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REINFORCEMENT-BASED VS. BELIEF-BASED
LEARNING MODELS IN EXPERIMENTAL
ASYMMETRIC-INFORMATION GAMES

By Nick FeLtovicH!

This paper examines the abilities of learning models to describe subject behavior in
experiments. A new experiment involving multistage asymmetric-information games is
conducted, and the experimental data are compared with the predictions of Nash
equilibrium and two types of learning model: a reinforcement-based model similar to that
used by Roth and Erev (1995), and belief-based models similar to the “cautious fictitious
play” of Fudenberg and Levine (1995, 1998). These models make predictions that are
qualitatively similar—cycling around the Nash equilibrium that is much more apparent
than movement toward it. While subject behavior is not adequately described by Nash
equilibrium, it is consistent with the qualitative predictions of the learning models. We
examine several criteria for quantitatively comparing the predictions of alternative mod-
els. According to almost all of these criteria, both types of learning model outperform
Nash equilibrium. According to some criteria, the reinforcement-based model performs
better than any version of the belief-based model; according to others, there exist versions
of the belief-based model that outperform the reinforcement-based model. The abilitics
of these models are further tested with respect to the results of other published
experiments. The relative performance of the two learning models depends on the
experiment, and varies according to which criterion of success is used. Again, both models
perform better than equilibrium in most cases.

KeEywoRrDps: Equilibrium, asymmetric information, zero-sum game. learning, calibra-
tion, model comparison.

1. INTRODUCTION

LEARNING MODELS ARE BECOMING more and more widely used by experimental
economists as alternatives to the equilibrium predictions of game theory. A
number of researchers have presented results demonstrating that, in many cases,
learning models are better able to describe and predict experimental results
than static Nash equilibrium. The models that have been proposed vary widely
in the way they suppose learning occurs, and they often differ to some extent in
their predictions. Many fall into one of two broad classes: belief-based models
and reinforcement-based models. Belief-based models have in common the
assumption that players hold beliefs over the likely play of others, and they
choose their own actions based in some way on their expected payoff given these
beliefs. Reinforcement-based models, on the other hand, do not explicitly

"Part of this research was done while the author was supported by a University of Pittsburgh
Andrew Mellon predoctoral fellowship. I thank David Cooper, John Dufty, Ido Erev, John Kagel.
John Miller, Jack Ochs, Florenz Plassman, Bob Slonim, Nathaniel Wilcox, three anonymous
referees, and especially an editor, Alvin Roth, and Shmuel Zamir for helpful discussions and
comments. Any remaining errors are actually part of the equilibrium strategy of a more complex
game.
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606 NICK FELTOVICH

require players to form beliefs about other players’ likely actions (in fact, they
may not even require players to realize that there are other players). Rather,
their strategies receive reinforcement related to the payoffs they earn, and over
time players adjust their play so that strategies leading to higher payoffs become
more likely.

The objective of this paper is to examine the abilities of reinforcement-based
and belief-based learning models to characterize the play of subjects in experi-
ments. We accomplish this objective in two ways. First, we conduct a new
experiment and compare the observed subject behavior to the predictions of
these two classes of learning model, as well as Nash equilibrium, using several
criteria of goodness of fit. Second, we use these same criteria to compare data
from previous experiments by other researchers to the predictions of these
models.

The new experiment uses members of a class of multistage two-player
constant-sum games (described in Section 2), whose strategic structure involves
the optimal use of private information. Besides being a severe test of the
assumptions of Nash equilibrium, this environment seems a natural one for
eliciting belief-based learning. Both types of learning model can capture some of
the subtle strategic interplay essential to games of this type. In addition, the
learning models give rise to dynamics which behave quite differently from
equilibrium play, and to some extent, from each other. Play in the experiment is
described poorly by stationary Nash equilibrium; in both games, play starts and
remains far away from the equilibrium outcome, even after many repetitions. In
contrast, given the behavior of subjects during early rounds of the experiment,
both types of learning model describe well some gross qualitative features of the
changes in subject behavior from early rounds to later rounds. We quantitatively
compare the models using several criteria of goodness of fit. Which learning
model best characterizes the experimental data depends on which criterion is
used. The belief-based models (for some parameterizations) describe aggregate
behavior better, while the reinforcement-based model makes more accurate
predictions of behavior at the individual level. However, according to almost all
of our criteria, both types of learning model perform substantially better than
Nash equilibrium; the improvement achieved by moving from one learning
model to another is small relative to that achieved by moving from equilibrium
to either type of learning model.

This paper is not the first attempt to compare learning models. Boylan and
El-Gamal (1993) compared the predictions of two belief-based models (Cournot
play and fictitious play) applied to two earlier experiments using three 15 X 15
simultaneous-move games and six 3 X 3 simultaneous-move games. They found
that for some games, play was more likely to be consistent with Cournot
learning, while for other games, play was more likely to be consistent with
fictitious play learning. However, when the entire set of experimental data was
considered (using a Bayesian updating procedure), fictitious play was over-
whelmingly more likely to be the correct model. Cheung and Friedman (1997)
also compared different belief-based models; in addition to Cournot play and
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fictitious play, they considered a hybrid model that included these two models as
special cases, and further generalized the model with two additional parameters.
(The resulting model is very similar to the belief-based models we use in this
paper.) Cheung and Friedman performed an experiment using four 2 X 2 games
and several experimental procedures, and found that there is substantial hetero-
geneity in learning behavior across experimental subjects. The play of some
subjects was consistent with Cournot, the play of others was consistent with
fictitious play, and the play of yet others was consistent with neither, but with
the more general model. Like Boylan and El-Gamal, Cheung and Friedman
found that both the game and the experimental procedures used affected the
type of learning that took place, in the sense that the distribution of model
parameters varied across games (though one parameter changed very little from
game to game). Sarin and Vahid (1999) used data from several experiments (the
same experiments as used by Erev and Roth (1998), described below) to
compare two reinforcement-based models: the “fixed reference point” model of
Erev and Roth (1998), and their own “SV” model, which assumes that an agent
chooses the strategy that maximizes payoff, given the agent’s beliefs about the
likely payoff to each strategy, which are a weighted average of past payoffs to
each strategy. Sarin and Vahid found that the SV model describes play at least
as well as, and sometimes better than, the fixed reference point model.
Recently, some researchers have compared not just different learning models,
but different types of learning model. Mookherjee and Sopher (1994) compared
the predictions of a reinforcement-based model to those of a belief-based model
(fictitious play). They used data from a Matching Pennies experiment, which
they performed with two information treatments: one in which players were told
only their own payoffs at the end of a round, and one in which they were told
the actual payoff matrix and their opponent choices, as well as their own
payoffs. The former treatment gives subjects enough information for reinforce-
ment learning, but not enough for belief learning, and thus seems tailor-made
for reinforcement learning; indeed, observed play was consistent with the
reinforcement-based model. The latter treatment gives subjects enough informa-
tion for belief learning, but neither the belief-based model nor the reinforce-
ment-based model described play well. Mookherjee and Sopher (1997) also
compared reinforcement-based and belief-based models, this time with regard to
data from a new experiment which used two 4 X 4 and two 6 X 6 games. When
these slightly more complex games were used, they found that the reinforce-
ment-based model did a better job of describing play than the belief-based
model, even though subjects were given enough information for belief learning.
A possible shortcoming of Mookherjee and Sopher’s work is that, though they
compared many different learning models, they used only the data from their
own experiments. Thus the generality of their results is open to question.” Two
recent papers have used data from several experiments, performed by different

? The advantage of using data from many experiments has been pointed out by Erev and Roth
(1998).
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researchers under different sets of experimental procedures. Erev and Roth
(1998) compared the ability of reinforcement-based models and belief-based
models to characterize aggregate behavior in several one-stage simultaneous-
move games with unique equilibria in completely mixed strategies. They found
that the reinforcement-based models describe play better than the belief-based
models, and that the better belief-based models are the ones that are more
similar to reinforcement-based models. Camerer and Ho (1996, 1999) consid- -
ered a general model that includes both belief-based and reinforcement-based
models as special cases, and used several one-stage simultaneous-move games.
By fitting model parameters via maximum likelihood estimation, they concluded
that versions of their model that combine elements of belief-based and rein-
forcement-based learning perform much better than either pure belief-based
models or pure reinforcement-based models.

These papers have shed light on the nature of learning in games, but they
are not without their shortcomings. Erev and Roth considered only a handful
of belief-based models chosen ex ante, so the fact that they found a rein-
forcement-based model to work well may merely reflect “bad luck” in their
choice of belief-based model specification.® (They perform sensitivity analyses
on the reinforcement-based model, so it is unlikely that their results are due to
particularly “good luck” in their choice of reinforcement-based model specifica-
tion.) On the other hand, Camerer and Ho’s model is so general that there may
exist a parameterization that is consistent with any experimental outcome;
moreover, when they find that a particular combination of parameters best fits a
set of experimental data, questions come to mind concerning how sensitive these
best parameters are to small changes in the game, whether one could predict
which parameter values are appropriate for which games, and so on. Even within
their sample of games, they found that the best parameters vary greatly.
Additionally, all of the work cited above considered only a narrow class of games
—those in which players’ strategies are single actions—so it is unclear how
generalizable the conclusions are to more complex games. The asymmetric-in-
formation games used in our new experiment address this last limitation; they
are more complex than the simultaneous-move games studied by Erev and Roth
and by Camerer and Ho. Also, we look at a two-parameter family of belief-based
models, which is part of the class proposed by Fudenberg and Levine (1995,
1998); this family of models is more general than that used by Erev and Roth,
but not as general as that used by Camerer and Ho.

