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We analyse preferences over finite decision problems in order to model decision-makers with
“changing tastes”. We provide conditions on these preferences that identify the Strotz model of consistent
planning. Building on an example given Beleg and Yaar(1973, we show that for problems with
infinitely many choices, Strotz's representation of preferences may not be well defined. For that case, we
propose a well-defined approximation which is empirically indistinguishable from the Strotz preference
that is being approximated.

1. INTRODUCTION

In the canonical example of time-inconsistent behaviour an agent has to choose between a smaller
period 1 reward and a larger period 2 reward. If the decision is made in period 1, the agent
chooses the smaller period 1 reward. If the decision is made in period 0, the agent chooses the
larger period 2 reward.

To study the behaviour described abd8&ptz(1955 proposes a model of changing tastes.

The agent has a distinct utility function for each period. If the period 0 utility function differs
from the period 1 utility function the agent may make different choices depending on when
he/she chooses. The behaviour in the example above can result if the period 0 utility function is
more patient than the period 1 utility function with respect to intertemporal trade-offs between
periods 1 and 2.

The utility functions in Strotz’s model describe how the agent would choose among
consumption paths under the assumption that each choice offers commitment. However, in
typical economic settings, commitment to a single consumption path is not feasible. For example,
in period 0 the agent may have to choose between different investments that affect the feasible
choices for periods 1 and 2. To determine the behaviour of the agent in such a decision problem,
the model must specify how the decision-maker expects to behave in future p&tindz(1959
proposed the “strategy of consistent planning”, and argued that the decision-maker will choose
the optimal plan among those plans that he/she is willing to carry out in the fiRateg and
Yaari (1973 treat each decision period as a distinct player and solve for Nash equilibria in
the resulting dynamic gam@’Donoghue and Rabi(l.999 argue that the decision-maker may
naively believe that his/her future behaviour will maximize current preferences. In each version
of the model, the primitives are (1) behaviour at each decision date under the assumption of
commitment and (2) a rule that specifies how the agent forms expectations.

In this paper, we develop an alternative approach to and interpretation of Strotz's model.
Following Kreps' (1979 and our earlier work on self-controG@l and Pesendorfe2001) we

1. Kreps' main axiom captures preference for flexibility by allowing a two-element set to be preferable to either
singleton. We rule out preference for flexibility and instead insist that the two-element set be indifferent to one of the
singletons.
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define preferences over decision problems. These preferences represent the agent’s behaviour in
period 0 when he/she must choose among alternatives that constrain future choices. Hence our
model takes as its starting point the behaviour of the agent at one decision date and requires
no hypothesis on expectation formation. However, we require that the agent be able to rank all
decision problems and not just those that offer commitment. The advantage of our approach
is that preferences over decision problems are—at least in principle—observable. Rather than
speculate about the appropriate model of expectation formation, we offer choice experiments
that identify Strotz's model of behaviour.

As an example, consider a three-period problers: 0, 1, 2) with consumption in periods
1 and 2. A period 2 decision problem denotedzass a set of consumption choices for that
period. Hencez, represents the set of options available to the decision-maker in period 2. In
a simple consumption—savings model, the Befs determined by the agent’s wealth at the
beginning of period 2. In period 1, a decision problem is azsetvhere each element &
specifies a consumption choice for period 1 (denat@dnd a period 2 decision problery. In
a consumption—savings modalwould be determined by the agent’s wealth at the beginning of
period 1. In period 0, there is no consumption and the agent chooses among period 1 decision
problems. The period 0 choice can be interpreted as a choice among “assets”. For example, the
agent may choose between a liquid savings account and an illiquid asset that can be converted
into consumption only in period 2.

A standard decision-maker is characterized by a utility functioand his/her ranking of
decision problems is described by the value functidmvhere

W(z1) = maxUu (cy, ¢)
subject tox(cy, z2) € z1 andcp € 2.

The decision-maker described by Strotz is characterized by a utility function for each
decision period. Lety;, U2 denote the utility functions for periods 1 and 2. Consistent planning
requires that the agent maximizés in period 2 and, given this period 2 behaviour, the agent
maximizesUs in period 1. This iterative maximization results in a collection of consumption
paths consistent withl;, U2 andz;. The utility functionU describes the period 0 ranking of
consumption paths. The ranking of decision problems is described by the value fuwétion
where

W(z1) = maxu(cy, C2)
subject to:(cy, Cp) is consistent withJ1, U, z3.

The main result of the paper (Theoreingives three axioms on period O preferences that imply
this representation.

To understand the key axiom consider a decision prolzeamd two subsets; andy; with
the property thary; = X1 U y1. If X1 > y3 then for a standard decision-maker an optimal choice
from z; must be inx; and thereforex; ~ z;. To allow for a preference for commitment we relax
this requirement. Our weaker axiom requires that

X1~ 271 or y1 ~ Z3. (NC)

Note that (NC) allows for the possibility that > zi, that is, a strict preference for a smaller set
of alternatives. However, in that case the period 1 choice must beyfr@nd therefore, ~ z;.

The agent’s preferences over decision problems describe the agent’s behaviour in period 0.
From these preferences, we derive a representation that suggests a particular choice behaviour
in all future periods. This implied choice behaviour can be interpreted as the agqudstation
of future behaviour. To make this connection precise, we must confront the possibility that there
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may exist multiple Strotz representations of the same preference. Hence the agent’s expected
future behaviour may not correspond to the implied behaviour associated with a particular
representation. IiBection2 we demonstrate how to constructanonical representatiothat

has the property that if a choice is optimal for some Strotz representation it is optimal for the
canonical representation. Hence, the canonical representation identifies a set of choices in each
period that must contain the agent’s expectations. To see how this is done, consider the preference

X1 X1 U Y1~ Y.

The above preference implies that the decision-mdkess notexpect the period 1 choice from
x1 U y1 to be an element of;. Hence, by asking the agent to choose between decision problems
we can elicit the agent’s expectation of his/her future behaviour.

Section2 also considers a variant of the model where we observe choice behaviour not only
in period O but in all periods. In that case, the Strotz model is identified by the following two
assumptions. First, behaviour in each period must be rational, that is, maximize some objective
function. Second, period 0 preferences must satisfy an “irrelevance of redundant alternatives”
axiom that requires that the agent’s welfare is unaffected if we eliminate options from the period
t choice set that will not be chosen. If the period 0 ranking of decision problems is unaffected by
the elimination of redundant alternatives then we can conclude that the agent is “sophisticated”,
that is, has correct expectations.

In Section3, we study a general, possibly non-separable version of the model due originally
to Phelps and Pollakl968. Phelps and Pollak's —§ preferences constitute the most widely
utilized subclass of Strotz's model. An agent with-§ preferences discounts utility associated
with consumptione periods later at the ratg@s®, whereg < 1. Hence, the agent is willing to
give up more consumption in peridd+ 1 in exchange for consumption in periodf he/she
makes the decision in periddather than in some earlier period. That is, the agent’s behaviour
displays a “bias” towards current consumption. Theorkis a representation theorem for our
generalization of thgg—§ model. The theorem provides a revealed preference condition that
characterizes this bias towards current consumption.

Section2 and3 rely on the assumption that there are finitely many possible consumption
levels.Section4 analyses a model with “continuous” consumption problems. In particular, we
assume that consumption in a given period can be any number in the unit interval. We introduce
an assumption which we call “local preference for commitment”. This assumption ensures that
after any history(cy, ..., ¢t), we can always find two close consumption pattfs,, ..., c1),
(¢{1q---»C) such that the agent would prefeg;_ ,,...,c}) to (c{;l,...,c@ if he/she
could commit at timet but will end up choosingc/, ,, ..., c7) rather than(c;_ 4, ..., Cy) if
commitment is not feasible and he/she has to make the choice in periofl. Theorem5
shows that thes—& model (and our generalization of it) is inconsistent with local preference
for commitment unless the time horizon is three periods or fewer.

