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MEASURING PLAYERS’ LOSSES IN
EXPERIMENTAL GAMES*

DrREW FUDENBERG AND DAvID K. LEVINE

In some experiments rational players who understand the structure of the
game could improve their payoff. We bound the size of the observed losses in sev-
eral such experiments. To do this, we suppose that observed play resembles an
equilibrium because players learn about their opponents’ play. Consequently, in
an extensive-form game, some actions that are not optimal given the true distri-
bution of opponents’ play could be optimal given available information. We find
that average losses are small: $0.03 to $0.64 per player with stakes between $2
and $30. In one of the three experiments we examine, this also implies a narrow
range of outcome.

I. INTRODUCTION

Some observations in experimental games clearly involve
“losses,” in that they are not consistent with the hypotheses that
players understand the structure of the game and act to maxi-
mize the payoff function specified by the experimental design. For
example, some players refuse positive offers in the ultimatum
game even though this means that the game ends and they get
nothing. However, there are other cases where whether an action
is a “mistake” from the viewpoint of maximizing dollar payoff de-
pends on what information the players are assumed to have when
making their decisions.

This paper develops a theoretical tool for analyzing and re-
porting the extent of monetary losses that tries to reflect the in-
formation available when decisions are made. Our approach
combines two theoretical ideas. The first is the relaxation of exact
optimization to optimization with small losses, which leads us to
study e-equilibrium, a concept introduced by Radner [1980]. Sec-
ond, rather than treating Nash equilibrium or one of its refine-
ments as an implication of the hypothesis that players are
rational, we suppose that the reason observed play resembles an
equilibrium is that players learn about their opponents’ play
through repeated observations. As noted by Fudenberg and Kreps
[1988], a player need not learn how an opponent would respond
to an action that has never been taken. Consequently, from the
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viewpoint of learning theory, the appropriate solution concept is
not Nash equilibrium, but rather the self-confirming equilibrium
we introduced and characterized in Fudenberg and Levine
[1993].

We will argue that some observations that might seem vo in-
volve monetary losses are in fact consistent with players maxi-
mizing their expected monetary payoffs under beliefs that
incorporate the sort of off-path prediction errors permitted by
self-confirming equilibrium, and that self-confirming equilib-
rium is more appropriate and more useful than Nash equilibrium
for analyzing game theory experiments. Of course, actions that
lead to lower monetary payoffs regardless of opponents’ play, such
as refusing positive offers in the ultimatum game, cannot be ra-
tionalized by prediction error. Such observations can only be ex-
plained as a result of the players being “irrational” in the sense
of not maximizing the monetary payoffs specified in the experi-
mental design. Thus, we know from the outset that even the prop-
erly measured monetary losses are not always zero; our interest
is in measuring the average losses in various experiments.

More formally, we try to compute the minimum loss required
to explain the experimental observations, where the minimum is
over all beliefs that are consistent with the players’ information
and all mixed strategies consistent with observed behavior strat-
egies. These minimizations arise because, in the experiments we
examine, the experimenters observe neither the subjects’ beliefs
nor their full contingent strategies.! Our analysis is based on the
aggregate distribution of subject’s play in each period, as opposed
to the play of individual subjects, so that we identify all individu-
als who play the same actions in a given round of the experiment.
We compare this approach with the study of the round-by-round
play of individual players in Section III.

Our approach is to look at an ex ante loss averaged over all
contingencies. It is important to emphasize that a measure of the
largest contingent loss would yield a very different picture. For
example, in the centipede experiments we study, in the final move
some subjects choose to give up a certain gain of $1.60. Since this

1. Some experiments have required subjects to prespecify complete contin-
gent strategies, as, for example, Selten [1967]. This experimental design is not
widely used, perhaps because games rarely present themselves this way in prac-
tice. Also, some experiments have asked players to report their beliefs about the
opponents’ play, either at the time of play or ex post; see Harrison [1991] for a
review.
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happens in a relatively small fraction of the games that are
played, it makes a small contribution to the average loss as we
measure it.

Using our approach, we measure the average losses in a
number of experiments in the literature. We look for regularities
in the losses: are they roughly constant, or do they vary in a sys-
tematic way? We also ask whether the theoretical concept of
e-self-confirming equilibrium is a useful tool for analyzing and
predicting experimental play. More specifically, in games where
the play resembles a stronger equilibrium concept, is this because
the same size distribution of losses leads to a smaller set of -self-
confirming outcomes?

In the experiments that we have examined, the average loss
of a player is small in absolute terms: $0.03 to $0.64 per player
in games involving stakes between $2 and $30, and where the
maximum possible loss ranged from $0.80 to $5. As the stakes in
the game are increased, the losses tend to increase at roughly
the same rate, indicating that the types of mistakes made do not
change as more money (up to four times as much in one case) is
involved. As a benchmark, we also estimate the losses computed
according to the Nash theory where players are supposed to have
correct beliefs, even about play at information sets that they have
never seen played. As a matter of definition, these Nash losses
cannot be smaller than the self-confirming losses described
above. Moreover, with one exception, these losses were four or
more times as large as the self-confirming losses, showing that
off-path errors can explain most of them.?

How does our approach differ from previous analyses of ex-
perimental data? In the case of simultaneous-move games, where
the issue of off-path prediction errors does not arise, Harrison
[1989] argued that the cost of player errors is a useful metric for
measuring departures from the theory. In a series of experiments
with sealed-bid auctions, Harrison showed that for stakes on the
order of $5, losses per player game were on the order of several
cents. These stakes and losses are similar to the types of losses
we find in the extensive-form game experiments we analyze. No-

2. The exception was the full-information treatment of the best-shot game,
where the two losses were almost identical because play closely resembled that of
a Nash equilibrium. The best-shot game has the interesting property that the set
of approximate self-confirming equilibria is quite small. However, this fact on its
own does not imply that the Nash and self-confirming losses are similar, for in
the partial information treatment of the' game the Nash losses were again about
four times as large as the self-confirming ones.
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tice also that it is consistent with our theory: in the case of simul-
taneous-move games the theory of self-confirming equilibrium
predicts the same outcomes (and same losses) as Nash
equilibrium.

We should, however, distinguish our program from the argu-
ment that the observed losses are small enough to be ignored.
This latter view, expressed most forcefully in Harrison [1992],
says that observed departures from rational play are not surpris-
ing given the small stakes used in most experiments, and sug-
gests that observed play would be closer to the predictions of
standard theory if the stakes were substantially increased. While
it may be that losses, properly measured, will shrink in relative
size as the payoff scale grows, our concern is with the prior ques-
tion of measurement. Moreover, we think it is interesting to de-
velop tools for analyzing the outcomes of experiments with the
stakes that are commonly used, even if these stakes give greater
prominence to nonmonetary considerations.