The results of the second part of this paper reconcile somewhat the seemingly
different results of Erev-Roth and Camerer-Ho. We revisit some of the data sets
they considered, and apply the same criteria we used to compare the learning
models’ predictions regarding the asymmetric-information game. Some of our
criteria are similar in spirit to those used by Erev and Roth, and some are
similar to those used by Camerer and Ho. No criterion is used by both, however,

*To be fair, it should be pointed out that they make no claim to have found the “correct” model
of learning, merely that the reinforcement-based model does a good job of characterizing certain
features of the data.
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so even though they appeared to reach different conclusions (particularly
concerning the utility of reinforcement-based models), it was unclear whether
this was because they used different games or different criteria of goodness of
fit. We find that both are important; the relative abilities of the learning models
to characterize experimental data sets depend on both the game used and the
criterion of goodness of fit. Thus neither type of model is always better.
However, as was true when the asymmetric-information game data were used,
both types of learning model usually represent a substantial improvement over
static Nash equilibrium.

2. THE NEW EXPERIMENT

The new experiment uses a class of games from Aumann and Maschler
(1995); see Figure 1. First, nature chooses one of two payoff matrices; the Left
matrix is chosen with probability p €(0,1). The chosen matrix determines a
constant-sum stage game, which is played twice.* We denote by stage one play of

(Left Matrix) (Right Matrix)

(Left Matrix)

Player 2 [»] [1-p] Player 2
A B A B
A 10 01 A 01 01
Player 1 (Stage 1) Player 1
B 0,1 0,1 B 01 1,0

(Right Matrix)

Player 2 Player 2
A B (Stage 2) A B
A 1,0 01 A 0,1 0,1
Player 1 Player 1
B 0,1 0,1 B 01 1,0

FIGURE 1.—The component game.

* A constant-sum game is used in an attempt to keep subjects’ preferences as closely tied as
possible to the payoffs of the game; we try to limit the influence of subjects’ tastes for nonpecuniary
aspects of outcomes, such as fairness or spite. (A further step in this direction is our repeated use of
loaded words such as “opponent” in the instructions to subjects.) These steps are taken in order to
maximize the likelihood that any lack of equilibrium play in the experiment is not due to subjects’
unwillingness to play what we think to be their equilibrium strategies, but rather their inability to
figure out what they are (or belief that their opponents are unable to figure out what they are, or
belief that their opponents believe that they are unable to figure out what they are, etc.). This is
important when studying learning, because some researchers have shown that static concepts that
generalize Nash equilibrium to allow for players’ tastes for such nonpecuniary aspects can often
describe experimental subject behavior well. Some examples of such generalizations are Rabin’s
(1993) fairness equilibrium, Fehr and Schmidt’s (1999) fairness theory, Bolton and Ockenfels’s (1998)
theory of equity, reciprocity, and competition, and Levine’s (1998) theory of altruism.
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the stage game, and by round one play of the entire (two-stage) game. Player 1
(the row player) is told at the beginning of the round which matrix was chosen;
Player 2 (the column player) is not told until the end of the round. A player’s
payoff for the round is equal to the sum of the two stage-game payoffs,
calculated according to the matrix that was chosen. Players’ actions are an-
nounced at the end of each stage, but payoffs are not announced until the end
of the round. We refer to members of this class of games as G(p) for given p.
We will deal with two particular games: G(.50) and G(.34).

2.1. Strategies and Notation

We will restrict our attention to two components of players’ behavioral
strategies: Player 1’s first-stage move (conditional on nature’s move) and Player
2’s second-stage move (conditional on Player 1’s first-stage move). It is in these
components that the complexity of the game lies. To see why, recall that Player
1 has a piece of private information—the actual payoff matrix. It can be seen
from Figure 1 that in either matrix, one of her actions (A4 in the Left matrix and
B in the Right matrix) can possibly earn her a payoff of one for the stage
(depending on Player 2’s choice of action), while the other action gives her zero
for the stage with certainty. We will use the term stage-dominant action (sda) to
refer to the former, since these actions correspond to Player 1’s weakly domi-
nant strategy in the one-stage analogue to this game. Since the sda depends on
which matrix was chosen by nature, Player 1’s private information is potentially
valuable in the sense that she may use it to earn a payoff higher than 2 p(1 — p),
the maxmin expected payoff she would receive if she did not know the payoff
matrix. However, the only way Player 1 can benefit from her private information
is by revealing it, that is, by playing in the Left game differently (possibly in a
stochastic way) from her play in the Right game. Player 1 completely reveals by
playing the sda in the first stage with certainty, that is, by playing A if the Left
game is chosen and B if the Right game is chosen. She partially reveals by
playing A in the first stage with higher probability in the Left game than in the
Right game. It may seem that completely revealing is the best course of action
for Player 1, since it gives her the best chance of earning.the point in the first
stage. But since her first-stage actions are observable by Player 2 before he
chooses his second-stage actions, Player 2 would then be able to infer the payoff
matrix from Player 1’s first-stage action, and could hold Player 1 to a payoff of
zero in the second stage by playing B in the Left game and A4 in the Right
game; this set of actions is the best response to Player 1’s completely revealing
strategy (brcr). Player 2’s playing the brcr against a completely revealing Player
1, along with suitable play in the first stage, limits Player 1 to an expected payoff:
of Min{p, 1 — p}, making her no better off, and for almost all p strictly worse
off, than if she hadn’t had the information at all. Even if Player 1 is only
partially revealing, Player 2 can use Bayesian updating to revise his prior beliefs
about which matrix was chosen and lower Player 1’s expected payoff. Player 1’s
primary strategic problem is to choose her first-stage action to balance the
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TABLE 1
NOTATION
Symbol Meaning: “Probability of ...
P(sday|1L): stage-dominant action in the first stage of the Left matrix (Player 1)
P(sda, |R): stage-dominant action in the first stage of the Right matrix (Player 1)
P(brer| A): best response to completely revealing following a Player 1 choice of A4 (Player 2)
" P(brer| B): best response to completely revealing following a Player 1 choice of B (Player 2)
P(sday): stage-dominant action in the first stage (Player 1)
P(brcr): best response to completely revealing (Player 2)

current (first-stage) gain from using her extra information against the future
(second-stage) loss caused by revealing it. Player 2’s main strategic problem is to
choose his second-stage action to take into account his best inference of which
matrix was chosen, given his observation of Player 1’s behavior. These problems
are closely related

Table I shows some of the notation used to describe players’ behavioral
strategies, and Table II summarizes the Nash equilibrium predictions for the
two games. (A full description of the Nash equilibria of G(p) for any p €(0,1)
is given by Feltovich (1997).) The prediction for G(.50) is not unique; there is a
one-parameter family of Player 2 strategies, each of which is consistent with
equilibrium play. Also, the equilibrium value of P(brcr) depends on Player 1's
choices of P(sda,|L) and P(sda,|R) and is generally not equal to S. In both
games, P(sda, | L) and P(sda, | R) are strictly less than one, reflecting Player 1’s
strategic problem—how quickly to reveal her private information. (In the
second stage, Player 1 optimally plays her sda with probability one, reflecting the
fact that at that point, there is no harm to her in revealing all her information.)
In G(.50), Player 1’s equilibrium strategy has her essentially ignoring the private
information in the first stage, while in G(.34), she optimally partially reveals her
private information.

2.2. Experimental Design

In the experiment, one of these two-stage component games was chosen and
played for 40 rounds, with players remaining in the same roles and playing
against the same opponent, but with the payoff matrix (Left or Right) chosen

TABLE 11
NasH EQUILIBRIUM PREDICTIONS

Expected payoft

Game  P(sday|L)  P(sday|R)  P(brerlA) P(brer| B) P(sday) P(brer) Player | Player 2
G(.50) .500 .500 B 1.500 - B .500 [.500, 1.000] 0.75 1.25
G(349) 971 .500 .500 1.000 .660 .670 0.67 1.33

Note: B may take on any value in [0.500, 1.000].
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independently each round (and p held fixed). A total of 122 subjects, mostly
undergraduates at the University of Pittsburgh, participated in the experiment.
Nine experimental sessions were conducted, with between eight and twenty
subjects in a session. In addition to a participation fee of $10.00, subjects could
earn a bonus of $10.00 if they earned a point in a round and stage that were
randomly chosen after the experiment.’

The payment scheme used here is equivalent to the “binary lottery” scheme
of Roth and Malouf (1979); in particular, the utility functions of expected utility
maximizing individuals would be linear in the number of points earned. Without
loss of generality, we can therefore define payoffs in the forty-times-repeated
game to be the sum of the payoffs in each individual component game. Since the
games are constant-sum, the corresponding repeated games are also constant-
sum. The unique equilibrium of the repeated G(.34) game is the component
game equilibrium repeated 40 times. Since G(.50) has a continuum of Nash
equilibria, the repeated game does not have a unique Nash equilibrium; any
sequence of component-game Nash equilibria (including stationary play of a
particular component-game equilibrium) yields a Nash equilibrium of the re-
peated game.

2.3. The Reinforcement-Based Model

The equilibrium prediction for G(.50) and G(.34) is play that is stationary
from round to round (the only exception being that, in G(.50), Player 2 can
choose each round from a one-parameter family of equilibrium strategies). We
now examine the alternative predictions of two types of learning model.