The difficulty of providing a well-behaved Strotz model with continuous choice has been
noted byPeleg and Yaar{1973 and other researchers. Theor&mmotivates our final result
by showing that the same difficulties arise even if we allow for preferences that depend on the
history of past consumption. Our final result (Theor@nshows that we can approximate Strotz
preferences with a well-behaved representation taken from our earlier work on self-control.
The approximation that we provide is perfect in the sense that it can rationalize any finite set
of observed choices consistent with Strotz's theory. Hence, no finite data-set can distinguish
between Strotz behaviour and the self-control preferences that we used to approximate such
behaviour.

In addition to the time-inconsistency literature cited above, this paper is related to our earlier
work on self-control Gul and Pesendorfe001, 2004). In both of these papers we analyse
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choice under uncertainty.€. choice over lotteries). Hence, both papers deal with continuous

decision problems and take advantage of the linear structure associated with lottery spaces.
Gul and Pesendorfef2004 offer a recursive, infinite horizon model that either rules

out preference for commitment or NC, the main assumption of this paper. Hence, the only

intersection of the model in that paper and the current one is the standard, time-consistent model.
Gul and Pesendorfg2001) allow NC but have only two periods. Hence, the difficulties

associated with continuous choice discussed above do not come up in their setting. The two-

period setting renders Phelps—Pollak preferences indistinguishable from the general Strotz

model. In addition to ruling out lotteries, the setting of Theorklrelow differs from the one in

the earlier paper by allowing for many periods but only a finite consumption set. Ldroifrtae

proof of Theoremnl is taken from that paper.

1.1. Why choice experiments?

Our approach, both in the current paper and in earlier work, differs from that of Strotz and the
subsequent literature on dynamic inconsistency in that we do not consider the agent’s expectation
of his/her future behaviour a primitive of our model.

Instead, we take as primitive the agent’s choices from a larger domain, the collection of
decision problems. In our theorems both the hypothesesakioms) and the conclusions are
statements about what choices the agent makes in various situations.

As in standard models of dynamic choice we view the decision-maker as expressing a
preference at one point in time (period 0). The representation of these preferences suggests
behaviour in future periods that can be interpreted as the agent’s implicit expectations. Whether
these expectations are correct or not (that is, whether the agent is sophisticated or not) can
be treated as a separate question. That is, the representation is a valid description of period 0
behaviour whether or not the agent has correct expectations, as long as the axioms are satisfied.

To offer a testable hypothesis for “sophisticated” behaviour, we also examine a model
that considers behaviour in all periods. There we find that a simple independence of redundant
alternatives (IRA) condition is the only restriction on intertemporal choice behaviour implied
by Strotz’s preferences. IRA says that period 0 behaviour should be unaffected if unchosen
alternatives are eliminated from choice sets.

1.2. Atime-consistent interpretation

The time-inconsistency literature takes the view that agents have distinct and independent
preferences in each period. This implies that for the purpose of welfare analysis there are as
many agents as there are decision nodes. As a result, welfare statements are often ambiguous.
Consider the example of a consumer who must choose between a liquid and an illiquid asset.
The liquid asset can be converted into high consumption in period 1 or period 2. The illiquid asset
commits the consumer to low consumption in period 1 and delivers high consumption in period 2.
If the consumer has a strict preference for the illiquid asset it must mean that the consumer would
have chosen high consumption in the event that the liquid asset was chosen in period 0. The
time-inconsistent interpretation must therefore conclude that the period 0 choice has ambiguous
welfare implications: it increases the utility of the period 0 “self” but decreases the utility of the
period 1 self. The time-inconsistent interpretation implies the following ranking in period O:

illiquid /low consumption~ liquid/low consumption> liquid/high consumption
whereas for period 1 the ranking is

liquid/high consumption> liquid/low consumption~ illiquid /low consumption.
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We propose an alternative time-consistent interpretation of the model. The time-consistent
interpretation asserts that@ll periodsthe ranking is given by

illiquid /low consumption> liquid/high consumption> liquid/low consumption.

Here, the agent is better off &l periods if he/she chooses the illiquid asset. If the liquid asset
is chosen in period 0, the optimal behaviour in period 1 (from the perspective of all periods) is
to choose high consumption. In this interpretation, the asset choice affects welfare. The liquid
asset makes high consumption available in period 1 which reduces welfare in both periods. The
interpretation is that high consumption constitutes a “temptation” that the decision-maker finds
impossible to resist. If this temptation is available in period 1, high consumption is the optimal
choice from the perspective of all periods because resisting the temptation would be too costly
for the decision-maker.

Note that both interpretations are consistent with observed behaviour. The agent’s behaviour
reveals that in period 1

liquid/high consumption= liquid/low consumption

and in period 0
illiquid /low consumption> liquid/high consumption.

This is satisfied under either interpretation. The advantage of the time-consistent interpretation
is that the observed choices are welfare maximizing from the perspective of every period.

Therefore, to determine whether a policy (for example, a tax policy that discourages high

consumption) improves the welfare of the agent it suffices to determine whether the agent would
vote for the policy in the period in which it is introduced.

2. WEAK STROTZ PREFERENCES

We consider a model with decision-making periods. Each period, the agent takes an action that
results in a consumption for that period and a decision problem for the next peridd.destote
the set of possible consumptions. We assumeGhiatfinite. For concreteness, we may think of
C as afinite subset @&, where eacle; € C denotes the level of consumption in pertoaf the
single good.

For any non-empty, finite set, let K (X) denote the collection of all non-empty subsets of
X. Let ZT := K(C) denote the set of one-period decision problems. Fertl< T we define
inductively the set off —t 4 1-period decision problems as

Zt = K(C X Zt+1).

Eachz e Z; is a finite menu of choices of the forie, z+1) wherec is the consumption in
periodt andz. 1 is the continuation problem in periaddt 1. The setZ; denotes the collection
of T-period decision problems.

Examplel. There are three consumption perigds= 3) and consumption in each period
is either high or low(c; € {h,1}). Consider three decision problems in which the agent can
afford high consumption in exactly one period. Hence, the agent must choose atsamyle
his/her period of high consumption. First, consider the situation where the agent may choose
high consumption in any period. Then, the decision problemy is= {(l, z2), (h, z,)} where
22 = {(I, {h)). (h, {ID}, Z, = {{, {IN}. This decision problem can be represented by the decision
treez; in Figurel.

The decision problem in which the agent is committed to low consumption in period 1 is
y1 := {(, z2)} (with z, as defined above) and illustrated by the decisionyiea Figurel.



434 REVIEW OF ECONOMIC STUDIES
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FIGURE 1

Decision problems

The decision problem in which the agent is committed to low consumption in periods 1
and 2 (and hence has no choicekis:= {(l, x2)} with x2 = {(l, {h})} and represented by the
decision tree; in Figurel.

Our model considers a decision-maker who has a preference defingd, dhe set of
T-period decision problems. This preference describes the decision-maker’s behaviour in period
0, prior to the first consumption period. To interpret this preference consider Exdmple
period O choice betweery, y1 andz; can be viewed as a choice between assets of varying
degrees of liquidity. “Asset?; can be converted into high consumption in any period and hence is
the most liquid whereas is the least liquid since it can be converted into high consumption only
in period 3. More generally, the period 0 decision can be thought of as a portfolio decision. Each
portfolio defines a decision problem for subsequent periods. The prefereoneZ; therefore
represents a ranking of portfolios. A function representing the prefererniseanalogous to a
value function in dynamic programming.

