift in effort decisions. By the last round in the experiments in whichnc = 0, almost all (96%) participant
chose the highest possible effort, while over three-quarters chose the lowest possible effort whennc was around
seven. One purpose of Van Huyck et al.’s experiment was to show that a Pareto-inferior outcome may
coordination games. Other experiments were conducted with 2 players, but the payoff parameters were
nc exactly equaled the critical value 1, and, with a random matching protocol, the data showed a lot of var

9 Recall that the expected value of a random variable with distribution functionF can be written as the integra

of 1− F (ignoring possible boundary terms that are independent ofF ).
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Anderson et al. (2001) show that maximization of the stochastic potential requires sy
try across players, i.e.F1(e) = F2(e) = F(e), as is the case without noise. Maximization
the stochastic potential with respect to the common distributionF(e) is a straightforward
calculus-of-variations problem, and the necessary condition can be expressed:10

µf ′(e) = f (e)
(
1− F(e) − c

)
, (4)

which is a differential equation in the common distribution function. Consider the intu
behind (4). If the other player is using an effort distribution,F(e), then an increase in effo
at e will raise the minimum with probability 1− F(e) and increase the cost at a ratec, so
the 1− F(e) − c term is the derivative of the expected payoff with respect to one’s
effort. It follows that (4) can also be written as a differential equation in the equilib
density function:µf ′(e) = πe′(e)f (e), which defines the continuous version of the “lo
equilibrium” (McKelvey and Palfrey, 1995).11 Anderson et al. (2001) show that a soluti
to (4) exists, is unique, and that an increase in the effort cost lowers efforts in the se
first-degree stochastic dominance. Thus the prediction of this stochastic-potential ap
is consistent with the intuitive notion that reductions in the effort cost will increase ef
although not necessarily all the way to the maximum possible effort.

One final issue is how (boundedly rational) subjects are supposed to find the max
of stochastic potential. In Anderson et al. (2004), we specify a continuous gradient-
adjustment process with Brownian motion, i.e. the time rate of change in a player’s de
is equal to the slope of the expected payoff function (locally) plus a continuous-time n
random error. We show that any stable steady state of this process produces a dist
of decisions that maximizes stochastic potential (i.e. produces a logit equilibrium).12

3. Laboratory results for the two-person minimum effort game

Contrary to the continuous nature of most real-world effort decisions, most coordin
experiments conducted to date involved only a few possible effort choices. To gain re
and to reduce the possibility of “extreme” behavior (i.e. boundary decisions), subje
the experiments reported here choose from acontinuous interval: [110, 170]. We chose th

10 Recall that the Euler condition for maximizing
∫

I (F,f, x)dx is: δI/δF = ∂I/∂F − d/dx{∂I/∂f } = 0, or
in the present context:−2(1− F) + 2c + 2d/dx{µ + µ lnf } = −2(1− F − c) + 2µf ′/f = 0, wheref ′ denotes
the derivative of the density function. This result can be rearranged to obtain the expression in (4).
11 The correspondence between this differential equation and the logit equilibrium can be seen by integ
express the densityf (e) as proportional to exp(πe(e)/µ).
12 The concepts of logit equilibrium and maximization of stochastic potential differ in a subtle way. In part
the variational condition in (4) is a first-order condition, and therefore, a logit equilibrium may be a local min
of the stochastic potential. Anderson et al. (2004) show that local minima are unstable for a dynamic g
based adjustment process with Brownian motion, whereas local maxima are stable. Since we have pro
the logit equilibrium is unique for this game (Anderson et al., 2001), it is globally stable for the evoluti
adjustment process. Incidentally, the noisy evolutionary adjustment process explains the symmetric ad
patterns in Fig. 2 (see Goeree and Holt, 1999). It is worth noting that there is a one-to-one correspo
between logit equilibria and extreme points of stochastic potential, whereas this equivalence does not hol
twin concepts of the Nash equilibrium and (deterministic) potential. For example, there is a continuum o