The reinforcement-based model is adapted from the models of Roth and Erev
(1995). (See Roth and Erev (1995) and Erev and Roth (1998) for additional
motivation behind this model and its generalizations.) Because of its close
relation to their basic model, and its lack of free parameters, it will be referred
to as the RE; model. Roth and Erev successfully use variations of this model for
predicting subject behavior in many experiments, despite (or perhaps because
of) the low level of rationality the model attributes to individuals. Rather than
endowing players with the high degree of cognitive sophistication implicit in
equilibrium predictions, this model posits that players merely learn, over time,
to play better strategies (strategies leading to higher realized payoffs) more
often and worse strategies less often.

Specifically, in round 7, players have a nonnegative initial propensity ¢‘(a| ¥)
for playing action @ (a=A or B) at information set ¥. The strength of
propensities (Q'(W)) in round ¢ is the sum of the propensities for playing both
actions at information set ¥: Q'(W)=¢q'(A|¥)+q'(B|¥). For any ¢>1,
propensities for round ¢ + 1 are found by adding the payoff earned in round ¢ to

* The Appendix contains the instructions given to subjects. More details about the experimental
procedures are available from the author.
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the round-¢ propensities of the actions that were played in round #:
qH— 1( a I W)

q'(a|¥)+ 7 if ¥ was reached, @ was played, and
= the payoff for the round was 7,
q'(al¥) if ¥ was not reached or a was not played.

Thus in each round, each player will augment two propensities by the total
payoff for the round.® Initial (round-1) propensities are exogenous. The proba-
bility of playing strategy « at information set ¥ in round ¢ is the correspond-
ing propensity, divided by the strength of propensities at information set ¥ in
round ¢: '

q'(al¥)

p(al‘I’)=W.

2.4. The Belief-Based Models

The RE, model assumes that players make decisions according only to past
payoffs from actions. Taken literally, this means that decisions are made without
regard to many features of the payoff matrix and the history of opponent’s plays
(though, of course, these affect the player’s payoffs and thus indirectly influence
later decisions). In the experiment, however, players do know the payoff matrix
and are matched to the same opponent in every round (this latter fact should
increase the relative usefulness in this experiment of the history of past play in
forecasting future opponent actions, compared to many experimental designs). It
seems reasonable to expect that an appropriate model of learning in this
experiment should take this knowledge into account. Also, the very nature of
Player 2’s situation (trying to infer the payoff matrix from Player 1’s move)
suggests that he ought to form beliefs about the way his opponent behaves.
Therefore, in addition to the RE,, model, we consider a two-parameter family of
belief-based models adapted from the model of Fudenberg and Levine (1995,
1998).

According to these models, players hold beliefs (conjectures) concerning the
likely play of their opponent(s), and they choose strategies based on their
expected payoffs given these beliefs. Specifically, players’ beliefs are character-
ized by nonnegative belief weights over opponents’ actions at each information

8 The alternative, augmenting each propensity by the payoff for the stage in which it was played,
would result in bluffing (Player 1 actions that sacrifice any chance of positive payoff in the first stage
in favor of a higher probability of positive payoff in the second stage) never being reinforced, even
when it is successful.

” Similar models have been used for describing subject behavior in experiments by, for example,
Cheung and Friedman (1997) and Mookherjee and Sopher (1997).
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set. The weight on an opponent playing action a (e =4 or B) at information
set ¥ in round ¢ is o'(a] W). The strength of beliefs at information set ¥
(02'(?)) is the sum of the weights at ¥: Q'(¥) = w'(A| V) + o' (B| V). For
any ¢ > 1, weights for round ¢+ 1 are found by increasing the weight of each
action that was observed in round ¢:

w’“(aI'I’)

(1-8)o(al¥)+1

if ¥ was reached and « was played by the opponent,
1-8w'(al )

if ¥ was not reached or « was not played by the opponent.

The parameter & determines the relative amount of bearing given to past
outcomes relative to current outcomes in forming beliefs. If 6 = 0, outcomes in
all rounds have equal import, while if é=1, only the most recent outcome is
considered. If 6 € (0,1), more recent outcomes are more important than previ-
ous outcomes, while if 8 <0, the opposite is true. Initial belief weights are
exogenous. The assessed probability of the opponent’s playing action « at
information set ¥ in round ¢ is the corresponding belief weight, divided by the
strength of beliefs at information set ¥ in round ¢:

o' (al V)

')
Given these assessed probabilities, a player’s perceived expected payoff IT(s| u')
to each available pure strategy s can be calculated. The player’s chosen strategy
in round ¢ is determined from these expected payoffs; the probability of a player
choosing the pure strategy s in round ¢ given beliefs u' is

exp(A-IT°(s | ')

Yoesexp(A-IT¢(s | u))’

wlal¥) =

(1) Prob(s chosen in round ¢) =

where S is the set of all pure strategies. The parameter A determines the extent
to which the player responds optimally to her beliefs. If A =0, she chooses A4
and B with equal likelihood at each information set irrespective of expected
payoff, while as A gets large, her strategy approaches best-response play; we will
call this limiting case the version of the model with A =o. We will refer to
members of this family of models as BA(A, §) for given A and & (where BA
stands for Bayesian).®

8 Fudenberg and Levine (1995, 1998) examine some of the theoretical properties of models such
as this one, which they call “cautious fictitious play.” In our notation, standard fictitious play would
be called the BA(e, 0) model. The relationship of cautious fictitious play to standard fictitious play is
analogous to that between McKelvey and Palfrey’s (1995, 1998) quantal (logistic) response equilib-
rium to Nash equilibrium. In particular, the (stochastic) fixed points of cautious fictitious play are
logistic response equilibria.
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2.5. Implications of the Learning Models

Since play according to either the reinforcement-based or the belief-based
models is allowed to change over time, it is plausible that the predictions of
these models could differ from those of static Nash equilibrium. In order to get
some idea of what these differences are, we simulate experiments based on the
two games. For each game, sets of 200 simulations were performed according to
the RE, and BA(w,0) models. Each simulation consisted of one simulated
Player 1 and one simulated Player 2 playing the same game for at least forty
rounds. Initial propensities and beliefs were chosen randomly; strengths of
initial propensities and beliefs were set to six at each information set.’

The simulation results are shown in Figure 2. In order to show the dynamic
features more clearly, the unit (P(sda,), P(brcr)) square is partitioned into four
rectangular subregions determined by the Nash equilibrium points (in the case
of P(brer) in G(.50), the midpoint of the interval of equilibrium values). In each
subregion is a circle and several connected line segments. The center of each
circle represents the average starting point of all simulations with starting points
in that region, the area of a circle is proportional to the number of simulations

RE, BA(00,0)

Rounds 1-400 Rounds 1-40

I oo (@T

G(50) oy 0»—-* P G} A /\i/w
[}

0.0
1.0

O
w " )
G"'/

0.0 0.5 1.0 0.0
P(sday)

FIGURE 2.—Trajectories of learning model simulations (random initial propensities and beliefs).

% The qualitative aspects of the simulation results are robust to small changes in parameter
values. For details, see Feltovich (1997).
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with starting points in that region, and the line segments follow the average path
of play of the simulations starting in that region. In the RE, simulations,
segment endpoints show average play in rounds 1, 40, 100, and 400; in the
BA(e, 0) simulations, they show average play in rounds 1 and multiples of 5 up
to 40.

In both games, and for both learning models, there is a rough counterclock-
wise movement of simulation trajectories around the equilibrium (the intersec-
tion of the dotted lines). In the RE, simulations, there is little if any discernible
movement of trajectories toward equilibrium. In the BA(e, 0) simulations, such
movement can readily be seen; however, it is less pronounced than the counter-
clockwise movement. Thus, if these learning models accurately describe the way
players change their behavior over time, we would expect the trajectories from
the actual experiment to move counterclockwise about the equilibrium point (or
center of the segment of equilibria) with much less, if any, movement toward
this point. Importantly, this implication is quite robust to the choice of learning
model. Here, we see that fictitious play and RE; have similar implications;
Feltovich (1997) shows that simulation trajectories arising from other BA
models are qualitatively similar to both."

The implications of the learning models contrast sharply with the equilibrium
prediction of stationary play. However, like the equilibria of the games, the
learning models demonstrate the dilemma faced by Player 1 in deciding how
much (if at all) to reveal in the first stage. If players play according to RE,,
Player 1’s over-revealing makes Player 2’s expected payoff to playing the brcr
higher, so that it will be reinforced more on average and eventually played more
often. Then, sda, will result in lower payoffs on average and will eventually be
played less often. If players play according to one of the BA models, Player 1’s
revealing changes Player 2’s beliefs so as to increase his assessed probability of
Player 1 revealing, making brcr a better response and increasing the likelihood
that he actually plays the brcr; such play eventually changes Player 1’s beliefs,
lowering the expected payoff to, and eventually the probability of choosing, the
sda. By similar reasoning, according to either learning model, Player 1’s
“under-revealing” would eventually result in Player 2’s playing the brcr less
often, and the change in Player 2’s play would eventually cause Player 1 to
reveal more often. This argument also explains the counterclockwise direction of
the simulation trajectories. At any point in the unit square except for the Nash
equilibrium point itself, the best-response correspondence gives (P(sda,),

' The similarity between belief-based and reinforcement-based models is not surprising, in view
of the fact that they can be shown to be special cases of a more general model. Camerer and Ho’s
(1999) “experience-weighted attraction (EWA)” is a learning model in which, like RE,, strategies
that are played are reinforced by their payoff, but unlike RE, strategies that are not played are also
reinforced by the payoff they would have earned had they been played, scaled by some constant
(normally between zero and one). If the value of this constant is zero, EWA reduces to a model
similar to RE, given suitable values for EWA’s other parameters. Less obviously, if the value of the
constant is one, Camerer and Ho show that EWA reduces to a model very much like our BA models
(again, given suitable values for other parameters).
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P(brcr)) pairs that lie counterclockwise from that point. According to either
model, if play is initially out of equilibrium, it will (on average) move in the
direction of the best response—counterclockwise. As an extreme example, note
that Cournot best-response play (the BA(e, 1) model) would result in individual
play paths that jump from the top-right corner to the top-left corner, to the
bottom-left corner, to the bottom-right corner, back to the top-right corner, and
so on, each found moving to the next corner in the counterclockwise direction.