Strotz (1955 introduced a model of decision making with changing tastes. In that model
a utility function (over consumption paths) for each decision date is specified. These utility
functions may be inconsistent, that is, the utility functions in periodsdt + 1 may disagree
in their ranking of consumption paths. To deal with this inconsisteBtytz (1955 proposes
the strategy of consistent plannireccording to which an individual who cannot commit to a
consumption pathréjects any plan which he will not follow through. His problem is then to
find the best plan among those that he will actually follofn implication of time-inconsistent
utilities and consistent planning is that the agent may hgueference for commitmenthat is,
he/she may express a strict preference for a situation where he/she has fewer choices. In Example
1, a strict preference fox; overy; or z; illustrates a preference for commitment.

The approach taken in this paper is to take as primitive the agent’s period 0 behaviour
as described by the preferenge To allow for the type of behaviour described in the time-
inconsistency literature, we let have a preference for commitment. Our objective is to provide
conditions on the preference that identify the Strotz model of changing tastes. The key
feature of this approach is that @ksumptionsre made in terms of choice experiments and
therefore correspond to—in principle—observable behaviour. In contrast, it is difficult to see
how assumptions that are made in terms of the agent’'s expectations, as in Strotz’s definition of
consistent planning, can be tested directly.
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The following notation is needed to define consistent planst Ferl, at-period history
is at-tuple of consumptionsgcy, ..., ¢t). Let Hy denote the set of atlperiod histories anti;
denote a generic element bf. In order to avoid having to make separate statements foil
andt > 1, we fix an arbitrary elementy € C and refer tchg = ¢g asthe 0-period history and
defineHg = {ho}. We also refer tdHt as the set of consumption paths. lkét= ULO H; be the
set of all histories and lét € H denote a generic history.

A nodeat timet specifies a consumption history up to but not including timend a
T —t 4+ 1-period decision problers. Hence, a node attimel <t < T, is a pair(hi_1, z)
wherehi_; € Hi_1 andz € Z;. Let N; be the set of all nodes at timteand N = ULl N;.
Generic elements dfl; andN are denoted ag andn, respectively.

A plan specifies the behaviour of a decision-maker at every decision node. Formally, a plan
isamapp : N - NU CT.Fort <T,a plan associates with eagh= (h;_1, z1) € N; a node
m+1 = (ht—1, €, z+1) € Ni4+1 with history one period longer such th@t z;,1) € z. Fort = T
the plang associates with each noge = (ht_1, zT) a consumption sequen¢Bt_1, €) such
thatc € zr. Let @ denote the set of plans.

For any planp € @, the mappK specifies the outcome if the plaris appliedk times. More
precisely, for a givep € ® andk = 0,1,..., T, definegX : NUCT — N UCT inductively
as follows:¢X(cy, ..., c1) = (¢, ...,cy) forall (ci,...,cr) € CT and allk. For allpy € N,

%) = n, p*() = $(n) andg*Ft(n) = ¢*(¢ (). HencepT () denotes the consumption
path induced by given the node;.

Next, we define a generalized version of Strotz's model. The agent has a period O utility
function U over consumption paths and objective functiovisfor all t. Consistent plans
maximizeV; for eacht. From the set of consistent plans the agent picks the one that maximizes
the period O utility functionU. The functionU : CT — R assigns a utility to each
consumption path. The functiot assigns a utility to each peridddecision and may depend
on the consumption history. In period the decision yields a consumptias and therefore
V1 : Hr-1 x C — R. For periodt < T a decision yields a consumptianand a decision
problemz_ ; for the following period. Hencé; : Hi—1 x C x Zt11 — R. Note that fort < T
the domain ofV; is the period + 1 decision nodesl; ;.

In Strotz’'s model, the functiong; are derived from preferences over consumption streams
through backward induction either with correct or naive expectations about future behaviour. In
our revealed preference approach, we deriveifefrom period 0 preferences. In Theorein
we impose a condition on the agent’s preferences that ensures thatstican be derived from
some preferences over consumption streams through backward induction. Théaredisieal
with the unrestricted case whevg represents a general constraint on the consistent choices at
each decision node.

To illustrate the generality of the framework, consider the following example. There are two
stores, denoted b andB. The selection in stor8 is a strict subset of the selection in stgke
and the agent is given the choice of whether or not to enter one of the stores in period 1. When
agents have the option of entering stégthey enter, while they do not enter when they have
the option of entering storB. Nevertheless, from stor& the agent makes a choice (in period 2)
that is also available in stor®. One interpretation of this is that the agent is “tempted” by the
availability of options that he/she knows he/she will not take advantage of. The weak Strotz

2. By settingVt (n) = Ut (¢T (n)) we can associate a uniqifg with any utility functionU : cT - Rand plan
¢. However, the converse is not true; giveWa it may not be possible to find ayt, ¢ such thatvt (n) = Ut @7 ).
Observe that when the cardinality Gfis greater than 1 and< T, the cardinality ofH;_1 x C x Z;, 1 is greater than
the number of possible consumption paths. Therefore, foMarsyich thatv; (n) # Vi (') for n # »/, there is ndJt, ¢
such thatv (n) = Ut (¢ T ().
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representation of Theorefnbelow permits this (th&/; of storeA is higher than th&/; of store
B) whereas the preferences of Theoréaio not.

A second way to interpret the store example would be to say that the agent has incorrect
expectations and expects to make a choice from #idhat is not available in storB. Theorens
identifies a condition that rules out the second interpretation. More generally, our approach
enables us to distinguish between what can be tempting and whether or not the agent correctly
anticipates his/her future behaviour.

Consider a decision nodg = (h, z) € Ny and a planp with ¢ (n;) = (h, ¢, z.11). The
plang is consistent withV; at decision nodey if

Vi(o(m)) = Ve(h, ¢, z1) > Vi(h, ¢, 7, 9)
forall (¢, z_ ;) € z or, equivalently,

Vi(@ () = Ve (¥ (7))

for all plansy € ®. LetV = (Vi,..., V). The set of plans consistent with is denoted by
P*(V) and defined as follows:

P*(V) i={¢ € ® | V(¢ (1)) = Ve (¥ ()Y € DVL).

In period O, the agent evaluates decision problems Z; by maximizing the period 0 utility
U : CT — R among all plans in the s@&*(V). Hence, the value of decision problene Z; is
given by

W(2) := maX,cp. vy U@ (2)).

Definition The value functiolV : Z; — R is weak Strotz if there existd, V such that
W(2) := maX, p.yy U (9T (2)).

The value functionV represents the preferengeif W(z) > W(Z) ifand only ifz > Z.
We say that- is a weak Strotz preference if there is\athat is weak Strotz and represents
We refer to(U, V) as a representation ef or sometimes simply as the weak Strotz preference
U, V).

Theoreml shows that the following two axioms are necessary and sufficient filorbe a
weak Strotz preference.

Axiom P (Preference Relation).> is a complete and transitive binary relation.

For any historyh = (cy, ..., ct—t) and a decision problerm, we write {h, z;} to denote
the decision problem in which the agent is committed to the consumfition. ., ¢;_1) in the
firstt — 1 periods and then is confronted with the decision probken8imilarly, with some
abuse of notation, we writgh, c, z1 1} to denote the situation where the agent is committed to
(c1,...,C—1, ) in the firstt periods and then is confronted with the decision probtem.

Consider a decision problem U z and a consumption histoty = (cy, ..., Gi—1). If the
choice at nodé¢h, z: U 7)) is in z;, then a preference that only cares about the choice must satisfy
{h,zUz} ~ {h, z}. If the choice at nodéh, z: U Z) is in z, then such a preference must satisfy
{h, zx Uz} ~ {h, Z}. This motivates the following axiom.

