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We analyse preferences over finite decision problems in order to model decision-makers with
“changing tastes”. We provide conditions on these preferences that identify the Strotz model of consistent
planning. Building on an example given byPeleg and Yaari(1973), we show that for problems with
infinitely many choices, Strotz’s representation of preferences may not be well defined. For that case, we
propose a well-defined approximation which is empirically indistinguishable from the Strotz preference
that is being approximated.

1. INTRODUCTION

In the canonical example of time-inconsistent behaviour an agent has to choose between a smaller
period 1 reward and a larger period 2 reward. If the decision is made in period 1, the agent
chooses the smaller period 1 reward. If the decision is made in period 0, the agent chooses the
larger period 2 reward.

To study the behaviour described above,Strotz(1955) proposes a model of changing tastes.
The agent has a distinct utility function for each period. If the period 0 utility function differs
from the period 1 utility function the agent may make different choices depending on when
he/she chooses. The behaviour in the example above can result if the period 0 utility function is
more patient than the period 1 utility function with respect to intertemporal trade-offs between
periods 1 and 2.

The utility functions in Strotz’s model describe how the agent would choose among
consumption paths under the assumption that each choice offers commitment. However, in
typical economic settings, commitment to a single consumption path is not feasible. For example,
in period 0 the agent may have to choose between different investments that affect the feasible
choices for periods 1 and 2. To determine the behaviour of the agent in such a decision problem,
the model must specify how the decision-maker expects to behave in future periods.Strotz(1955)
proposed the “strategy of consistent planning”, and argued that the decision-maker will choose
the optimal plan among those plans that he/she is willing to carry out in the future.Peleg and
Yaari (1973) treat each decision period as a distinct player and solve for Nash equilibria in
the resulting dynamic game.O’Donoghue and Rabin(1999) argue that the decision-maker may
naively believe that his/her future behaviour will maximize current preferences. In each version
of the model, the primitives are (1) behaviour at each decision date under the assumption of
commitment and (2) a rule that specifies how the agent forms expectations.

In this paper, we develop an alternative approach to and interpretation of Strotz’s model.
Following Kreps1 (1979) and our earlier work on self-control (Gul and Pesendorfer, 2001) we

1. Kreps’ main axiom captures preference for flexibility by allowing a two-element set to be preferable to either
singleton. We rule out preference for flexibility and instead insist that the two-element set be indifferent to one of the
singletons.
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define preferences over decision problems. These preferences represent the agent’s behaviour in
period 0 when he/she must choose among alternatives that constrain future choices. Hence our
model takes as its starting point the behaviour of the agent at one decision date and requires
no hypothesis on expectation formation. However, we require that the agent be able to rank all
decision problems and not just those that offer commitment. The advantage of our approach
is that preferences over decision problems are—at least in principle—observable. Rather than
speculate about the appropriate model of expectation formation, we offer choice experiments
that identify Strotz’s model of behaviour.

As an example, consider a three-period problem(t = 0,1,2) with consumption in periods
1 and 2. A period 2 decision problem denoted asz2 is a set of consumption choices for that
period. Hencez2 represents the set of options available to the decision-maker in period 2. In
a simple consumption–savings model, the setz2 is determined by the agent’s wealth at the
beginning of period 2. In period 1, a decision problem is a setz1 where each element ofz1
specifies a consumption choice for period 1 (denotedc1) and a period 2 decision problemz2. In
a consumption–savings modelz1 would be determined by the agent’s wealth at the beginning of
period 1. In period 0, there is no consumption and the agent chooses among period 1 decision
problems. The period 0 choice can be interpreted as a choice among “assets”. For example, the
agent may choose between a liquid savings account and an illiquid asset that can be converted
into consumption only in period 2.

A standard decision-maker is characterized by a utility functionU and his/her ranking of
decision problems is described by the value functionW where

W(z1) = maxU (c1, c2)

subject to:(c1, z2) ∈ z1 andc2 ∈ z2.

The decision-maker described by Strotz is characterized by a utility function for each
decision period. LetU1,U2 denote the utility functions for periods 1 and 2. Consistent planning
requires that the agent maximizesU2 in period 2 and, given this period 2 behaviour, the agent
maximizesU1 in period 1. This iterative maximization results in a collection of consumption
paths consistent withU1,U2 andz1. The utility functionU describes the period 0 ranking of
consumption paths. The ranking of decision problems is described by the value functionW
where

W(z1) = maxU (c1, c2)

subject to:(c1, c2) is consistent withU1,U2, z1.

The main result of the paper (Theorem4) gives three axioms on period 0 preferences that imply
this representation.

To understand the key axiom consider a decision problemz1 and two subsetsx1 andy1 with
the property thatz1 = x1 ∪ y1. If x1 � y1 then for a standard decision-maker an optimal choice
from z1 must be inx1 and thereforex1 ∼ z1. To allow for a preference for commitment we relax
this requirement. Our weaker axiom requires that

x1 ∼ z1 or y1 ∼ z1. (NC)

Note that (NC) allows for the possibility thatx1 � z1, that is, a strict preference for a smaller set
of alternatives. However, in that case the period 1 choice must be fromy1 and thereforey1 ∼ z1.

The agent’s preferences over decision problems describe the agent’s behaviour in period 0.
From these preferences, we derive a representation that suggests a particular choice behaviour
in all future periods. This implied choice behaviour can be interpreted as the agent’sexpectation
of future behaviour. To make this connection precise, we must confront the possibility that there
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may exist multiple Strotz representations of the same preference. Hence the agent’s expected
future behaviour may not correspond to the implied behaviour associated with a particular
representation. InSection2 we demonstrate how to construct acanonical representationthat
has the property that if a choice is optimal for some Strotz representation it is optimal for the
canonical representation. Hence, the canonical representation identifies a set of choices in each
period that must contain the agent’s expectations. To see how this is done, consider the preference

x1 � x1 ∪ y1 ∼ y1.

The above preference implies that the decision-makerdoes notexpect the period 1 choice from
x1 ∪ y1 to be an element ofx1. Hence, by asking the agent to choose between decision problems
we can elicit the agent’s expectation of his/her future behaviour.

Section2 also considers a variant of the model where we observe choice behaviour not only
in period 0 but in all periods. In that case, the Strotz model is identified by the following two
assumptions. First, behaviour in each period must be rational, that is, maximize some objective
function. Second, period 0 preferences must satisfy an “irrelevance of redundant alternatives”
axiom that requires that the agent’s welfare is unaffected if we eliminate options from the period
t choice set that will not be chosen. If the period 0 ranking of decision problems is unaffected by
the elimination of redundant alternatives then we can conclude that the agent is “sophisticated”,
that is, has correct expectations.

In Section3, we study a general, possibly non-separable version of the model due originally
to Phelps and Pollak(1968). Phelps and Pollak’sβ−δ preferences constitute the most widely
utilized subclass of Strotz’s model. An agent withβ−δ preferences discounts utility associated
with consumptionτ periods later at the rateβδτ , whereβ < 1. Hence, the agent is willing to
give up more consumption in periodt + 1 in exchange for consumption in periodt if he/she
makes the decision in periodt rather than in some earlier period. That is, the agent’s behaviour
displays a “bias” towards current consumption. Theorem4 is a representation theorem for our
generalization of theβ−δ model. The theorem provides a revealed preference condition that
characterizes this bias towards current consumption.

Sections2 and3 rely on the assumption that there are finitely many possible consumption
levels.Section4 analyses a model with “continuous” consumption problems. In particular, we
assume that consumption in a given period can be any number in the unit interval. We introduce
an assumption which we call “local preference for commitment”. This assumption ensures that
after any history(c1, . . . , ct ), we can always find two close consumption paths(c′

t+1, . . . , c
′

T ),
(c′′

t+1, . . . , c
′′

T ) such that the agent would prefer(c′

t+1, . . . , c
′

T ) to (c′′

t+1, . . . , c
′′

T ) if he/she
could commit at timet but will end up choosing(c′′

t+1, . . . , c
′′

T ) rather than(c′

t+1, . . . , c
′

T ) if
commitment is not feasible and he/she has to make the choice in periodt + 1. Theorem5
shows that theβ−δ model (and our generalization of it) is inconsistent with local preference
for commitment unless the time horizon is three periods or fewer.