There is also a substantial methodological difference be-
tween our work and previous work on extensive-form games. At-
tempts to reconcile experimental data with game-theoretic
predictions, such as the “homemade priors” (that an opposing
player’s payoffs are different than those specified in the experi-
mental design) used by Camerer and Weigelt [1988] and McKel-
vey and Palfrey [1992], proceeded on a case-by-case basis that
seems difficult to generalize to other games, or to formalize in a
standard way. Two different researchers might propose different
forms of homemade priors, and then estimate different propor-
tions of irrational types.® In contrast, we propose an algorithm
for computing the distribution of losses by the players that can
be applied to any game.

II. THE ENVIRONMENT

We study games with I players; the game tree X, with nodes
x € X is finite. Terminal nodes are z € Z. For notational conve-
nience we represent nature by player 0. Information sets, de-

3. However, see Harrison and McCabe [1992] and Roth and Schoumaker
[1983] for experiments designed to control the homemade priors. Harrison and
McCabe’s design showed that giving players in a three-stage bargaining game
experience playing the subgame corresponding to the last two stages resulted in
outcomes more like the s %game perfect equilibria. This can be interpreted as
showing that the divergence of the outcomes from subﬁ me-perfection when play-
ers are not given this experience is due to their having incorrect (but self-
confirming) beliefs about off-path play.
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noted by 2 € H, are a partition of X\Z. The information sets
where player i has the move are denoted by H, C H; information
sets belonging to nature 2 € H, are singletons. The feasible ac-
tions at information set 4 € H are denoted A(h). We generally use
—i for all players except player i, so that, for example, H_; are
information sets for all players other than i.

A pure strategy for player i, s, is a map from information
sets in H, to actions satisfying s,(k,) € A(h,)); S, is the set of all
such strategies. Mixed strategies are o, € Y, the mixed strategy
o, represents any random moves by “Nature.” We generally omit
subscripts to represent Cartesian products, so that for example 3,
= X,2.. Each player except nature receives a payoff r(z) that
depends on the terminal node.

In addition to mixed strategies, we define behavior strategies
@, € II,. These are probability distributions over actions at each
information set for player i. From Kuhn’s theorem there is an
equivalent behavior strategy for any given mixed strategy o;; de-
note this by (-1 0,). For any given profile of behavior strategies
T, it is also useful to define the induced distribution over terminal
nodes p(w). We will also use the shorthand notation p(c) =
p(Fr(0)).

Since we assume that all players know the structure of the
extensive-form, their own payoff function, and the probability
distribution over nature’s moves, the only uncertainty each
player faces concerns the strategies opponents will use. To model
this “strategic uncertainty,” we let w, be a probability measure
over II_, the set of other players’ behavior strategies. For any
such beliefs, we may, in the obvious way, compute the expected
utility u (s, ).

For any mixed profile o, we let H(¢) C H be the information
sets that are reached with positive probability when o is played.
Note that this set is entirely determined by the distribution over
terminal nodes p, so we may equally well write H(p). For any sub-
set J C H and any profile ¢, we may define the subset of behavior
strategies consistent with players other than i playing o_; at the
information sets in J by II_,(o_,|J) = {w_ 1w (h) = 7(h;l0)), Vj
#i,h, € H ;ndJ}. ,

Nash equilibrium is usually defined as a strategy profile such
that each player’s strategy is a best response to his or her oppo-
nents. For our purposes, though, it is instructive to give an
equivalent definition that parallels the way in which we will de-
fine self-confirming equilibrium.
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DEFINITION 1. A Nash equilibrium is a mixed profile o such that
for each s; € supp(o,) there exist beliefs p, such that

* ufs;lp)=uls) ) foralls; €S,
and
e w (o |H) =1

In this definition the first condition requires that each player’s
strategy be optimal given his beliefs about the opponents’ strate-
gies. The second requires that each player’s beliefs are correct at
every information set.* However, if player i continually plays o,,
he will only observe opponents play at information sets in H(c),
and will not learn about his opponents’ play at other information
sets. For learning to yield a Nash equilibrium, players must not
merely learn passively, but must learn actively by experimenta-
tion; that is, play actions that do not maximize their current ex-
pected payoff in order to gain information that may be useful in
the future. Unless they are very patient and will have many op-
portunities to play the same game, they will have no incentive to
do this. This suggests the following weaker equilibrium concept:

DEFINITION 2. A unitary self-confirming equilibrium is a mixed
profile o such that for each s, € supp(o), there exist beliefs p,
such that

* u,(s;lp) =uls/Ip)foralls €8,
and
e w(I_(o_,H(o)) = 1.

Here it is assumed only that player i is correct in his beliefs at
information sets that are actually observed. Fudenberg and Lev-
ine [1993] showed that unitary self-confirming equilibrium has
the same outcomes as Nash equilibrium in two-player games, and
that the two concepts are also equivalent in multistage games
with more than two players, provided that beliefs satisfy an addi-
tional independence condition.?

The experiments we examine use a matching design in which
there is a population of subjects in each role (“player 1,” “player

4. Note that the fact that beliefs are correct forces all players to share the
same (correct) beliefs, even though the notation allows each player to have differ-
ent beliefs. )

5. Note that the independence condition is moot in two-player games.
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2,” and so forth). Individual subjects are matched each period
against different individuals in the other role, and each subject
observes the outcomes of play in his or her own matches, but does
not observe the hypothetical off-path play of the opponents nor
the outcomes of play in other matches.® In such a setting, there
is no reason that two subjects assigned the same player role
should have the same prior beliefs. If subjects draw from a large
common pool of observations, we might expect them to have the
same posterior beliefs; and indeed, we might expect that subjects
who have repeatedly played the same pure strategy will have
learned the consequences of doing so. However, given that sub-
jects only observe the outcomes in their own matches, if two sub-
jects have always played different pure strategies, their beliefs
may remain different.” This motivates the following weaker no-
tion of self-confirming equilibrium:

DEFINITION 3. A heterogeneous self-confirming equilibrium is a
mixed profile ¢ such that for each s, € supp(c,) there exist
beliefs p,; such that

* uls;lp) =uls/ ) foralls; €S,
and
. p,i(H_i((r_iII_I(si, o ) =1

This definition allows different beliefs ., to be used to rationalize
each pure strategy s, in the support of ¢,, and allows the beliefs
that rationalize a given s, to be mistaken at information sets that
are not reached when s; is played, but are reached under a
different s/ also in the support of o,. Figure I gives a simple ex-
ample from our [1993] paper showing how this allows outcomes
that cannot arise with unitary beliefs. Since this is a two-player
multistage game, Nash equilibrium and unitary self-confirming
equilibrium yield the same outcomes. The game has two types of
Nash equilibria: the subgame perfect RU and the equilibria in
which player 1 plays L and player 2 plays D at least 50 percent
of the time. However, there is no Nash equilibrium in which
player 1 randomizes between L and R. There is, however, a het-

6. The random-matching design avoids the “repeated game” effects that can
arise if the same individuals face each other in subsequent rounds.