3. SUMMARY OF EXPERIMENTAL RESULTS

Table 111 gives a summary of aggregate behavior in the experiment.'' Shown
are the population relative frequencies corresponding to the probabilities
P(sda,) and P(brcr) for the entire forty rounds of each cell, and also for each of
four ten-round “blocks” within each cell. (We will refer to the rounds 1-10 as
“block 1,” rounds 11-20 as “block 2,” and so on.) Starred relative frequencies
are those that are significantly different from Nash equilibrium behavior.'?

It is easy to see that Nash equilibrium poorly describes aggregate behavior in
this experiment. In both cells, the population relative frequency of sda, starts
and remains well above the equilibrium prediction, though it decreases over
time.” In both cells, the population relative frequency of brcr increases over
time (the direction of the best response to the play of the Player 1 population).'
These features of behavior are also visible in Figure 3, which plots the relative
frequencies of sda, and brcr in the two cells for each block (the dots connected
by lines) and the Nash equilibria. The equilibrium of the G(.34) cell is the center
of the ‘+’ and the equilibria of the G(.50) cell are the points of the vertical line
segment (the horizontal segment marks the center of the vertical segment). The

" The raw data from this experiment are available on request; see Feltovich (1997) for further
analysis of the data.

' Binomial test. For descriptions of the nonparametric statistical tests used in this paper, see
Siegel and Castellan (1988).

B A referee pointed out the similarity between the tendency of Player 1s here to overplay the sda
in the first stage, earning a higher first-stage payoft than in equilibrium but sacrificing the
second-stage payoff, and the “melioration” theory of Herrnstein and Prelec (1992). The motivation
behind this theory usually relies on examples of dynamic inconsistency in individual choice (for
example, “self-control” problems such as overeating or overspending); however, the experimental
results used as evidence for melioration generally rely on individuals’ not understanding the
relationship between current actions and the future decision-making environment (see, e.g., Herrn-
stein, Prelec, and Vaughan (1986)). A hypothesis explaining the high frequency of sda play in the
first stage is that Player 1s notice that this action is better (in a myopic sense), but fail to consider
the likely response of Player 2s in the second stage; this explanation is consistent with the latter
aspect of melioration. It is difficult to imagine a realistic scenario in which high frequencies of sda
play in the first stage are due to lack of self-control.

' As was mentioned in Section 2.1, the equilibrium probability of brer in G(.34) depends on
Player 1 play in the first stage. Taking the observed values of P(sda,) into account, the equilibrium
predictions are .800, .769, .770, .772, for blocks 1 through 4, respectively, and .778 for the entire
G(.34) cell.
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TABLE III
EXPERIMENTAL RELATIVE FREQUENCIES

Block 1 Block 2 Block 3 Block 4 All Rounds
G(.50) P(sda,) .845%* 852%* 797** 741%* .808**
P(brcr) 759 .886 917 914 .869
G(.349) P(sda,) 872%* .819** .800** 781%* .818**
P(brer) .684%* 794 728 179 749*

*: significantly different from equilibrium at 5% level.
**: significantly different from equilibrium at 0.1% level.

directions of changes between blocks are consistent with the learning models,
though more so for the G(.50) cell than the G(.34) cell.

In order to quantify this apparent counterclockwise movement and detect
convergence, if any, of play to equilibrium, we disaggregate the data by pairs of
players and change the coordinate system from standard rectangular coordinates
to polar coordinates. The location of a point is represented by the ordered pair
(r,0), where r is the distance from that point to the origin (here, the Nash
equilibrium point or center of the segment of equilibria), and 6 € [0,27) is the
measure of the angle the point makes with the origin and some fixed reference

ray (here, the ray pointing straight down from the origin). The values for r and 6
are given by

r= J(P(Sdal) - Pequilibrium(Sdal))2 + (P(bI'C}’) —Pequilibrium(brcr))z >

.75 — P(brcr)
cos = ——mm.
r
1.0
Rohinds 31-4
Rounds 31-4
NE| Rounds 1-10 )
P(brer) NE+ Rounds 1-10
0.5
0.0 G(.50) Cell G(.34) Cell
G 0.5 10 00 0.5 T.0

P(sday)

FIGURE 3.—Aggregate subject behavior in experiment (all players, 10-round blocks).
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For each pair of players, increases in 6 indicate movement in the counterclock-
wise direction around the equilibrium point and decreases in r indicate move-
ment toward equilibrium. Wilcoxon signed ranks tests of changes in » and 6
from the first to the last block in G(.50) find a significant increase in the
population distribution of 6 (p <.001) but no significant change in the popula-
tion distribution of r (p > .10). Page tests of changes in r and 6 over all four
blocks yield the same result in all cases. Wilcoxon tests of changes in » and 6
from the first to the last block in G(.34) find a significant increase in the
population distribution of » (p <.01), as well as a significant increase in the
population distribution of 6 (p <.001). Page tests of changes in G(.34) yield
somewhat weaker results; the increase in r is not significant, while the increase
in 0 is only significant at the 10% level. We conclude that individual
(P(sda,), P(brcr)) pairs move counterclockwise over time in both games, but
there is no evidence of movement toward equilibrium."

4. COMPARISON BETWEEN EXPERIMENTAL RESULTS AND LEARNING
MODEL PREDICTIONS

The results mentioned in the previous section suggest the experimental data
possess features that are inconsistent with static Nash equilibrium, but consis-
tent with the gross qualitative predictions of the learning models.'® We now wish
to compare the degree of success of these models. In the next section, we test
the individual-level predictions of the models by comparing the decisions made
by players in particular situations with the decisions predicted by the models in
those situations. In the following section, we test the aggregate-level predictions
of the models by running additional simulations in which initial behavior is
similar to that in the experiment, and seeing how closely simulation trajectories
track observed experimental trajectories.

4.1. Use of the Learning Models for Characterizing Individual
Decision-Making Behavior

One way to look at learning models is as forecast rules that, given information
from previous rounds, predict (possibly probabilistically) a subject’s choices in
the current round. In this section, we will examine the accuracy of the forecasts
of the RE, and BA models, as well as stationary equilibrium, using as baselines

B There is no inconsistency in this difference between aggregate results and individual-level
results. Changes in individual play paths may not show up when aggregated, particularly if there is a
lot of heterogeneity in the individual play paths. As a simple example, consider two pairs of players.
The first pair’s (P(sda,), P(brer)) pair is (.7,.7) in the first block and (.5,.8) in the second, and the
second pair’s (P(sda,), P(brcr)) pair is (.3,.8) in the first block and (.5,.7) in the second. The
(P(sday), P(brer)) pair for each pair of players moves counterclockwise about (.50,.75) as well as
toward it, but aggregating the pairs gives stationary play of (.50,.75) “on average.”

'® Feltovich (1999) gives some evidence that the RE, model outperforms static Nash equilibrium
in characterizing the experimental data.
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three inertial models. The inertial models predict that players will behave in the
current round exactly the same as in the previous round with probability p,,,,..
For example, a Player 1 who chose the sda in the first stage in the previous
round will choose it in the first stage of this round with probability pg,,..
irrespective of which payoff matrix was chosen by nature in either round. We
denote this class of inertial models by IN(p,,,,.); the members we examine are
the IN(0.50), IN(0.75), and IN(1.00) models (IN(0.50) predicts that both actions.
are played with equal probability at each reached information set and could thus
be considered “completely random” play).

Because predictions of early-round play according to the RE, and BA models
depend heavily on unknown initial conditions (propensities or beliefs), we look
only at the models’ predictions of behavior in the last thirty rounds. In the case
of the RE, model, we assume that the propensity for playing action « at
information set ¥ in round ¢ is exactly equal to the sum of payoffs received in
rounds up to ¢ — 1 in which ¥ was reached and « was played; in the case of the
BA models, we assume that the belief weight on an opponent’s playing action «
at information set ¥ is equal to the number of times ¥ was reached and « was
played (for models with & = 0) or the weighted sum of times ¥ was reached and
a was played (for models with & # 0). In other words, initial propensities or
initial beliefs have been completely drowned out.!” Given their propensities or
beliefs, players’ predicted probabilities are obtained as discussed in Section 2.