The difficulty of providing a well-behaved Strotz model with continuous choice has been
noted byPeleg and Yaari(1973) and other researchers. Theorem5 motivates our final result
by showing that the same difficulties arise even if we allow for preferences that depend on the
history of past consumption. Our final result (Theorem6) shows that we can approximate Strotz
preferences with a well-behaved representation taken from our earlier work on self-control.
The approximation that we provide is perfect in the sense that it can rationalize any finite set
of observed choices consistent with Strotz’s theory. Hence, no finite data-set can distinguish
between Strotz behaviour and the self-control preferences that we used to approximate such
behaviour.

In addition to the time-inconsistency literature cited above, this paper is related to our earlier
work on self-control (Gul and Pesendorfer, 2001, 2004). In both of these papers we analyse
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choice under uncertainty (i.e. choice over lotteries). Hence, both papers deal with continuous
decision problems and take advantage of the linear structure associated with lottery spaces.

Gul and Pesendorfer(2004) offer a recursive, infinite horizon model that either rules
out preference for commitment or NC, the main assumption of this paper. Hence, the only
intersection of the model in that paper and the current one is the standard, time-consistent model.

Gul and Pesendorfer(2001) allow NC but have only two periods. Hence, the difficulties
associated with continuous choice discussed above do not come up in their setting. The two-
period setting renders Phelps–Pollak preferences indistinguishable from the general Strotz
model. In addition to ruling out lotteries, the setting of Theorem1 below differs from the one in
the earlier paper by allowing for many periods but only a finite consumption set. Lemma1 of the
proof of Theorem1 is taken from that paper.

1.1. Why choice experiments?

Our approach, both in the current paper and in earlier work, differs from that of Strotz and the
subsequent literature on dynamic inconsistency in that we do not consider the agent’s expectation
of his/her future behaviour a primitive of our model.

Instead, we take as primitive the agent’s choices from a larger domain, the collection of
decision problems. In our theorems both the hypotheses (i.e. axioms) and the conclusions are
statements about what choices the agent makes in various situations.

As in standard models of dynamic choice we view the decision-maker as expressing a
preference at one point in time (period 0). The representation of these preferences suggests
behaviour in future periods that can be interpreted as the agent’s implicit expectations. Whether
these expectations are correct or not (that is, whether the agent is sophisticated or not) can
be treated as a separate question. That is, the representation is a valid description of period 0
behaviour whether or not the agent has correct expectations, as long as the axioms are satisfied.

To offer a testable hypothesis for “sophisticated” behaviour, we also examine a model
that considers behaviour in all periods. There we find that a simple independence of redundant
alternatives (IRA) condition is the only restriction on intertemporal choice behaviour implied
by Strotz’s preferences. IRA says that period 0 behaviour should be unaffected if unchosen
alternatives are eliminated from choice sets.

1.2. A time-consistent interpretation

The time-inconsistency literature takes the view that agents have distinct and independent
preferences in each period. This implies that for the purpose of welfare analysis there are as
many agents as there are decision nodes. As a result, welfare statements are often ambiguous.

Consider the example of a consumer who must choose between a liquid and an illiquid asset.
The liquid asset can be converted into high consumption in period 1 or period 2. The illiquid asset
commits the consumer to low consumption in period 1 and delivers high consumption in period 2.
If the consumer has a strict preference for the illiquid asset it must mean that the consumer would
have chosen high consumption in the event that the liquid asset was chosen in period 0. The
time-inconsistent interpretation must therefore conclude that the period 0 choice has ambiguous
welfare implications: it increases the utility of the period 0 “self” but decreases the utility of the
period 1 self. The time-inconsistent interpretation implies the following ranking in period 0:

illiquid/low consumption∼ liquid/low consumption� liquid/high consumption

whereas for period 1 the ranking is

liquid/high consumption� liquid/low consumption∼ illiquid/low consumption.
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We propose an alternative time-consistent interpretation of the model. The time-consistent
interpretation asserts that inall periodsthe ranking is given by

illiquid/low consumption� liquid/high consumption� liquid/low consumption.

Here, the agent is better off inall periods if he/she chooses the illiquid asset. If the liquid asset
is chosen in period 0, the optimal behaviour in period 1 (from the perspective of all periods) is
to choose high consumption. In this interpretation, the asset choice affects welfare. The liquid
asset makes high consumption available in period 1 which reduces welfare in both periods. The
interpretation is that high consumption constitutes a “temptation” that the decision-maker finds
impossible to resist. If this temptation is available in period 1, high consumption is the optimal
choice from the perspective of all periods because resisting the temptation would be too costly
for the decision-maker.

Note that both interpretations are consistent with observed behaviour. The agent’s behaviour
reveals that in period 1

liquid/high consumption� liquid/low consumption

and in period 0

illiquid/low consumption� liquid/high consumption.

This is satisfied under either interpretation. The advantage of the time-consistent interpretation
is that the observed choices are welfare maximizing from the perspective of every period.
Therefore, to determine whether a policy (for example, a tax policy that discourages high
consumption) improves the welfare of the agent it suffices to determine whether the agent would
vote for the policy in the period in which it is introduced.

2. WEAK STROTZ PREFERENCES

We consider a model withT decision-making periods. Each period, the agent takes an action that
results in a consumption for that period and a decision problem for the next period. LetC denote
the set of possible consumptions. We assume thatC is finite. For concreteness, we may think of
C as a finite subset ofR+, where eachct ∈ C denotes the level of consumption in periodt of the
single good.

For any non-empty, finite setX, let K (X) denote the collection of all non-empty subsets of
X. Let ZT := K (C) denote the set of one-period decision problems. For 1≤ t < T we define
inductively the set ofT − t + 1-period decision problems as

Zt := K (C × Zt+1).

Eachzt ∈ Zt is a finite menu of choices of the form(c, zt+1) wherec is the consumption in
periodt andzt+1 is the continuation problem in periodt + 1. The setZ1 denotes the collection
of T-period decision problems.

Example1. There are three consumption periods(T = 3) and consumption in each period
is either high or low(ct ∈ {h, l }). Consider three decision problems in which the agent can
afford high consumption in exactly one period. Hence, the agent must choose a singlet as
his/her period of high consumption. First, consider the situation where the agent may choose
high consumption in any period. Then, the decision problem isz1 = {(l , z2), (h, z′

2)} where
z2 = {(l , {h}), (h, {l })}, z′

2 = {(l , {l })}. This decision problem can be represented by the decision
treez1 in Figure1.

The decision problem in which the agent is committed to low consumption in period 1 is
y1 := {(l , z2)} (with z2 as defined above) and illustrated by the decision treey1 in Figure1.
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FIGURE 1

Decision problems

The decision problem in which the agent is committed to low consumption in periods 1
and 2 (and hence has no choice) isx1 := {(l , x2)} with x2 = {(l , {h})} and represented by the
decision treex1 in Figure1.

Our model considers a decision-maker who has a preference defined onZ1, the set of
T-period decision problems. This preference describes the decision-maker’s behaviour in period
0, prior to the first consumption period. To interpret this preference consider Example1. The
period 0 choice betweenx1, y1 and z1 can be viewed as a choice between assets of varying
degrees of liquidity. “Asset”z1 can be converted into high consumption in any period and hence is
the most liquid whereasx1 is the least liquid since it can be converted into high consumption only
in period 3. More generally, the period 0 decision can be thought of as a portfolio decision. Each
portfolio defines a decision problem for subsequent periods. The preference� on Z1 therefore
represents a ranking of portfolios. A function representing the preference� is analogous to a
value function in dynamic programming.

Strotz(1955) introduced a model of decision making with changing tastes. In that model
a utility function (over consumption paths) for each decision date is specified. These utility
functions may be inconsistent, that is, the utility functions in periodst andt + 1 may disagree
in their ranking of consumption paths. To deal with this inconsistency,Strotz(1955) proposes
the strategy of consistent planningaccording to which an individual who cannot commit to a
consumption path “rejects any plan which he will not follow through. His problem is then to
find the best plan among those that he will actually follow”. An implication of time-inconsistent
utilities and consistent planning is that the agent may have apreference for commitment, that is,
he/she may express a strict preference for a situation where he/she has fewer choices. In Example
1, a strict preference forx1 over y1 or z1 illustrates a preference for commitment.