7. On the other hand, we would expect all players to eventually have the
same beliefs if they observe the aggregate distribution of outcomes in the whole
population. This information condition has been used in some experiments; see
Camerer and Weigelt [1988].



514 QUARTERLY JOURNAL OF ECONOMICS
31

U
D

FiGure I
Selten Game Used to Illustrate Self-Confirming Equilibrium

1,0)

erogeneous self-confirming equilibrium in which player 1 does
randomize: player 2 plays U, and while those player 1’s that play
R know this, those who play L incorrectly believe that player 2
would play D.®

ITII. MEASUREMENT OF LOSSES

The main purpose of this paper is to propose a method for
reporting the distribution of losses in experimental games. To
avoid potential confusion, we should make it clear at the outset
that we will not propose and test a particular econometric model.
Rather, we propose an accounting convention that has some par-
tially arbitrary features. Our hope is that this way of looking at
experimental data will prove useful in identifying empirical
regularities.

Our analysis takes as data the frequency with which particu-
lar terminal nodes are reached, which is a commonly used
method of summarizing observed play in experimental studies of
extensive-form games. We will follow the common practice of con-
centrating attention on data from the “last few” rounds of the
experiment, so that subjects will have had some chance to learn
their opponents’ strategies, and the play is more likely to have
converged.? Moreover, our analysis implicitly presumes that play
has converged, so that each subject is repeatedly using the same

8. Notice in this example that the heterogeneous self-confirming equilibrium
is equivalent to a public randomization over Nash equilibria. This can be shown
to be the case generally in games of perfect information. However, Fudenberg and
Levine [1993] give an example of a two-player two-period game in which an action
is played with positive probability in a self-confirming equilibrium that is not
played in any Nash or indeed even correlated equilibrium.

The prevalence of this practice among experimental economists suggests
that they tend to subscribe to learning or some other adaptive process as the
explanation for equilibrium, as opposed to explanations based on common knowl-
edge of rationality.
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strategy. However, the strategies of the individual subjects need
not be revealed by the aggregate distribution of play: for example,
the distribution (1/2 L, 1/2 R) results if each subject mixes with
equal probability on L and R, and also if half the subjects always
play L while the other half always plays R.*°

Under different assumptions about how much subjects know
about the true distribution over terminal nodes, we compare the
amount of money that players actually made with the amount
of money that they could have made. (Roughly speaking, we are
measuring the size of € in an e-equilibrium.') We focus on the
monetary payoffs because they, unlike the players’ “true” utility
functions, are clearly specified in the experimental design. Our
goal is not to test the obviously false null hypothesis that all sub-
jects act to maximize monetary payoffs, as in some cases players
clearly “give away” nontrivial amounts of money . Rather we will
try to measure the extent of their losses, in an effort to uncover
empirical regularities, and ideally to develop predictions about
play in future experiments.!?

We should emphasize that we do not try to explain the pat-
terns in such departures from maximizing monetary payoffs.
There have been a number of interesting attempts to develop “be-
havioral” theories that explain these departures, based on, for
example, ideas of fairness, altruism, and spite. Our concern here
is on what we see as the logically prior question of measuring the
frequency of such “irrational” (nonmoney-maximizing) play. In
our view, observations that can be explained as the result of play-
ers trying to maximize their dollar payoffs should in general be
explained in that way, so that the appropriate goal of the behav-
ioral theories is to explain the “epsilons” that this paper
measures.

10. In the sequel our presumption will be that every player uses a pure strat-
egy, and that the distribution of p]l)ay arises because different individuals use dif-
ferent strategies. See Ochs [1994] for an attempt to test whether subjects will use
“mixed” (actually interior) strategies when asked to choose the proportion of time
they will use each action over the next ten rounds.

11. Note that e-equilibria may look very different than exact equilibria, even
for small &: see, for example, Radner’s [1980] work on finite repeated oligopoly
and the work of the gang of four [Kreps and Wilson 1982; Milgrom and Roberts
1982] on reputation.

12. This use of dollar losses as a metric is common in the literature on market
experiments; see the discussion in Davis and Holt [1993] and the references cited
therein. Davis and Holt also discuss experimental designs intended to control for
risk aversion (such as Roth and Malouf [1979]) and designs intended to measure
the preference for fairness as opposed to other concerns in certain bargaining
games.
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To avoid confusion, we should also emphasize that, although
the measured losses are small in the experiments we analyze
here, our method is valid in any game, including those where
measured losses seem likely to be large, such as the voluntary-
contribution experiments of, e.g., Andreoni [1988] and Isaac and
Walker [1988].

We should also point out that experiments contain (and some
experimenters report) more detailed information than the distri-
bution over terminal nodes, namely the period-by-period play of
each individual subject. A number of studies have examined these
data.'® The general conclusion seems to be that theories of learn-
ing do much better at predicting aggregate play than individual
play. In particular, the play of individual subjects can follow sub-
optimal rules-of-thumb quite rigidly, even when the aggre-
gate distribution resembles a Nash equilibrium. Our goal in this
paper is to examine the extent to which the theory fails in pre-
dicting aggregate play, in instances where aggregate play fails to
resemble a Nash equilibrium.' This is not to suggest that under-
standing the period-by-period play of individual subjects is unim-
portant, although from the point of view of applying the theory
outside of the laboratory, the most easily used prediction of the
theory is that of the aggregate play.

We note that our approach of focusing on the distribution
over terminal nodes both overstates and understates losses. The
heterogeneous calculation overstates losses in that typically a
subject will have played some strategies other than the one cur-
rently being played. The unitary version understates losses in
that a subject will typically not have played some strategies that
have been tried by other subjects of the same player type. More-
over, both calculations ignore the fact that individuals may have
too small a sample from the distribution over terminal nodes to
be confident that they have learned their opponent’s response,
even if the subject has chosen the same action in every round of
the experiment. (This problem is particularly acute if the oppo-
nent’s strategy is mixed, for then the observations may have a
large variance.)

13. Hey and Orme [1994], Brown and Rosenthal [1990], O’Neill [1987], Mook-
erjhee and Sopher [1994], Crawford [1995], Majure [1994], and McKelvey and
Palfrey [1992] are examples of such studies.

14. Our impression is that individual play exhibits some of the same incon-
sistencies with our theory that it does with more standard theory in cases in
which the aggregate distribution does resemble a Nash equilibrium.
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Let us denote by p the probability distribution over terminal
nodes that corresponds to the empirical frequency in a particular
experiment. Our goal is to define, for each of the three observa-
tion functions J corresponding to heterogeneous self-confirming,
unitary self-confirming, and Nash equilibrium, the expected loss
g,(J(-),p).

