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Predicting How People Play Games: Reinforcement Learning in
Experimental Games with Unique, Mixed Strategy Equilibria

By Ipo EREV AND ALVIN E. ROoTH*

We examine learning in all experiments we could locate involving 100 periods or
more of games with a unique equilibrium in mixed strategies, and in a new experi-
ment. We study both the ex post ( “‘best fit’’ ) descriptive power of learning models,
and their ex ante predictive power, by simulating each experiment using parameters
estimated from the other experiments. Even a one-parameter reinforcement learning
model robustly outperforms the equilibrium predictions. Predictive power is im-
proved by adding ‘‘forgetting’’ and ‘‘experimentation,’’ or by allowing greater ra-
tionality as in probabilistic fictitious play. Implications for developing a
low-rationality, cognitive game theory are discussed. (JEL C72, C92)

Game theory has traditionally been devel-
oped as a theory of strategic interaction among
players who are perfectly rational, and who
(consequently) exhibit equilibrium behavior.
This approach has been complemented by
evolutionary game theory, which, motivated
by biological evolution, seeks to understand
how equilibria could arise in the long term by
selection among generations of players who
need not be rational or even conscious deci-
sion makers. Somewhere in between are mod-
els of learning, which consider the adaptive
behavior of goal-oriented players who may not
be highly rational, both to provide foundations

* Erev: Faculty of Industrial Engineering and Manage-
ment, Technion, Haifa, Israel 32000, and Department of
Economics, University of Pittsburgh, Pittsburgh, PA
15260 (e-mail: erev@techunix.technion.ac.il); Roth: De-
partment of Economics, Harvard University, Cambridge,
MA 02138, and Harvard Business School, Boston, MA
02163 (e-mail: aroth@hbs.edu; http://www.economics.
harvard.edu/faculty/roth/roth.html). The work of both au-
thors is partially supported by grants from the National
Science Foundation. We have benefitted from helpful con-
versations with Yoella Bereby-Meyer, Nick Feltovich,
Daniel Gopher, Joachim Meyer, Ayala Cohen, Dan
Hamermesh, and Shmuel Zamir. Yoella Bereby-Meyer
also contributed to the design and programming of the new
experiment. We are indebted to Barry O’Neill, Jack Ochs,
and Amnon Rapoport for access to unpublished parts of
their data. The present version reflects numerous com-
ments by three anonymous referees on several earlier
drafts. This work was completed while Roth was at the
University of Pittsburgh.
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for theories of equilibrium and to model em-
pirically observed behavior.

The present paper considers how well sim-
ple learning models, motivated by the psy-
chology of learning, can model the interaction
of players who must learn about the game and
each other in the course of playing the game,
over time spans that may not be long enough
to lead to equilibrium. Our goal will be to
model observed behavior, starting with behav-
ior observed in experimental settings. (In the
conclusion we will also consider the implica-
tions of this approach for applied economics
in naturally occurring, nonexperimental set-
tings.) We will show that a wide range of ex-
perimental data can be both well described ex
post and robustly predicted ex ante by a very
simple family of learning theories.

Economists have traditionally avoided ex-
plaining behavior as less than rational for fear
of developing many fragmented theories of
mistakes. Part of the attraction of highly ra-
tional models is the idea that there may be
many ways to be less than rational, but only
one way (or in light of the equilibrium refine-
ment literature perhaps only a few ways) of
being highly rational. In this view, the success
in economics of the assumptions of utility
maximization and equilibrium behavior is in
large part due to the prospect that they may
provide a useful approximation of great gen-
erality, even if they are not precisely correct
models of human behavior (cf., Roth, 1996a).
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Similarly, the development of learning the-
ories of considerable generality will be most
likely if it turns out that learning does not have
to be modeled in a fundamentally different
way in each game. One of the chief purposes
of the present paper is to investigate whether
this is likely to be the case. As we will see, the
evidence supports the conjecture that a simple
model of learning may have quite general ap-
plication. We will also discuss some limita-
tions of the models presented here, and our
conjecture that these may primarily have to do
with the sometimes complex strategy space in
which relatively simple kinds of learning may
be going on. (Just as commodities and states
of the world need to be carefully modeled if
utility theory is to be useful as a general
tool, a general theory of learning will not
free us from the need to model specific
environments.)

Learning in strategic environments presents
some phenomena not found in individual
decision-making because the environment in
which each individual gains experience in-
cludes the other players, whose behavior
changes as they, too, gain experience. At least
in the intermediate term, the effect of experi-
ence appears to depend on features of the stra-
tegic environment different from those which
determine equilibrium: Experience leads to
quick convergence to equilibrium in certain
games, but has little effect in other games with
similar equilibria.' Experience even appears to
lead behavior away from equilibrium in cer-
tain matrix games with mixed strategy equilib-
ria considered in the present paper.

In Roth and Erev (1995) we showed that a
simple model of individual learning could cap-
ture this range of behavior. We considered

" For experimental data see e.g., the market and ulti-
matum games studied in Roth et al. (1991), both of which
have a unique subgame-perfect equilibrium which gives
all the wealth to one side of the market, and both of which
have other equilibria which support the full range of dis-
tributions between the two sides. Behavior in the market
game robustly and quickly converged to the perfect equi-
librium, while behavior in the ultimatum game, equally
robustly, showed no signs of approaching the perfect equi-
librium. For a comprehensive survey of experimental re-
sults, see the Handbook of Experimental Economics (John
Kagel and Roth, 1995).
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three games with similar perfect equilibrium
predictions, in two of which experimental sub-
jects were observed to converge quickly to the
perfect equilibrium prediction, while no sign
of such convergence was observed in the third.
The learning model we studied exhibited the
same kind of behavior in each game as the
experimental subjects did, and did so using the
same parameter choices for all three games, in
a way that helped explain why games with
similar equilibria might elicit different behav-
ior. (Games with similar equilibria may be
quite different from one another away from
equilibrium, and so players who start away
from equilibrium may learn very different
things.)

Recently there have been a number of other
papers which compare the predictions of var-
ious learning models to the learning observed
experimentally in games.” Collectively these
papers powerfully begin to make the case that
learning models have great potential for de-
scribing observed behavior. Some of these pa-
pers also use the observed behavior in a game
to compare different learning models, most
typically by fitting the parameters of each
model to the data, and testing which provides
the best fit for each game studied. They gen-
erally support the idea that models in which
individuals perform probabilistically in ways
that respond to their experience are likely to
outperform simple deterministic models.

The present paper builds on this emerging
consensus. In keeping with our goal of stud-
ying the robustness and predictive power of
learning models, we will take a somewhat dif-
ferent approach. We explore the possibility
that a simple reinforcement learning model
can be used to predict, as well as explain, ob-
served behavior on a broad range of games,
without fitting parameters to each game. We
start with the basic one-parameter model ex-
amined in Roth and Erev, and then ask which
psychological assumptions have to be added
to the basic model in order to more accurately
account for the observed behavior.

2 See for example Yin-Wong Cheung and Daniel
Friedman (1995, 1996), James Cox et al. (1995), David
Cooper and Nick Feltovich (1996), Fang-Fang Tang
(1996a, b, ¢), and Colin Camerer and Teck-Hua Ho
(1998a, b).
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We concentrate first on a class of games for
which the necessary psychological assump-
tions may be simple and easy to quantify,
namely repeated matrix games with unique,
mixed strategy equilibrium in which repetition
does not create opportunities for players to co-
operate.”’ For this purpose, we have assembled
and analyzed a data set consisting of all ex-
periments we could locate involving play of
100 periods or more of games with a unique
equilibrium in nontrivial mixed strategies.*
The reason for looking for so many periods of
play is to observe intermediate-term as well as
short-term behavior. The data sets we have as-
sembled report repeated play of 11 games, un-
der a variety of experimental conditions, from
the experiments of Patrick Suppes and Richard
C. Atkinson (1960); David Malcolm and
Bernhardt Lieberman (1965); Barry O’Neill
(1987); Rapoport and Richard B. Boebel
(1992); Jack Ochs (1995). For the experi-
ments from the 1960’s, we use data at a useful
level of disaggregation contained in the pub-
lished reports, and for the others we have ob-
tained data at the individual level from the
authors. We also consider a new, twelfth data
set, from an experiment we conducted on one
of the games studied by Suppes and Atkinson,
to examine the robustness of some of the
observed results to different experimental
conditions.

Games with a unique, mixed strategy equi-
librium present a difficult test case, both for
theories of equilibrium and of learning, be-

*In Section VI we briefly consider games in which
players can reciprocate. In follow-up studies we consider
games and individual decision tasks with dominant strat-
egies. These latter studies show that the reinforcement
learning models considered here also do well in capturing
individual learning phenomena observed in games with
pure strategy equilibrium and in (individual choice) prob-
ability learning experiments (see a review of this literature
in Wayne Lee, 1971). Yoella Bereby-Meyer and Erev
(1997) consider this individual choice literature in a study
built upon the current results. Other follow-up studies fo-
cus on individual learning in a complex task with delayed
outcomes (Erev et al., 1997) and probabilistic signals
(Erev, 1998).