The approach taken in this paper is to take as primitive the agent’s period 0 behaviour
as described by the preference�. To allow for the type of behaviour described in the time-
inconsistency literature, we let� have a preference for commitment. Our objective is to provide
conditions on the preference� that identify the Strotz model of changing tastes. The key
feature of this approach is that allassumptionsare made in terms of choice experiments and
therefore correspond to—in principle—observable behaviour. In contrast, it is difficult to see
how assumptions that are made in terms of the agent’s expectations, as in Strotz’s definition of
consistent planning, can be tested directly.
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The following notation is needed to define consistent plans. Fort ≥ 1, a t-period history
is a t-tuple of consumptions(c1, . . . , ct ). Let Ht denote the set of allt-period histories andht

denote a generic element ofHt . In order to avoid having to make separate statements fort = 1
andt > 1, we fix an arbitrary elementc0 ∈ C and refer toh0 = c0 asthe0-period history and
defineH0 = {h0}. We also refer toHT as the set of consumption paths. LetH =

⋃T
t=0 Ht be the

set of all histories and leth ∈ H denote a generic history.
A nodeat time t specifies a consumption history up to but not including timet and a

T − t + 1-period decision problemzt . Hence, a node at timet,1 ≤ t ≤ T , is a pair(ht−1, zt )

whereht−1 ∈ Ht−1 andzt ∈ Zt . Let Nt be the set of all nodes at timet and N =
⋃T

t=1 Nt .
Generic elements ofNt andN are denoted asηt andη, respectively.

A planspecifies the behaviour of a decision-maker at every decision node. Formally, a plan
is a mapφ : N → N ∪ CT . For t < T , a plan associates with eachηt = (ht−1, zt ) ∈ Nt a node
ηt+1 = (ht−1, c, zt+1) ∈ Nt+1 with history one period longer such that(c, zt+1) ∈ zt . For t = T
the planφ associates with each nodeηT = (hT−1, zT ) a consumption sequence(hT−1, c) such
thatc ∈ zT . Let8 denote the set of plans.

For any planφ ∈ 8, the mapφk specifies the outcome if the planφ is appliedk times. More
precisely, for a givenφ ∈ 8 andk = 0,1, . . . , T , defineφk

: N ∪ CT
→ N ∪ CT inductively

as follows:φk(c1, . . . , cT ) = (c1, . . . , cT ) for all (c1, . . . , cT ) ∈ CT and allk. For all η ∈ N,
φ0(η) = η, φ1(η) = φ(η) andφk+1(η) = φk(φ(η)). Hence,φT (η) denotes the consumption
path induced byφ given the nodeη.

Next, we define a generalized version of Strotz’s model. The agent has a period 0 utility
function U over consumption paths and objective functionsVt for all t . Consistent plans
maximizeVt for eacht . From the set of consistent plans the agent picks the one that maximizes
the period 0 utility functionU . The functionU : CT

→ R assigns a utility to each
consumption path. The functionVt assigns a utility to each periodt decision and may depend
on the consumption history. In periodT the decision yields a consumptioncT and therefore
VT : HT−1 × C → R. For periodt < T a decision yields a consumptionc and a decision
problemzt+1 for the following period. Hence,Vt : Ht−1 × C × Zt+1 → R. Note that fort < T
the domain ofVt is the periodt + 1 decision nodesNt+1.

In Strotz’s model, the functionsVt are derived from preferences over consumption streams
through backward induction either with correct or naive expectations about future behaviour. In
our revealed preference approach, we derive theVt ’s from period 0 preferences. In Theorem4,
we impose a condition on the agent’s preferences that ensures that theVt ’s can be derived from
some preferences over consumption streams through backward induction. Theorems1 and2 deal
with the unrestricted case whereVt represents a general constraint on the consistent choices at
each decision node.2

To illustrate the generality of the framework, consider the following example. There are two
stores, denoted byA andB. The selection in storeB is a strict subset of the selection in storeA
and the agent is given the choice of whether or not to enter one of the stores in period 1. When
agents have the option of entering storeA, they enter, while they do not enter when they have
the option of entering storeB. Nevertheless, from storeA the agent makes a choice (in period 2)
that is also available in storeB. One interpretation of this is that the agent is “tempted” by the
availability of options that he/she knows he/she will not take advantage of. The weak Strotz

2. By settingVt (η) = Ut (φ
T (η)) we can associate a uniqueVt with any utility functionUt : CT

→ R and plan
φ. However, the converse is not true; given aVt , it may not be possible to find anyUt , φ such thatVt (η) = Ut (φ

T (η)).
Observe that when the cardinality ofC is greater than 1 andt < T , the cardinality ofHt−1 × C × Zt+1 is greater than
the number of possible consumption paths. Therefore, for anyVt such thatVt (η) 6= Vt (η

′) for η 6= η′, there is noUt , φ

such thatVt (η) = Ut (φ
T (η)).
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representation of Theorem1 below permits this (theV1 of storeA is higher than theV1 of store
B) whereas the preferences of Theorem4 do not.

A second way to interpret the store example would be to say that the agent has incorrect
expectations and expects to make a choice from storeA that is not available in storeB. Theorem3
identifies a condition that rules out the second interpretation. More generally, our approach
enables us to distinguish between what can be tempting and whether or not the agent correctly
anticipates his/her future behaviour.

Consider a decision nodeηt = (h, zt ) ∈ Nt and a planφ with φ(ηt ) = (h, c, zt+1). The
planφ is consistent withVt at decision nodeηt if

Vt (φ(ηt )) = Vt (h, c, zt+1) ≥ Vt (h, c
′, z′

t+1)

for all (c′, z′

t+1) ∈ zt or, equivalently,

Vt (φ(ηt )) ≥ Vt (ψ(ηt ))

for all plansψ ∈ 8. Let V̄ = (V1, . . . ,VT ). The set of plans consistent with̄V is denoted by
P∗(V̄) and defined as follows:

P∗(V̄) := {φ ∈ 8 | Vt (φ(ηt )) ≥ Vt (ψ(ηt ))∀ψ ∈ 8∀t}.

In period 0, the agent evaluates decision problemsz ∈ Z1 by maximizing the period 0 utility
U : CT

→ R among all plans in the setP∗(V̄). Hence, the value of decision problemz ∈ Z1 is
given by

W(z) := maxφ∈P∗(V̄)U (φT (z)).

Definition. The value functionW : Z1 → R is weak Strotz if there existsU, V̄ such that
W(z) := maxφ∈P∗(V̄)U (φT (z)).

The value functionW represents the preference� if W(z) ≥ W(z′) if and only if z � z′.
We say that� is a weak Strotz preference if there is aW that is weak Strotz and represents�.
We refer to(U, V̄) as a representation of� or sometimes simply as the weak Strotz preference
(U, V̄).

Theorem1 shows that the following two axioms are necessary and sufficient for� to be a
weak Strotz preference.

Axiom P (Preference Relation).� is a complete and transitive binary relation.

For any historyh = (c1, . . . , ct−t ) and a decision problemzt , we write {h, zt } to denote
the decision problem in which the agent is committed to the consumption(c1, . . . , ct−1) in the
first t − 1 periods and then is confronted with the decision problemzt . Similarly, with some
abuse of notation, we write{h, c, zt+1} to denote the situation where the agent is committed to
(c1, . . . , ct−1, c) in the firstt periods and then is confronted with the decision problemzt+1.

Consider a decision problemzt ∪ z′
t and a consumption historyh = (c1, . . . , ct−1). If the

choice at node(h, zt ∪ z′
t ) is in zt , then a preference that only cares about the choice must satisfy

{h, zt ∪z′
t } ∼ {h, zt }. If the choice at node(h, zt ∪z′

t ) is in z′
t , then such a preference must satisfy

{h, zt ∪ z′
t } ∼ {h, z′

t }. This motivates the following axiom.

Axiom NC (No Compromise). {h, zt ∪ z′
t } ∼ {h, zt } or {h, zt ∪ z′

t } ∼ {h, z′
t }.

Theorem 1. The preference� satisfies Axioms P and NC if and only if it is a weak Strotz
preference.
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Proof. SeeSection5.

In the proof of Theorem1 we construct the utility functionsU,Vt for t = 1, . . . , T .
The period 0 utilityU represents the preference� restricted to decision problems that offer
commitment. That is,

U (c1, . . . , cT ) ≥ U (c′

1, . . . , c
′

T ) if and only if {c1, . . . , cT } � {c′

1, . . . , c
′

T }.

The objective functionVt (h, ·) represents the binary relationRh defined below.

Definition. (c, zt+1)Rh(c′, z′

t+1) if and only if

(i) {h, c, zt+1} � {h, c′, z′

t+1} and{h, c, zt+1} ∼ {h, {(c, zt+1), (c′, z′

t+1)}} or
(ii) {h, c, zt+1} ∼ {h, c′, z′

t+1} and [{h, c′, z′

t+1} ∼ {h, {(c′, z′

t+1), (ĉ, ẑt+1)}} implies
{h, c, zt+1} ∼ {h, {(c, zt+1), (ĉ, ẑt+1)}}].