equilibria for the coordination game, but only one maximizes potential whencn �= 1/2.
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particular range with the objective of avoiding a highly focal number like 50 or 100,
we did not want 150 to be at the midpoint of the range. (Although focalness plays no r
our theory, we believe that it can be important, especially in coordination games.)13 Given
the knife-edge properties ofc = 1/2 for two-person coordination games, we conduc
one treatment withc = 1/4 and another withc = 3/4. As noted above, this change do
not alter the predictions of theories based on best responses to others’ decisions, e
strategy Nash equilibria.

The experimental design involved six sessions, each with 10 student subjects re
from undergraduate economics classes at the University of Virginia. No subject had
ously participated in a coordination game. Upon arrival, participants were seated in v
isolated booths. We began by reading the instructions.14 The payoffs were explained i
words and with symbols, e.g.: “you will receive a penny amount that equals the min
of the two efforts chosen, minus the cost of your own effort, which is 0.25 times your
effort choice.” There were no numerical examples in the instructions, in order to avoid
suggestions. Questions were asked and answered privately to avoid suggestive sta

Subjects were told that there would be 10 periods of random pairings. At the start o
period, subjects were prompted to choose effort levels. Effort choices were restricted
interval [110, 170], with fractional efforts allowed, which they could select by using d
mal points. Subjects were then randomly matched and each person was informed p
about own earnings and the “other person’s decision.” The process took about one h15

Three sessions were conducted under the high-cost treatment (c = 3/4) and three unde
the low-cost treatment (c = 1/4).16 The period-by-period averages for each session
shown as thin lines in Fig. 1, and the averages for all sessions in each treatment are
as thick lines. The data exhibit a couple of interesting features. First, the averages
sessions begin near the midpoint of the range of feasible effort choices on the vertic

Figure 2 shows the histograms of the effort decisions in the first and in the last
periods for the high-cost treatment (light) and low-cost treatment (dark). The null hy
esis that the initial distributions are equal cannot be rejected at the 5 percent level u
standard Kolmogorov–Smirnov test.17 Second, even though all sessions start out simila
a clear separation is apparent by the fifth period. For later periods, the null hypo

13 Furthermore, this choice facilitates the comparison of our results with those of Van Huyck et al. (199
let subjects choose integer effort levels that ranged from 1 to 7.
14 See http://www.people.virginia.edu/~cah2k/datapage.html for the instructions and data.
15 The instructions stated that the 10 periods of random matching would be followed by “a different exper
In fact, these two-person coordination games were followed by a series of 6–9 one-period games of
matching pennies, etc.
16 This created somewhat of a dilemma, since earnings are much lower under the high-cost treatment.
with this issue by increasing the fixed payment from the customary level of $6 to a level, $12, that would
reasonable earnings for the first hour, even for the high-cost treatment. (The $6 initial payment was
session 1, with the low-effort-cost treatment, but the higher initial payment was used in all subsequent se
Including the fixed payment, most subjects’ earnings were in the $7 to $9 range in 0.25 treatment, and in
to $18 range in the 0.75 treatment. These earnings were augmented in the one-period games that follow
17 Furthermore, comparing the empirical distribution functions with a uniform distribution results
Kolmogorov–Smirnov statistic of 0.2 for both treatments, while the critical value is 0.22 for a sample s
30 and a confidence level of 10 percent. Hence, the null hypothesis that the first-period empirical distribut

equal to a uniform distribution for the two treatments cannot be rejected at the 10% level.
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Fig. 1. A coordination game: average effort decisions by period.Key: Fine lines are session averages. Bold lin
are averages across all sessions in a treatment.