For any given pure strategy and beliefs, there is a clearly
defined loss relative to those beliefs that we denote by &, (sl,p,,)
max, uls; | w,) — ufs;| n,). However, the experiments we examine
did not collect data on either the subjects’ beliefs or their strate-
gies.'® Our approach is to be as charitable as possible, in the sense
of looking for the smallest departure from utility maximization
that is required to explain the observations. Thus, if the observed
distribution of play can be generated by a unitary self-confirming
equilibrium, we will set the “unitary loss” to be zero. Likewise,
if the observed distribution corresponds to a heterogeneous self-
confirming equilibrium, we set the heterogeneous loss equal to
Zero.

More generally, for a given distribution p and information
function J, we look for the mixed strategy profile o and beliefs for
the players p that minimize the resulting average loss over all
strategies and beliefs consistent with p and J. In the unitary case,
for a given mixed strategy profile o, this requires finding for each
player i the beliefs p, that minimize i’s loss over all beliefs that
are correct on H(o). In the heterogeneous case, when a player i is
observed to play s, we require only that the player has correct
beliefs about opponents’ play at all information sets in H(s,,0_,),
so that the loss-minimizing beliefs p(s,) may depend on i’s strat-
egy s,. This leads to the following definition of the average loss
for the information functions JJ(-) corresponding to heterogeneous
and unitary beliefs:

&(J0,p) = min_, (% e(s,u,(s))0,(s)})
subject to
wd (o, 1J(s,0) =1, plo) = p.

In the heterogeneous case this minimization implies that each
subject is playing a pure strategy, as this minimizes the amount
of information that each subject has. Thus, the mixture over

15. See footnote 1.
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strategies is attributed entirely to different subjects of the same
type playing in different ways.16

As a practical matter, the minimization in the definition of
g(J(-),p) is most easily accomplished in two stages. First for each
pure strategy s, we find the beliefs that yield the smallest loss:

€(s,J0),p,0) = min,, £(s,1,)
such that
p) = p, w{Il(o,lJ(s,0)) = 1.

Although this definition involves a minimization over o, that
minimization is moot: the beliefs that opposing players will coor-
dinate to minmax player i off of J(s,,0) will obviously minimize
the loss from playing s, and the set J(s,,0), and hence the loss-
minimizing beliefs are the same for every o such that p(o) = p.
Thus, we can refer instead to the loss as ¢(s,,J(-),p). Averaging
over the pure strategies with the frequencies given by o, then
yields

g(J0,p) = minou‘xa)=pzsiei(si’J(')’p)Gi(si)-

The practicality of computing average losses using this two-
step procedure depends on the number of pure strategies avail-
able to players. In games with several stages, the number of pure
strategies can quickly become overwhelming. For this reason, it
is useful to note that if there is a player who does not have a move
prior to a subgame the computation of losses can be simplified.
We separately compute the loss in the subgame and in the game
in which the subgame is replaced with a zero utility for that
player. We then average these losses together with the probabil-
ity that subgame is (or is not) reached. In particular, in a game
in which player 1 moves, player 2 moves, then the game ends, we
may compute player 2 losses by computing the difference between
his actual and optimal strategy for each player 1 move, then aver-

16. In the two-player case Nash and unitary self-confirming equilibria are
observationally equivalent [Fudenberg and Levine 1993] so this results in exactly
the same calculation as in the unitary case, and throughout this paper we con-
sider only two-player games. In games with three or more players there is a sig-
nificant complication: pairs of players are constrained to agree about the off-path
behavior of a third player, which can imply that the losses attributed to the vari-
ous players are linked in a complicated way that we do not know how to handle.
Fortunately, there is a large class of games called games with identified deviators
[Fudenberg and Levine 1993], in which players cannot disagree in a meaningful
way about the strategy followed by a third player.
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aging over player 1 moves, weighted by the probability that
player 1 assigns to those moves.?’

IV. Tue CENTIPEDE GAME

The first experiment we analyze is the Centipede game ex-
periment conducted by McKelvey and Palfrey [1992]. There were
several versions played. The base case extensive-form is the per-
fect information game shown in Figure II. This game has a
unique self-confirming equilibrium; in it player 1 with probability
1 plays T, (drops out). Naturally this is also the unique subgame-
perfect equilibrium. The uniqueness of the self-confirming equi-
librium may be proved recursively.'®

We will now compute the unitary and heterogeneous losses
implied by the observed outcomes specified by the square brack-
ets in the figure. Since there are a small number of pure strate-
gies in this game, the computations are fairly straightforward.

In the unitary case we observe that every information set is
reached in a positive fraction of the time. Consequently, the uni-
tary loss must computed assuming that players know their oppo-
nent’s play at every information set, and so is measured relative
to the optimized payoff against the true distribution. For player
1 this is to play P,, for an expected payoff of $1.02;*° for player 2
this is to play 7', which also, by coincidence, has an expected pay-
off of $1.02. So to compute the unitary losses, for each pure strat-
egy we subtract the expected utility of that strategy against the
empirical distribution of opponents’ play from $1.02. This is re-
ported in the “Unitary” column of Table I. The empirical frequen-
cies of the pure strategies are noted in the Frequency column,
and the overall loss is computed by averaging the loss to each
pure strategy over pure strategies. This leads us to compute the
average unitary losses to be ($0.12,$0.17)

In the heterogeneous case the strategies T, and T, that “drop
out” early have 0 loss, because a player who drops out early can
believe that the opposing player would take (play T) in the next

17. A formal proof was given in an earlier draft of this paper [Fudenberg and
Levine 1995].

18. If the final node is reached with positive probability, player 2 drops out.
This implies that if the next to last node is reached with positive probability and
player 1 stays in he will find out that player 2 is dropping out. Hence, player 1
must drop out if the next to last node is reached with positive probability, implying
that the final node is not reached, and so forth.

s 19. The payoff to P, is .0.49%$0.20 + 0.51*0.82*0.80 + 0.51*0.18%*$6.40 =
1.02.



520 QUARTERLY JOURNAL OF ECONOMICS

P P P P
Q}[OE}Z]’@[0.521]’@[0.235]@[0_1“3]*(356‘40,3%1 .60)

T,[0.08]  T,[049] TJ075]  T,0.82]

($0.40,$0.10)($0.20,$0.80)($1.60,$0.40)($0.80,$3.20)

Ficure II
Palfrey and McKelvey’s Centipede Game:

Numbers in square brackets correspond to the observed conditional probabili-
ties of play at each information set in rounds 6-10, stakes 1x.

TABLE I
OUTCOMES AND LOSSES IN THE CENTIPEDE GAME BASE CASE
Pure

Player strategy Unitary Heterogeneous Frequency
i s; £(s,J(),p) £(s,,J(),p)

1 T, $0.62 $0.00 .08
1 T, $0.11 $0.00 .69
1 P, $0.00 $0.00 .23
2 T, $0.28 $0.00 49
2 T, $0.00 $0.00 42
2 P, $0.37 $0.37 .09

round. The only loss is the loss to the strategy P,, which loses
$1.60 irrespective of beliefs about the opponent’s play.?° The aver-
age heterogeneous losses are then calculated to be ($0.00,$0.03).