To motivate this definition, consider a situation where{h, c, zt+1} � {h, c′, z′

t+1}. In that
case,{h, c, zt+1} ∼ {h, {(c, zt+1), (c′, z′

t+1)}} must mean that the agent expects(c, zt+1) to be
chosen after historyh. Hence, it must be the case thatVt (h, c, zt+1) ≥ Vt (h, c′, z′

t+1).
In the proof of Theorem1 we establish that the relationRh is a preference relation (complete

and transitive) and therefore can be represented by a utility functionVt (h, ·).
Note that the preference in the above theorem describes behaviour only in period 0. In

contrast, the weak Strotz representation implies a behavioural rule for all periods. More precisely,
the weak Strotz representation impliesexpectationsfor what will be chosen in subsequent
periods.

Our next objective is to make precise the sense in which we can elicit expectations of
future behaviour from the preference�. Typically, there will be multiple Strotz representations
for a single Strotz preference. However, the utility functions defined above are acanonical
representationwith the property that predicted behaviour from any other Strotz representation
must be optimal for(U, V̄). We say that(U, V̄) is a canonical Strotz representation of� if U
represents the commitment preference (as defined above) andVt (h, ·) representsRh.

Theorem2 shows that if a plan is optimal for any Strotz representation it must be optimal for
the canonical representation. The canonical representation therefore allows us to make inferences
about how the agent expects to choose in subsequent periods. More precisely, we know that the
agent does not expect to choose alternatives that are suboptimal for the canonical representation.

Theorem 2. Let� satisfy Axioms P and NC and let(U, V̄) be a canonical representation
of �. Then

arg maxφ∈P∗(V̄ ′)U ′(φT (z)) ⊂ arg maxφ∈P∗(V̄)U (φT (z))

for any Strotz representation(U ′, V̄ ′) of �.

Proof. SeeSection5.

To illustrate how our model allows inference about expectations consider Example1. In that
example, the agent must choose between three decision problemsx1, y1, z1 in period 0. Suppose
the agent expresses the preference

x1 � y1 � z1. (∗)

Recall that in each decision problem the agent can enjoy high consumption in exactly one period
and has low consumption in the remaining two periods. Recall also thatx1 commits the agent to
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high consumption in period 3 whereasy1 commits the agent to low consumption in period 1 and
offers a period 2 choice between high consumption in period 2 or high consumption in period
3. Fromx1 � y1 we conclude that the agent strictly prefers to commit to high consumption in
period 3 over a decision problem where high consumption can be chosen either in period 2 or
in period 3. This implies that he/she expects to choose theexcludedalternative if commitment
is not available. Hence, the agent expects to choose high consumption in period 2 if this choice
is available. Similarly, the preferencey1 � z1 implies that the agent prefers commitment to low
consumption in period 1 and hence expects to choose high consumption in period 1 if that choice
is available.

To this point our model is based entirely on period zero behaviour (as described by the
preference�) and therefore cannot address the question of whether the agent makes choices in
periodst > 0 that are consistent with period 0 expectations. In other words, the model is silent
on the question of whether expectations are correct. For example, naive agents as described in
O’Donoghue and Rabin satisfy Axioms P and NC but their behaviour in periodst > 0 is not
consistent with expectations. To see this, suppose in Example1 the agent expresses the preference

x1 ∼ y1 ∼ z1

and at the same time strictly prefersx1 (commitment to low consumption in periods 1 and 2)
to a situation where the agent is committed to low consumption in period 3. In other words, the
agent has no preference for commitment and expresses a preference to delay high consumption
until period 3. From this we can conclude that the agent expects to choose low consumption in
periods 1 and 2. This is consistent with standard agents who are time consistent but also with
naive agents who expect to be time consistent but contradict this expectation in their subsequent
choice behaviour.

In order to identify agents whose behaviour is consistent with period 0 expectations
(“sophisticated agents”) we need to observe behaviour in all periods. LetC1, . . . , CT denote a
collection of choice functions that describe behaviour in periodst ≥ 1. Hence,Ct : Ht−1× Zt →

Zt , with Ct (h, zt ) ⊂ zt andCt (h, zt ) 6= ∅. Our next objective is to characterize weak Strotz
preferences in terms of behaviour in all periods.

The first axiom (Axiom H) says that choice behaviour in periodst ≥ 1 satisfies the familiar
Houthakker axiom below.

Axiom H (Houthakker’s Axiom). Ct (h, zt ) ∩ z′
t 6= ∅ impliesCt (h, z′

t ) ∩ zt ⊂ Ct (h, zt ).

It is well known that Axiom H is equivalent to rational choice, that is, the choice function
Ct maximizes some objective function.

As before, behaviour in period 0 is described by a preference� on Z1. The following axiom
relates period 0 behaviour to behaviour in later periods by assuming that the agent is indifferent
between a decision problem and the option that he/she chooses from it.

Axiom IRA (Independence of Redundant Alternatives).(c, zt+1) ∈ Ct (h, zt ) implies
{h, c, zt+1} ∼ {h, zt }.

One implication of Axiom IRA is that it rules out the possibility that unchosen alternatives
could affect the agent’s well-being, as in the model of self-control analysed inGul and
Pesendorfer(2001). Axiom IRA also rules out naive behaviour where period 0 expectations
are inconsistent with periodt choices. Naive agents expect to make choices that differ from their
actual choices. If the expected choice is removed from a set, the agent’s utility in period 0 changes
while the actual choice may be unaffected hence leading to a violation of IRA.
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The choice functionCt maximizesVt if for all (h, zt ) ∈ Ht−1 × Zt

Ct (h, zt ) = arg max(c,zt+1)∈zt Vt (h, c, zt+1).

Theorem3 shows that rational choice functionsC1, . . . , CT and the preference� satisfy IRA
if and only if the preference has a weak Strotz representation(U,V1, . . . ,VT ) such thatCt

maximizesVt for everyt ≥ 1.

Theorem 3. Let � be a binary relation that satisfies Axiom P and letC1, . . . , CT satisfy
Axioms H. Then,�, C1, . . . , CT satisfy IRA if and only if there exists a weak Strotz representation
(U,V1, . . . ,VT ) of � such thatCt maximizes Vt for all t .

Proof. SeeSection5.

Theorem3 establishes that independence of redundant alternatives (IRA) is the only
temporal revealed preference implication of weak Strotz behaviour. The theorem bridges the
gap between the revealed preference approach adopted in this paper and the analysis based
on expectation that is standard in the time-inconsistency literature. Unlike the previous two
theorems, in Theorem3, we consider as primitive not only period 0 behaviour but behaviour in
each period. This enables us to compare the beliefs derived from period 0 preferences regarding
behaviour in periodt with the actual behaviour in periodt . Suppose the choice behaviour
of the decision-maker in every period is consistent with maximizing a preference relation.
Then, Theorem3 ensures that whenever IRA is satisfied, the observed behaviour in periodt
is consistent with the prediction of periodt behaviour derived from the period 0 preferences.
Hence, the theorem proves that the only observable implication of sophisticated behaviour is
IRA. Conversely, the theorem ensures that if the decision-maker is sophisticated (i.e. if his/her
period 0 preferences anticipated his/her future behaviour correctly), he/she will satisfy IRA.

3. PHELPS–POLLAK PREFERENCES

The time-inconsistency literature (see, for example,Laibson, 1997) specifies a utility function
for each decision date. These utility functions are defined over consumption paths. In contrast,
the weak Strotz model of the previous section allows for a general periodt objective function
with periodt decisions as their domain.

A commonly used example of time-inconsistent utility functions is known asβ−δ utility.
These utility functions were introduced byPhelps and Pollak(1968) and were further analysed
by Laibson(1997). Example2 provides an illustration.

Example2 (β−δ utility). Let β, δ ∈ (0,1], u : C → R. Define

Ut (c1, . . . , cT ) = u(ct )+ β
∑T−t

k=1
δku(ct+k)

for all t = 1, . . . , T where
∑0

k=1(·) ≡ 0. Let

U (c1, . . . , cT ) =

∑T

t=1
δtu(ct )

be the period 0 utility function. (Recall that our model has no consumption in period 0.) Ifβ < 1
the utility functionsUt andU may disagree in their rankings of consumption paths. However,
the rankings ofU andUt agree if consumption in periodst ′ ≤ t is held fixed.