We first assess the accuracy of our models using three measures of closeness
of predictions to actual choices: mean squared deviation (MSD), log likelihood
(In(L)), and a proportion of inaccuracy (POI) score. All three criteria are
derived by pairing the predicted probability of A4 being chosen (denoted
Pyrea(A)) according to the behavioral model being considered and the actual
probability that 4 was chosen (denoted p,.,(A4))—which is either zero or
one—for each choice made by either type of player at any information set. Then

1 5 1/2
MSD = NZ[ppred(A)—pacr(A)] 5
In(L)= Y In(p,.(D)+ X In(l1-p,..(A),
A chosen B chosen

where N is the total number of observations. The MSD statistic used here is
equivalent to the “quadratic scoring rule,” whose desirable theoretical proper-
ties are examined by Selten (1998). It is also very similar to the “mean
probability score” discussed by Yates (1982) and used later in this section. The
POI score is meant to put models with deterministic predictions on the same

' I, contrary to this assumption, initial propensities or beliefs have not been drowned out at this
time, there should be substantial differences between the analysis performed here and the analysis
that would have been performed had we used the last twenty rounds or the last ten (in which case
initial propensities or beliefs would have a noticeably smaller effect), rather than the last thirty. This
turns out not to be the case; using the last ten or twenty rounds does not change the “ranking” of
the various behavioral models. Some evidence of this will be given shortly.
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TABLE IV

ABILITIES OF BEHAVIORAL MODELS TO PREDICT DISAGGREGATED DECISIONS
RouNDs 11-40 (21-40)—N = 1830 (1220)

Model MSD POI In(L) Posterior Prob.
RE, .348 (.350) .182 (.186) —3161.3 (—-2037.9) > 0.999 (> 0.999)
BA(e,0) 548 (.553) .302 (.307) — o (—) 0.000 (0.000)
BA(4.44, —0.105) 424 (.423) 264 (.266) —3969.6 (—2627.7) <0.001 (< 0.001)
BA(0.19, —0.205) 492 (.493) .236 (.236) —4963.9(—3313.2) <0.001 (< 0.001)
equilibrium 414 (414) .299 (.299) — o (—x) 0.000 (0.000)
IN(0.50) .500 (.500) .500 (.500) —5073.8 (—3382.6) <0.001 (< 0.00D)
IN(0.75) 426 (.428) 239 (.241) —4025.1 (—2695.9) < 0.001 (< 0.001)
IN(1.00) 489 (491) .239 (.241) —% (—x) 0.000 (0.000)

footing as those with stochastic predictions; it treats the highest-probability
choice according to a model as “the” prediction of the model and determines
the proportion of wrong predictions. The POI score is found by calculating the
mean of the following values over all choices: when action « (either A or B) is
chosen, the value 0 if p,,,(a)>1/2, the value 1/2 if p,,,,(a)=1/2, or the
value 1 if p, (@) <1/2. For a deterministic model such as fictitious play or
the IN(1.00) model, the POI score is exactly equal to the square of the model’s
MSD score.

Table IV summarizes the predictive abilities of the models. In addition to
RE,, Nash equilibrium, fictitious play (BA(,0)), and the three inertial models,
we show the MSD, POI, and In(L) of the “best” BA models in terms of each of
these criteria.'® Keeping in mind that better predictive power is implied by lower
MSD and POI and by higher In(L), we can see that RE, is best according to all
three criteria. Fictitious play fares particularly badly here—worse than fifty-fifty
randomization according to the MSD criterion. Even the best of the BA models
performs better than the IN(0.75) model according to only two of the three
criteria, and is far worse than RE,. We also see that while Nash equilibrium
performed poorly in describing many features of the data, it actually does
reasonably well here. In fact, according to the MSD criterion, RE,, is the only
model that performs better than stationary Nash equilibrium play. Shown in
parentheses are corresponding statistics that cover only the last twenty rounds,
rather than the last thirty. Using this smaller set of rounds does not change any
of our conclusions.

'8 The best model, according to a given criterion, was found by a grid search over values of A and
6 to three significant digits. In order to give the BA model the best possible chance, different
parameter values were allowed each time the criterion of goodness of fit was changed. The best
model according to the In(L) criterion was almost the same as the best one according to MSD, not
only in the parameter space but also in their values for the three criteria, so the best model
according to In(L) is reported here as their common optimizer. A sensitivity analysis suggests that at
the optima, all three statistics are robust to small changes in both A and 8, so adding significant
digits will not lead to substantially better values.



622 NICK FELTOVICH

Because the models used here are not nested, we cannot use a straightforward
likelihood-ratio test to compare them. However, we can use the very similar
“minimal prior information” posterior odds criterion that was developed by
Klein and Brown (1984) and used by Harless and Camerer (1994) to compare
models of decision making. The posterior odds criterion for some Model 1
versus some other Model 2 is

[n~(Ki=K2)/2][Maximized Likelihood under Model 1 /Maximized
Likelihood under Model 2],

where r is the sample size and K, and K, are the number of free parameters in
Model 1 and Model 2, respectively. (The BA model has two free parameters; the
other models have none.) Given these pairwise odds, we can calculate the
posterior probability of each model being correct, given that one of these
models is correct; these are shown in Table IV. Not surprisingly, given the
values of the In(L) statistic, RE,, is the “odds-on” favorite. Of course, there is
always the possibility that none of the given models is the “correct” one, so we
cannot conclude that RE, is the correct model, only that the other models are
(with extremely high probability) incorrect.

In order to illustrate the predictive ability of the models, we also show
reliability diagrams for each model.”® A reliability diagram is a graphical repre-
sentation of the predictive ability (sometimes called external correspondence) of a
model, and depicts its decomposition into two distinct components, calibration
and resolution. Calibration is a measure of the “accuracy” of a model’s forecasts;
in a well calibrated model, predicted probabilities conform closely on average to
actual relative frequencies. (For example, if one looks at the situations in which
a well calibrated model predicted that the probability of choosing A4 is 0.2, 4
should actually have been chosen about 20% of the time.) Resolution is a
measure of the “informativeness” of a model’s forecasts; a well resolved model
partitions the set of predicted /actual choices into subsets in which A is actually
chosen either almost never or almost always. Calibration and resolution are
both desirable properties for a model to have, but it is possible for a model to be
well calibrated but poorly resolved, well resolved but poorly calibrated, good at
both, or poor at both (hypothetical examples are shown in Figure 4). For
example, since there are only two possible predictions at any information set, a
model that always makes the wrong prediction is very poorly calibrated but very
well resolved. The forecasts from an ideal behavioral model would be both
perfectly calibrated and perfectly resolved; the model would predict 4 (with
probability one) every time A is actually chosen, and B every time B is chosen.
For probabilistic models such as RE,, and the BA models with finite A, as well as
for mixed-strategy Nash equilibrium, this is generally not possible. However, we
will examine the extent to which the models approach this ideal.

19 A thorough review of many of the concepts used here, particularly the notions of calibration
and resolution, is given by Yates (1982).
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1.0
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0.9 @ IN(1.00) model
0.0 0.1 0.2 03 04 05 06 07 08 09 1.0

Ppred

FIGURE 5.—Calibration graphs of inertial models.

The reliability diagrams are constructed as follows: first, actual and predicted
decisions over rounds 11-40 are paired; second, each decision pair is classified
according to its predicted probability of choosing A4 into one of eleven intervals
([0,0.05],(0.05,0.15],(0.15,0.25],...,(0.95,1]; third, the mean predicted probabil-
ity of an A choice (denoted p,,.,(A4)) and the actual relative frequency of A
choices (denoted p,.(A4)) are calculated for the pairs in each interval, yielding
up to eleven ordered pairs; fourth, these ordered pairs are graphed in
(P(sda,), P(brcr)) space, along with the number of observations represented by
each ordered pair. A perfectly calibrated model would yield ordered pairs on the
45° line. A perfectly resolved model would yield ordered pairs on the p,., =0
and p,,, =1 lines (see Figure 4). \

The models’ reliability diagrams are shown in Figures 5 and 6. We can see the
high degree of calibration of the IN(0.50) and IN(0.75) models, though both are
very poorly resolved. The IN(1.00) model is both poorly calibrated and poorly
resolved. The RE,; and BA models, as well as equilibrium, are well calibrated in
the very weak sense that p,,., and p,., are positively correlated. However, RE,,
and the “best” BA model are clearly better calibrated than fictitious play or
equilibrium play (though it should be noted that, as poorly as equilibrium
characterized other aspects of subject behavior, it performs rather well here).

It is difficult to tell from the reliability diagrams whether RE,, or the best BA
model is better calibrated, but based on the diagrams, we can quantitatively
examine the success of each behavioral model using the following three criteria:
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Sanders calibration (C,), Sanders resolution (R,), and mean probability score
(PS), measures of calibration, resolution, and overall predictive ability, respec-
tively. These measures are defined as follows:

1 11
Cs = (ﬁ) Z Aff(ﬁpred(A) _I_JIIC!(A))Z’
j=1

1y 1
R~ (5| £ NPl =),
j=1

PS=C,+R,,

where N, is the number of pairs whose predicted probability lies in the jth
interval, and N is the total number of pairs.”’ Table V reports the performance
of the models according to these criteria. According to calibration scores alone,
the best models are BA(0.19, —0.205) and fifty-fifty randomization; however,
they are the worst resolved. The difficulty in ascertaining from the diagrams
whether RE or the best BA model is better calibrated is apparent here; RE is
slightly better than BA(4.46, —0.107), but the difference between them is
negligible. The RE,, model has by far the best resolution, and while the best BA
model has better calibration than equilibrium, its resolution is worse.