Axiom NC (No Compromise). {h, zt Uz} ~ {h, z} or {h, z U z} ~ {h, z}.

Theorem 1. The preference- satisfies Axioms P and NC if and only if it is a weak Strotz
preference.
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Proof. SeeSection5.

In the proof of Theorenll we construct the utility function®), V; fort = 1,...,T.
The period 0 utilityU represents the prefereneerestricted to decision problems that offer
commitment. That is,

u(c,...,cr) > U(c,....ch) if and only if {c1,...,cT} = {c}, ..., ¢t}

The objective functioV (h, -) represents the binary relatid, defined below.
Definition (c, z41) Ra(C, z(+l) if and only if

(I) {h7 C, Zt+l} cad {h’ C/7 ZE+]_} and{hs C, Zt+1} ~ {hv {(C9 Zt+l)s (C/s ZE+]_)}} or ) ]
(") {hv Cv Zt+l} ~ {hv C/a Z|/:+1} and [{hv C/v Z(J’_l} ~ {h, {(C/v Z{+1)7 (év 2t+l)}} Implles
{h.c, z11} ~ {h. {(c, z10), € 24D}

To motivate this definition, consider a situation whéhec, z..1} ~ {h,c, z{+l}. In that
case,h, c, z11} ~ {h,{(c, z11), (C, z(+1)}} must mean that the agent expe@tsz 1) to be
chosen after historig. Hence, it must be the case th4th, c, z.11) > Vi (h, C/, z{+l).

In the proof of Theorem we establish that the relatid®, is a preference relation (complete
and transitive) and therefore can be represented by a utility funetidn -).

Note that the preference in the above theorem describes behaviour only in period 0. In
contrast, the weak Strotz representation implies a behavioural rule for all periods. More precisely,
the weak Strotz representation impliegpectationdor what will be chosen in subsequent
periods.

Our next objective is to make precise the sense in which we can elicit expectations of
future behaviour from the preferenee Typically, there will be multiple Strotz representations
for a single Strotz preference. However, the utility functions defined above asmanical
representatiorwith the property that predicted behaviour from any other Strotz representation
must be optimal foxU, V). We say thatU, V) is a canonical Strotz representationzoff U
represents the commitment preference (as defined abové} @md) represent®,.

Theoren® shows that if a plan is optimal for any Strotz representation it must be optimal for
the canonical representation. The canonical representation therefore allows us to make inferences
about how the agent expects to choose in subsequent periods. More precisely, we know that the
agent does not expect to choose alternatives that are suboptimal for the canonical representation.

Theorem 2. Let> satisfy Axioms P and NC and lgf, V) be a canonical representation
of =. Then

argmay, .y, U' (¢ (2)) C argmay, _p.y, U@ (2)
for any Strotz representatiof)’, V') of >.

Proof. SeeSectionb.

To illustrate how our model allows inference about expectations consider Exantiplgnat
example, the agent must choose between three decision probleysz; in period 0. Suppose
the agent expresses the preference

X1 > VY1 > 71. ()

Recall that in each decision problem the agent can enjoy high consumption in exactly one period
and has low consumption in the remaining two periods. Recall alsattammits the agent to



438 REVIEW OF ECONOMIC STUDIES

high consumption in period 3 wheregscommits the agent to low consumption in period 1 and
offers a period 2 choice between high consumption in period 2 or high consumption in period
3. Fromx; > y; we conclude that the agent strictly prefers to commit to high consumption in
period 3 over a decision problem where high consumption can be chosen either in period 2 or
in period 3. This implies that he/she expects to choosesXckidedalternative if commitment

is not available. Hence, the agent expects to choose high consumption in period 2 if this choice
is available. Similarly, the preferengg > z; implies that the agent prefers commitment to low
consumption in period 1 and hence expects to choose high consumption in period 1 if that choice
is available.

To this point our model is based entirely on period zero behaviour (as described by the
preference-) and therefore cannot address the question of whether the agent makes choices in
periodst > 0 that are consistent with period 0 expectations. In other words, the model is silent
on the question of whether expectations are correct. For example, naive agents as described in
O’Donoghue and Rabin satisfy Axioms P and NC but their behaviour in peticd< is not
consistent with expectations. To see this, suppose in Exahtpéeagent expresses the preference

X1~y1~21

and at the same time strictly prefexs (commitment to low consumption in periods 1 and 2)

to a situation where the agent is committed to low consumption in period 3. In other words, the
agent has no preference for commitment and expresses a preference to delay high consumption
until period 3. From this we can conclude that the agent expects to choose low consumption in
periods 1 and 2. This is consistent with standard agents who are time consistent but also with
naive agents who expect to be time consistent but contradict this expectation in their subsequent
choice behaviour.

In order to identify agents whose behaviour is consistent with period 0 expectations
(“sophisticated agents”) we need to observe behaviour in all period€l;Let., Ct denote a
collection of choice functions that describe behaviour in periodsl. Hence(; : Hi—1 x Zy —

Zi, with Cy(h, ) € z andCi(h, ) # @. Our next objective is to characterize weak Strotz
preferences in terms of behaviour in all periods.

The first axiom (Axiom H) says that choice behaviour in peribds1 satisfies the familiar
Houthakker axiom below.

Axiom H (Houthakker’s Axiom). Ci(h, z:) Nz # @ impliesCi(h, z) Nz C Ci(h, zt).

It is well known that Axiom H is equivalent to rational choice, that is, the choice function
Ct maximizes some objective function.

As before, behaviour in period 0 is described by a preferenoe Z;. The following axiom
relates period 0 behaviour to behaviour in later periods by assuming that the agent is indifferent
between a decision problem and the option that he/she chooses from it.

Axiom IRA (Independence of Redundant Alternativesjc, z+1) € Ci(h,z) implies
{h,c,z11} ~ {h, z;}.

One implication of Axiom IRA is that it rules out the possibility that unchosen alternatives
could affect the agent's well-being, as in the model of self-control analyse@uiand
Pesendorfe2001). Axiom IRA also rules out naive behaviour where period 0 expectations
are inconsistent with periadchoices. Naive agents expect to make choices that differ from their
actual choices. If the expected choice is removed from a set, the agent’s utility in period 0 changes
while the actual choice may be unaffected hence leading to a violation of IRA.
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The choice functio®; maximizesV; if for all (h, z) € Hi_1 x Z;
Ci(h, zt) = argmaXc z,1)ez Vi(h, C, Zt41).

Theorem3 shows that rational choice functiogs, ..., Ct and the preference satisfy IRA
if and only if the preference has a weak Strotz representatibrvs, ..., V1) such thatC;
maximizesV; for everyt > 1.

Theorem 3. Let> be a binary relation that satisfies Axiom P anddgt ..., Ct satisfy
Axioms H. Thenx, Cq, ..., Ct satisfy IRA if and only if there exists a weak Strotz representation
(U, V1, ..., V1) of = such thatC; maximizes Vfor all t.

Proof. SeeSectionb.

Theorem3 establishes that independence of redundant alternatives (IRA) is the only
temporal revealed preference implication of weak Strotz behaviour. The theorem bridges the
gap between the revealed preference approach adopted in this paper and the analysis based
on expectation that is standard in the time-inconsistency literature. Unlike the previous two
theorems, in Theorer®, we consider as primitive not only period 0 behaviour but behaviour in
each period. This enables us to compare the beliefs derived from period 0 preferences regarding
behaviour in period with the actual behaviour in period Suppose the choice behaviour
of the decision-maker in every period is consistent with maximizing a preference relation.
Then, Theoren8 ensures that whenever IRA is satisfied, the observed behaviour in geriod
is consistent with the prediction of periadoehaviour derived from the period O preferences.
Hence, the theorem proves that the only observable implication of sophisticated behaviour is
IRA. Conversely, the theorem ensures that if the decision-maker is sophisticatédh{s/her
period O preferences anticipated his/her future behaviour correctly), he/she will satisfy IRA.