In this section, we analyse preferences that can be represented by a generalized version of
β−δ utility. Let Ū = (U1, . . . ,UT ) be a collection of utility functions whereUt : CT

→ R.
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We say thatU andŪ agree on continuations if, for allt = 1, . . . , T ,

Ut (c1, . . . , cT ) ≥ Ut (c
′

1, . . . , c
′

T ) iff U (c1, . . . , cT ) ≥ U (c′

1, . . . , c
′

T )

whenevercτ = c′
τ for all τ ≤ t .

Our next objective is to define consistent plans for a collection of utility functionsŪ . Unlike
the objective functions̄V analysed in the previous section, the utility functionsŪ assign utility to
consumption sequences. Consistent plans forŪ are defined inductively. In periodT , a consistent
plan must be optimal forUT . This gives us a set of periodT consistent plans,PT (Ū ). In period
T − 1, a consistent plan must maximizeUT−1 among all plans inPT (Ū ). This yieldsPT−1(Ū ),
the consistent plans for periodsT − 1 andT . We proceed inductively to defineP1(Ū ), the set of
consistent plans for all periods.

Let PT+1(Ū ) = 8. For t ≤ T we inductively define

Pt (Ū ) := {φ ∈ Pt+1(Ū ) | Ut (φ
T (ηt )) ≥ Ut (ψ

T (ηt ))∀ψ ∈ Pt+1(Ū )}.

(Recall thatφT (η) denotes the consumption path generated by planφ and nodeη.) The setPt (Ū )
contains all plans that are consistent withŪ at timest, t + 1, . . . , T . Let

P(Ū ) := P1(Ū )

denote the set of consistent plans. Consistent planning requires that in period 0 the agent evaluates
decision problemsz ∈ Z1 by maximizing the period 0 utility among all plans in the setP(Ū ).
Hence, the value of decision problemz ∈ Z1 is given by

W(z) := maxφ∈P(Ū )U (φT (z)). (S)

Definition. The value functionW : Z1 → R is Phelps–Pollak (PP) if there is(U, Ū ) such
thatU andŪ agree on continuations andW(z) := maxφ∈P(Ū )U (φT (z)).

We say that a preference� is a PP preference if it can be represented by a PP value function
W. We refer to the corresponding(U, Ū ) as a PP representation of� or sometimes as the PP
preference(U, Ū ). Theorem4 shows that we get PP preferences if we impose the following
axiom (Axiom TCC) in addition to Axioms P and NC.

Axiom TCC (Temptation by Current Consumption).If {h, c, z′

t+1} � {h, c, z′′

t+1} and
(c, z′

t+1) ∈ zt then{h, zt ∪ {(c, z′′

t+1)}} ∼ {h, zt }.

Axiom TCC considers situations where an alternative—(c, z′′

t+1)—is added to the choice
set zt . The periodt consumption of the new alternative(c, z′′

t+1) is the same as the periodt
consumption of an already existing alternative(c, z′

t+1). Moreover, commitment to the existing
alternative is preferred to commitment to the new alternative (i.e. {h, c, z′

t+1} � {h, c, z′′

t+1}).
In other words, the existing alternative has a better continuation than the added alternative. The
axiom requires that the addition of(c, z′′

t+1) to zt has no effect on the agent’s welfare. An agent
whose periodt utility agrees with his/her earlier utility functions when current consumption is
unaffected would certainly satisfy this requirement. Theorem4 shows that the converse is also
true. Axioms P, NC and TCC imply that the preference has a PP representation.

Theorem 4. The preference� satisfies P, NC and TCC if and only if it is a PP preference.

Proof. SeeSection5.
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Theorem4 characterizes agents with Phelps–Pollak preferences in terms of their period 0
preferences over decision problems. The axioms P, NC and TCC can be interpreted as the testable
implications of the PP model.

As in the case of weak Strotz preferences, Theorem4 characterizes period 0 behaviour but
the representation implies expectations for the behaviour in subsequent periods. To illustrate
further the role of Axiom TCC consider the three-period decision problems illustrated in
Example1. Suppose

x1 � y1 � z1

and assume Axioms P, NC and TCC hold. Recall thatx1 represents the decision problem where
the agent is committed to high consumption in period 3;y1 represents the decision problem where
the agent can choose high consumption either in period 2 or in period 3; andz1 represents the
decision problem where high consumption can be chosen in any one of the three periods. From
x1 � y1 we conclude that a PP representation(U, Ū ) must satisfyU (l , l , h) > U (l , h, l ) and
U2(l , h, l ) > U2(l , l , h). Together withy1 � z1 this in turn implies thatU (l , h, l ) > U (h, l , l )
andU1(h, l , l ) > U1(l , h, l ). Consider a situation where in period 1 the agent is committed to low
consumption and must choose betweenx2 = {l , {h}}, y2 = {h, {l }} andz2 = {(l , {h}), (h, {l })}.
Consistent planning implies that the agent choosesx2 and is indifferent betweeny2 andz2. The
reason for this indifference is that the agent expects high consumption to be chosen fromz2
in period 2. The strict preference forx2 follows becauseU andU1 agree on continuations and
thereforeU1(l , l , h) > U1(l , h, l ). Note that if TCC is not assumed (and therefore we have
a weak Strotz representation) the model places no restriction on the period 1 choice between
(l , x2), (l , y2) and(l , z2). For example, the agent may choose(l , y2) over(l , z2) in period 1 even
though(l , y2) and(l , z2) ultimately lead to the same consumption path.

4. CONTINUITY AND APPROXIMATION

To this point we have assumed a finite set of possible consumptions in each period. This section
analyses extensions of the model to a setting with a “continuous” choice of consumption levels.

For simplicity, letD = [0,1] denote the set of feasible consumptions in each period. For
any subsetX of a metric space, let̃K (X) denote the non-empty compact subsets ofX. Let
Z̃T = K̃ (D). For periodst < T we then defineZ̃t inductively asZ̃t := K̃ (D × Z̃t+1). The
domain of preferences is̃Z1. As before,Nt denotes the set of nodes at timet , 8 denotes the set
of plans. The definition of nodes and plans are identical to the corresponding definitions given in
Section2 for finite decision problems.

We define a PP preferences� on Z̃1 as in the discrete case: for any(U, Ū ), we say thatU
andŪ agree on continuations if, for allt = 1, . . . , T ,

Ut (c1, . . . , cT ) ≥ Ut (c
′

1, . . . , c
′

T ) iff U (c1, . . . , cT ) ≥ U (c′

1, . . . , c
′

T )

whenevercτ = c′
τ for all τ ≤ t . The value functionW : Z1 → R is defined by

W(z) := maxφ∈P(Ū )U (φT (z)). (S∗)

The value functionW is Phelps–Pollak (PP) if there is(U, Ū ) such thatU and Ū agree on
continuations andW(z) := maxφ∈P(Ū )U (φT (z)). Finally, we say that a preference� is a PP

preference if it can be represented by a PP value functionW and refer to(U, Ū ) as the PP
representation of�.

In this new setting, we consider preferences that have a monotone and continuous PP
representation(U, Ū ). That is, we say that� has a continuous and monotone PP representation
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if there exist continuous, strictly increasing functionsU andUt , for t = 1, . . . , T , such that the
functionW defined by(S∗) represents�.

Let ‖·‖ denote the Euclidean norm. We say that� has local preference for commitment
if for all t such that 1≤ t ≤ T − 2, h = (c1, . . . , cT ) ∈ H , and ε > 0, there exist
h′

= (c′

1, . . . , c
′

T ), h
′′

= (c′′

1, . . . , c
′′

T ) ∈ H satisfying‖h−h′
‖ < ε, ‖h−h′′

‖ < ε, cτ = c′
τ = c′′

τ

for all τ ≤ t , Ut (h′) > Ut (h′′) andUt+1(h′) < Ut+1(h′′).
Local preference for commitment implies that given any consumption historyh, there are

alternative consumption historiesh′, h′′ such that bothh′, h′′ are arbitrarily close toh, agree with
h in every period up tot and the agent would strictly prefer committing toh′ in period t to
making the choice betweenh′ andh′′ in periodt + 1. Hence, local preference for commitment
ensures that preference reversals arise even when the stakes are small. Forβ−δ preferences this
difference between the agent’s rankings at different times is captured by the difference between
the discount ratesδ andβδ. For such preferences local preference for commitment is satisfied
whenever the functionu is strictly increasing andβ 6= 1. In general, the local preference for
commitment assumption does not require additive separability or history independence. The
following theorem generalizes an example byPeleg and Yaari(1973) to provide a general
impossibility theorem for multi-period Strotz preferences.