* A “‘nontrivial’’ mixed strategy is one in which at least
two strategies are played with positive probability. We
also excluded a game with a unique, mixed strategy equi-
librium in which all strategy choices were equally likely
(Amnon Rapoport and David V. Budescu, 1992).
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cause at equilibrium no player has positive in-
centives to play the equilibrium probabilities.
(But away from equilibrium some player has
positive incentives to change his behavior.)
Another reason for looking at games with a
unique equilibrium is that finite repetition of
such games does not increase the set of equi-
libria, so the repeated game has a unique equi-
librium, which can be achieved in stage-game
strategies. Thus in principle the stage-game
strategies may be adequate to model the strat-
egy sets of the players of the repeated game.
And the experiments in this data set were de-
signed to concentrate on stage-game strate-
gies. Nine of the 12 games are constant sum
(and so finite repetition does little to enlarge
the scope for cooperation or retaliation com-
pared to the stage game). And the three non-
constant sum games were played under
conditions (to be described) which limited the
use of repeated-game strategies.

Ideally we would like to be able to predict
behavior at every level of aggregation or dis-
aggregation, for every game, for any length of
play. Since the models we consider are com-
putational, we can use them to simulate each
experiment and predict the probability of each
action at each period. We will then compare the
predictions of different learning models and of
equilibrium by computing the mean-squared
deviation (MSD) of the predicted and observed
behavior, period by period, for each game, both
for all subjects and for individual pairs (when
individual-level data are available). For each
model and each of the 12 experimental data sets
we consider we will perform two tests of de-
scriptive power and one test of predictive
power, as follows. First, we will find the best
parameters for minimizing the MSD over all
games, and compute the MSD for each game
using these parameters. Then we will find the
best parameters for minimizing the MSD for
each of the 12 games separately (i.e., by look-
ing at a model which replaces each parameter
of the original model with 12 distinct parame-
ters, one for each game). Finally we will test
the predictive power of each model on each of
the 12 games, by estimating the model’s param-
eters on the data from the other 11 games, using
the model to predict behavior in the game of
interest, and comparing the predicted path of
behavior with the observed path.
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The main results of this paper will be that a
one-parameter reinforcement learning model
outperforms the equilibrium prediction for all
values of its one parameter. The model’s
descriptive and predictive power is further
improved by incorporating (into a three-
parameter reinforcement model) psycho-
logical assumptions about experimentation
and forgetting that facilitate responsiveness to
a changing environment (i.e., an adaptive op-
ponent). We also consider a four-parameter
belief-based model which explicitly adds to
the reinforcement model responsiveness to a
changing environment in the manner of prob-
abilistic fictitious play, and show that it, too,
improves on the one-parameter reinforcement
model, although not on the three-parameter re-
inforcement model.

The paper is organized as follows. Section
I presents the 12 experimental data sets. We
observe that: (1) in 5 of the 12 games equilib-
rium predicts badly: average choice probabil-
ities, pooled over all rounds, are closer to
random choices than to the equilibrium pre-
dictions;* (2) initial learning trends often
move away from the equilibrium predictions;
(3) in most cases of initial movement away,
behavior moves towards the equilibrium after
sufficiently long play; and (4) there is large
between-pair variability that is not eliminated
by experience.

Section II motivates the reinforcement
learning approach, and evaluates a basic one-
parameter model. This section demonstrates
that the basic model robustly (over the entire
range of its parameter) outperforms the equi-
librium predictions and captures the initial
learning trends, but it fails to account for the
late direction change and the between-pair
variability.

Section III examines the value of adding
to the model the two additional parameters
introduced in Roth and Erev to model ‘‘ex-
perimentation’” and ‘‘forgetting.”” Both pa-
rameters contribute to the model’s descriptive

5 Note again that our sample of games is not a random
sample, rather it is a sample of games selected by a variety
of experimenters, which elicited widely varying behavior,
including specifically good and bad performance of the
equilibrium predictions.
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power. The three-parameter model captures
the conditions under which the direction of the
learning trend is changed, and accounts for the
observed between-pair variability.

Section IV examines a modification of the
basic model that makes it more like belief-
based models of learning (e.g., probabilis-
tic fictitious play in the manner of Drew
Fudenberg and David K. Levine, 1997b). This
includes an information parameter (that deter-
mines the extent to which subjects respond to
information beside the payoffs they have ac-
tually received; see Camerer and Ho, 1998a),
a maximization parameter (that determines
subjects’ tendency to optimize), and a habit
parameter (that weighs previous actions). On
our data, only the habit parameter contributes
to the model’s descriptive power. Consistent
with this conclusion, within-subject analysis
reveals that individual subjects are better
described as reinforcement learners than
expectation learners on this class of games.
Comparisons of all the models’ predictions are
made in Section IV on the aggregate data, and
in Section V on the individual data.

Section VI briefly considers the case of
games for which the present models will have
to be extended. The most challenging of these
will be games in which repetition creates op-
portunities for cooperation, for which a more
detailed investigation of the empirically ob-
served repeated-game strategies will be
needed. We consider how such an investiga-
tion will be related to research in cognitive
psychology.

Section VII discusses how the kind of adap-
tive models we consider here might contribute
to applied economics, and Section VIII
concludes.

1. The Data

A few words are in order about why we
concentrate on data gathered by other experi-
menters. One of the great benefits of experi-
mental economics is that investigators can
easily collect new data well designed to test
particular hypotheses. However there is a dan-
ger that investigators will treat the models they
propose like their toothbrushes, and each will
use his own model only on his own data. More
subtly, there is a danger that in making the
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many decisions that go into an experimental
design, an investigator will unconsciously be
guided, by the same intuition which motivates
the model he considers, to make design
choices that promote behavior of the kind pre-
dicted by the model. (This danger is only par-
tially attenuated when an investigator selects
experiments done by others, if there is room
for his intuition to guide which experiments
are selected.) Thus, while in Roth and Erev we
explored data we had generated ourselves, in
the present paper we chose to ‘‘tie our hands’’
by exploring the entire set of available exper-
iments concerning long runs of games with
unique equilibria in mixed strategies. These
were conducted under widely varying experi-
mental conditions, by investigators with
widely varying theoretical dispositions (and
who reached quite different conclusions from
one another on the basis of their observa-
tions). In particular, the data were collected
under an unusually wide range of conditions
involving the information of the players (from
full information in some treatments to others
in which participants did not even know they
were playing a game), and the manner in
which they were paid (from monetary to non-
monetary rewards, delivered deterministically
or stochastically). These data thus provide a
universe on which we can test claims of ro-
bustness regarding both the games and the
conditions under which they are played.

A. The Aggregate Learning Curves and the
Equilibrium Predictions

For each of the experiments to be described
next (except the new one which is described
separately ), the left-hand column in Figures 1-3
presents the aggregate experimental results
and the equilibrium predictions (the right-
hand columns are simulation results to be dis-
cussed later). The payoff matrices are
presented at the left of the figures. Each cell
within the figure’s frame is a graph that has
the probability of a certain choice (ranging
from O to 1) on the Y axis, and the rounds of
the experiment (organized into blocks as in the
data of that experiment) on the X axis. For the
2 X 2 games, the mean probability with which
players 1 (row players) and players 2 chose
their first strategy (A) is plotted over time in
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Figures 1 and 3. For the games with more strat-
egies the choice probabilities of the asymmet-
rical strategies are presented in Figure 2.
Player 1 choices are indicated by triangles,
player 2 choices by squares. The equilibrium
predictions for players 1 and 2, respectively,
are given by the triangle and square at the far
right of each cell in column 1.

Suppes and Atkinson (1960 ) —minimal in-
formation: The top four rows in Figure 1 pres-
ent experiments conducted by Suppes and
Atkinson to test their ‘‘Stimulus-Sampling”’
theory of learning. This theory can be inter-
preted as an even simpler reinforcement learn-
ing model than those studied here, in that it is
limited to the case of two possible outcomes—
“‘reinforcement,”” and ‘‘no reinforcement.”’

Suppes and Atkinson assumed that being
“‘correct’’ is a reinforcing event, and did not use
monetary rewards in the treatments we consider.
In each trial of the experiments considered be-
low, subjects were asked to choose between two
keys, and then (within a few seconds) received
a binary feedback (indicating whether they were
correct or not). The feedback was probabilisti-
cally determined by the payoff matrix. For ex-
ample, in the condition whose payoff matrix is
presented in the top row of Figure 1, each payoff
unit increases the probability of a ‘‘correct re-
sponse”” feedback by '/.°

Suppes and Atkinson studied the effect of
the payoff matrix and of subjects’ information
about it. Four of their experimental conditions
involved matrix games with unique, mixed
strategy equilibrium, and these conditions are
considered here.