So far, we have analyzed data from the last five rounds of
play only. In fact, each player played the game ten times against
different opponents. (Each time the game is played by every
player is a round of play.) The first two rows of Table II give the
unitary and heterogeneous losses computed above for the last five
rounds, base-case experiment. Table II also gives the losses corre-
sponding to the entire ten rounds of play of the base case, and for
the entire ten rounds of an alternative treatment that involved
the same game tree but payoffs that are four times as large.”
In the interests of brevity, we have omitted the calculations of
these losses; the calculations are much the same as those above.

20. Note that the reported loss of $0.37 is the expected loss using the strategy
P,; player 1’s play is such that there is only a 23 percent chance of reaching the
ﬁna]l) round, so the expected loss is 0.23 X $1.60 = $0.37.

21. Detailed information about the play of every player in every game can be
found in the Appendix to McKelvey and Paﬂrey [1992].
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TABLE II
SUMMARY OF LOSSES IN THE CENTIPEDE EXPERIMENTS

Trials/ Expected loss Max
rnd Rnds Stake Case Pl1 P12 Both gain Ratio
29% 6-10 1x H $0.00 $0.03 $0.02 $4.00 0.4%
29* 6-10 1x U $0.12  $0.17 $0.15 $4.00 4%

wC 1x H $0.80 $4.00 20%

Random 1x H $0.00 $0.05 $0.03 $4.00 0.6%
29 1-10 1x H $0.00 $0.08 $0.04 $4.00 1.0%
10 1-10 4x H $0.00 $0.28 $0.14 $16.00 0.9%

Rnds = Rounds, WC = Worst Case, H = Heterogeneous, U = Unitary.
*The data from which this case is computed are reported above.

The row in Table II labeled “WC” is a theoretical calculation
of the “worst-case” losses; it is not based on the result of the ex-
periment. This case gives the losses for the distribution over out-
comes that give the highest expected loss per player in the game
under heterogeneous beliefs. When this number is small, it
means that reported heterogeneous losses will necessarily be
small regardless of the realized play. As we will see, though, the
realized losses are much smaller than this worst case.

The row labeled “Random” is also a theoretical calculation
intended to measure what the heterogeneous loss would be under
“completely random” play, which we take to be the distribution
over outcomes generated when players play each pure strategy
with equal probability of one-third. That is, when player 1 has a
one-third chance of taking in period 1, a one-third chance of tak-
ing in period 3, and a one-third chance of passing in period 3, for
example.?? Like the worst-case loss, this calculation can also
serve both as a benchmark and as a test of whether the method

22. Unlike the worst case there is not an unambiguous way to define “com-
pletely random” play. One alternative is the behavior strategy that, at each infor-
mation set, assigns equal weight to all feasible actions. In the centipede game this
corresponds to a one-half chance of dropping out at the start, and one-quarter
each for the other two pure strategies. In the two other experiments we consider,
each player has only one information set on any path of play, so the two versions
of “comp{ebely random” coincide. In centipede, a 50-50 randomization at each in-
formation set means that we will even more rarely see money given away at the
end of the game, so the losses would be even smaller than reported here. Since the
stakes rise so rapidly that it is always worth staying in for a period in exchange for
a 50 percent chance of a gift next period, and is never a knowing mistake to drop
out too early, if we extended the number of rounds of centipede, we could drive
the loss from this type of random play to zero. This is just another way of saying
that the approximate equilibrium set in centipede is large enough to include ran-
dom play. The fact that the worst case losses are so much greater than the ob-
served losses indicates that there are other strategies that are not approximate
equilibria. )
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for measuring losses has any force. As a benchmark, we would
expect that play would converge to a setting with lower losses
than either of the theoretical calculations; as a test, we would be
disappointed if the theoretical values for nonequilibrium play
were typically zero or even small. In that light we should point
out that the losses under “random” play will be zero if random
play is an equilibrium, as it is, for example, in matching pennies.
We should note that as the data suggest that heterogeneous self-
confirming equilibrium is a much better description of the data
than unitary, we compute only the heterogeneous losses for ran-
dom play.

The first column of Table II indicates how many games were
played in each round. (Since this is a two-player game, the num-
ber of players playing is twice the number of trials/round.) The
second column indicates which rounds were included in the par-
ticular sample. We feel that the most interesting case is when
only the latter rounds (6—-10) are included, as this eliminates the
learning taking place during the early rounds, and gives players
a chance to settle into equilibrium.

The third column indicates the payoffs as a multiple of the
extensive-form above. These are as in the above game tree in the
cases labeled “1x;” the entry “4x” describes one series of experi-
ments carried out with the same extensive-form, but payoffs four
times as large as those shown above. The fourth column indicates
the basis of the loss computation: there are two cases—the uni-
tary case (U), and the heterogeneous case (H). The next three
columns contain statistics about the losses. The first two columns
contain the average expected loss g(J(-),p) for players i = 1,2;
the column labeled “Both” simply averages the losses for the two
players together to get an overall summary statistic of expected
loss per player per game. The penultimate column labeled “Max
gain” is the greatest per player payoff possible in the game, and
is used to summarize the magnitude of payoffs in the game. The
final column reports the ratio of the loss per player per game to
the greatest per player payoff possible.

The salient features are the following.

¢ The heterogeneous loss per player is very small. Player 1’s

heterogeneous loss is zero, because player 2 gives money

away sufficiently frequently in the final stage that it is opti-

mal for player 1 to stay in to the end, while the player 1’s

who drop out early have no way of knowing that player 2 is
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giving away money in this way. Similarly, the best response
for player 2 to the empirical distribution of play is to drop
out in the final stage, so the only mistake is to give away
money at this stage. The worst-case outcome is thus proba-
bility 1 of player 2’s last node being reached, and player 2
then choosing to give away money, which would result in a
heterogeneous loss of $0.80 per player. In the experiments,
money is given away sufficiently infrequently that the aver-
age loss with 1x stakes is only $0.02, and even in the quadru-
ple stakes case (where the loss to playing P, is $6.40), the
expected loss is only $0.14. Thus, the prediction that losses
will be small compared with the worst case has substantial
predictive power, even though it allows a wide variety of ap-
proximate equilibria.?® On the other hand, in this particular
case, actual play is relatively close to random play, so the
losses from random play are comparable to those from actual
play. However, while random play does a good job of ex-
plaining what happened in this experiment, it does relatively
poorly in the other experiments we examine.

¢ The unitary losses while still only $0.15 per player per
game in the ordinary stakes last five rounds, are still seven
times as large as in the heterogeneous case. Indeed, even
player 2 loses quite a bit more from dropping out too early in
round 2 (which is not irrational if player 2 does not learn how
player 1 would play at the next node) than by giving money
away at the end of the game.