Theorem 5. Suppose� has a continuous and monotone PP representation and has local
preference for commitment. Then T≤ 3.

Proof. SeeSection5.

The main idea in the proof of Theorem5 can be understood with theβ−δ example below.
The proof ensures that a similar example can be constructed whenever local preference for
commitment is satisfied andU,Ut are all continuous, strictly increasing functions.

Example3. SupposeT = 4, δ = 1, β = 0·5 andu(c) = c. Consider the corresponding
β−δ preference onZ1, that is U (c1, c2, c3, c4) = c1 + c2 + c3 + c4, U1(c1, c2, c3, c4) =

c1 +
1
2(c2 + c3 + c4), U2(c1, c2, c3, c4) = c2 +

1
2(c3 + c4), U3(c1, c2, c3, c4) = c3 +

1
2c4

andU4(c1, c2, c3, c4) = c4. Let z3(γ ) = {(γ, {0}), (0, {1})}. That is,z3(γ ) denotes the decision
problem in which the agent must choose between the consumption pair(c3, c4) = (γ,0) and
(c3, c4) = (0,1) in period 3. (There is no choice in period 4.) Letz∗

3 = {1, {1}}. Hence,z∗

3 is
the period 3 decision problem that guarantees the maximal consumption in the last two periods.
Let z2(γ ) = {(1, z3(γ )), (0·4, z∗

3)}. Hence, inz2(γ ) the agent faces a period 2 choice between 1
in the current period followed byz2(γ ) or 0·4 in the current period followed byz∗

3. Finally, let
z1 = {(1 − γ, z2(γ )) | γ ∈ [0·4,0·8]}.

Suppose that the preference described above has a PP representation. Then, by definition,
at any node(1 − γ,1, z3(γ )) the decision-maker chooses the consumption path(1 − γ,1, γ,0)
if γ > 0·5 and chooses(1 − γ,1,0,1) if γ ≤ 0·5. Then it is easy to see that at any node
(1− γ, z2(γ )), the decision-maker ends up with the consumption path(1− γ,0·4,1,1) if 0·8 ≥

γ > 0·5 and with(1 − γ,1,0,1) if 0·4 ≤ γ ≤ 0·5. Note thatU1(1 − γ,0·4,1,1) = 2·2 − γ

andU1(1 − γ,1,0,1) = 2−γ . It follows that there is no optimal choice for the decision-maker
confrontingz1 in period 1.

The example above is a version of the one presented byPeleg and Yaari(1973) who show
that consistent plans (as defined inSection3) are typically not well defined in a setting with a
continuous consumption choice andT ≥ 4.
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Theorem5 relies on two implicit assumptions. First, it utilizes the fact that the domain of
decision problems is rich. Our theorem and the Peleg and Yaari example rely on being able to
construct decision problems where the decision-maker in periodt − 1 would like the period
t indifference resolved one way while in periodt − 2 he/she would like it resolved the other
way. Second, our proof of non-existence takes advantage of the fact that in our definition of a
consistent plan predicted behaviour in periodt resolves ties inUt in a manner that maximizes
Ut−1. However, any alternative tie-breaking rule that depends only on the consumption history
would lead to similar contradictions.

To resolve the issue of non-existence Peleg and Yaari use a model where the predicted
behaviour of the decision-maker at timet depends not only on the consumption history but also
on the history of decision problems that the decision-maker confronted up to timet .

While this approach does solve the existence problem, it often leads to discontinuous
behaviour and preferences over decision problems. The setting with a continuous consumption
choice loses much of its appeal once preferences fail to be continuous. After all, the typical
motivation for working with a continuous setting is to facilitate the use of calculus. Continuity
of the value function is often a necessary condition for the application of calculus based
optimization techniques.3

We propose an extension of Strotz preferences that preserves continuity but allows for
violations of NC. The representation is based on our earlier work on self-control preferences (Gul
and Pesendorfer, 2001) and leads to continuous approximations without restricting the domain
of decision problems.

Theorem6 shows that self-control preferences can be used to approximate preferences with
representations discussed in the previous sections of this paper. The theorem establishes that for
any finite data-set (of observed choices), there exists a self-control preference over continuous
consumption choices and a discrete grid of consumption choices such that the revealed Strotz
preference and the restriction of the self-control preference to the grid are identical. Hence, the
class of self-control preferences described below and the Strotz preferences they approximate are
empirically indistinguishable and yet unlike the Strotz preferences the corresponding self-control
preferences have the desirable continuity properties.

The preference� is aself-control preferenceif � can be represented by the value function
W where

W(z1) := maxφ∈8

{
U (φT (z))+

∑T

t=1
Vt (φ

t (z1))−

∑T

t=1
maxψ∈8{Vt (ψ(φ

t−1(z1)))}

}
(SC)

for some continuous functionsU : DT
→ R, VT : HT−1 × D → R, Vt : Ht × D ×

Z̃t+1 → R for t < T . (Recall thatφ0(z1) = z1 for all z1 ∈ Z̃1.) Below we refer to
a preference that is represented byW satisfying (SC) as the self-control preference(U, V̄),
where V̄ = (V1, . . . ,VT ). Note thatW is well defined and continuous sinceU and each
Vt are continuous. The functionVt describes periodt temptation. In contrast to the weak
Strotz representation, the agent may choose alternatives in periodt that do not maximize
Vt . In that case,Vt − maxVt is the utility cost of self-control incurred in periodt . Hence,∑T

t=1 Vt (φ
t (z))−

∑T
t=1 maxψ∈8

{
Vt (ψ(φ

t−1(z)))
}

denotes the total utility cost of self-control.
Consider a finite set of consumptionsC such thatC ⊂ D and let Zt := K (C × Zt+1)

for t ≤ T . Thus elements ofZ1 are theT-period decision problems when all choices are
restricted to the finite setC. Let � be a preference defined onZ1 and assume that� is a weak

3. For this reasonHarris and Laibson(2001) restrict the set of decision problemsandutilize the strategic approach
to identify a parametric class of problems in which well-behaved optimal plans exist.
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Strotz preference. Theorem6 shows that there exists a self-control preference�
∗ defined onZ̃1

that coincides with� on Z1.

Theorem 6. Let � be a preference relation on Z1. If (U, V̄) is a weak Strotz
representation of�, then there existα > 0 and a self-control preference(U ′, V̄ ′) on Z̃1
such that(U ′, V̄ ′) coincides with� on Z1. Moreover, U′(c̄) = U (c̄) for all c̄ ∈ CT and
V ′

t (ηt+1) = αVt (ηt+1) for all ηt+1 in the domain of Vt .

Proof. SeeSection5.

The argument for Theorem6 is straightforward. Consider the weak Strotz preference(U, V̄)
and the self-control preference(U, αV̄) whereV̄ = (V1, . . . ,VT ) andαV̄ = (αV1, . . . , αVT ).
For a finite decision problem andα sufficiently large a plan that maximizes (SC) must be in
P∗(V̄), the set of consistent plans for̄V . This follows because forα large enough a plan that
maximizes (SC) must be optimal for eachVt . But in that case, the two representations yield
the same preference on the finite choice set. Extending this preference toZ̃1 yields the desired
self-control preference.

To illustrate how self-control preferences can be used to approximate a PP preference,
consider the standardβ−δ utilities in Example2:

Ut (c1, . . . , cT ) = u(ct )+ β
∑T−t

k=1
δku(ct+k)

for all t = 1, . . . , T and

U (c1, . . . , cT ) =

∑T

t=1
δtu(ct ).

Following Krusell, Kuruscu and Smith(2002) we can construct an approximating self-control
preference as follows. Let

WT (zT ) := maxc∈zT u(c)

and fort ≤ T − 1 let

Wt−1(zt ) := max(c,zt+1)∈zt {(1 + α)u(ct )+ δ(1 + αβ)Wt (zt+1)}

− max(c,zt+1)∈zt α(u(ct )+ βδWt (zt+1)). (SC∗)

The value functionW0 represents a self-control preference that satisfies monotonicity (provided
thatu is increasing), TCC, and continuity.4 However, it may not satisfy NC. Setting

Vt (c, zt+1) = u(c)+ βδWt (zt+1)

andW = W0 it is easily verified that (SC∗) is an example of the preferences defined in (SC).
Theorem6 implies that asα → ∞ the self-control preference described in (SC∗) approximates
theβ−δ preference described in Example2.