4.2. Use of Initialized Models for Tracking Aggregate Play

It was shown in the previous section that the RE, model predicts individual
decisions, given histories of play up to the current round, better than the other
models we considered. While this provides evidence that individuals’ decision-
making processes (in this game) might be usefully approximated by a reinforce-

TABLE V

CALIBRATION AND RESOLUTION OF MODELS
Rounps 11-40—N = 1830

Model c, R, 7S
RE, .0034 1329 1362
BA(,0) 0799 2015 2815
BA(4.44, —0.105) .0037 1750 .1788
BA(0.19, —0.205) .0000 .2499 .2500
BA(4.46, —0.107) .0035 1750 .1786
Equilibrium .0050 1726 1775
IN(0.50) .0001 .2499 2500
IN(0.75) .0007 1917 .1923
IN(1.00) .0629 1917 2546

X1t can be shown that P is approximately the square of MSD, so we already know that RE, will
have the best PS score. However, it is still instructive to see if it is best calibrated, best resolved, or
both. :
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ment-based model, such predictions are not the only use of learning models.
Also useful are predictions of aggregate behavior; a model that performs poorly
in predicting individual decisions may work well on average. Furthermore, we
have been looking at models’ predictions of play in a given round given what has
happened from the first round up to that round. Since a researcher will not have
this information until after the experiment is performed, it would be useful for a
model to make accurate predictions of behavior in all rounds, given only some
initial conditions. We will now analyze the success of the models in making
these types of predictions.

In order to accomplish this, we have run additional sets of simulations similar
to those in Section 2.5, but different in two notable ways. First, the output of the
new simulations consists of observed actions averaged over blocks, instead of
behavioral strategies from particular rounds, so that the simulation results are
more directly comparable to the experimental data reported in Section 3.
Second, instead of using randomly chosen first-round propensities or beliefs, we
initialize propensities or beliefs so that first-round play in the simulations
matches first-round play in the experiment as closely as possible. For the RE,
simulations, we use the actual first-round relative frequencies from the experi-
ment as estimates of initial probabilities. For the BA simulations, we set initial
belief probabilities to obtain play as close as possible to the actual first-round
relative frequencies as the outcome of expected-payoff maximization for the
simulations with A = o or via Equation 1 in Section 2.4 for the simulations with
finite A. As before, strengths of initial propensities and beliefs were set to six.
For each model, we ran 100 sets of 29 simulations of the G(.50) game and 100
sets of 32 simulations of the G(.34) game, 100 times the actual number of
observations in the experiment.

Figures 7 and 8 plot, for the RE, and BA(6.67, —0.030) simulations, respec-
tively, mean relative frequencies of sda, and brcr over each ten-round block.
(The BA(6.67, —0.030) model is the best-fitting according to the criterion that
will be used in this section.) Each small circle represents the (P(sda,), P(brcr))
pair corresponding to the average play of a set of pairs of simulated players;
each large circle represents the (P(sda,), P(brcr)) pair corresponding to the
average play of all pairs of actual players over the same block. (In these figures,
the radii of the circles are not meant to indicate any aspect of the data; they are
meant only to make the one experimental point stand out among the 100
simulation points.) Large pluses show the Nash equilibria, and in the figures
corresponding to the BA model, small pluses show the logistic response equilib-
rium.

None of the simulations exactly match the experimental data. The RE,
simulation means and those of the BA(6.67, —0.030) model are clustered near
the corresponding experimental means in each block, though the former seems
to be somewhat closer to the G(.50) data and the latter to the G(.34) data. This
closeness is quantified in Table VI, which reports the squared difference
between simulation and experimental means for both games, both players, and
each of the four blocks. In the bottom row of the table, the sixteen squared
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TABLE VI
FIT OF MODEL SIMULATIONS TO EXPERIMENTAL MEANS (SQUARED DEVIATIONS)

BA models

Equil.

Game Variable Block RE, (,0) (4.46, — 0.107) (6.67, — 0.030) IN(0.50) iid.
G(50) P(sda;) 1 .00006  .00002 .00020 .00032 .00639  .11902
2 .00001 .02826 .00067 .00001 12390 .12390
3 .00179  .05471 .00035 .00002 .08821  .08821
4 .00781 .05724 .00425 .00015 .05808  .05808
P(brer) 1 .00602 .00407 .00063 01156 .06708 .00000
2 .00038  .00062 .01069 .00000 .14900 .00000
3 .00108  .00000 .01831 .00128 .17389 .00000
4 .00028  .00049 .01831 .00156 17140  .00000
G(34) P(sday) 1 .00001  .00043 .00432 .00036 13838 .04494
2 .00462  .00571 .00038 .00040 10176 .02528
3 .00845  .03047 .00007 .00000 .09000 .01960
4 01249  .03532 .00004 .00032 .07896  .01464
P(brer) 1 .00837 .00001 .00763 .00026 .03386  .00020
2 .02043  .00722 .02565 .00317 08644  .01538
3 .00163  .01506 .00871 .00073 .05198  .00336
4 .00601  .09992 .02289 .00142 .08468  .01464
Sum of Squared Deviations 0.07945 0.33955 0.12310 0.02762 1.6166  0.52726

differences are summed to produce a single measure of a model’s closeness to
actual play. For comparison, we also report squared differences between the
experimental means and the means implied by stationary equilibrium play,
fictitious play, the BA(4.46, —0.107) model (the best BA model according to
In(L)), and the IN(0.50) model.*

Keeping in mind that lower numbers imply simulated play closer to actual
play, we see that the worst models by far were Nash equilibrium play and the
IN(0.50) model. Even fictitious play performs better than these models, though
it is also far from actual play. The RE, model and the BA model that was best
at describing individual decisions (according to In(L)) are much closer, though
the former is somewhat better than the latter. However, the BA(6.67, —0.030)
model is much closer to the actual data than even the RE, model.

Since there exist values of A and & that make the BA model better able to
track the experimental data than RE,, one may be tempted to conclude that the
BA model is better than the RE, model. Two caveats apply, though. First, which
model is “better” depends on what criteria of “goodness” are being used; .as was
shown earlier, RE, is better than all of our BA models when the criteria are
those used in the Section 4.1 (the BA(6.67, —0030) model has a MSD of 434, a

2 Here, we are only comparing simulation and experimental means, with no regard paid to
variances. This is intentional; our interest here is in determining the accuracy of predictions of
experimental means using simulation means, not in determining which model would have been
“most likely” to produce the observed data (in which case a measure of dispersion would have been
important).
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FIGURE 9.—Parameter values for which the BA model outperforms the RE; model.

POI of .280, a In(L) of —4162.4,a C, of .0061, a R of .1768, and a PS of .1830,
all worse than those of RE). Second, even if the criterion used is the one from
this section, there are also values of A and & that make the BA model less able
to track the experimental data than RE,. Before running the experiment, there
was no way of knowing which parameter values should have been chosen.

It is therefore of some value to know how likely we would have been to have
chosen parameter values that gave predictions better than those of RE,. Figure
9 shows the (A, 8) pairs that make the BA model better according to the
criterion used in this section. We can see that while it would certainly have been
possible to luckily guess good parameter values, it would by no means have been
a sure bet. In particular, if one supposed a positive value for 6—in forming
beliefs, players put more weight on recent opponent actions than on earlier ones
—then it would have been unlikely indeed that a better model than RE,, would
have been selected, and the improvement over RE; would have been negligible
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(the best model with positive 6, the BA(6.50,0.01) model, yields a sum of
squared deviations of .07252, only slightly better than RE,).?

This is not to say that the BA model is not appropriate as a model of learning
in this experiment, only that at this time, RE, is more useful for generating
quantitative predictions ex ante (as opposed to fitting play ex post). Before the
experiment, we had no idea which BA model was appropriate, and the results of
this, and the previous, section suggest that an “uneducated guess” of parameter
values would have produced predictions worse than those of RE,. There is
currently no intuition available regarding how to make an “educated guess.”
Further research may accomplish this; eventually it may be possible to know,
before the experiment is performed, which BA model to use to generate
predictions. The simplest way this could occur would be if one small subset of
the BA parameter space always produced suitable models (the results of the
next section imply that this is unlikely). More generally, it might be the case that
there exists a mapping from “types” of game (and possibly experimental proce-
dures) to parameter combinations, such that given a strategic environment, one
could choose appropriate parameters. If it is eventually determined that such a
correspondence exists, the BA model will turn out to be very useful indeed. But
until this is determined, a simple model like RE will continue to be functional
not only as a model of individual choice, but also as a model of aggregate
behavior.

5. SOME EVIDENCE FROM OTHER EXPERIMENTS

We now look at the abilities of the RE; and BA models to characterize data
from other experiments. Using data from other experiments allows us to
determine how generalizable our results are; that is, whether RE, is best for a
large class of games, or whether the game used here happened to be a lucky
choice. As mentioned in the introduction, Erev and Roth (1998) and Camerer
and Ho (1999) use data from previous experiments to test learning models. Erev
and Roth examine the data from six previous experiments and one new experi-
ment. They assess the ability of several models to characterize aggregate
features of data and find that in the games they examine, a generalization of the
RE, model works best. Camerer and Ho examine the data from five previous
experiments (all different from those examined by Erev and Roth). They
develop a very general learning model that includes as special cases all of the
models in this paper, and use likelihood ratios to test the general model versus
“restricted” versions of the model such as reinforcement learning and fictitious

2 Furthermore, we should remember that we have only used one particular reinforcement-based
model throughout this paper. As mentioned previously, Roth and Erev (1995) and Erev and Roth
(1998) consider several variations of the RE, model. We use only one here because it does such a
good job that it seems that the small improvement in fit that comes from adding free parameters
would not be worth the reduced generality. However, if it is claimed that one should try all versions
of BA models in order to give it the best possible chance, an argument could be made that one
should do this for the reinforcement-based model, too.
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play. In almost all cases, they find that the best (maximum-likelihood) version of
the model is quite different from the restricted versions, and that the former is
significantly better than any of the latter.