The top row of Figure 1 corresponds to the
“‘mixed strategy’’ experimental condition in
Chapter 3 of Suppes and Atkinson (first de-
scribed in Atkinson and Suppes, 1958). The

¢ Because each payoff in the game matrix is a proba-
bility of being reinforced, this is an early example of a
binary lottery payoff. Although it was not intended in this
case to control for hypotheses involving expected-utility
maximization, it has the effect of allowing us to interpret
the predictions of such hypotheses (of which mixed strat-
egy equilibrium is one ) without having to worry about risk
aversion. For a history of the use of binary lottery designs
to allow the predictions of expected-utility hypotheses to
be interpreted unambiguously, see Roth (1995), particu-
larly pages 40—49 and 81-85.
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Data Predictions
Basic Roth/Erev FP-like
reinforcement (RE)
game/ choice prob. eq. (1 par) (3 par) (4 par)
] [
S&A2: A2 B2 | I - - o —E—ER
ETWIRTHIE BA:—g?H M
B1 (3,3) (1,5) N
S&A8: A2 B2 1
A1 (8,0) (3&):% g:: Sttt :‘*‘ﬂ‘ﬁ“ﬁ—a
B1 (0,5) (5,3) ] " No-8-5-8-5-0 S8-g-g-m-n
O
S&A3k: A2 B2 ||gtftraen Ate—tetrn
A1 (3,7) (8,2) Mé e
B1 (4,8) (1,9) N
] O
S&A3u: A2 B2 |
Aiu(3,7) (ta.z)-ﬁ:é:Elg . eﬁﬁ% prtrees | g EES
B1 (4,6) (1,9) A
] N éa—a—m—a—ﬂ
M&L: A2 B2 ] ﬁﬁ;‘;
A1 (8,-3) (_1,1)_ﬁ; é-é—m; e-8-g-5-ga
B1 (-9,9) (3,-3) ]
] O
AAARE RARRS RAARE RAASH AN LAARMLARARE] T LAAARS SRARAE RAARE RARAS R ARAE RAAAR RARM
[} 100 200 0 100 200 0 100 200 0 100 200
Rounds
—a—t A1 a A1 ateq.
a8 A2 o A2 at eq.

FIGURE 1. REPEATED 2 X 2 GAMES (SUPPES AND ATKINSON [S&A], 1960; MALCOLM AND LIEBERMAN [M&L], 1965)

Notes: In the top four games each payoff unit increases the probability of winning (by '/s in S&A2, by '/; in S&AS, and
by /o in S&A3k and S&A3u). In M&L payoffs were directly converted to money. Each cell in the left-hand column
presents the experimental results: The proportion of A choices over subjects in each role (grouped in 5 to 8 blocks) as a
function of time (200-210) trials in all cases. The three right-hand columns present the models’ predictions in the same
format. The equilibrium predictions are presented at the right-hand side of the data cells.

game played in this condition, referred to here
as game S&A?2, has a unique, mixed strategy
equilibrium in which player 1 chooses A1 with
probability '/ and player 2 chooses A2 with
probability *. It was played by 20 pairs of
subjects for 200 rounds. The subjects were not
informed that they were playing a two-person
game. They were told that their task, in each
of the 200 trials, was to predict which of two
lights will be turned on. Subjects were run in

pairs and, as described above, the probability
of a ‘“‘correct’’ response was determined by
the game payoff matrix. Thus, although the
subjects did not know that they were playing
a game, the game is a description of the rein-
forcement structure.

Suppes and Atkinson presented the choice
proportions in blocks of 40 trials. The results
(see the data in the top-left panel of Figure 1)
show that player 2 appears to move toward the
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Data Predictions
Basic Roth/Erev FP-like
reinforcement (RE)
game/  choice prob. eq. (1 par) (3 par) (4 par)
On: A2 B2 C2 D2
Al +5 -5 -5 -5
B1 -5 -5 +5 +5 -
C1-5+5—5+5'W ]
D1 -5 +5 +5 -5 | Eﬁji fﬁa‘a\&ﬂ
1
R&B10: W=10, L=-6 -
A2320202E2-B/B\8__Ei§ Em:: =
B1 L L W W W
C1 L W L L W
D1 L W L W L
E1 L W W L L
R&B15: Wm15, Lm—1 -
LARAR RARAS RARSS RARAE RAR} T LASARE RARRS RARAE RARLE RARAS RARAE RARAE RAM LAAAAE RARAS RARSE R
[} 60 2 o0 0 20 0 60 20 0 €0 120
Rounds
= Al s Af ateq. e—e—s A2 o A2 at eq.
+—e—e B s B1 ateq. e—a—a B2 © B2 at eq.

FIGURE 2. REPEATED 4 X 4 (O’NEILL [On], 1987) AND 5 X 5 (RAPOPORT AND BOEBEL [R&B], 1992) GAMES

Note: The curves show predicted and observed choice probabilities (7 blocks of 15 trials in game On, and 4 blocks of

30 trials in the R&B games).

equilibrium prediction (the proportion of A2
choices increases with time). Player 1 initially
moves away from the equilibrium. Only in the
last two blocks is the proportion of A1 choices
reduced.

The data graph in the second row of Figure 1
summarizes the results of a condition reported
in Chapter 4 of Suppes and Atkinson, in which
players knew they were playing a game, but
did not know the payoff matrix. At the equi-
librium of this game (S&A8) both players

choose A with probability 0.2. This game was
played by 20 pairs of subjects for 210 rounds.
Subjects were told that they were playing a
two-person game in which they were to predict
which of two lights would turn on. They were
told that the correct answer depended on their
response, on the other subject’s response, and
on a random event. As in game S&A?2, the
probability of a ‘‘correct’” response was de-
termined by the payoff matrix, which was not
presented to the subjects.
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Data Predictions
Basic Roth/Erev FP-like
reinforcement (RE)
game/ choice prob. eq. (1 par) (3 par) (4 par)
Oc9: A2 B2 4 fﬁmﬁ
A1 (9,0) (0.1) /)\’M/A Aéf,,:
B1 (0,1) (1,0) M EKS\S\B‘B‘&G
] O (X"E—B‘E"B‘g
Oc4: A2 B2 W S
A1 (4,0) (o,1;— N E\g\&aﬂw
B1 (0,1) (1,0) {
: % . \W
Oc1: A2 B2 1
A1 (1,0) (0,1) M@EE—M—B—H BB BB [-EPPEPNPA )
B1 (0,1) (1,0) {
0 320 640 0 640 0 320 640 O 320 840
Rounds
—a—t A1 s A1 ateq.
a8 A2 o A2 at eq.

FIGURE 3. TwWO-POPULATION 2 X 2 GAMES (OcHs [Oc], 1995)
Note: Each cell presents the probability of A choices in blocks of 80 trials (7 blocks in game Oc9, and 8 blocks in the

other games).

The results (summarized by the proportions
of A choices in blocks of 30 trials) are simi-
lar to the results obtained in game S&A2.
Whereas one of the players (player 2) quickly
learns to approach the equilibrium prediction,
the other (player 1) initially moves away from
the equilibrium.

Suppes and Atkinson (1960 )—matrix ef-
fect: In order to evaluate the effect of explicit
presentation of the payoff matrix, Suppes and
Atkinson compared two experimental condi-
tions. The control group played game S&A3

(see Figure 1) under the game/prediction con-
dition in which game S&AS8 was played. Since
the game was unknown to the subjects in this
condition, we refer to it as game S&A3u. The
experimental condition, referred to as S&A3k,
was identical with the exception that the pay-
off matrix was known to the subjects. Twenty
pairs participated in game S&A3u, and 20
pairs participated in game S&A3k. Both
games were run for 210 rounds (and the data
in Figure 1 are presented in 7 blocks of 30
trials). At equilibrium player 1 chooses Al
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with probability *;, and player 2 chooses A2
with probability “/;.

Suppes and Atkinson observed a very weak
effect due to the presentation of the payoff ma-
trix on the overall choice probabilities. In both
groups, one of the subjects (player 2) moves
toward the minimax prediction, whereas the
second subject (player 1) moves away.

A replication study —To evaluate the ro-
bustness of Suppes and Atkinson’s results we
ran a replication of condition S&A3u (Suppes
and Atkinson, 1960) with two procedural vari-
ations: our subjects were paid for their perfor-
mance and were run for more (500) rounds.
This game was selected because it provides the
sharpest contrast between the predictions of
the equilibrium and experimental results.

The subjects were 20 undergraduate students
at the Technion. They were run in ten pairs.
Both pair members were seated in front of the
same computer. They were separated by a
plastic divider so that each member could see
only half of the screen. They received 10
Shekels (about $3) for showing up, and were
told that they would play a game on the com-
puter in which they could earn more money.
In each of the game’s 500 trials they had to
select one of two keys.” They were told that
their choice and that of the other player deter-
mined their probability of winning, and that
on the average whenever one person wins the
other person loses. The payoff matrix was
identical to the probabilistic matrix of the
game S&A3, with a win worth 0.01 Shekel
and a loss worth 0. The payoff matrix was not
shown to the subjects. Each subject could see
on the screen his/her cumulative and last trial
payoffs. The 500 rounds took about 45
minutes. The average final payoff was 35
Shekels ($12).

The results of the replication study, referred
to as S&A3n, practically coincided with the
original study. For the 210 periods that were
run in the original study, the average distance
between the replication and the original learn-
ing curve measured by mean-squared devia-
tion was only 0.2. And in the remaining 290
rounds both curves continued with a slow,

7(A) or (Z) for the subject on the left, and (6) or (3)
on the numerical key pad for the player on the right.
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noisy upward movement. The proportion of A
choices in the last 100 trials was 0.65 for
player 1, and 0.67 for player 2. Learning
curves of individual pairs in this study are pre-
sented in Figure 4 and discussed shortly. [Note
added in proof: While checking the galleys we
detected a minor bug in the computer program
used to run the replication study, that occurred
when a player pressed the two keys in a single
trial. This occurred in about 3 percent of the
trials and was more or less uniformly distrib-
uted over pairs and over time. We ran another
replication study after correcting this bug. The
results were practicaily identical.]