5. PROOFS

5.1. Theorems1 and2

Let�∗ be a complete and transitive binary relation defined onK (X), the set of non-empty subsets
of a finite setX. The preference�∗ satisfies NC if forA, B ∈ K (X), A∼∗ A ∪ B or B∼∗ A ∪ B.
Define the relationR�∗

on X as follows:x R�∗
x′ if {x}�∗{x′

} and{x, x′
}∼∗{x} or if {x}∼∗{x′

}

4. The parametrization (SC∗) was first used byKrusellet al. (2002).
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and {x′, x′′
}∼∗{x′

} implies {x, x′′
}∼∗{x}. Lemma 1 below is taken fromGul and Pesendorfer

(2001). It shows thatR�∗
is a preference relation whenever�∗ satisfies NC.

Lemma 1. If �∗ satisfies NC then R�∗
is a complete and transitive binary relation on X.

Proof. In the proof of Lemma1 we abbreviate the notation and writeR instead ofR�∗
.

First, we demonstrate thatR is complete. If{x} �∗ {x′
} thenx Rx′ or x′Rx by NC. Suppose that

{x} ∼∗ {x′
}, {x, x̄} ∼∗ {x} and{x′, x̄} �∗ {x′

} for somex̄. We need to show that{x′, x̂} ∼∗ {x′
}

implies{x, x̂} ∼∗ {x}. If {x̂} ∼∗ {x′
} then the result follows trivially from NC and transitivity of

�. Hence assume that{x̂} �∗ {x′
}. We know that{x, x′, x̄, x̂} ∼∗ {x′

} since both{x, x̄} ∼∗ {x′
}

and{x′, x̂} ∼∗ {x′
}. But then it must be that either{x′, x̄} ∼∗ {x′

} or {x, x̂} ∼∗ {x′
}. Since the

former indifference does not hold we have{x, x̂} ∼∗ {x′
} ∼∗ {x} as desired.

To prove transitivity, letx Rx′ and x′Rx̂. Assume that{x} �∗ {x′
} �∗ {x̂} �∗ {x}.

From NC it follows that{x, x′, x̂} ∼∗ {x, x′
} or {x, x′, x̂} ∼∗ {x′, x̂}. It also follows that

{x, x′, x̂} ∼∗ {x, x′
} or {x, x′, x̂} ∼∗ {x̂}. Therefore,{x, x′, x̂} ∼∗ {x}. Applying NC again,

we observe that{x, x′, x̂} ∼∗ {x, x̂} or {x, x′, x̂} ∼∗ {x′
}. Since{x, x′, x̂} ∼∗ {x} we may rule

out the latter case and conclude that{x, x̂} ∼∗ {x}. Since{x} �∗ {x̂} this impliesx Rx̂ as desired.
Next, assume that{x} ∼∗ {x′

} ∼∗ {x̂}. Then,{x̄, x̂} ∼∗ x̂ implies{x̄, x′
} ∼∗ {x′

} which in
turn implies{x̄, x} ∼∗ {x}. By transitivity of� we have that{x} ∼∗ {x̂} and hencex Rx̂.

Next, assume{x} ∼∗ {x′
} �∗ {x̂}. Since{x′, x̂} ∼∗ {x′

} it follows that{x, x̂} ∼∗ {x}. This
showsx Rx̂ since by transitivity{x} �∗ {x̂}.

Next, assume{x} �∗ {x′
} ∼∗ {x̂}. Then{x} �∗ {x̂} and hence it is sufficient to show that

{x, x̂} ∼∗ {x}. But {x, x′
} �∗ {x′

} implies{x, x̂} �∗ {x̂} and hence{x, x̂} ∼∗ {x}.
Finally, assume{x} ∼∗ {x̂} �∗ {x′

} then {x, x′
} ∼∗ {x} and {x′, x̂} �∗ {x̂} and hence

not x̂ Rxand by completenessx Rx̂. ‖

Lemma 2. Let �∗ satisfy NC. If W represents�∗ andv represents R�∗
, then W(A) =

maxx∈A W({x}) subject tov(x) ≥ v(x′) for all x ′
∈ A.

Proof. Let x∗ be a solution to maxx∈A W({x}) subject tov(x) ≥ v(x′) for all x′
∈ A. Note

thatz =
⋃

x′∈A{x∗, x′
} and sinceW represents NC preference�∗, we haveW(A) = W({x∗, x′

})

for some x′
∈ A. Since v representsR�∗

we haveW({x∗, x′
}) = W({x∗

}) and hence
W(A) = W{(x∗

}) = maxx∈A W({x}) subject tov(x) ≥ v(x′) for all x′
∈ A as desired. ‖

Proof of Theorem1. To prove that P and NC imply the existence of a weak Strotz
representation, note that sinceC and henceZ1 are finite, there exists a functionW that represents
�. By Lemmas1 and2, there existsVT (hT−1, ·) such that

W({hT−1, zT }) := maxc∈C W({hT−1, c})

subject toVT (hT−1, c) ≥ VT (hT−1, c
′) for all c′

∈ zT .

Similarly, for t = 1, . . . , T − 1, there existVt (ht−1, ·) such that

W({ht−1, zt }) := max(c,zt+1)∈zt W({ht−1, c, zt+1})

subject toVt (ht−1, c, zt+1) ≥ Vt (ht−1, c
∗, z∗

t+1) for all (c∗, z∗

t+1) ∈ zt .

Set V̄ = (V1, . . . ,VT ) andU (c1, . . . , cT ) = W({c1, . . . , cT }). Applying a standard dynamic
programming argument establishes

W(z1) = maxφ∈P∗(V̄)U (φT (z1))

as desired. The converse is straightforward and hence omitted.‖
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Proof of Theorem2. Let (U ′, V̄ ′) be a Strotz representation and let(c, zt+1) ∈ zt be a
choice fromzt after historyh ∈ Ht−1. We must show that(c, zt+1) is optimal for the canonical
representation(U, V̄).

Axiom NC implies that{h, c, zt+1} ∼ {h, {(c, zt+1), (c′, z′

t+1)}} for all (c′, z′

t+1) ∈ zt since
{h, c, zt+1} ∼ {h, zt }. If {h, c, zt+1} � {h, c′, z′

t+1} for all (c′, z′

t+1) ∈ zt thenVt (h, c, zt+1) >

Vt (h, c′, z′

t+1) for all (c′, z′

t+1) ∈ zt and the theorem follows.
If {h, c, zt+1} ∼ {h, c′, z′

t+1} for (c′, z′

t+1) ∈ zt and Vt (h, c′, z′

t+1) > Vt (h, c, zt+1)

then for some(ĉ, ẑt+1) we have {h, ĉ, ẑt+1} ∼ {h, {(c, zt+1), (ĉ, ẑt+1)}, {h, c′, z′

t+1}} ∼

{h, {(c′, z′

t+1), (ĉ, ẑt+1)}} and {h, c, zt+1} � {h, ĉ, ẑt+1}. If {h, c, zt+1} � {h, ĉ, ẑt+1} then
it follows that V ′

t (h, c
′, z′

t+1) ≥ V ′
t (h, ĉ, ẑt+1) > V ′

t (h, c, zt+1) contradicting the fact that
(c, zt+1) is chosen fromzt . If {h, ĉ, ẑt+1} � {h, c, zt+1} then it follows thatV ′

t (h, c
′, z′

t+1) >

V ′
t (h, ĉ, ẑt+1) ≥ V ′

t (h, c, zt+1) again contradicting the fact that(c, zt+1) is chosen fromzt .
HenceVt (h, c′, z′

t+1) ≤ Vt (h, c, zt+1) for all (c′, z′

t+1) with {h, c, zt+1} ∼ {h, c′, z′

t+1}. But this
implies that(c, zt+1) is an optimal choice fromzt for the canonical representation.‖

Proof of Theorem3. SupposeC1, . . . , CT all satisfy Axiom H. Then, there existsVt such
thatVt (h, c, zt+1) ≥ Vt (h, c′, z′

t+1) if and only if (c, zt+1) ∈ Ct (h, {(c, zt+1), (c′, z′

t+1)}). Define
U : CT

→ R so thatU (·) represents the restriction of� to consumption paths. That is,
U (c̄) ≥ U (c̄′) iff {c̄} � {c̄′

}. Then, defineW inductively by settingW({h, zT+1}) = U (h)
and

W({ht−1, zt }) := max(c,zt+1)∈zt W({ht−1, c, zt+1})

subject toVt (ht−1, c, zt+1) ≥ Vt (ht−1, c
∗, z∗

t+1) for all (c∗, z∗

t+1) ∈ zt

for all t < T . Then, IRA implies thatW and hence(U, V̄), whereV̄ = (V1, . . . ,VT ) represents
�. ‖

Proof of Theorem4. That � satisfies NC and TCC if it is a PP preference is obvious.
To prove the converse, note that by Theorem2, there exists a weak Strotz representation
(U,V1, . . . ,VT ) of �. Let Ut (c̄) = Vt (c̄) for all c̄ ∈ CT andŪ = (U1, . . . ,UT ), where we
identify c̄ with the decision problem in which the agent is committed to the consumption pathc̄.
Recall the definitions ofW andVt ’s from Theorem2 and Lemma1. In order to avoid having to
make separate statements for the cases oft = T andt < T , let (cT , zT+1) denote(cT ).