Fig. 2. Effort choice frequencies in period 1 (top) and periods 8–10 (bottom).Key: Light bars correspond to hig

effort cost, dark bars correspond to low effort cost.
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Fig. 3. Average efforts for two sessions with twenty periods.

of no treatment effect can be rejected at the 5 percent level of significance using
parametric test.18 In the last three periods, all decisions in the low-cost sessions are a
the midpoint (140), while almost all decisions are below the midpoint with a high
as shown in Fig. 2. Finally, the average effort trajectories seem to spread symme
around the midpoint: the upward trend for the three low-effort-cost sessions is reflec
an essentially symmetric downward trend for the three high-effort-cost sessions.

A casual impression that one might get from Fig. 1 is that the data have not fully
verged by period 10. In particular, there may be some tendency for data averages t
closer to the boundaries with more periods. To test this conjecture, we ran two add
sessions that lasted for twenty periods. The procedures used for these new sessio
somewhat different because we used computerized interactions to save time. The
effort levels by period are shown in Fig. 3. Note that there is no tendency to mov
wards the boundaries after periods 6 to 7. If anything, these two sessions most re
the least extreme sessions in Fig. 1 (i.e. the two sessions with data averages close
midpoint 140).

4. Minimum and median-effort experiments with three players

Past research on coordination games seems to suggest that two is the critical nu
players for efficient coordination. For instance, in the minimum-effort coordination e

18 The intuition behind the test is clear. There are “six-take-three”= 20 possible ways that the effort averag
could have been ranked, and of these the most extreme ranking was observed, with all three low-c sessions having

the highest ranks. The probability of this outcome under the null is, therefore, 1/20= 0.05.
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iments of Knez and Camerer (1994), coordination gets steadily worse with larger g
and the biggest decrease in efficiency occurs when going from two to three players
explanation is that with more than two players, beliefs about others’ behavior becom
biguous: while two players only have to worry about each others’ beliefs about one an
the introduction of additional players forces everyone to think about beliefs opponent
about others.

Knez and Camerer’s observation pertains toc = 1/2, in which case moving from two t
three players is an important step. The concept of maximizing potential generalize
intuition to group sizes larger than two: depending on the value ofnc, average effort level
may be either low or high with two players (see Fig. 1), and the same is true for
(or more) players. To test this prediction, we ran two new minimum-effort coordina
sessions, now with cohorts of twelve subjects being randomly matched in groups of
The effort-cost was 1/2 in the high-cost treatment and 1/10 and in the low-cost treatmen
so thatnc is greater than 1 in the high-cost treatment and less than one in the low
treatment.19 The period-by-period average effort levels for both treatments are sho
Fig. 4. Both sessions start out at the same level, which falls in the same range (b
140 and 150) as in the sessions with random pairings. As predicted, however, averag
levels in the high-cost session fall while average effort levels rise in the low-cost ses

Another characteristic of coordination experiments done to date is that when p
are determined by themedian effort, the dynamics exhibit strong history-dependence:
final outcomes are largely determined by initial play (Van Huyck et al., 1991). In a
the twelve sessions that they report, the median choice remained the same in each
and the final outcome was completely determined by first-period play. In addition,

Fig. 4. A three-person minimum-effort coordination game: average effort decisions.Key: Averages by period fo
c = 1/10 (top) andc = 1/2 (bottom).

19 We would liked to have setc = 1/6 (instead ofc = 1/10) in the low-cost treatment to preserve symme
aroundnc = 1, but we felt that, since the experiments were done by hand, this would complicate payoff c

tions too much and slow down the experiments (especially since effort choices could be any fractional amount).
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jects’ behavior showed little variation over time, in contrast with the adjustment pa
in minimum-effort games (see also Crawford, 1995).

The payoff structure of Van Huyck et al. (1991) differs from (1) in two ways. The m
mum of all efforts is replaced by the median, and, more importantly, a cost is added
quadratic in the distance between a player’s effort and the median of all effort choice
latter change may have an effect on behavior and could be part of the reason why t
show such strong history-dependence. We will consider a three-person median-effo
dination game with a payoff structure that is more closely related to (1) and that ad
potential. In particular, all three players receive the median, or middle, effort choice m
the cost of their own effort:πi(e1, e2, e3) = median{e1, e2, e3} − cei , with c the effort-cost
parameter.