Malcolm and Lieberman (1965 ) : The study
conducted by Malcolm and Lieberman was de-
signed to test the descriptive power of the min-
imax model. The payoff matrix was explained
to the subjects, and the payoff units were chips
that were converted to money at the conclu-
sion of the experiment. Nine pairs of subjects
participated in 200 replications of the game.

The fifth row in Figure 1 presents the payoff
matrix (game M&L) and the results. At the
equilibrium of this game player 1 chooses Al
with probability %,, and player 2 chooses A2
with probability '/, Malcolm and Lieberman
presented the choice proportions in blocks of
25 trials. Experience led both players toward
the equilibrium prediction, but player 1 ap-
pears to learn faster, reaching equilibrium by
the forth block, whereas player 2 approaches
equilibrium only slowly.

O’Neill (1987 ): O’Neill argued that the re-
search conducted prior to his study cannot be
used to reject the minimax prediction because
it involves strong additional assumptions. For
example, Suppes and Atkinson explicitly as-
sumed that ‘‘being correct’” has a utility, and
Malcolm and Lieberman assumed that the util-
ities are linear in money. O’Neill designed a
careful experiment that avoids these assump-
tions. Twenty pairs of subjects played a4 X 4
zero-sum matrix game (see top of Figure 2)
for 105 rounds. The game was described as a
simple card game. In each round, each subject
chose a card (that stood for one of the four
strategies ) and the payoff was determined by
the payoff matrix presented at the top of Figure
2 (which was verbally explained to the sub-
jects). Because each subject can receive one
of only two possible payoffs, there is no op-
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portunity for choices by expected-utility max-
imizers to be influenced by nonlinearities (risk
preferences) in their utility functions.® Note
that for both players three of the four strategies
(B, C and D) are symmetrical. At equilibrium
both players are expected to choose A with
probability 0.4, and to choose each of the other
strategies with equal probability (0.2).

At the aggregate level, the results (sum-
marized in Figure 2 by the proportion of A
choices in blocks of 15 trials) appear to sup-
port the static equilibrium prediction.

Rapoport and Boebel (1992 ) : Rapoport and
Boebel utilized O’Neill’s careful design to
study behavior in two versions of a 5 X 5
constant sum matrix game (bottom panels in
Figure 2). In the first experimental session ten
pairs of subjects played the game for 120
rounds under each of two payoff conditions.
(The subjects then exchanged roles and played
another 120 rounds in a second session. The
data obtained in the second session are not pre-
sented here.” At equilibrium both players
choose strategy A with probability /s, strategy
B with probability %, and each of the remain-
ing (symmetrical) strategies with probability
'/s. Rapoport and Boebel compared two ex-
perimental conditions. In the condition re-
ferred to as R&B15, W (player 1’s profit in
case of a “‘win’’) was 15, and L (player 1’s
profit in case of a “‘loss’’) was —1. In the con-
dition referred to as R&B10, W =10and L =
—6. The results are summarized in Figure 2 by
the proportion of A and B choices in blocks of
30 rounds.

Unlike O’Neill’s results, Rapoport and
Boebel’s results do not conform so closely to
the equilibrium prediction. Yet, some move-
ment toward equilibrium is observed.

8 That is, when players play mixed strategies, all of the
induced lotteries are binary lotteries.

? Rapoport and Boebel found no significant difference
in behavior between sessions 1 and 2. And the models we
consider here (when reinitialized at the beginning of ses-
sion 2) did equally well at describing the observed behav-
ior in either session. However the learning in these games
(in both sessions) is fairly flat, so we do not want to sug-
gest that for other games the behavior of experienced play-
ers who switch roles can be captured by our model without
at least some attention to the effect of their prior
experience.
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Ochs (1995 ): Ochs’ subjects were asked to
state the proportion of ‘*A’’ choices that they
wished to make in the next ten games. Subjects
were run in cohorts of eight players in each
position for 56—-64 trials of ten simultaneous
games per trial, and they accumulated lottery
payoffs to be used at the end to determine cash
payoffs via a binary lottery payoff mechanism.
In each trial, players were matched to new op-
ponents using a quasi-random mechanism.

Three games were compared (see Figure 3).
The equilibrium prediction implies that player
1 should choose strategy A with probability
'/, in all three conditions. Player 2 is predicted
to choose strategy A with probability '/, in the
top game (Oc9), with probability %, in the
middle game (Oc4), and with probability '/,
in the symmetrical game (Ocl). One cohort
was run under each condition (game).

The experimental results are summarized in
Figure 3 by the proportion of A choices in
blocks of eight trials (80 games). Although
Ochs’ experimental design is very different
from that of Suppes and Atkinson, his results
show the main trends observed in their studies.
In games Oc9 and Oc4 one of the two players
(1) starts to move away from the equilibrium,
and later moves back slowly.

B. Individual Learning Curves

One of the most interesting features of
O’Neill’s data set is that although the aggre-
gate choice probabilities are very close to
equilibrium, individual players’ choices are
not (cf., James N. Brown and Robert W.
Rosenthal, 1990). So analysis of individual
learning curves can reveal information that is
lost in the analysis of the aggregate curves.

The two cells in the top row of Figure 4
present five, randomly selected, individual
pairs from the O’Neill experiment and from
our replication of the Suppes and Atkinson ex-
periment. The X axis in each cell is the fre-
quency of A2 choices by player 2 and the Y
axis is the frequency of Al choices by player
1. The right-hand cell presents five of the
curves in O’Neill’s data set. Each data point
(seen as a point at which the curve changes
direction) presents the average frequency over
35 rounds. The first block is marked by a tri-
angle, the last block is marked by a dot, while
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FIGURE 4. OBSERVED AND PREDICTED LEARNING CURVES OF RANDOMLY SELECTED INDIVIDUAL PAIRS IN THE
REPLICATION STUDY (S&A3n) AND O’NEILL'S (On) GAMES

Note: Each curve shows the probability of Al as a function of the probability of A2 for one of the pairs (in blocks of 50

trials for S&A3n and 35 trials for On).

the equilibrium is marked by a circle. The left-
hand cell presents five of the individual pairs
in the replication study (S&A3n) using the
same format (in 10 blocks of 50 trials).
Examination of these curves reveals high
between-pair variation that is not diminished
with time.

C. Summary

Four summary observations seem worthy of
note. First, in some of the games the equilib-

rium prediction does very badly. This impres-
sion can be quantified by comparing the
distance between the experimental curves, the
equilibrium, and the random choice prediction
(that all strategies will be chosen equally of-
ten). The distances were measured for each
game by mean-squared deviation (multiplied
by 100) scores (see Reinhard Selten [1998]
for a discussion of this measure). The MSD
scores were first calculated for each data block
(as presented in Figures 1-3) and then aver-
aged across blocks and player type in each ex-
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periment. The results are presented in the top
two rows of Table 1. Random choice beats
equilibrium in 5 of the 12 games, and they tie
in the sixth game. Over all games the equilib-
rium MSD score is 3.57 while the random
choice score is 1.87, reflecting the fact that in
the games where equilibrium does badly com-
pared to random choice, it does very badly.'”

Second, in most studies one of the two play-
ers initially moved away from the equilibrium
predictions. But the equilibrium has some de-
scriptive power. Whereas the learning away
for the equilibrium is robust (i.e., continued
450 trials in game S&An), a late direction
change towards the equilibrium prediction was
observed in most cases. Finally, a robust
between-pair variability that is not diminished
with experience was observed even when the
aggregate choice probabilities are at equilibrium.

II. Reinforcement Learning

Our main point of departure is the optimistic
conjecture that the robust characteristics of hu-
man and animal learning behavior described
in the psychological literature concerning in-
dividual decision makers may lead to a ro-
bustly descriptive model of human learning in
strategic environments also. Thus, we start our
attempt to account for the behavioral results
described above with a simple model based on
the most robust characteristics of individual
behavior. We will proceed to augment the
model with further psychological assumptions
only after identifying aspects of the data that
are not predicted by the simpler model.

Examination of the psychological learning
literature led us (in Roth and Erev) to consider
the following two basic principles as a starting
point in the search for a model to approximate
learning in games.

The Law of Effect (Edward L. Thorndike,
1898): Choices that have led to good out-

10 The fact that random choice beats equilibrium in the
games S&A3u, S&A3k, and S&A3n means that it does so
for a fixed matrix played both with and without players’
knowledge of the matrix, and with and without their being
paid in cash for their outcomes, so the phenomenon is not
isolated among those games with low information or
among those without cash payoffs, but appears to be a
property of the matrix of payoffs.
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comes in the past are more likely to be re-
peated in the future; and

The power law of practice (see e.g., J. M.
Blackburn, 1936'"): Learning curves tend to
be steep initially, and then flatter.

Note that implicit in the law of effect is
an additional psychological principle:
choice behavior is probabilistic. This is one
of the basic assumptions of most mathe-
matical learning theories proposed in psy-
chology (e.g., William K. Estes, 1950;
Robert Bush and Frederick Mosteller,
1955; Duncan R. Luce, 1959; Suppes and
Atkinson, 1960).