3. PHELPS-POLLAK PREFERENCES

The time-inconsistency literature (see, for exampkapson 1997 specifies a utility function
for each decision date. These utility functions are defined over consumption paths. In contrast,
the weak Strotz model of the previous section allows for a general pebgective function
with periodt decisions as their domain.
A commonly used example of time-inconsistent utility functions is knowg-as utility.
These utility functions were introduced Bhelps and Pollaki968 and were further analysed
by Laibson(1997). Example2 provides an illustration.

Example2 (68— utility). LetpB, s € (0,1],u: C — R. Define
Tt
Uier.....er) =u@) + ), 8 Ul
forallt =1,..., T where}"?_, () = 0. Let

U, ...,cr) = Z:Zlatu(ct)

be the period 0 utility function. (Recall that our model has no consumption in period® 11
the utility functionsU; andU may disagree in their rankings of consumption paths. However,
the rankings ofJ andU; agree if consumption in periods< t is held fixed.
In this section, we analyse preferences that can be represented by a generalized version of
B—4 utility. Let U = (U, ..., UT) be a collection of utility functions wherg; : CT — R.
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We say that) andU agree on continuations if, forall=1, ..., T,

Ut(c, ..., Cr) > Ue(cy, ..., Cf) iff u(c,...,cr) > U(cy, ..., ch)

wheneverc, = c, forallz <t.

Our next objective is to define consistent plans for a collection of utility functibrignlike
the objective function¥ analysed in the previous section, the utility functidhassign utility to
consumption sequences. Consistent plant/fare defined inductively. In perict, a consistent
plan must be optimal fadt. This gives us a set of peridl consistent plansPr (U). In period
T — 1, a consistent plan must maximiZe _1 among all plans ifPr (U). This yieldsPy_1(U),
the consistent plans for periods— 1 andT. We proceed inductively to defire,(U), the set of
consistent plans for all periods.

Let Pr41(U) = ®. Fort < T we inductively define

P(U) == {p € Pya(U) | Ut(pT () = Ut (¥ T (m))VY € Peya(U)).

(Recall thaw " (n) denotes the consumption path generated by pland node;.) The setP; (U)
contains all plans that are consistent withat timest,t +1,..., T. Let

PWU) := Py(U)

denote the set of consistent plans. Consistent planning requires that in period 0 the agent evaluates
decision problemg € Z; by maximizing the period 0 utility among all plans in the ).
Hence, the value of decision probleng Z, is given by

W(2) := max,cp ) U (4" (2)). S

Definition  The value functioW : Z; — R is Phelps—Pollak (PP) if there {8, U) such
thatU andU agree on continuations anil(z) := max,.p ) Y @7 (2).

We say that a preferencgeis a PP preference if it can be represented by a PP value function
W. We refer to the correspondingy, U) as a PP representation efor sometimes as the PP
preference(U, U). Theorem4 shows that we get PP preferences if we impose the following
axiom (Axiom TCC) in addition to Axioms P and NC.

Axiom TCC (Temptation by Current Consumption)If {h,c,z_ ,} > {h,c,z/ ,} and
(€, 7, q) € zi thenth, zz U{(c, z/ )}} ~ {h, z}.

Axiom TCC considers situations where an alternati\(e,—zﬁrl)—is added to the choice
setz. The periodt consumption of the new alternative, z’, ,) I1s the same as the peridd
consumption of an already existing aIternat(xzez(H). Moreover, commitment to the existing
alternative is preferred to commitment to the new alternaiiee {h, ¢,z ,} > {h,c, z/ ,}).

In other words, the existing alternative has a better continuation than the added alternative. The
axiom requires that the addition &, z’, ;) to z has no effect on the agent’s welfare. An agent
whose period utility agrees with his/her earlier utility functions when current consumption is
unaffected would certainly satisfy this requirement. Theo#eshows that the converse is also
true. Axioms P, NC and TCC imply that the preference has a PP representation.

Theorem 4. The preference- satisfies P, NC and TCC if and only if it is a PP preference.

Proof. SeeSectionb.
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Theorem4 characterizes agents with Phelps—Pollak preferences in terms of their period 0
preferences over decision problems. The axioms P, NC and TCC can be interpreted as the testable
implications of the PP model.

As in the case of weak Strotz preferences, Theotarharacterizes period 0 behaviour but
the representation implies expectations for the behaviour in subsequent periods. To illustrate
further the role of Axiom TCC consider the three-period decision problems illustrated in
Examplel. Suppose

X1>N1>21

and assume Axioms P, NC and TCC hold. Recall ihatepresents the decision problem where

the agent is committed to high consumption in periogh3epresents the decision problem where

the agent can choose high consumption either in period 2 or in period ¥ aegresents the
decision problem where high consumption can be chosen in any one of the three periods. From
X1 > y1 we conclude that a PP representatith U) must satisiU (l,1,h) > U(l, h,l) and

Ux(, h,1) > Ux(,1, h). Together withy; > z; this in turn implies that) (I, h,1) > U(h,I,1)
andU;(h,1,1) > U1(, h,I). Consider a situation where in period 1 the agent is committed to low
consumption and must choose between= {I, {h}}, yo» = {h, {I}} andzx = {d, {h}), (h, {I}}.
Consistent planning implies that the agent choosesnd is indifferent betweey, andz,. The

reason for this indifference is that the agent expects high consumption to be chosezy from

in period 2. The strict preference fap follows becausé) andU; agree on continuations and
thereforeUs (1,1, h) > Ui(l, h,l). Note that if TCC is not assumed (and therefore we have

a weak Strotz representation) the model places no restriction on the period 1 choice between
(, x2), (I, y2) and(l, z»). For example, the agent may chodkey») over(l, z2) in period 1 even
though(l, y»2) and(l, z2) ultimately lead to the same consumption path.

4. CONTINUITY AND APPROXIMATION

To this point we have assumed a finite set of possible consumptions in each period. This section
analyses extensions of the model to a setting with a “continuous” choice of consumption levels.
For simplicity, letD = [0, 1] denote the set of feasible consumptions in each period. For
any subsetX of a metric space, leK (X) denote the non-empty compact subsetsXofLet
Z1 = K(D). For periodst < T we then defineZ; inductively asZ; := K(D x Zi;1). The
domain of preferences 1. As before,N; denotes the set of nodes at titlyab denotes the set
of plans. The definition of nodes and plans are identical to the corresponding definitions given in
Section2 for finite decision problems.
We define a PP preferenceson Z; as in the discrete case: for afly, U), we say that)
andU agree on continuations if, forall=1, ..., T,

Ut(c, ..., Cr) > Ue(cy, ..., Cf) iff u(c,...,cr) >U(cy, ..., ch)
wheneverc, = ¢ for all r < t. The value functiotW : Z; — R is defined by
W(2) := max,.pg, U (4" (2). (S

The value functionW is Phelps—Pollak (PP) if there &), U) such thatU andU agree on
continuations antW(z) := max,.p ) U(¢T (2)). Finally, we say that a preferenceis a PP
preference if it can be represented by a PP value fundtioand refer to(U, U) as the PP
representation of.

In this new setting, we consider preferences that have a monotone and continuous PP
representatiogU, U). That is, we say that has a continuous and monotone PP representation
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if there exist continuous, strictly increasing functidbsandUy, fort = 1, ..., T, such that the
function W defined by(S*) represents-.