As before, the potential function is simply the common production function that d
mines asingle player’s payoff, minus the sum ofall players’ effort costs:

V (e1, . . . , en) = median{e1, . . . , en} − c

n∑
i=1

ei . (5)

In contrast to the minimum-effort game, there is no symmetric pure-strategy equilib
that maximizes (5): if all three players choose a common effort level,e > e, one player
could lower the total costs by deviating to the lowest possible efforte without affecting the
median. Instead the (expected) potential is maximized by the Nash mixed-strategy e
rium in which players pick thelowest effort,e, with probabilityp∗ and the highest effort,̄e,
with probability 1−p∗. A straightforward calculation shows thatp∗ = (1− (1−2c)1/2)/2
for c � 3/8 andp∗ = 1 otherwise.20,21Of course, introducing noise via the stochastic
tential function yields less extreme and more continuous comparative statics. In th
section, we compare point predictions that follow from maximizing stochastic pote
using a noise parameter estimated out-of-sample.

We conducted four sessions with median-effort-based payoffs, using effort-cost pa
ters ofc = 0.1, c = 0.4 (2 sessions), andc = 0.6, respectively. Figure 5 shows the perio
by-period averages for each treatment. Average efforts start at roughly the same le
rise in the session with the lowest effort cost and fall in the one with the highest cos
sessions with the intermediate effort cost have relatively flat trajectories, which is c
tent with history-dependence, but the final effort levels for all sessions are inversely r

20 When players choosee with probability p and ē with probability 1− p, the potential is given by:V (p) =
p3e(1− 3c) + 3p2(1− p)(e(1− 2c) + cē) + 3p(1− p)2(ē(1− 2c) + ce) + (1− p)3ē(1− 3c). The first-order
condition for maximization yields a quadratic equation, 2p(1−p) = c, that is solved byp∗ = (1−(1−2c)1/2)/2.
Note that when the others choosee with probability p∗ and ē with probability 1− p∗, a player’s expected
payoff of choosing an effort level,e, becomes:πe(e) = (p∗)2e + 2p∗(1 − p∗)e + (1 − p∗)2ē − ce, which is
independent ofe sincep∗ solves 2p∗(1 − p∗) = c. So choosinge with probability p and ē with probability
1 − p, constitutes a symmetric mixed-strategy Nash equilibrium. The potential evaluated atp∗ is V (p∗) =
(1− 3c)(ē + e)/2+ (1− 2c)3/2(ē − e)/2, which is only greater than or equal toe(1− 3c) whenc � 3/8. So the
potential is maximized atp∗ = (1− (1− 2c)1/2)/2 whenc � 3/8 and atp∗ = 1 whenc > 3/8.
21 This median-effort game has a continuum of asymmetric Pareto-ranked Nash equilibria in which two
choose a common effort level,e, and the third player chooses the lowest possible efforte. Such asymmetric

outcomes are unlikely to be observed when players are randomly matched and drawn from the same pool.
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Fig. 5. A median-effort coordination game: average effort decisions.Key: Averages by period forc = 0.1 (top),
c = 0.4 (middle), andc = 0.6 (bottom).

to c. For later periods, the null hypothesis that the productc has no treatment effect can b
rejected at the 10 percent level of significance using a non-parametric test.22

5. Estimation of the logit equilibrium model

We used data from the two-person minimum-effort coordination-game experime
estimate the equilibrium model in (4) directly, by dividing the interval [110, 170]
one-cent intervals and replacing the density function in (4) with probabilities.23 Thus (4)
becomes a set of simultaneous equations that determine the equilibrium probabilit
each effort level, and for a given value ofµ the equations in (4) can be solved usi
numerical methods. The likelihood is the product of the calculated probabilities o
decisions actually observed and is maximized by iterating overµ. This yields an estimate
value ofµ = 7.4(0.5), with the standard error in parentheses.24