* Quadrupling the stakes very nearly causes ¢ to quadruple,
indicating that increasing the amount of money involved
does not seem to significantly change the way that players
play.

* As indicated on the game tree, 18 percent of player 2’s
chose to pass in the last five rounds conditional on actually
reaching the final stage. This means that the losses condi-
tional on reaching the final stage are quite large, something
that is inconsistent with subgame perfection. To reflect this
problem, McKelvey and Palfrey [1992] proposed (and esti-
mated) an incomplete information model where some “types”
of player 2 liked to pass in the final stage. This accounts for

23. This last fact—the large set of approximate self-confirming equilibria is
due to the sensitivity of the equilibrium to the play of a small fraction of players
at the final round.
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the heterogeneous losses, but still faces the problem that
many players dropped out early, as the sequential equilib-
rium concept they use requires that all players correctly pre-
dict the average distribution of play at all information sets.
Hence their estimated model fits fairly poorly.2

V. THE BEsT SHOT GAME

The second experiment we analyze is the “best-shot” game
introduced and first studied by Harrison and Hirshleifer [1989].
In fact, we report the results from Prasnikar and Roth [1992],
who used a larger sample and provided a broader variety of ex-
perimental conditions. (We will also indicate how their results
differ from Harrison and Hirshleifer.)

The best-shot game is a sequential public goods contribution
game in which the provision of public good is determined by the
larger of the two contributions.? This extensive-form is shown in
Figure I11. Here x, is player i’s contribution, W is the utility of the
public good, and C is the cost of private contribution. Players
could contribute any integer amount between 0 and 8, and the
functions W and C are given in Table III.

With the payoffs as specified, this game has the striking
property that if the other player makes any contribution at all, it
is optimal to contribute nothing. There is a unique subgame per-
fect equilibrium: player 1 contributes nothing, and player 2 con-
tributes 4. There is another Nash equilibrium, for player 1 to
contribute 4 and player 2 to contribute nothing regardless of
player 1’s play. There are no mixed strategy Nash equilibria.
Moreover, since all of the players are in the same population and
do not have access to a public randomizing device, it is not consis-
tent with Nash equilibrium for some player 1’s to play 0 and oth-
ers 4.2 However, this and any other probability distribution over

24. In response to this, McKelvey and Palfrey [1992] also estimated a model
in which the prior beliefs of player 1 are random, and the two players’ beliefs are
not consistent with a common prior. Relaxing the common prior assumption is in
some ways similar to allowing for heterogeneous beliefs.

25. Harrison and Hirshleifer [1989] ran experiments on both the sequential
move game we discuss and its simultaneous-move analog. References in the lit-
erature to the “best-shot game” are to the sequential-move version of the game.

26. As an aside, let us emphasize that a distribution of outcomes whose sup-
port consists entirely of Nash outcomes need not itself be consistent with Nash
equilibrium. Thus, the percentage of observed outcomes consistent with some
Nash equilibrium, which is reported as a summary statistic in some analyses of
game-theory experiments, cannot be grounded in theories that predict Nash
equilibria.
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G a (W(max(x1,xz))-C(x1 ):
W(max(x,,x,))-C(x,))

Ficure III
Extensive Form for Best Shot

TABLE III
PAYOFFS IN THE BEST SHOT GAME

x W(x) C(x)

0 $0.00 $0.00
1 $1.00 $0.82
2 $1.95 $1.64
3 $2.85 . $2.46
4 $3.70 $3.28
5 $4.50 $4.10
6 $5.25 $4.92
7 $5.95 $5.74
8 $6.60 i $6.50

the two Nash equilibria are heterogeneous self-confirming equi-
libria: those player 1’s who play 0 correctly perceive that 2 will
respond with 4, while those choosing 4 fallaciously believe that if
they contribute nothing, their opponent will not contribute.

The computation of losses is quite easy in this game despite
the fact that player 2 has 64 pure strategies: as we noted above,
when a player’s only information set on any path is at the start of
a proper subgame, so that the player in question cannot influence
whether this information set is reached, the losses for that player
may be computed conditional on the previous moves of the oppo-
nents, and then averaged over the observed distribution of oppo-
nents’ moves. In this game things are even simpler, because
player 2’s information set ends the game, and so the loss to any
action of player 2’s is independent of 2’s beliefs about 1’s (nonexis-
tent) future play. To calculate the benchmark losses from com-
pletely random play, we assume that players simply choose each
contribution level with equal probability of one-ninth.

Table IV provides loss statistics. The columns are generally
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TABLE IV
SUMMARY OF LOSSES IN THE BEST SHOT GAME
. Expected loss Max

Trials Rnds Info ~ Case Pl1 P12 Both gain Ratio
8 8-10 full H $0.00 $0.12 $0.06 $2.06 2.9%
8 8-10 full U $0.00 $0.12 $0.06 $2.06 2.9%
10 8-10 part H $0.01  $0.15 $0.08 $2.06 3.9%
10 8-10 part U $0.39 $0.15 $0.27 $2.06 13.0%

wC H $3.41 $2.06 165%

Random H $0.16 $2.10 $1.18 $2.06 57%

Rnds = Rounds, WC = Worst Case, H = Heterogeneous, U = Unitary.

similar to those in the Centipede game, except that there is only
one set of stakes, and two different information conditions la-
beled full and partial. The full information experiment is con-
ducted under the “standard” conditions, with players informed of
the monetary payoffs that would be given to their opponents. In
the partial-information case, players were not informed of their
opponents’ payoffs. This corresponds to the only case analyzed by
Harrison and Hirshleifer [1989]. However, in Harrison and
Hirshleifer, after the first four of ten rounds, only the subgame
perfect equilibrium was ever observed, so losses of all sorts are
equal to zero. This is in contrast to Prasnikar and Roth [1992],
where the partial-information losses are not only positive, but
significantly higher than in the full-information case. However,
there is an important difference in the way the two experiments
were conducted:?” in Harrison and Hirshleifer players alternated
between moving first and second, while they did not in Prasnikar
and Roth.

The salient features of best-shot losses are the following.

¢ In the full-information case and partial-information het-

erogeneous case, losses are modest, $0.12-$0.15. This is al-

most entirely due to player 2 contributing less than 4 when

player 1 has contributed nothing. In this context it is worth

noting that the player who contributes nothing gets a far

larger profit than the contributing player—$3.70 against

$0.42.