Where learning in games will differ from
the individual learning literature is that we will
have to concentrate on the behavior of popu-
lations of subjects, both when they are inex-
perienced and as they gain experience. In
strategic environments the behavior of other
subjects forms an important part of the envi-
ronment faced by each subject.'> Because
different subjects may behave differently (es-
pecially when they are inexperienced) an im-
portant part of the environment may therefore
be stochastic.

We begin with a basic, one-parameter model
which will provide some initial benchmarks
for comparisons with equilibrium and with
slightly more elaborate models. The basic
model also permits us to lay out the general
framework (following Luce) within which all
of the reinforcement models we consider are
constructed.

A. The General Framework, and a Basic,
One-Parameter Reinforcement Model

Initial propensities— At time t = 1 (before
any experience has been acquired ) each player
n has an initial propensity to play his kth pure
strategy, given by some nonnegative number

"' As described in E. R. F. W. Crossman (1958).

12 While the same can be said of evolutionary game
theory, note that what makes learning potentially quite dif-
ferent from selection is the power law of practice, which
has no parallel in modern theories of evolution (or in the
replicator dynamics with which evolutionary game theory
is most often studied). Individuals may learn more slowly
as they gain experience, but there is no evidence that pop-
ulations of organisms evolve more slowly.
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TaBLE 1-—MSD Scorgs (100 X MEAN-SQUARED DEVIATION —SMALLER Is BETTER ) BETWEEN THE DIFFERENT
PreDICTIONS (ROUND 72 OF THE DATA COMPARED TO ROUND 72 OF THE PREDICTION) AND
THE EXPERIMENTAL RESULTS BY GAME AND AVERAGED OVER GAMES

Game: Mean over
Model S&A8 S&A2 S&A3u S&A3k S&A3n M&L On R&BI5S R&BIO Oc9 Oc4 Ocl all games
Random 1.08  2.04 2.53 1.46 2.11 246 219  1.07 1.38  3.88 1.78 045 1.87
Equilibrium 692 718 7.27 7.56 6.14 211 0.14 045 1.03 222 137 045 3.57

Basic reinforcement:

best fit (1 parameter) 0.16 030 0.31 0.11 0.57 227 1.81 098 073 271 1.54 048 1.00
by game (12 parameters) 0.07  0.24 0.14 0.10 0.41 1.89 033 0.50 0.16 234 154 041 0.68
prediction 0.16  0.30 0.31 0.11 057 227 181 098 0.86 271 1.64 048 1.02
RE:

best fit (3 parameters) 038 0.18 0.12 0.07 0.31 1.24 072 0.65 033 154 1.09 048 0.59
by game (36 parameters) 0.05  0.10 0.04 0.05 0.25 021 032 035 0.11 1.34 099 037 0.35
prediction 0.67 026 0.19 0.09 0.39 1.24 087 0.83 048 154 1.17 051 0.69
FP-like:

best fit (4 parameters) 034 020 0.16 0.09 0.37 126 1.05 0.71 044 2.04 148 042 0.71
by game (48 parameters) 0.05  0.09 0.04 0.03 0.29 045 004 0.14 0.17 170 1.19 0.28 0.37

prediction 0.77  0.44 0.24 0.09 0.37 1.54 124 0.71 044 2,10 1.65 045 0.84

Notes: Each of the first 12 columns of the table represents one of the games. The first two rows present the MSDs of the
random choice and equilibrium predictions. Each of the other three panels summarizes the fit of one of the learning
models. The first row in each panel displays the MSDs for the model in question using the parameters used in Figures
1-3. The second row shows the MSDs when the parameters are separately estimated for each game. The third row shows
the accuracy of the prediction of the model when behavior in each of the 12 games is predicted based on the parameters
that best fit the other 11 games. The final column gives the average MSD over all games, for each case, which is a quick
summary statistic by which the models can be roughly compared.

g (1). In our basic model, each player will Updating of propensities—If player n plays
be assumed to have equal initial propensities ~ his kth pure strategy at time ¢ and receives a
for each of his pure strategies, i.e., for each  reinforcement of R(x), then the propensity to
player n, play strategy j is updated by setting

g (1) = g,,;(1) for all pure strategies k, j. @) + R(x) ifj =k

(D g (t+1)=

infor t ion—The reinforce- .
A reinforcement functio e () (1) otherwise.

ment of receiving a payoff x is given by an
increasing function R(x). In the basic model,

we take the reinforcement function to be Probabilistic choice rule—The probability
P (t) that player n plays his kth pure strategy
R(x) = x = Xuin» at time ¢ is

where x,,, is the smallest possible payoff. (2) Pu(t) = qu(t)/ 2q,;(1),
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where the sum is over all of player n’s pure
strategies j.

Equation (2) is precisely Luce’s linear prob-
abilistic response rule. Note that the model sat-
isfies the law of effect and the power law of
practice. Pure strategies which have been played
and have met with success tend over time to be
played with greater frequency than those which
have met with less success, and the learning
curve will be steeper in early periods and flatter
later [because nonnegative reinforcements im-
ply 2q,;(¢) is an increasing function of ¢, so a
reinforcement of R(x) from playing pure strat-
egy k at time ¢ has a bigger effect on p,,(¢) when
t is small than when ¢ is large].

This learning model has a certain resem-
blance to evolutionary dynamics (cf., John
Maynard-Smith, 1982) even though they are
not the ‘‘replicator’’ dynamics customarily as-
sociated with evolutionary models. (In fact
this basic model was proposed as a quantifi-
cation of the law of effect by Richard J.
Herrnstein [1970], and considered as an ap-
proximation of evolutionary dynamics by
Calvin B. Harley, 1981."%) The chief point of
similarity with evolutionary dynamics is that
the influence of other players’ past behavior
on any player n’s behavior at time ¢ is via the
effect that their behavior has had on player n’s
past payoffs.

The single parameter of the basic model —
It follows from the probabilistic choice rule
[equation (2)] and our assumption that each
player’s initial propensities are all equal that
at the initial period of the game each player
chooses each of his strategies with equal
probability. However, we have not made any
assumption which fixes the sum of the

'* A family of closely related reinforcement models is
studied by Tang (1996b), who finds they compare favor-
ably to a number of other learning models in describing
observed behavior in an experiment he considers. Another
related model (in which probabilities are generated with-
out propensities) was suggested by Bush and Mosteller
(1955), and has been studied in economic contexts by
John G. Cross (1983), W. Brian Arthur (1991, 1993),
Michael W. Macy (1991), Tilman Borgers and Rajiv
Sarin (1994, 1995), and Dilip Mookherjee and Barry
Sopher (1997). This latter model may in fact be more
closely related to replicator dynamics (see Jorgen Weibull,
1995), since it does not obey the power law of practice,
i.e., since learning does not become slower over time.
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initial propensities, which appears in the
denominator of equation (2), and therefore
influences the rate of change of choice prob-
abilities, i.e., the speed of learning (which is
also influenced by the size of the rewards).
The basic model’s sole parameter, s(1),
which we will call the strength of the initial
propensities, is introduced to determine the
ratio of these two determinants of the learn-
ing speed. Let X, be the average absolute
payoff for player »n in the game. The initial
strength parameter for player n is defined as
5,(1) = Zg,;(1)/X,, and we assume that this
is a constant for all players, i.e., s,(1) =
s(1) > O for all players n.

Note that this definition and the probabilistic
choice rule yield the initial propensities g,,;(1) =
P.;j(1)s(1)X,, where p,;(1), the initial choice
probability is given by p, (1) = 1/M,,, where
M, is the number of player n’s pure strategies.
Thus the initial propensities are determined by
the observable features of the game and by the
strength parameter s(1).

Derivation of predictions—To derive the
model’s predictions for the experiments de-
scribed above we conducted computer simu-
lations designed to replicate the characteristics
of each of the experimental settings. In each
case the simulated players ‘‘participated’’ in
the same number of rounds as the experimen-
tal subjects. Two hundred simulations were
run for each game under different sets of pa-
rameters. At each round of each simulation the
following steps were taken:

(i) Simulated players were matched (using
the matching procedure of the experi-
ment being simulated).

(ii) The simulated players’ strategies were
randomly determined via equation (2).

(iil) Payoffs were determined using the pay-
off rule employed in the experiment in
question.

(iv) Propensities were updated according to
equation (1).

Parameter estimation— A grid search with
an MSD criterion was conducted to estimate
the value of the free parameter, s(1). That is,
the simulations were run for a wide set of pa-
rameters, and the parameter that minimized the
distance between the model and the data
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(minimized the model’s MSD score) was se-
lected for each of the tests presented below.

B. Aggregate Description and Prediction

Best fit— The second column in Figures 1—
3 presents the predictions of the basic learning
model with the estimated parameter that best
fit the data over all 12 games [s(1) = 54].
The distance (MSD score) between the best fit
and the data by game and averaged over games
is summarized in the first row of the basic
model’s statistics in Table 1. (The parameters
were chosen to minimize the average score
over all games: the MSDs reported in this row
for each game all have the same parameter
value.)