Table 2 summarizes the data and logit predictions for the two-person minimum
experiment. It shows the average effort levels (standard deviations) in the final thr
riods by session and pooled over all three sessions in each treatment. For both va
the effort cost, two of the three session averages are within one standard deviation
average predicted by the logit equilibrium that maximizes stochastic potential for the
matedµ = 7.4. There are, however, unexplained differences between different sessi
the same treatment (cohort effects). Consider, for instance, session 2 of the high-co

22 There are 24 possible ways that the effort averages could have been ranked, and of these only two
are as extreme as the one observed. The probability of this outcome under the null is, therefore, 2/24= 0.09.
23 Clearly, the data show some systematic time patterns in the early periods, which is why we only used
three periods to estimate the equilibrium value ofµ.
24 We did the estimation for sessions 1–6. We did not include session 7 and 8 (with 20 periods) in this est
because of procedural differences and in particular computerization, which makes these sessions less co

to the three-person game experiments.
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Table 2
Average effort levels in periods 8–10 (standard deviations)

First session Second session Third session Pooled Logit equilib

Low cost (c = 1/4) 151 (10) 166 (5) 159 (12) 159 (11) 154 (12)
High cost (c = 3/4) 131 (11) 112 (5) 135 (11) 126 (14) 126 (12)

ment, in which initial behavior in the first three periods is more extreme than in the
high-cost sessions. Subsequent effort choices are lower and gravitate towards th
boundary 110, presumably because beliefs are more pessimistic. This history-depe
is not picked up by equilibrium models such as the one implied by maximizing stoch
potential. Nevertheless, the predictions that follow from maximizing stochastic pot
are remarkably accurate when we aggregate the sessions in the same treatment.
erages for the two treatments end up at about 126 (14) for the high-cost treatment
159 (11) for the low-cost treatment, which is only slightly more extreme than the stoc
potential predictions of 126 (12) and 154 (12) based on the estimated error parame

Next, consider the three-person minimum effort game. In order to get an ex ant
diction for the average effort levels in the final periods, we shall useµ = 7.4, which was
estimated from the two-person experiment. The population density that maximizes t
chastic potential is characterized by the three-person generalization of Eq. (4):

µf ′(e) = f (e)
((

1− F(e)
)2 − c

)
. (6)

Equation (6) can be derived as follows. Recall that, in general, the condition for stoc
potential maximization is given by the logit-equilibrium condition:µf ′(e) = πe′(e)f (e).
An increase in effort raises costs at a ratec and results in a higher minimum effort on
if the others’ efforts are higher, which occurs with probability(1 − F)2. Hence margina
payoffs are:πe′ = (1− F)2 − c, which together with the logit condition yields (6). Usin
the estimated value of 7.4 for the error parameter, (6) can be solved numerically a
resulting predictions for the average effort levels are: 154 forc = 1/10 and 129 forc = 1/2,
with a standard deviation of 8 in each case. The average efforts for the high-cost s
end up quite close to the logit predictions. The low-cost session, however, provid
example of “lock-in dynamics”: there is no more residual noise and behavior gets st
the upper boundary after period 7.

Finally, consider the three-person median game. Since subjects have no method
ordinating on asymmetric effort distributions when they are randomly matched and
from the same pool, it seems sensible to characterize the entire population of play
a common distribution functionF , with corresponding densityf . The marginal payof
function can be derived in the same manner as above. An increase in effort raises
a ratec and affects the median only if one of the other players is choosing a higher
level and the other a lower effort level, which happens with probability 2F(1−F). Hence,
the condition for maximum stochastic potential becomes:

µf ′(e) = f (e)
(
2F(e)

(
1− F(e)

) − c
)
. (7)