First, we prove that for allt ≤ T − 1,

W(ht−1, c, zt+1) ≥ W(ht−1, c, z
′

t+1) iff

Vt (ht−1, c, zt+1) ≥ Vt (ht−1, c, z
′

t+1).
(3)

If W(ht−1, c, zt+1) > W(ht−1, c, z′

t+1) then TCC implies{(ht−1, c, zt+1), (ht−1, c, z′

t+1)} ∼

{(ht−1, c, zt+1)} establishing thatVt (ht−1, c, zt+1) > Vt (ht−1, c, z′

t+1). If W(ht−1, c, zt+1) =

W(ht−1, c, z′

t+1) let (ht−1, c, z′′
t ) satisfy {(ht−1, c, zt+1), (ht−1, c, z′′

t )} ∼ {(ht−1, c, zt+1)}.
If {(ht−1, c, z′′

t )} ∼ {(ht−1, c, zt+1)} then {(ht−1, c, z′

t+1), (ht−1, c, z′′
t )} ∼ {(ht−1, c, z′

t+1)}

by NC. On the other hand, if{(ht−1, c, z′′
t )} � {(ht−1, c, zt+1)} then we have by TCC

that {(ht−1, c, zt+1), (ht−1, c, z′

t+1), (ht−1, c, z′′
t )} ∼ {(ht−1, c, z′′

t ), (ht−1, c, z′

t+1)} and by NC
{(ht−1, c, zt+1), (ht−1, c, z′

t+1), (ht−1, c, z′′
t )} ∼ {(ht−1, c, z′

t+1)} follows, establishing that

{(ht−1, c, z
′

t+1), (ht−1, c, z
′′
t )} ∼ {(ht−1, c, z

′

t+1)}.

That is, Vt (ht−1, c, z′

t+1) ≥ Vt (ht−1, c, zt+1). Then, Vt (ht−1, c, z′

t+1) = Vt (ht−1, c, zt+1)

follows from a symmetric argument. We have therefore established (3).
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Next, we observe that, for allt ≤ T − 1,

Vt (ht , zt+1) = max(ct+1,zt+2)∈zt+1 Vt (ht , ct+1, zt+2)

subject toVt+1(ht , ct+1, zt+2) ≥ Vt+1(ht , c
′

t+1, z
′

t+2)
(4)

for all (c′

t+1, z
′

t+2) ∈ zt+1. To see this, note that

W(ht , zt+1) = max(ct+1,zt+2)∈zt+1 W(ht , ct+1, zt+2)

subject toVt+1(ht , ct+1, zt+2) ≥ Vt+1(ht , c
′

t+1, z
′

t+2)
(5)

for all (c′

t+1, z
′

t+2) ∈ zt+1 follows from the definition ofW andVt+1. Then, (3) and (5) yield (4).
It follows from (4) (and induction) that

Vt (ηt+1) = maxφ∈Pt+1(Ū )
Vt (φ

T (ηt+1)). (6)

To conclude the proof we show by induction that

W(ηt ) = maxφ∈Pt (Ū )Ut (φ
T (ηt )) (7)

for all t ≤ T andηt ∈ Nt . For t = T , (7) follows from (4) and the fact thatUT = VT . Suppose
that the result is true fort + 1. Then, (7) follows from (4)–(6) and our induction hypothesis. ‖

Proof of Theorem5. Let 1t denote thet-period historyh = (1, . . . ,1). Let a,b ∈ (0,1)2

denote consumption vectors for periodsT − 1 andT . By local preference for commitment there
exista,b ∈ (0,1)2 such that

UT−2(1T−2,a) < UT−2(1T−2,b) and UT−1(1T−2,a) > UT−1(1T−2,b).

Also by local preference for commitment, we can choosec1, c2 ∈ (0,1] andb1,b2
∈ (0,1)2

such that

UT−3(1T−3, c1,b
1) > UT−3(1T−3, c2,b

2) and

UT−2(1T−3, c1,b
1) < UT−2(1T−3, c2,b

2).

Moreover, we can chooseb1 andb2 arbitrarily close tob andc1, c2 arbitrarily close to 1. Hence,
by the continuity ofUT−2 we can choosec1, c2,b1,b2 such that

UT−2(1T−3, c2,b
2) > UT−2(1T−3, c1,b

1) > UT−2(1T−3, c2,a) and

UT−1(1T−3, c2,b
2) < UT−1(1T−3, c2,a).

By monotonicity, there existsλ ∈ (0,1) such that

UT−1(1T−3, c2,b
2) = UT−1(1T−3, c2, λa).

Of course, we still have

UT−2(1T−3, c2,b
2) > UT−2(1T−3, c1,b

1) > UT−2(1T−3, c2, λa).

By continuity and monotonicity, forε > 0 sufficiently small, there exists a uniqueγ (ε) ∈ (0,1)
such that

UT−1(1T−4,1 − ε, c2,b
2) = UT−1(1T−4,1 − ε, c2, γ (ε)a)− ε

UT−2(1T−4,1 − ε, c2,b
2) > UT−2(1T−4,1 − ε, c1,b

1) > UT−2(1T−4,1 − ε, c2, γ (ε)a)

UT−3(1T−4,1, c2,b
2) < UT−3(1T−4,1 − ε, c1,b

1).

Chooseα > 0 small enough such that for allε ∈ (0, α] there existsγ (ε) satisfying all of the
above (in)equalities. Note thatγ (·) is a continuous function and limε→0 γ (ε) = λ.
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For ε ≤ α, let zT−1(ε) denote the decision problem in which the decision-maker chooses
betweenb2

∈ (0,1)2 and γ (ε)a ∈ (0,1)2 in period T − 1. Let z∗

T−1 denote the decision
problem that commits the agent to the consumptionb1

∈ (0,1)2 for the last two periods. Let
zT−2(ε) = {(c2, zT−1(ε))} andz∗

T−2 = {c1, z∗

T−1}. Finally define

zT−3(ε) = {(1 − ε, zT−2(ε) ∪ z∗

T−2 | ε′ ∈ [0, ε]}.

Sinceγ is continuous and[0, ε] is compact,zT−3(ε) ∈ Z̃T−3. It is easy to verify that by
choosing anyε′ ∈ (0, ε] in period T − 3 the decision-maker ends up with the consumption
path(1T−4,1 − ε′, c1,b1) while by choosingε′ = 0 he/she ends up with(1T−3, c2,b2). Hence,
no optimal choice exists for the decision-maker in periodT − 3. ‖

Proof of Theorem6. Define

Ũht = maxC×Zt+1 U (h, c, zt+1)− minC×Zt+1 U (h, c, zt+1)

and defineŨ = maxt maxHt Ũht. Let

Vt = min(C×Zt+1)×(C×Zt+1){Vt (h, c, zt+1)− Vt (h, c
′, z′

t+1)}

subject toVt (h, c, zt+1) > Vt (h, c
′, z′

t+1)

and letV = mint minHt Ṽht. Chooseα so thatαV > Ũ . Then, a simple inductive argument
ensures that for allz1 ∈ Z1, the set of solutions to

maxφ∈8

{
U (φT (z1))+

∑T

t=1
αVt (φ

t (zt ))−

∑T

t=1
maxψ∈8{αVt (ψ(φ

t−1(z1)))}

}
coincides with the set of solutions to

maxφ∈P∗(V̄)U (φT (z1)).

Therefore, the self-control preference(U, αV1, . . . , αVT ) represents the weak Strotz preference
(U,V1, . . . ,VT ) on Z1.

It remains to show that we can extend the self-control preference(U, αV1, . . . , αVT ) to
Z̃1. Since Z1 is finite, continuous extensions of the functionsU, αV1, . . . , αVT to Z̃1 are
possible. ‖
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