Note that the model’s average score (1.0) is
less than 30 percent of the equilibrium score.
Since these scores represent error they imply
that the equilibrium’s error is more than three
times the model’s error. Yet, Table 1 also
shows that only in 6 of the 11 games in which
the predictions differ (all models considered
here have the same predictions for game Ocl)
does the basic model outperform the equilib-
rium prediction.

Sensitivity analysis— Sensitivity analysis
reveals that the advantage of the model over
the equilibrium is robust to the choice of the
free parameter. The model’s MSD score is be-
low 1.5 (less than 50 percent the equilibrium
score) as long as s(1) is between 10 and 350.
When s(1) is very large the model predicts
practically no learning, and equal choice prob-
ability among the strategies. The MSD dis-
tance from the data of this ‘‘flat’’ prediction is
1.87, i.e., it coincides with the random choice
model. And the model’s predictions are closer
than the equilibrium prediction to the data for
all positive values of s(1)."

The value of game-specific parameters—
The second row of the basic model’s statistics
in Table 1 presents the fit of a variant of the
basic model that assumes that the strength pa-
rameter is affected by the game. That is, here
we estimate the best fit separately for each
game. Over games the MSD score of this 12-

' For values of s( 1) between 0 and 10 the performance
of the model is not monotonic.
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parameter model is 0.68. In the following sec-
tions we will see that this improvement is not
large enough to justify the current 12-
parameter model; models with fewer parame-
ters have better scores.

Predictions—To evaluate the predictive
power of the model, we predicted behavior
in each of the 12 games without using that
game’s data. That is, the parameter [s(1)]
was estimated based on the data of the other
11 games. The results (the ‘‘prediction’’
row in the statistics for the basic model in
Table 1) show that for the basic model the
predictive power is almost identical to the
descriptive power. (This reflects the stabil-
ity of the parameter estimates, which were
not substantially changed by the removal of
any one game from the sample.) Over the
12 games the average predictive MSD score
is 1.02.

C. Individual Learning Curves and
Between-Subject Variability

The second row in Figure 4 presents in-
dividual learning curves of random pairs of
virtual subjects that were programmed to be-
have according to the current model [s(1) =
54]. Examination of these curves suggests
that the virtual (basic) subjects are less vari-
able and more homogeneous than the human
subjects.

D. Summary and Limitations

The basic one-parameter model clearly
outperforms the equilibrium prediction in
accounting for average choice probabilities
and initial learning trends. Yet (referring to
Figures 1-3), the basic model fails to account
for the late movement often seen towards equi-
librium, and some characteristics of the indi-
vidual curves (Figure 4). It seems that the
basic model predicts a learning process that is
less responsive to the opponent than the ob-
served processes. Responsiveness to the op-
ponent is expected to lead to a direction shift
(when the opponent ‘‘moves’’ to the other
side of the equilibrium), and to increased
within-pair variability. The following sections
introduce alternative extensions of the basic
model that facilitate ‘‘responsiveness.”’
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II1. Roth and Erev’s (1995) Extension:
The Three-Parameter RE Model

In Roth and Erev we introduced responsive-
ness to the model by adding two weaker psy-
chological assumptions: experimentation, and
a recency effect.'” The first of these can be
viewed as an extension of the law of effect
(see e.g., B. F. Skinner, 1953; N. Guttman and
H. Kalish, 1956; J. S. Brown et al., 1958).

Experimentation (or Generalization): Not
only are choices which were successful in the
past more likely to be employed in the future,
but similar choices will be employed more of-
ten as well, and players will not (quickly) be-
come locked in to one choice in exclusion of
all others.

The second additional feature of individual
learning modeled in Roth and Erev can be
viewed as an interaction between the law of
effect and the power law of practice.

Recency: Recent experience may play a
larger role than past experience in determining
behavior.

In Roth and Erev we called this ‘‘forgetting.”’
Like generalization, recency is a robust effect
considered and observed at least since John B.
Watson (1930); see also Edwin R. Guthrie
(1952).

These two assumptions were quantified in
Roth and Erev by the following modification
of equation (1), the updating function:

(1) gt +1) = (1 = ¢)g,;(1)
+ E(j, R(x)).

In 1', ¢ is a forgetting (or recency) parameter
which slowly reduces the importance of past
experience, and E is a function which deter-
mines how the experience of playing strategy

"> The model proposed in Roth and Erev has subse-
quently been used to explore a number of data sets. See
Gary Bornstein et al., 1994; John Dickhaut et al., 1995;
Rosemarie Nagel, 1995; Ochs, 1995; Bornstein et al.,
1996; Cooper and Feltovich, 1996; Feltovich, 1997; John
Dufty and Feltovich, 1998; Robert Slonim and Roth,
1998.
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k and receiving the reward R (x) is generalized
to update each strategy j.

Experimental investigation of generaliza-
tion suggests that strategies which subjects
find “‘similar’’ to the selected strategy will be
affected by the reinforcement. Brown et al.
(1958) observed a normal generalization dis-
tribution. In games in which similarity of strat-
egies can be linearly ordered (such as those
studied in Roth and Erev) we chose a *‘three-
step’’ function to approximate the general-
ization function, as follows:

R(x)(1—g) ifj=k
E.(j,R(x)) = R(x)e/2 ifj=k=1
0 otherwise,

where € is an experimentation/generalization
parameter. For games such as those in the
present data set, when only two strategies are
considered, or when the M = 2 strategies do
not have an apparent linear order, a ‘‘two-
step’’ function will be used:

R(x)(1—¢) ifj=k
R(x)e/(M—1)

otherwise (where M is the

E(j,R(x)) =

number of pure strategies).

Another way to think of these two functions
is that when the strategy sets allow similarity
judgements to be made, players will gener-
alize their most recent experience in a way
that leads to experimentation among the most
similar strategies.' When no similarity
judgements can be made, players simply re-
tain some propensity to experiment among all
strategies.

Parameters—The model has three param-
eters: the strength parameter s(1) (as in the
basic model) and the experimentation and for-
getting parameters £ and ¢.

'® Thus this is an attempt to incorporate some structural
information about the game into the learning model; in
this respect, see also the ‘‘directional learning’’ approach
of Selten and Joachim Buchta (1994).
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A. Aggregate Curves

Best fit—A grid search revealed that the RE
model best fit the data over the 12 games with
the parameters s(1) = 9, & = 0.2, and ¢ = 0.1.
The third column in Figures 1-3 graphs simu-
lations of the RE model with these parameters.
The summary statistics (for the RE model in Ta-
ble 1) reveal that the addition of experimentation
and recency parameters reduced the model’s
MSD distance to 0.59 over all games. Thus, this
3-parameter model outperforms the 12-
parameter game-specific basic model. Table 1
also shows that the RE model outperforms the
equilibrium prediction in 9 of the 11 relevant
games. In addition to this quantitative improve-
ment, the extended model capiures the longer-
term trends (movement toward the equilibrium)
that are not captured by the basic model.

Sensitivity analysis—To evaluate the ro-
bustness of the model to the choice of param-
eters we asked how large is the subspace of
the three-parameter space for which the
model’s fit is below 1.5. A grid search reveals
that this criteria is satisfied for all the param-
eter sets (i.e., everywhere inside the cube) in
which 0.02 < e <03,0<¢ <0.2,and 0 <
s(1) < 1000 (there are also points outside this
cube that satisfy the 1.5 criterion).

The value of game-specific parameters—
The MSD score of the 36-parameter variant
of the RE model with game-specific parame-
ters is 0.35. Examination of Table 1 reveals
that introducing game-specific parameters
achieved the largest improvement in fitting the
data in the games that involve negative payoffs
(in games M&L and On in particular). This
observation suggests that the apparent game
effect may be a result of inaccurately modeling
the effect of losses. We will return to this point
in Section VIIL.

Predictions—When behavior in each of the
12 games is predicted based on the parameters
that best fit the other 11 games, the MSD score
is 0.69. This result suggests that the improve-
ment of the RE model over the basic model is
not a result of fitting more parameters. It seems
that the forgetting and experimentation param-
eters capture robust properties of the data that
facilitate prediction.

To evaluate the contribution of each of the
added parameters we derived the predictions
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of the two reduced two-parameter models over
all games. The overall predictive MSD dis-
tance of a ‘‘strength and experimentation’
model (which fixes ¢ = 0) is 0.75, and the
predictive MSD score of a “‘strength and for-
getting’” model (fixing ¢ = 0) is 1.0. These
results reveal that the addition of forgetting is
useful only following the addition of experi-
mentation. But then forgetting complements
experimentation, as shown by the 0.69 overall
predictive MSD for the three-parameter RE
model.

B. The Value of Estimating
Initial Propensities

In Roth and Erev we noted that in the ulti-
matum game the players’ initial propensities
can have a long-term effect on the learning
process. Thus, in that game the prediction of
the learning model can be improved by an as-
sessment of these initial propensities. To eval-
vate the effect of the initial propensities in the
current games we compared the fit of the
model studied above (which assumes uniform
initial probabilities ) with a model that used the
first block of data in each game as an estimate
of the initial probabilities. To facilitate com-
parison the first block data was ignored in this
analysis; without this block both variants of
the RE model have only three parameters that
are estimated from the data.