Let || -] denote the Euclidean norm. We say thahas local preference for commitment
if forall t suchthat 1<t < T —-2,h = (c1,...,¢cr) € H, ande > 0, there exist
W =(c,....cp),h" =(c],...,¢]) € Hsatisfying|lh—h| <&, ||h—h"|| <e,¢; =c, =c
forall T <t, Ui(h") > Ut(h”) andUi41(h) < Uira(h”).

Local preference for commitment implies that given any consumption histattyere are
alternative consumption historib§ h” such that bottn’, h” are arbitrarily close th, agree with
h in every period up td and the agent would strictly prefer committing 6 in periodt to
making the choice betwednrt andh” in periodt + 1. Hence, local preference for commitment
ensures that preference reversals arise even when the stakes are sngals lpoeferences this
difference between the agent’s rankings at different times is captured by the difference between
the discount rate8 and 85. For such preferences local preference for commitment is satisfied
whenever the functiom is strictly increasing an@g # 1. In general, the local preference for
commitment assumption does not require additive separability or history independence. The
following theorem generalizes an example Bgleg and Yaar{1973 to provide a general
impossibility theorem for multi-period Strotz preferences.

Theorem 5. Suppose- has a continuous and monotone PP representation and has local
preference for commitment. Theng 3.

Proof. SeeSectionb.

The main idea in the proof of Theorebcan be understood with the—§ example below.
The proof ensures that a similar example can be constructed whenever local preference for
commitment is satisfied and, U; are all continuous, strictly increasing functions.

Example3. Supposel = 4,§ = 1, 8 = 0-5 andu(c) = c. Consider the corresponding
B—6 preference orZy, that isU(cy, C2,C3,C4) = C1 + C2 + C3 + Ca, U1(Cy, C2,C3,C4) =
c1+ %(Cz + €3 + C4), Uz(C1,C2,C3,C4) = C2 + %(03 + C4), Uz(Cy,C2,C3,C4) = C3 + %04
andUg4(cy, Cp, €3, Cg) = Ca. Letzz(y) = {(y, {O}), (O, {1})}. That is,z3(y) denotes the decision
problem in which the agent must choose between the consumptioficpaiy) = (y, 0) and
(c3,¢4) = (0,1) in period 3. (There is no choice in period 4.) L&t = {1, {1}}. Hence,z] is
the period 3 decision problem that guarantees the maximal consumption in the last two periods.
Letzo(y) = {(1, z3(y)), (0-4, Z3)}. Hence, inzz(y) the agent faces a period 2 choice between 1
in the current period followed by, (y) or 0-4 in the current period followed bgs. Finally, let
z1={(1-y,z(y)) | y €[04,038]}.

Suppose that the preference described above has a PP representation. Then, by definition,
atany nodegl — y, 1, z3(y)) the decision-maker chooses the consumption phthy, 1, y, 0)
if y > 0.5 and chooses¢l — y,1,0,1) if y < 0.5. Then it is easy to see that at any node
(1- vy, z2(y)), the decision-maker ends up with the consumption pathy,0-4,1,1) if 0-8 >
y > 0-5and with(1 — y,1,0,1)if0-4 < y < 0-5. Note thatU;(1 — y,04,1,1) = 22—y
andU1(1 — y,1,0,1) = 2—y. It follows that there is no optimal choice for the decision-maker
confrontingz; in period 1.

The example above is a version of the one presentd@ebgg and Yaari1973 who show
that consistent plans (as definedSection3) are typically not well defined in a setting with a
continuous consumption choice afd> 4.
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Theoremb5 relies on two implicit assumptions. First, it utilizes the fact that the domain of
decision problems is rich. Our theorem and the Peleg and Yaari example rely on being able to
construct decision problems where the decision-maker in periedl. would like the period
t indifference resolved one way while in peribd- 2 he/she would like it resolved the other
way. Second, our proof of non-existence takes advantage of the fact that in our definition of a
consistent plan predicted behaviour in pertogsolves ties ifJ; in a manner that maximizes
U;_1. However, any alternative tie-breaking rule that depends only on the consumption history
would lead to similar contradictions.

To resolve the issue of non-existence Peleg and Yaari use a model where the predicted
behaviour of the decision-maker at timmdepends not only on the consumption history but also
on the history of decision problems that the decision-maker confronted up td.time

While this approach does solve the existence problem, it often leads to discontinuous
behaviour and preferences over decision problems. The setting with a continuous consumption
choice loses much of its appeal once preferences fail to be continuous. After all, the typical
motivation for working with a continuous setting is to facilitate the use of calculus. Continuity
of the value function is often a necessary condition for the application of calculus based
optimization techniques.

We propose an extension of Strotz preferences that preserves continuity but allows for
violations of NC. The representation is based on our earlier work on self-control prefer&utes (
and PesendorfeR001) and leads to continuous approximations without restricting the domain
of decision problems.

Theoremb shows that self-control preferences can be used to approximate preferences with
representations discussed in the previous sections of this paper. The theorem establishes that for
any finite data-set (of observed choices), there exists a self-control preference over continuous
consumption choices and a discrete grid of consumption choices such that the revealed Strotz
preference and the restriction of the self-control preference to the grid are identical. Hence, the
class of self-control preferences described below and the Strotz preferences they approximate are
empirically indistinguishable and yet unlike the Strotz preferences the corresponding self-control
preferences have the desirable continuity properties.

The preference- is aself-control preferencé > can be represented by the value function
W where

W(z1) := maXyeo {u @@ Y @@ -y maxm{vt(wt‘l(zl)))}}

(SO

for some continuous functions : DT — R,V : Hf_1 x D — R,V : Hi x D x
Ziz1 — Rfort < T. (Recall that¢®(zy) = z; for all zz € Z;.) Below we refer to
a preference that is represented W satisfying (SC) as the self-control preferengs, V),
whereV = (Vi4,..., V7). Note thatW is well defined and continuous siné¢ and each
Vt are continuous. The functiok; describes period temptation. In contrast to the weak
Strotz representation, the agent may choose alternatives in petfiiogt do not maximize
V;i. In that caseV; — maxV; is the utility cost of self-control incurred in periad Hence,
Y i@l (@) — Y maxyeo {Vi(¥ (91 1(2)))} denotes the total utility cost of self-control.

Consider a finite set of consumptio@ssuch thatC c D and letZ; := K(C x Zi+1)
fort < T. Thus elements oZ; are theT-period decision problems when all choices are
restricted to the finite sef. Let > be a preference defined @i and assume that is a weak

3. Forthis reasohlarris and Laibso2001) restrict the set of decision problemsdutilize the strategic approach
to identify a parametric class of problems in which well-behaved optimal plans exist.
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Strotz preference. Theorefrshows that there exists a self-control preferentalefined onZ;
that coincides with- on Z;.

Theorem 6. Let > be a preference relation on 1Z If (U,V) is a weak Strotz
representation of-, then there existt > 0 and a self-control preferencéU’, V') on Z1
such that(U’, V') coincides with> on Z;. Moreover, U(€) = U() for all ¢ € CT and
V{ (t4+1) = aVi(ne+1) for all ni4q in the domain of .

Proof. SeeSectionb.

The argument for Theorefis straightforward. Consider the weak Strotz preferghteV)
and the self-control preferen¢d, «V) whereV = (V1, ..., V1) andaV = (aV1,..., aVT).
For a finite decision problem and sufficiently large a plan that maximizes (SC) must be in
P*(V), the set of consistent plans ff. This follows because fax large enough a plan that
maximizes (SC) must be optimal for eath. But in that case, the two representations yield
the same preference on the finite choice set. Extending this preferedgeytelds the desired
self-control preference.