We will look at four data sets, each of which comes from an experiment
involving a simultaneous-move game. Two were used by Erev and Roth: Erev
and Roth’s (1998) “Matching Pennies” game and Ochs’s (1995) 2 X 2 games.
The other two were used by Camerer and Ho: Mookherjee and Sopher’s (1997)
6 X 6 constant-sum games, and Van Huyck, Battalio, and Beil’s (1991) median-
action game. As we did in Section 4.1 with the asymmetric-information game
data, we look at the models’ abilities to predict individual decisions. As before,
we attempt to limit the reliance of the models on unobservable initial propensi-
ties or beliefs by not comparing predictions of behavior with actual play in early
rounds. For each data set, we compare model predictions with play from round
11 through the last round of play, with the exception of the data from van Huyck
et al., whose experiment only lasted ten rounds; we consider rounds 3 through
10 of this data set. The data we examine range from 75% to 96% of each
experiment. For comparison, and in order to examine the plausibility of our
assumption that initial propensities or beliefs are drowned out by the time we
reach the rounds at which we look, we also consider the data from a smaller
subset of rounds of each experiment (roughly the last 50% of each experiment).

As a basis for comparison, in addition to the RE, and BA models, we
consider stationary equilibrium (if the equilibrium is unique), the IN(0.75)
model in which players repeat their previous action with probability 0.75 and
play each other action with equal share of the remaining 0.25 probability, and
the IN(1/m) model in which players play each of the m possible actions with
equal probability. For each of these models, we report in Table VII the MSD,
POI, and In(L) scores, as well as the posterior probability of each model (again,
given that one of these models is the correct one) and the rounds considered.

According to both MSD and In(L) (and thus posterior probability), RE, is
the best for characterizing Erev and Roth’s data, but it is only slightly better
than the IN(0.75) model according to MSD, and worse according to POI. Even
the best BA model fares worse than RE, according to all three criteria, but it
nonetheless improves upon the stationary equilibrium prediction.? None of
these results changes when we look at rounds 251-500 rather than 11-500.

Ochs’s data present a somewhat weaker case for the RE; model; according to
MSD, it outperforms the rest of the models, and the best BA model is even
worse than the IN(0.75) model. On the other hand, according to POI, RE, is
worse than BA and only slightly better than IN(0.75). According to In(L), RE,, is
worse than BA and both inertial models; as with POI, the BA model outper-

2 The best BA model is determined separately for each data set, time frame, and criterion, again
using a grid search. The optimal values of A and § vary greatly between experiments and between
criteria; and vary somewhat between time frames. For example, using the longer time frame and the
In(L) criterion, the best BA model is BA(0.791, —0.133) for the Erev and Roth data set,
BA(0.612,0.236) for the Ochs data set, BA(31.0, —27.6) for the van Huyck et al. data set, and
BA(0.556,0.153) for the Mookherjee and Sopher data set.
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TABLE VII
ABILITIES OF MODELS TO PREDICT DISAGGREGATED DECISIONS (PREVIOUS EXPERIMENTS)

Experiment Model MSD PoI In(L) Posterior Prob.
ER: Matching pennies RE, 474 (.459) 361 (333) —6370.3(—3043.7) > 0.999 (> 0.999)
BA 496 (.495) .441(428) —6715.9(—3411.0) <0.001 (< 0.001)
equilibrium .500 (.500) .500 (.500) —6792.8 (—3465.7) < 0.001 (< 0.001)
Rounds 11(251)-500 IN(0.50) .500 (.500) .500 (.500) —6792.8 (—3465.7) <0.001 (< 0.001) .
N = 4900(2500) IN(0.75) .482(.473) .340(322) —6474.4(—3206.1) <0.001 (< 0.001)
Ochs: three 2 X 2 games RE, .335(.333) .271(261) —7490.4 (—4045.7) < 0.001 (< 0.001)
BA .370 (.380) .260 (.265) —4344.4(—2508.9) > 0.999 (> 0.999)
equilibrium .379 (.380) .393 (.393) —10441.8 (—5628.3) < 0.001 (< 0.001)
Rounds 11(33)-56 or 64 IN(0.50) .390 (.397) .500 (.500) —7674.4(—4219.2) <0.001 (< 0.001)
N =2464(1408) IN(0.75) .350 (.348) .273 (.260) —7472.7(—4113.6) <0.001 (< 0.001)
vHBB: three 7 X 7 games RE, .188 (.145) .134(.070) —598.8 (—190.5) < 0.001 (< 0.001)
BA 154 (.112) .090 (.046)  —526.0 (—130.9) > 0.999 (> 0.999)
equilibrium — — — —
Rounds 3(6)-10 IN(1/7) .350(.350) .979 (.991) —1681.3(—1050.8) < 0.001 (< 0.001)
N = 864(540) IN(0.75) .190 (.147) .126 (.056) —563.6 (—242.1) < 0.001 (< 0.001)
MS: two 6 X 6 games RE, 369 (.372) 6.70 (.691)  —2896.1 (—1919.8) < 0.001 (< 0.001)
BA 372(372) 771 (762) —21443(—1429.3) 0269 (0.079)
equilibrium .355 (.357) .622 (.634) —c0 (=)  0.000 (0.000)
Rounds 11(21)-40 IN(1/6) .373(373) .833(.833) —2150.1(—1433.49) 0.731 (0.921)
N =1200(800) IN(0.75) .422(.429) .708 (.734) —2647.1(—1819.8) < 0.001 (< 0.001)

Note: Statistics outside (inside) parentheses correspond to round numbers outside (in) parentheses.

forms all other models. Looking at only rounds 33 and afterward does not
change the MSD or In(L) results, but it does eliminate the BA model’s
advantage in POI (the IN(0.75) model is now slightly better).

The data of Van Huyck, Battalio, and Beil present even stronger evidence
against RE,; according to all three criteria, the best BA model is better than
RE, (and every other model), and in all cases the difference is substantial. The
RE, model performs even more poorly than IN(0.75) (though slightly better
according to MSD). The BA model is still the best when we look at rounds 6-10
rather than 3-10, but RE, is better than IN(0.75) according to In(L).

The conclusions based on the Mookherjee and Sopher data are ambiguous.
According to the In(L) criterion and hence the posterior probabilities, the best
BA model and the two inertial models are far better than RE,, which is in turn
far better than stationary equilibrium; the best model according to In(L) is the
BA model, though the difference between BA and the IN(1,/6) model is small
enough that the posterior odds actually favor the IN(1/6) model by about 3 to 1.
On the other hand, according to the MSD and POI criteria, stationary equilib-
rium is best, followed by RE,, then by the other three. (This game has a
dominated strategy which is played occasionally by subjects. Thus, though
equilibrium does rather well in terms of MSD and POI, its In(L) score is —.)
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TABLE VIII
CALIBRATION AND RESOLUTION OF MODELS (PREVIOUS EXPERIMENTS)

Experiment Model Cy R, P
ER: Matching pennies RE, .0017 .0558 0575
BA(0.21, —-0.19) .0041 0583 .0624
equilibrium .0042 .0583 .0625
Rounds 11-500 IN(0.50) .0042 .0583 .0625
N = 4900 IN(0.75) .0051 0551 .0602
Ochs: three 2 X 2 games RE, .0020 2082 2102
BA(0.60,0.22) .0119 2246 2365
equilibrium .0066 .2349 2415
Rounds 11-64 or 11(21)-56 IN(0.50) .0026 2474 .2500
N = 2464 . IN(0.75) .0021 .2198 2219
vHBB: three 7 X 7 games RE, .0021 .0338 .0359
BA(31.0, —27.6) .0001 .0239 .0240

equilibrium — — —
Rounds 3-10 IN(1/7) .0000 1224 1224
N =864 IN(0.75) .0026 .0334 .0359
MS: two 6 X 6 games RE, .0090 1274 1364
BA(-0.560, —0.120) .0004 1382 .1387
equilibrium .0002 1258 1259
Rounds 11-40 IN(1/6) .0000 .1389 .1389
N=1200 IN(0.75) .0420 .1358 1778

The POI and In(L) results are not affected by looking only at rounds 21-40, and
the MSD results are changed only slightly (RE, is now tied with BA), but the
IN(1/6) model becomes by far the best according to posterior probability.

The calibration, resolution, and mean probability scores of the models are
presented in Table VIII. (Here, only the larger subset of rounds is considered.)
These scores motivate conclusions similar to those obtained from the MSD
scores; according to the Erev and Roth data and the Ochs data, RE, is best;
according to the van Huyck et al. data, BA is best; and according to the
Mookherjee and Sopher data, static equilibrium is best.

We are thus led to the inconvenient conclusion that neither the RE nor the
BA model is always the best. Though both the RE, and the BA model are
usually better able to characterize experimental data than static equilibrium,
which of these two models is better depends not only on which set of data is
used, but also on which criterion of “goodness” is used. Looking at only the five
data sets we consider, there seems to be a weak relationship between the length
of the experiment and the ability of the RE, model to characterize its data; the
longer the experiment, the better RE, performs. This is consistent with the
results of Erev and Roth (1998), who look exclusively at games of 100 rounds or
longer and find that reinforcement-based models do very well (though they use
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few belief-based models for comparison).” This result is also consistent with
those of Camerer and Ho (1999), who look at games played no more than
40 times and find that reinforcement models do poorly, and that the only game
in which reinforcement models do reasonably well is one in which the game
lasted exactly 40 rounds (the Matching Pennies game of Mookherjee and Sopher
(1994)). If it is true that the length of an experiment influences the ability of
particular learning models to predict behavior, then using only very long
experiments (in order to gather a lot of data relatively cheaply) or very short
experiments (in order to make parameter estimation problems tractable) to test
theories of learning may bias the likely results.