The effects of the estimated initial propen-
sities are weak: They do not substantially af-
fect the optimal parameters and the fit on these
data. With estimated initial propensities the
MSD is 0.55 compared to 0.59 with uniform
initials. The estimated initial propensities im-
prove the fit in 6 out of the 12 games. Given
these results, and the cost of estimating initials
(in extra parameters, and in difficulty of com-
paring models), we prefer to retain the as-
sumption of uniform initial propensities in our
analyses of these games.

C. Does the Model Capture Nonlinear
Trends in the Data?

In order to examine whether the model
captures the nonlinear trends in the data, an
analysis of covariance was conducted. This
analysis fits a linear curve to the probability
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of A choices (thus, the B curves in the R&B
games were not utilized in this analysis) of
each player in each game (24 curves, each
with two free parameters), and tests if the
learning model’s predictions can add sig-
nificantly given the 48-parameter linear
model. The addition of the RE model is
highly significant (F[1, 991 = 35.7, p <
0.0001).

D. Individual Curves

The third row in Figure 4 presents indi-
vidual learning curves of random RE play-
ers. These pairs appear to be closer to the
experimental pattern (high variability that is
not diminished with time) than the ‘basic’’
pairs.

IV. A Four-Parameter Generalization of
Reinforcement Learning and Probabilistic
Fictitious Play

The RE generalization of the basic rein-
forcement model makes it more responsive to
changes in the opponent’s behavior by adding
experimentation and forgetting. In this section
we explore a model in which responsiveness
is added more explicitly, in the form of ex-
pected value calculations that allow a player
to try to choose an action based on beliefs
about opponents’ behavior.

This model also facilitates comparison be-
tween the experimentally motivated reinforce-
ment learning models considered above and
belief-based models studied in the game the-
ory literature. Like Camerer and Ho’s experi-
ence weighted attraction (EWA) model, the
current model is a generalization of rein-
forcement learning and the fictitious play (FP)
model (George W. Brown, 1951). FP models
a player as observing the past actions of the
other players, and in each period choosing the
action which maximizes his expected payoff
under the assumption that other players will
choose among their actions with the frequency
observed up to that period. This is a determin-
istic model of behavior, originally proposed as
an algorithm for computing equilibria (Julia
Robinson, 1951), and we will see that it does
not do as well as probabilistic models in track-
ing observed behavior.
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In an effort to construct more descriptive
belief-based models, a number of authors
have considered probabilistic versions of fic-
titious play in which players have a higher
probability of choosing an action the higher
is its expected payoff according to beliefs
formed as in fictitious play. Fudenberg and
Levine (1997b Ch. 4) note that such a model
coincides with a ‘‘stimulus-response’’ [re-
inforcement ] model if the expected value of
each action is taken to be its average return
over past plays, and they suggest that this
may be the natural way to adapt fictitious
play to games in which players may not be
able to observe other players’ actions. We
consider this case first.

The limited feedback case—We first con-
sider the relationship between the basic rein-
forcement model and the FP model when the
information available to the players is limited
to the realized payoffs, by considering a model
which generalizes them both, i.e., a model
which for different values of its parameters co-
incides with one or the other. Take REV,,(t)
to be the average return player n has received
from those periods up to ¢ — 1 in which he has
chosen action k. Then equation (1) of our ba-
sic model implies that his propensity g, (?) =
qu(1) + REV,, (1) Cy (1), where C,, (1) is the
number of times player n has chosen action k
up to time ¢ — 1. (Note that one of the key
differences between a reinforcement model
and an optimization model is that in a rein-
forcement model not only the average return
on an action matters, but also the number of
times it has been chosen.)

We can also replace the initial propensities
¢.(1) with two initial ‘‘expectation’’ param-
eters and write ¢,,(¢) = EV,,(1)N,(1) +
REV,,(t)C.,(t), where EV, (1) is player n’s
initial belief concerning the expected value of
strategy k, and N, (1) is the *‘strength’’ of that
belief.

Finally, it is convenient to define a * ‘subjec-
tive reinforcement EV’’ as the sum of initial
expectations and accumulated experience,
namely

SREV,.(t) = [EV,(1)N(1)

+ RE‘/nk(t)an(t) ] /Ivnk(t)a
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where N, (t) = N,(1) + C,(z). Note that
g (t) = SREV, (t)N,(t). This implies that the
probabilistic choice rule given by equation (2)
can now be written as

(2" pu(t) = [SREV, ()N (1) ]

+ Z(SREV,;(t)N,;(1)).

Equation (2") allows us to see that in the current
limited information case the basic reinforcement
model is distinguished from probabilistic ficti-
tious play by the presence of the numbers NV, (1),
which allow the number of times a strategy has
been played in the past to influence the proba-
bility that it will be played in the future, instead
of having this probability determined only by the
expected values. To better see this, consider the
two-parameter family of models given by equa-
tion (2") below.

(2" pu(t) = [ SREV,,(1)"(N)"]

+ Z[ SREV, ;()"(N,;)"],

where the parameter m = 0 can be interpreted
as an indication of the degree to which player
n maximizes based on his expectations, and
the parameter 4 = 0 can be interpreted as mea-
suring the force of habit, i.e., the force of past
experience.

In a reinforcement model, % is positive, be-
cause past behavior influences current behav-
ior through more than the expectations, while
in a belief-based model % equals 0. For any
sufficiently large value of m, when & = 0 (no
force of habit) equation (2") approximates
(arbitrarily closely) the traditional FP model
which makes the deterministic choice of the
strategy with the highest expected value.
When m = 1 and 2 = 0, equation (2") de-
scribes a simple model of probabilistic ficti-
tious play, in which actions are chosen
proportionately to their expected payoff, with
no regard to how often they have been played
in the past. When m = 1 and & = 1, equation
(2") coincides with (2'), and with the basic
reinforcement model given by (2)."7

' In comparing different learning models via equation
(2") we are following a path explored by Cheung and
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The complete information case— An addi-

tional difference between reinforcement learn-
ing and FP arises when the players receive
complete information concerning their oppo-
nent’s decisions, in which case reinforcement
learning still models a player as being influ-
enced only by the strategies actually played.
Camerer and Ho point out that in this case the
FP model implies that the players calculate the
relevant Expected Values by the average re-
turns that they could have received from
choosing each of the strategies in the first 7 —
1 trials (under the fictitious play assumption
that the other players’ behavior is fixed). To
calculate these fictitious EVs (FEV) set the ini-
tial values f,,(1) = g (1) and,
(1) fult+ 1) = f,,(0) + SR(x),
where SR (x;) is the reinforcement that player
n would have received for choosing j in trial ¢
[x; is the payoff, and SR(x;) = X; — Xnin], and
J.i(2 + 1) is the accumulated fictitious propen-
sity up to trial ¢ + 1 for player n to play strat-
egyJj.

This definition implies that f,,(t) =
EV, ()N, (1) + FEV,(t)(t — 1), where
FEV, (t) is the average return player n
would have received from choosing action
in all periods until # — 1. And the *‘subjec-
tive fictitious EV’’ can be written as

SFEV, (1) = fu(t) / [N, (1) + 1 = 1]
=[EVu(1)N,(1) + FEV,(1)

X(@=D1/IN(D)+1-11,

Friedman (1996) and Camerer and Ho (1998a). Each of
those papers looks at a parameterized class of models dif-
ferent from equation (2") but similar in spirit. Cheung and
Friedman (1996) consider a family of models which con-
nect the dynamics of best reply (to the previous period’s
actions) to those of fictitious play. Our model is more
similar to that of Camerer and Ho, although their model
is more complex, with separate parameters for discounting
past reinforcements and past beliefs. We certainly do not
insist that our model is more correct; rather our intention
is to use it as a basic model, comparable to the basic re-
inforcement model, to clarify the role that maximization
and past experience (habit) can play.



VOL. 88 NO. 4

where f,, = SFEV,[N,(1) + ¢t — 1] is the
accumulated fictitious propensity.

Note that under the assumption that the
other players’ behavior is fixed (and in gen-
eral in one-person games), the two subjec-
tive expected values estimates, SFEV,, (1)
(which reinforces all strategies at each pe-
riod) and SREV,,(t) (which reinforces only
those strategies which are actually played),
are unbiased. They are expected to lead to
the same estimates when ¢ is large enough.
Yet, SFEV,,(t) uses more information.

To summarize all the differences between
the basic reinforcement learning model and
FP we will focus on a model that incorpo-
rates equations (1), (1”), and the following
generalization of (2) and (2”):

[(d)SFEV,.(1) + (1 - d)

(1 = < X SREV(D]" (N ]
Prj Z[d)SFEV,(t)+ (1 —d)
X SREV,,(1)"(N,»)"]

(2/!/)

where 0 = d = 1 is a weight parameter that
determines the relative weight of the non-
reinforcement information. With d = 1 (and
h = 0 and large m) the model coincides with
FP. Withd =0, h = 1,and m = 1 it coincides
with the basic reinforcement learning model.

Parameters—In its general forms, the
current model has 2M + 1 initial propen-
sity parameters for each player: Two param-
eters for each strategy, ¢,.(1) and EV,, (1),
and one strength parameter N,(1). Yet,
we can use the constraints Xg,,(1) =
s, ()X, = ZEV,(1)N,(1), and the uniform/
symmetrical initials assumptions utilized
above to reduce the number of free initial-
propensities parameters to one.