To illustrate how self-control preferences can be used to approximate a PP preference,
consider the standaggl-§ utilities in Example2:

Tt
Ut(er,....cr) =ue) + 8 ), _ s*u(ei)
forallt=1,...,T and

.
U, ...,cr) = thl(Stu(ct).

Following Krusell, Kuruscu and Smit2002 we can construct an approximating self-control
preference as follows. Let

Wr (1) 1= MaXez U(C)
andfort < T —1let
Wi-1(z) := maXc z, ez {1 + e)u(cy) + (1 + af) W (zt41)}
— MaXc z,1)ez @ (U(C) + BEWL(Zt11)). (SC)

The value function\p represents a self-control preference that satisfies monotonicity (provided
thatu is increasing), TCC, and continuityHowever, it may not satisfy NC. Setting

Vi(C, Zt11) = U(C) + BOWk(Zt+1)

andW = Wy it is easily verified that (SQ is an example of the preferences defined in (SC).
Theorem6 implies that asx — oo the self-control preference described in {$@pproximates
the 8—6 preference described in Exampe

5. PROOFS
5.1. Theorem& and?2

Let >, be a complete and transitive binary relation define®&gixX), the set of non-empty subsets
of a finite setX. The preference-, satisfies NC if forA, B € K(X), A~,AU B or B~,AU B.
Define the relatiorR., on X as follows:x R X" if {x}»,{x'} and{x, X'}~{x} or if {x}~,{x"}

4. The parametrization (S¢was first used bKrusell et al. (2002.
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and {x’, x"}~,{x’} implies {x, x"}~,{x}. Lemma 1 below is taken frorGul and Pesendorfer
(200)). It shows thatR-, is a preference relation whenevey satisfies NC.

Lemmal. If =, satisfies NC then R is a complete and transitive binary relation on X.

Proof. In the proof of Lemmal we abbreviate the notation and wrikeinstead ofR., .
First, we demonstrate th&is complete. If{x} =, {Xx'} thenx RX or x’Rx by NC. Suppose that
(X}~ {X'}, {X, X} ~ {x} and{xX’, X} =, {x'} for somex. We need to show thak’, X} ~, {x'}
implies{x, X} ~ {x}. If {X} ~, {X'} then the result follows trivially from NC and transitivity of
>. Hence assume thét} ~, {x'}. We know that{x, X, X, X} ~, {X'} since both{x, X} ~ {X'}
and{x’, X} ~, {X’}. But then it must be that eithgx’, X} ~, {x} or {X, X} ~, {X’}. Since the
former indifference does not hold we hajve X} ~, {x'} ~, {x} as desired.

To prove transitivity, letx RX and x’RX. Assume that{x} -, {X'} =, {X} =, {X}.
From NC it follows that{x, x’, X} ~. {X, X} or {x, x’, X} ~, {X/,X}. It also follows that
{x, X', X} ~, {X, X'} or {x, X', X} ~, {X}. Therefore,x, X', X} ~, {x}. Applying NC again,
we observe thafx, x’, X} ~, {x, X} or {x, X/, X} ~, {X'}. Since{x, x’, X} ~, {x} we may rule
out the latter case and conclude thatX} ~, {x}. Since{x} ~, {X} this impliesx RX as desired.

Next, assume thdi} ~, {x'} ~, {X}. Then,{X, X} ~, X implies{X, X'} ~, {x'} which in
turn implies{x, x} ~, {x}. By transitivity of > we have thafx} ~, {X} and henceRX.

Next, assumgx} ~, {X'} =, {X}. Since{x’, X} ~, {X} it follows that{x, X} ~, {x}. This
showsx RX since by transitivity{x} ~, {X}.

Next, assuméx} ~, {X'} ~. {X}. Then{x} ~, {X} and hence it is sufficient to show that
{X, X} ~4 {X}. But{x, X'} =, {x'} implies{x, X} =, {X} and hencéx, X} ~, {x}.

Finally, assumex} ~, {X} 4 {X'} then{x, X’} ~, {x} and{x/, X} =, {X} and hence
not X Rxand by completenessRX. ||

Lemma2. Let>, satisfy NC. If W represents, andv represents R, then WA) =
maxce o W({x}) subject tov(x) > v(x’) for all X’ € A.

Proof. Letx* be a solution to maya W({x}) subject tov(x) > v(x’) for all X’ € A. Note
thatz = (J, . a{X*, X'} and sincéW represents NC prefereneg, we haveW (A) = W({x*, x'})
for somex’ € A. Sincev representsR., we have W({x*,x'}) = W({x*}) and hence
W(A) = W{(x*}) = maxea W({X}) subject tov(x) > v(x’) for all X’ € A as desired. ||

Proof of Theoreml. To prove that P and NC imply the existence of a weak Strotz
representation, note that sinCeand henceZ; are finite, there exists a functioil that represents
>. By Lemmasl and2, there existd/7 (ht_1, -) such that

W({ht_1, z1}) := maxec W({ht_1,C})
subject tovVr (ht_1,¢) > Vr(ht_1,¢) forall ¢’ e z7.

Similarly, fort =1,..., T — 1, there exis¥; (h;_1, -) such that

W({hi—1, zt}) := MaXc.z, ez W({ht-1,C, Zt4+1})
subject toVi (ht—1, €, zt41) > Ve(h—1, €, Z7,y) for all (¢*, z,y) € z.

SetV = (Vi,...,Vr) andU(cy,...,ct) = W(cy, ..., cr)). Applying a standard dynamic
programming argument establishes

W(z1) = maX, p. v, U@ (22)
as desired. The converse is straightforward and hence omittgd.
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Proof of Theoren2. Let (U’, V') be a Strotz representation and (etz_1) € z be a
choice fromz; after historyh € H;_1. We must show thadc, z,1) is optimal for the canonical
representatiogU, V).

Axiom NC implies thath, ¢, z.+1} ~ {h, {(c, z:+1), (¢, z_ }} forall (¢, z ;) € z since
{h,c, z41} ~ {h,z}. If {h,c,zz41} = {h,C, z{H} for all (¢, z{+l) € z thenVi(h, c, z41) >
Vi(h, ¢,z ,) forall (¢, z_ ;) € z and the theorem follows.

If {h,c, z41} ~ {h,c’,z{+l} for (c’,z{+1) € z and Vg(h,c, z{+1) > Vi(h,c, z41)
then for some(C, z;+1) we have{h, ¢, 211} ~ {h,{(c, z+1), (€, z+1)}, {h,C, z{+1}} ~
{h, {(c,z ), € z10)}} and {h, ¢, zi41} = {h, € Z4a}. If {h,c,ze4a} > (N, € 241} then
it follows that V{(h,c’,z ;) > V{(h,¢ 241) > V{(h,c, z1) contradicting the fact that
(C, zt41) is chosen frome. If {h, €, 211} > {h, ¢, 41} then it follows thatV{ (h, ¢/, z{H) >
V{(h, € 241) > V/(h, ¢, z1) again contradicting the fact th&t, z,1) is chosen fromz.
HenceV; (h, ¢/, z(+1) < Vi(h,c, z41) for all (¢/, z{+l) with {h, ¢, z11} ~ {h, C, z(+1}. But this
implies that(c, z1) is an optimal choice fromg; for the canonical representation.||

Proof of Theoren8. Supposé&’y, ..., Ct all satisfy Axiom H. Then, there exist¢ such
thatVi(h, c, zi11) > Vi (h, ¢/, z(+1) ifand only if (c, zi11) € Ci(h, {(c, z+1), (C/, z(+1)}). Define
U : CT — R so thatU(.) represents the restriction of to consumption paths. That is,
U@ > U(@) iff {€} > {T'}. Then, defineW inductively by settingW({h, zr;1}) = U(h)
and

W({ht—ls Zt}) = ma)QC,ZH_l)EZ'[ W({ht—]n Cs Zt-‘rl})
subject toVt (hi—1, €, zt+1) > Vi(hi—1, €%, Zy) forall (c*, ;) € z

forallt < T. Then, IRA implies thaW and henceU, V), whereV = (V1, ..., V1) represents
> |

Proof of Theorend. That > satisfies NC and TCC if it is a PP preference is obvious.
To prove the converse, note that by Theor@mthere exists a weak Strotz representation
(U, V4, ..., V1) of =. Let Ui (€) = W(©) forall¢ € CT andU = (U4, ..., Ut), where we
identify € with the decision problem in which the agent is committed to the consumptiorcpath
Recall the definitions oV andV;’s from Theoren? and Lemmal. In order to avoid having to
make separate statements for the casés=ofl andt < T, let (ct, zr11) denote(ct).