* Since player 2 only moves at the end of the game, the

27. This is confirmed by detailed information on the experimental results
provided to us by Harrison and Hirshleifer [1989].
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player 2 losses are all independent of player 2’s beliefs about
player 1’s play. These losses correspond almost entirely
to player 2 not contributing as much as is optimal when
player 1 has failed to contribute, although in one case a
player 2 wasted money by contributing when player 1 had
already contributed. (It is hard to find much of a rationale
for this, since neither player benefited by 2’s action.)
¢ The losses are several times larger than in the Centipede
game despite the fact that the overall stakes are lower.
e In the full-information case, heterogeneous losses are as
large as the unitary losses. This is because player 1 never
contributed anything, and so never had a loss with either
type of information, while all losses by player 2 are indepen-
dent of 2’s beliefs about 1’s play.
¢ In the partial-information case heterogeneous losses are
quite a bit smaller than the unitary ones, with per-player
per-game losses one-third as large. The reason for this is that
in the partial-information case frequently player 1 contrib-
uted nothing with player 2 contributing 4, but there were
also a number of cases in which player 1 contributed 4 and
player 2 contributed nothing. What is observed is therefore
very much like a public randomization between the two Nash
equilibria. This is inconsistent with Nash equilibrium (or its
unitary equivalent), but (because the game is sequential-
move) is consistent with self-confirming equilibrium.

One of the most striking features about the best-shot game
is that subgame perfection does quite well in the full-information
case. Even in the partial information case it is rare for both play-
ers to make positive contributions. This is shown in Figure IV,
which plots the data from that case. It turns out that there is
a theoretical reason to expect this regularity, for in this game
e-self-confirming equilibrium (with heterogeneous beliefs) makes
quite strong predictions, even for the moderately large® estimate
of & implied by the data. This can partially be seen in the worst-
case column of Table IV, in which worst-case losses are signifi-
cantly worse than observed in the experiment.

A better way to see this, however, is to look at the size of
the set of approximate equilibria. In the partial-information case
heterogeneous losses per player game are $0.08. In Figure V and
Table V we characterize which probability distributions over ter-

28. When compared with the Centipede case.
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Actual Number of Outcomes: Partial Information Rounds 8-10

Player 1 Contribution

Player 2 Contribution 5

FiGUre IV
Observed Outcomes in Best Shot

TABLE V
FREQUENCY BOUNDS ON APPROXIMATE EQUILIBRIUM FOR BEST SHOT

Player 2 contribution

0 1 2 3 4 5 6 7
Player 038 067 100 1.00 100 1.00 100 0.84
1 067 031 010 0.10 010 0.0 0.10 0.10
contrib. 1.00 031 010 0.10 010 0.10 0.10 0.10

1.00 031 010 010 0.10 010 0.10 0.10
1.00 031 010 010 010 0.10 0.10 0.10
1.00 031 010 010 010 0.10 0.10 0.10
1.00 031 010 010 010 0.10 0.0 0.10
1.00 031 010 010 0.10 0.10 0.10 0.10
08 031 010 010 0.10 0.10 0.10 0.10

WU WN O

0.50
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10

minal nodes are consistent with a loss per player game this
small.?® (Figure V simply graphs the numbers in Table V.) Take
a subset of the set of pairs of contributions, for example,

29. Notice that strictly speaking this is not the same as a $0.08-self-
confirming equilibrium, although we loosely refer to it as such. In a $0.08-self-
confirming equilibrium neither player can have an expected loss of more than
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Upper bound on fraction of population
playing profile in .08-SCE (H)

0
01, g Player 1
34 56 7 contribution
Player 2 8
contribution
FiGUREV

Theoretical Probability Bounds in Best Shot

{(3,2),(2,2),(2,3)}. How much probability can this subset have if
the per-player expected loss is no more than $0.08? Since the
smallest loss to any strategy in this set is .80, the probability of
the set of strategies must be under .1 in order for the average loss
to be less than .08. A similar calculation shows that the combined
probability of all outcomes in which player 1 has contributed 1 or
more and player 2 has contributed 2 or more is no more than 0.10.
(This upper bound is loose; for strategies that lose more than .8,
the probability must be even smaller.) In general, the table is cal-
culated so that if we choose any subset of profiles, the combined
probability of that subset can be no greater than the largest entry
in the table for the members of the subset.

Generally speaking, we should not expect to see both players
contributing at the same time (at most 31 percent of the time).
On the other hand, if the other player is contributing zero, we
should not be that surprised if the other player fails to contribute

$0.08. Here we allow one player to have a $0.16 loss provided that the other player
has no loss. ‘
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4, as the loss from failing to do so is not great. This, of course, is
exactly what is observed: one player contributes nothing, the
other usually contributes 4, but occasionally something else.

VI. THE ULTIMATUM GAME

In the ultimatum game the first player proposes to divide a
given amount of money. The second player may accept or reject
this offer. If accepted, the money is divided as proposed; if re-
jected, neither player gets anything. This is illustrated in the ex-
tensive form in Figure VI, where the offer x must be in pennies.

In every subgame perfect equilibrium of this game, the first
player’s strategy is some mixture, possibly degenerate, over de-
manding the whole pie and demanding one penny less; the second
player accepts any positive offer, and may mix or reject the offer
of 0. Nash equilibrium, by contrast, permits player 1 to make any
offer with probability 1. It also allows a variety of mixed equilib-
ria. As usual in games of perfect information, heterogeneous self-
confirming equilibrium adds the public randomizations between
the various Nash equilibria.

These ultimatum games have been studied by a wide variety
of authors especially Guth and his coauthors [Guth and Tietz
1988, 1990; Guth, Schmittberger, and Schwartz 1982; Guth, Ock-
enfels, and Tietz 1990]. The results are generally similar: most
proposals are for the first player to get more than 50 percent of
the money, but much less than 100 percent, and ungenerous of-
fers tend to be rejected. The specific experimental results we ana-
lyze here are taken from Roth, Prasnikar, Okuna-Fujiwara, and
Zamir [1991], who systematically study ultimatum games in a
number of experimental settings. We report loss statistics below
in the usual format. Here we report the results of the final round.

A/v($B10.00-x,x)
< ) :R

FiGURE VI
Extensive Form for Ultimatum Bargaining

T%(0,0)
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TABLE VI
SuMMARY OF LOSSES IN ULTIMATUM BARGAINING

Cntry Expected loss Max
Trials Rnd stake Case Pl1 P12 Both gain Ratio

27 10 USs H $0.00 $0.67 $0.34 $10.00 3.4%
27 10 Us U $1.30 $0.67 $0.99 $10.00 9.9%
10 10 USx3 H $0.00 $1.28 $0.64 $30.00 2.1%
10 10 USx3 U $6.45 $1.28 $3.86 $30.00 12.9%
30 10 Yugo H $0.00 $0.99 $0.50 $10? 5.0%
30 10 Yugo U $1.57 $0.99 $1.28 $10? 12.8%
29 10 Jpn H $0.00 $0.53 $0.27 $10? 2.7%
29 10 Jdpn U $1.85 $0.53 $1.19 $10? 11.9%
30 10 Isrl H $0.00 $0.38 $0.19  $10? 1.9%
30 10 Isrl U $3.16 $0.38 $1.77  $10? 17.7%

wC H $5.00 $10.00 50.0%

Random H $0.00 $2.50 $1.25 $10.00 12.5%

Rnds = Rounds, WC = Worst Case, H = Heterogeneous, U = Unitary.