One possible explanation for the better performance of a model like RE; in
longer games is that individuals have a “toolbox” of learning models available,
and choose one by balancing its benefits against its costs. The benefit of
choosing a belief-based model over a reinforcement-based model is that the
former is likely to yield a higher payoff (by taking into account more information
and making strategy choice more sensitive to expected payoff); the cost is the
disutility the individual incurs by “thinking hard.” In games lasting many rounds,
the amount of expected payoff at stake (per round) is relatively small, so that
the benefit obtained by choosing the best strategy is also small. Thus, subjects
may be more willing to adopt a less cognitively demanding model like RE,
(which is simple, even compared with the other reinforcement-based models of
Erev and Roth). An alternative explanation is that in longer games, the number
of rounds is usually much larger than the number of available strategies, so it is
less costly for subjects to gather experience in earlier rounds by “experimenting”
with various strategies and finding which lead to higher payoffs, rather than
using more introspective methods.

The relative abilities of the models also depend on which criterion of
goodness is used. According to the MSD criterion, RE, is better than the BA
model in four of the five games, and according to POI, it is better in three
games and roughly the same in one. On the other hand, according to In(L) and
posterior probability, the BA model is better in three of the games. When one
model is better according to one criterion and worse according to another,
which should win out? The answer depends partly on the researcher’s opinion of
how learning models should be used. The In(L) statistic is a measure of how
probable a model would be to produce the exact pattern of observed events. The
MSD statistic is a measure of how closely the probabilistic predictions of a
learning model conform to observed events. The POI statistic is a measure of
how closely the deterministic predictions of a learning model conform to
observed events. If it is believed that one of the available learning models is the

u Additionally, Roth, Erev, and Slonim (1999) look at a sample of 2 X 2 constant-sum games,
played 500 times, and find that in later rounds, even (stage-game) Nash equilibrium describes play
well. Their result is also consistent with reinforcement-based models working well in long games, as
both RE; and its analogue in their paper (a one-free-parameter model which they call RE1)
converge to equilibrium in that class of games.
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“correct” model, and the problem is just to pick out the right one, then the
In(L) statistic (or the closely related posterior probability criterion) is the
natural choice. If it is believed that «// of the models are misspecified, then
arguing about which model is the correct one is unjustified; instead, looking at
the utility of the models as predictive tools (MSD or POI) is more productive.”
In the case of the models we use here, it is extremely unlikely that any of them
accurately describes the way individuals actually learn; at best, they are good
approximations. (As evidence, consider how much the choice of “best” BA
model depended on which data set was used, as mentioned in footnote 23.)
Thus, an argument could be made that the MSD or POI comparisons should be
more relevant than In(L).

6. CONCLUSION

In order to compare the predictive abilities of several behavioral models, we
have run a new experiment using a two-stage constant-sum game of asymmetric
information. This game is more complex than the games usually used for
learning-model comparisons. We have examined the predictions of stationary
Nash equilibrium and of two types of learning model: a class of belief-based
models and a reinforcement-based model. While quite different in rationale and
in mathematical specification, the two models yield qualitatively similar patterns
of behavior. These patterns, implied by the nature of the best-response corre-
spondence, can be intuitively explained in terms of the strategic problems faced
by the players in this game, and show that learning models can capture some of
the subtleties underlying strategic situations (in this game, having to do with the
gradual revelation of private information) that theorists initially learned about
by studying equilibrium. The learning models are successful in other ways, too.
The qualitative predictions of the learning models pertaining to the cvolution of
play over time are borne out in the experimental data. In contrast, Nash
equilibrium fails convincingly as a predictor of the behavior of experimental
subjects playing this game, especially in its aggregate predictions; players start
far from equilibrium and do not get closer over time.

The models are not equally successful, however; quantitative aspects of play
depend on which model is used. If we view learning models as predictors, given
an individual’s history of past play, of the probability of his or her choosing a
particular action at a particular information set of this game, we must conclude
that the RE, model is the best of the models we have considered. On the other
hand, if we view learning models as predictors, given initial aggregate behavior,
of trajectories of aggregate behavior over time, there is no longer an unambigu-
ous choice. For some parameterizations, the BA model works better than the
RE, model, although the parameter combinations for which this is true make
up a small portion of the universe of possible parameter combinations. The
comparison between models becomes still more equivocal when a larger set of

* This point has been made by Roth, Erev, and Slonim (1999).
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games is considered. Even looking at only the predictions of individual behavior,
we find that in some cases, RE, outperforms the BA model, while in other
cases, the reverse is true. Which model is better depends not only on the
experimental data set used, but also on the criterion of success.

It is important to remember, however, that equally important to the compari-
son between the RE, and BA models is the comparison between learning
models and stationary Nash equilibrium play. Although most of the discussion in
this paper has been devoted to the former comparison, this is to some extent
only true because the difference between the two learning models is much
smaller than the difference between ether of them and equilibrium play. For
almost all of the games considered, and according to almost any of the criteria
we have used, both RE, and the BA model fare better than equilibrium; often
the improvement is substantial. Because the difference between the learning
models and equilibrium is so much greater than that between the two learning
models, it is the former difference that should be expected to carry over to other
strategic situations. It may well be that there is no single model that is able to
describe behavior well in all situations; much more experimental work is
necessary before such a question can be answered. Fortunately, the “best”
learning model is not required in order to improve on the predictions of
equilibrium play.
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APPENDIX: INSTRUCTIONS USED IN THE EXPERIMENT

Below is an example of the written instructions given to subjects participating in the experiment.
The actual instructions were written in WordPerfect 5.1; so they look somewhat different from these
due to the way L* T, X formats text. Copies of the actual instructions are available from the author
upon request.

INSTRUCTIONS

This is a decision-making experiment. You will be playing a game in which the object is to score
as many points as possible. If you have any questions at any time, feel free to ask the experimenter.

1. THE PLAYERS
There are two types of players, informed players and uninformed players. Your type is chosen
randomly at the beginning of the session and will stay the same throughout the session. You will be
randomly assigned an opponent, who is of the opposite type.

You will have the same opponent throughout the session. You will not be told the identity of your
opponent—not even at the end of the session.

2. SEQUENCE OF PLAY IN EACH ROUND
The session is made up of many rounds, each divided into 2 stages.

A. The round begins. One of the two payoff tables on page 3 is chosen by the computer, and the
informed player is told which table was chosen. There is a 50-50 chance of either table being chosen.
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B. Stage 1 begins. You and your opponent each choose an action (either A or B).

C. Stage 1 ends. Each player is told what action his /her opponent chose. The informed player is
also told her payoff for the stage.

D Stage 2 begins. You and your opponent each choose an action (either A or B)

E. Stage 2 ends. Each player is told what action his/her opponent chose. The informed player is

also told her payoff for the stage.

F. The round ends. The uninformed player is told which table had been chosen, and both players
are told how many points they have earned in the round.

3. THE PAYOFF TABLES

There are two payoff tables, the Left table and the Right table. In each round you and your
opponent will be assigned one of these tables. The informed player is told at the beginning of the
round which table was chosen; the uninformed player is not told until the end of the round. The
table you use may change from round to round, but it will never change during a round. Each player
has two possible moves, A and B. In each stage, either you or your opponent will get a point. The
point’is awarded based on ‘the table you have been assigned, your move, and your opponent’s move.

Example 1: Suppose that the Left table was chosen, and that both players choose B. Then the
informed player knows that she gets 0 points in this stage. The uninformed player will not know until
the end of the round what his payoff is, but he does know that if the Left table was chosen, he gets 1
point, and if the Right table was chosen, he gets 0 points.

Example 2: Suppose instead that the Right table was chosen. Then the informed player knows that
she gets 1 point. The uninformed player will not know until the end of the round what his payoff is,
but he does know that if the Left table was chosen, he gets 1 point, and if the Right table was
chosen, he gets 0 points.

Example 3: Suppose that the Left table was chosen, the informed player chooses A, and the
uninformed player chooses B. Then the informed player knows that she gets 0 points. The
uninformed player knows that he gets 1 point—in this case his payoff is the same no matter which
payoff table had been chosen.

4. PLAYING THE GAME

Once the game begins, your computer screen will be divided into 3 parts. The top part will show the
round and stage numbers, and will have a space for messages. The middle part will show
“personalized versions” of the payoff tables. The bottom part of the screen will show the results of
the most recent 10 rounds you have played. By looking at these results, you may get some insight
into how your opponent plays the game.

PAYOFF TABLES

LEFT TABLE
Informed player move A A B B
Uninformed player move A B A B
Informed player payoff 1 0 0 0
Uninformed player payoff 0 1 1 1

RI1GHT TABLE
Informed player move A A B B
Uninformed player move A B A B
Informed player payoff 0 0 0 1
Uninformed player payoff 1 1 1 0
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In each stage, the computer will ask you to type in a move (either A or B). After you have done this,
the computer will ask you to verify your move. Type Y to verify or N to change your move. After you
and your opponent have verified, each of you will be able to see the move of the other. After
observing these results, press G to go on to the next stage.

At the end of each round, uninformed players are told which table had been chosen, and all players
are told their total payoff for the round. After observing these results, press G to go on to the next
round.

5. GETTING PAID

All players will receive $10 for their participation. In addition, at the end of the session, one round
and stage will be chosen at random from those that have been played, and all players who earned a
point in that round and stage will receive an additional $10. In each stage, either you or your
opponent earns a point, so either you or your opponent will get the $10 bonus. Each round and stage
is equally likely to be chosen, so you should try to earn as many points as possible in order to give
yourself the best chance at winning the extra $10. All earnings will be paid in cash at the end of the
session.
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