First, we prove thatforall < T — 1,

W(ht-1, ¢, zt41) = W(ht_1, ¢, Z ) iff
Vi(hi—1, ¢, zt41) = Ve(he—1, €, Zq).

®3)

If W(hi-1, ¢, zt41) > W(ht—1, ¢, Z ) then TCC implies{(ht-1, C, Z+1), (ht-1,C, Z_ 1)} ~
{(ht—1, ¢, zt11)} establishing thav (ht_1, ¢, z241) > Vi(ht—1, ¢, Z ). If W(hi_1,C, zt11) =
W(ht-1,¢,7 ) let (h-1, ¢, Z) satisfy {(ht-1, ¢, zt41), (ht-1,¢, 7))} ~ {(ht-1, C, zt42)}-
If {(hi-1,¢, 7))} ~ {(ht-1,¢, 240} then{(hi-1,¢, 7 1), (ht-1,¢,Z)} ~ {(ht-1,C, Z 1)}
by NC. On the other hand, if(hi—1,¢,z)} ~ {(hi—1,¢c, z+1)} then we have by TCC
that{(hi-1, ¢, zt+1), (ht-1, ¢, 7 1), (hi—1, ¢, Z)} ~ {(ht-1, ¢, Z), (ht-1, ¢, 7 ;)} and by NC
{(ht=1, ¢, Zt41), (hi—1, C, z{+l), (ht—1, ¢, )} ~ {(ht-1, C, z{+1)} follows, establishing that

{(ht—1.¢, 7 ,9), (h—1, €, Z)} ~ {(ht_1, ¢, Z )}

That is, Vi(hi-1, ¢,z 1) > Vi(hi-1,C, z11). Then, Vi(hi-1,¢,Z_ 1) = Vi(hi-1,C, z41)
follows from a symmetric argument. We have therefore establisB)ed (
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Next, we observe that, fordll< T — 1,

Vi(ht, Zt41) = MaXey, 1. z0)ez 1 Vi, Cit1, Zt42)

. (4)
subject toVi1(ht, Cty1, Zt42) > Viga(ht, €41, Z 4 0)
for all (C{H, z;+2) € zi41. To see this, note that
W(ht, zt+1) = MaXc, 4.z, 0)ez0 Wht, Cit1, Zt42) 5)

subject oVt 1(ht, Gty1, Z42) > Vera(he, 6L, Z )

for all (C{H, z{+2) € 741 follows from the definition ofV andVi1. Then, B) and ) yield (4).
It follows from (4) (and induction) that

Vt(net1) = MaXyep gy V(@ (). (6)
To conclude the proof we show by induction that
W(r) = max,.p g, Ut(@" () ©)

forallt < T andn; € N;. Fort = T, (7) follows from () and the fact that)t = Vy. Suppose
that the result is true fdr+ 1. Then, {) follows from (4)—(6) and our induction hypothesis. ||

Proof of Theorend. Let 1; denote the-period historyh = (1, ..., 1). Leta, b € (0, 1)?
denote consumption vectors for periods- 1 andT. By local preference for commitment there
exista, b € (0, 1)2 such that

Ur_2(11r-2,a) < Ur_2(11-2,b) and  Ur_1(1r—2,a) > Ur_1(11_2, b).

Also by local preference for commitment, we can choose, € (0, 1] andb®, b? € (0, 1)2
such that

Ur_3(1r_3, c1, bY) > Ur_3(11_3, C2, b?) and
Ut_2(17-3, 1, bY) < Ur_2(17_3, C2, b?).

Moreover, we can chood® andb? arbitrarily close td andcy, ¢, arbitrarily close to 1. Hence,
by the continuity ofUt_» we can choosey, ¢y, bl, b? such that

Ut_2(11-3, C2, b%) > Ut_2(17_3, €1, bY) > Ut_2(11_3, C2, ) and
Ut-1(17-3, €2, b < Ur_1(17_3, C2, Q).
By monotonicity, there exists € (0, 1) such that
Ur_1(1r_3, C2, b%) = Ut_1(11_3, C2, Aa).
Of course, we still have
Ut_2(11-3, C2, b%) > UT_2(11_3, ¢1, bY) > UT_2(11_3, C2, 2).
By continuity and monotonicity, fos > 0 sufficiently small, there exists a uniqués) < (0, 1)
such that
Ur_1(lr—a, 1 —&,C2. b)) =Ur_1(lr—a. 1— &, C2, y(e)a) — ¢
Ut_2(d1-4,1—&,¢2,b%) > Ur_2(17_4, 1 —&,¢1,bY) > Ur_2(17_4, 1 — &, C2, ¥ (£)a)
Ut_3(11-4, 1, C2, b®) < Ut_3(17_4, 1 — ¢, C1, bh).

Choosex > 0 small enough such that for al e (0, «] there exists/ (¢) satisfying all of the
above (in)equalities. Note that(-) is a continuous function and lim.q y (¢) = A.
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Fore < «, let zr_1(¢) denote the decision problem in which the decision-maker chooses
betweenb? e (0,1)2 andy(s)a € (0,1)? in period T — 1. Letz:_, denote the decision
problem that commits the agent to the consumpbére (0, 1)2 for the last two periods. Let
21 2(e) = {(C2, Zr—1(8))} andz; _, = {c1, Z;_4}. Finally define

z13(e) ={(l—e,z12(6) UZF_, | €' € [0, €]},

Since y is continuous andO, ¢] is compact,zr_3(¢) € Z71_3. Itis easy to verify that by
choosing any’ € (0, ¢] in period T — 3 the decision-maker ends up with the consumption
path(11_4, 1 — ¢, c1, b) while by choosing’ = 0 he/she ends up wittlt_3, ¢, b?). Hence,

no optimal choice exists for the decision-maker in pefiod 3. ||

Proof of Theoren®. Define
Unt = maxcxz,, U(h, €, z41) — Mincxz,,, U (h, €, z41)
and defineJ = max maxy, Upt. Let

ﬁ == min(cxz‘+1)X(CXZ[+l){Vt (ha Ca Zt+1) - Vt (h7 C/a Z{J,_l)}
subject toVi (h, ¢, 1) > Vi(h, ¢, Z )

and letV. = min ming, Vht. Choosex so thataV > U. Then, a simple inductive argument
ensures that for alt € Z1, the set of solutions to

maXeo {U @ @)+ Y eM@ @) - Y

t=1

maxyeo (e Vi (¥ (01 (21)) }

coincides with the set of solutions to

maX,p+ ) U (¢ (22)).

Therefore, the self-control preferen@e, oV, ..., aVT) represents the weak Strotz preference
U, V1,...,Vr)onZ;

It remains to show that we can extend the self-control prefer¢dceVy, ..., aVT) to
Z1. Since Z; is finite, continuous extensions of the functiodsaVi, ...,aVr to Z; are
possible. ||
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