The predictions for the final-period average effort levels that follow from (7) (again

µ = 7.4) are: 150 forc = 0.1,140 forc = 0.4, and 130 forc = 0.6 with a standard deviation
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of 8 in each case. The observed average efforts in the last three periods for these s
were 157 (c = 0.1), 136 and 138 (c = 0.4), and 113 (c = 0.6), respectively. There are som
deviations from the theoretical predictions, and in the low-cost sessions behavior
have “locked in” at the upper boundary with more repetition (as it did in the three-p
minimum-effort game, see Fig. 4). However, the overall pattern is tracked fairly wel
the comparative statics predictions that follow from maximizing stochastic potentia
borne out by the data.25

6. Conclusion

Coordination games are of interest to both macroeconomists and microeconomi
cause the presence of multiple, Pareto-ranked Nash equilibria raises the possib
failure to coordinate on a “good” outcome. One direction of research has been to dev
study mechanisms that facilitate profitable coordination. In addition, theorists have
ied coordination games extensively because the presence of multiple equilibria pr
a useful platform for the analysis of strategic behavior. Not surprisingly, data from
coordination experiments have provided a rich testing ground for theoretical advance
the original Van Huyck et al.’s (1990) experiments are some of the most widely cit
the experimental economics literature. This paper reports a new set of experiment
generated by changes in the economic variables, e.g. effort cost, which should aff
likelihood of successful coordination. These new experiments were designed in li
some recent theoretical advances in the analysis of equilibrium and dynamics with
behavior, and one objective of this paper is to add a new set of stylized facts to
current theoretical work that is proceeding in several different and potentially prom
directions.

A second purpose of this paper is to shed light on how the well-known notion of
dominance” in 2×2 games might be generalized. In the continuous minimum-effort g
a unilateral increase in effort above some common level will reduce one’s payoff byc per
unit effort, whereas a unilateral one-unit decrease in effort will reduce payoff by 1−c, since
the minimum effort is reduced by 1. Thus any common effort level is a Nash equilib
but intuition suggests that the average effort levels should depend on the relative
from over-shooting or under-shooting the other’s effort, i.e. on whetherc is greater than
or less than 1/2. Risk dominance uses these “deviation losses” to predict which out
will occur in a two-decision game. One way to generalize risk dominance to econ
situations with a continuum of decisions is to consider the equilibrium that maxim
a “potential function.” In the two-person coordination game, this procedure selec
equilibrium with the highest possible effort whenc < 1/2 and with the lowest possibl
effort whenc > 1/2. This paper presents the results of a laboratory experiment using

25 As noted above, the mixed-strategy Nash prediction for the median game involves randomizing betw
lowest and highest possible effort level whenc = 0.4. The effect of adding noise is to produce a bi-modal den
function with considerable mass near the boundaries. This bi-modal pattern is corroborated by the dat
two sessions withc = 0.4. In the final three periods of these sessions, about two thirds (35 out of 54) of the

choices were within 10 of the upper and lower boundary.
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cost parameters of 1/4 and 3/4. The effort-cost treatment separates the data nicely,
symmetric increases for low effort costs and decreases for high effort costs, as sho
the dark lines in Fig. 1 that track the average efforts by treatment for each period.

The data clearly show some degree of randomness, reflecting noisy response to
metries in deviation losses. To capture this randomness, we use a “stochastic po
function which includes an entropy term that is weighted by an estimated error para
The intuition for stochastic potential is that it will be maximized by gradient-based ad
ments subject to normal random noise, just as the deterministic potential is maximiz
deterministic adjustments in the direction of higher payoffs. The final-period averag
close to the levels that maximize stochastic potential. Follow-up experiments sho
this approach is also useful in organizing the data from different contexts, e.g. three-
minimum and median effort-coordination games. Overall, this combination of theor
experiment provides a coherent picture of behavioral responses to key economic inc
and can be useful in designing mechanisms that facilitate coordination.
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