The variation in experimental treatment is the country in which
the experiment was conducted: Israel, Japan, the United States
and Yugoslavia. In addition, in the United States, an experiment
was conducted with stakes three times those indicated above.
Outside the United States payments were in local currency, cali-
brated to a total of $10 adjusted for purchasing power parity.

The computation of losses is quite easy in this game despite
the fact that player 2 has 1,000,000 pure strategies: as in the
best-shot game, the only move by player 2 is a subgame, and so,
as in best-shot, the losses for player 2 may be computed condi-
tional on the particular first move by player 1, then averaged over
player 1’s moves.?® The losses are reported in Table VI.

The salient features of the experimental results are as
follows.

* Because every offer by player 1 is a best response to beliefs

that all other offers will be rejected, player 1’s heterogeneous

losses are always zero.

¢ Player 1’s have substantial losses in the unitary case. This

should not be surprising: given the large number of possible

30. Moreover, note that apart from the number of choices available to player
2, the best-shot and ultimatum games have the same tree, and differ only in their
payoffs. Moreover, as noted by Prasnikar and Roth [1992], subgame-perfect equi-
librium predicts very unequal (hence “unfair”) payoffs in both games, which
makes the dissimilar experimental results all the more interesting..
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Ficure VII
Game Used to Illustrate Use of Isolated Subgames to Compute Losses

offers, no player has much chance of learning very much
about the responses to all offers in ten rounds, and so, unless
the players have extremely accurate prior information, they
are not likely to actually hit upon the best response to the
true distribution. Indeed, even with data on all games
played, it is not that easy for us as observers to have much
confidence that we have identified the distribution of re-
sponses, and so we do not know whether our computed opti-
mal offer is indeed the optimum.3* Note the contrast to Roth
et al. [1991], who argue that mean (or modal) offers are
nearly a best response to the acceptance rate of offers. From
our perspective this ignores the fact that there is a substan-
tial variance in the offers made, and a substantial fraction of
the offers involve losses that are considerably greater than
those suffered in the second period from the rejection of
offers.

¢ The player 2 losses all stem from rejected offers. The mag-
nitudes of these losses are an indication that subgame perfec-
tion does quite badly in this setting. Note that the losses if
both players were to play completely at random are consider-
ably larger than those observed.

* As is the case in Centipede, tripling the stakes increases

31. In this game our maintained assumption is that the empirical distribu-

tion of responses exactly equals the true one is particularly inappropriate. An
alternative approach, suggested by David Kreps, would be to suppose that each
player 2 is playing a cutoff strategy, and use the observed data to estimate the
distribution of cutoffs in the population. We could then compute the payoff-
maximizing offer against that estimated distribution, and use the associated pay-
off as our benchmark for measuring the unitary losses.
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the size of losses a bit less than proportionally (losses

roughly double).

¢ Although the expected losses are larger than in centipede

or best-shot, they are not large in absolute terms: they range

in the ordinary stake games from $0.38 in Israel to $0.99 in

Yugoslavia, out of the $10 on the table. These losses do, how-

ever, serve to refute the naive hypothesis that the extent of

observed losses properly measured will be roughly constant
across games. Rather, because the losses reflect the players
choosing to consider other factors than their monetary pay-
offs, we should expect the distribution of losses to be larger in
games where other features such as fairness are particularly

salient. In particular, our project should not be viewed as a

substitute for studies and models of such psychological fac-

tors. Rather, our methods provide a better way of measuring
the prevalence and magnitude of such factors.

In Table VII we report raw data for the U. S. $10 games:
surprisingly, the reason for the heterogeneous (player 2) losses is
the fact that offers even very close to $5 are rejected a non-
negligible fraction of the time.

VII. CONCLUDING REMARKS

The purpose of this paper has been to develop the experimen-
tal implications of the idea that even rational subjects may have
incorrect beliefs about the off-path play of their opponents. This
idea, when coupled with the recognition that some subjects take
actions that do not maximize their expected dollar payoffs under
any beliefs, leads to the idea that if the play in an experiment

TABLE VII
REeJEcTION PROBABILITIES IN U. S. $10.00 STAKE GAMES ROUND 10

x Offers Rejection probability

$2.00 1 100%
$3.25 2 50%
$4.00 7 14%
$4.25 1 0%
$4.50 2 100%
$4.75 1 0%
$5.00 13 0%
Total 27 100%
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converges, the limit should be one of the e-self-confirming equilib-
ria of the game. The crude analysis in this paper suggests that
the associated &’s are typically small compared with the stakes of
the game. Moreover, we found that the size of the set of s-self-
confirming equilibria for typical &’s varies quite a bit from game
to game.

Our method of estimating the losses was to identify the em-
pirical distribution of play in the “last few rounds” with the theo-
retical distribution of outcomes in a steady state, and then use
this distribution to compute the expected payoff to the actions the
players actually used. Since many experiments are only run for
ten periods, this identification of the empirical and theoretical
distributions is often unjustified, particularly in games, like the
ultimatum game, with a large number of choices for the first
mover. One way of refining our analysis would be to use more
sophisticated methods to obtain either a point estimate, or a dis-
tribution, over the distribution of play at on-path information
sets.3? Another potential refinement would be to track the period-
by-period play of each subject and estimate the loss-minimizing
beliefs for each subject in light of the observations the subject has
received. This approach does run into the problem of increased
sampling error we mentioned in Section III, but that problem
need not be insurmountable, particularly in an experiment that
was run for more than the usual ten rounds.

Finally, our approach suggests some new experimental de-
signs that could be used to further clarify the role of incorrect off-
path beliefs in determining experimental outcomes. One design
would involve two treatments that are identical except that one
has the standard observation structure where players observe
only the outcomes in their own matches, while in the other each
player is informed of the aggregate distribution of play in all
matches. We would expect the unitary losses to be much smaller
in the second treatment. Another possibility would be to ask play-
ers their beliefs about the opponents’ actions at the end of each
round, and then test whether the players’ beliefs are consistent
with their information and a “reasonable” prior, and also whether
the players seem to be maximizing the money payoff given their
beliefs. Of course, asking for beliefs to be reported might well lead
to different behavior than in the “standard” treatment, but that
seems unavoidable if one wants period-by-period information on

32. See footnote 20.
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beliefs. Yet another experimental issue is to explore extensive-
form games with more than two players. The theory shows that
in such games there is an additional way that self-confirming
equilibria can fail to be Nash, namely that two players can have
differing beliefs about the off-path play of a third. It would be
interesting to see how important this theoretical possibility turns
out to be in the lab.
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