We start with the estimation of ¢,,(1) =
s(1)X,/M as stated above, and set EV,,(1) as
the average reinforcement (for player n) in the
game (average payoff minus x,,,). Following
this simplification, the current model has four
parameters: d, h, m, and s(1).

In summary, three psychological assump-
tions distinguish the basic reinforcement
model we consider from fictitious play. The
first has to do with the information assumed to
affect the implicit EVs. The parameter d (when
it is positive) allows information about what
strategies would have earned to enter the cal-
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culation, instead of only allowing information
about what strategy choices did earn when ac-
tually chosen. The other two have to do with
the absence of maximization (m = 1 rather
than infinity), and the force of habit (k posi-
tive rather than 0).

A. Aggregate Curves and the Value of the
Added Sophistication

The predictions of the FP-like model were
derived under the assumption that when play-
ers’ information is limited to their own payoffs
(in the Suppes and Atkinson games and in our
replication ), choice probabilities are cal-
culated with d = 0. For the remaining seven
games the estimated value of d affects the
model’s predictions.

Best fit and the contribution of the different
parameters—The “‘optimal’’ parameter set was
foundtobed =09, m=15,h=0.1,and s(1)
= 27. The MSD of this four-parameter model is
0.72—Dbetter than the basic model, but not as
good as the three-parameter RE. The predicted
curves are presented in the fourth column of Fig-
ures 1-3.

In evaluating the parameters’ values it is im-
portant to note that the optimal fit function has
an extremely flat optimum along the infor-
mation parameter d. An almost equally good
fit (MSD of 0.75) was obtained under the con-
straint d = 0, that forces the simulated players
to ignore any information other than that con-
tained in the reinforcement model.

These results are consistent with the obser-
vation that in the current setting (many repe-
titions of games having small number of
strategies) the two sources of information
(personal payoff versus all payoffs) are highly
correlated.

The MSD score of a deterministic FP model
(large m, d = 1, h = 0) with optimal s(1)
value (of 5) is 1.9. The addition of a proba-
bilistic response rule (m = 1) improves the
MSD score to 0.73.

In summary, only one of the three parame-
ters that distinguish the basic model from FP,
the habit parameter 4, has a clear contribution
to the model’s descriptive power.

Sensitivity analysis— As noted above the
predictions of the current model are relatively
insensitive to the value of d. The subspace
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of the four-parameter space for which the
model’s fit is below 1.5 include all values of
d0=sd=Dand: 1 =m<2,0=h<0.5,
and 0 < s(1) < 1000.

The value of game-specific parameters—
Over the 12 games the MSD score of the 48-
parameter variant of the FP-like model with
game-specific parameters is 0.37. As in the
case of the RE model, the largest improvement
due to game-specific parameters was achieved
in the games that involve negative payoffs (cf.,
Table 1). [The ‘‘good’” fit for game Onl
(0.28) is, of course, a chance result. With high
m values the model’s predictions are extreme
(0 or 1) and even the average of 100 simula-
tions is noisy. With 1000 simulations the av-
erage prediction is 0.5 and the fit converges to
0.45.]

Predictions—The average prediction MSD
score of the FP-like model is 0.84.

To evaluate (and quantify ) the assertion that
the advantage of the current model over the
basic model is largely due to the effect of the
habit parameter, we derived the prediction
MSD score of a two-parameter ‘‘strength and
habit’’ model ( the FP-like model with the con-
straints d = 0, and m = 1). The MSD predic-
tion score of this model is 0.85. Thus 0.15 (93
percent) of the 0.16 advantage in predictive
power of the FP-like model over the basic
model is obtained by the habit parameter. The
two ‘‘rationality’’ parameters (maximization
and FP-expectations ) contribute together 0.01
(7 percent of the 0.16).

B. The Effect of the Assumed Initial Beliefs

To evaluate the robustness of these conclu-
sions to the assumed initial beliefs, we derived
the prediction of the FP-like model with the
assumption of uniform initial beliefs. Under
this assumption player n knows the payoff ma-
trix and believes that his/her opponent will
choose randomly among the possible strate-
gies. This assumption did not improve the
model’s fit. The best MSD score was 0.75.

C. Individual Learning Curves
Samples of individual learning curves under

the FP-like model are presented in the fourth
row of Figure 4. This model appears to imply
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areduction in between-pair variance that is not
observed in the current data.

D. Summary of the Model Comparisons
on Aggregate Daia

Before moving on to individual data, a
glance at Table 1 summarizes what we have
learned. The one-parameter basic model oui-
performs the equilibrium predictions. The ba-
sic model’s descriptive and predictive power
are further improved by incorporating exper-
imentation and forgetting into the three-
parameter reinforcement model. The fact that
the three-parameter model fit simultaneously
to all games has a lower mean deviation
(0.59) than does the one-parameter (X12)
model fitted to each game separately supports
the notion that it may be possible to find
learning models which can be usefully ap-
plied to a variety of games, rather than having
to construct or estimate models separately for
each game.

Note once again that the set of games is not
a random sample from the space of games, but
rather a selection of games from experiments
with very different conclusions about the per-
formance of the equilibrium predictions. We
can informally compare each of the models on
the games in which equilibrium does badly
and in which it does well by considering the
performance on the five games in which equi-
librium predicts less well than random choice,
and on the seven games in which it predicts
better. All of the models beat the equilibrium
predictions on the games in which it does
worse than random choice, and the multipar-
ameter models outperform equilibrium even
on the games in which it does better than ran-
dom choice. We turn now to a consideration
of the individual-choice data, including that
from the game of O’Neill, in which the equi-
librium predictions had the greatest success.

V. A Parameter-Free Comparison of Models
on Individual-Subject Data.

The analyses summarized above compare
the learning models’ predictions of the behav-
ior over an entire experiment to the aggregate
data from each game. Looking at aggregate
data has the advantage of smoothing some of
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the variance found in individual subjects, both
simulated and real. However the models we
consider are individual-choice models, and we
now turn to comparing their predictions to the
individual-level data.

Looking at the individual data also has the
advantage of letting us compare models with
different unobservable parameters. As already
noted, in the basic reinforcement model the
unobservable parameter is the strength of the
initial propensities. In the belief-based models,
the unobservable parameters concern the be-
liefs with which subjects enter the first period
of play. But these initial, unobservable param-
eters quickly become of only small importance
if we can observe a subject’s initial experi-
ences, since these (observable) experiences
soon become more important than initial pro-
pensities or beliefs." In the analyses which
follow, we set the strength of initial propen-
sities in the basic reinforcement model to be
the sum of payoffs received in the initial pe-
riods, and take a player’s initial beliefs to be
the frequency of other players’ actions ob-
served in those periods (or observed average
payoffs). We then compare the predictions
each model makes for each subject’s choices,
using for each period ¢ the data of the subject’s
first ¢ choices to predict the subject’s next
choice under the alternative models. Since we
used the data collected in the experiment to
derive the model’s predictions (rather than
simulation results) this technique is less sen-
sitive to the choice of parameters.'®

'® This is because frequencies of play and accumulated
payoffs are observable independently of other parameters.
So in the analyses which follow we will look at ‘‘basic’’
variants of both reinforcement and belief-based models,
rather than multiparameter models in which the estimated
value of some parameters would depend on the estimated
values of other parameters.

' Note that, to use the data this way, we are switching
from the long-range predictions of the previous sections
(which simulated the entire play of the game without us-
ing any of its data) to short-range predictions of period ¢
choices given the data through period ¢ — 1. In general we
want long-range predictions (e.g., if someone asks for a
prediction about a year from now, it is considered unpro-
fessional in the soothsaying business to ask him to come
back for the answer in 364 days). But concentrating on
short-term predictions seems unavoidable for probabilistic
models at the level of individual subject pairs, since a

EREV AND ROTH: PREDICTING HOW PEOPLE PLAY GAMES 869

Five learning models and the equilibrium
predictions (EQ) were compared in this anal-
ysis. The five models include: the basic rein-
forcement learning model, the traditional
deterministic fictitious play model (FP), the
probabilistic FP model (PFP) (the FP-like
model withm = 1, h =0,and d = 1), a FP
model with the exponential probabilistic re-
sponse rule (EFP), and a simple best reply (to
the previous period’s play) model (BR).
Three studies, O’Neill, Ochs, and the new rep-
lication study (game S&A3n), for which we
were able to obtain the choices made by in-
dividual subjects, were considered.

Twenty-five pairs participated in O’Neill’s
study. Each pair played the game 105 times.
The present analysis focuses on the decisions
made in rounds 6105 (and uses the first five
rounds to assess initials). To allow evaluation
of the effect of the subjects’ experience on the
models’ fit, these rounds were divided into two
blocks (6—55 and 56-105).

At the first step of the analysis a vector of
probabilistic predictions was obtained for each
of the decisions, given each of the five models.
Vectors had to be considered because the
game involved four strategies. The EQ predic-
tions were (0.4, 0.2, 0.2, 0.2) for all 100
rounds. The reinforcement learning predic-
tions were calculated based on the cumulative
reinforcements using equation (3). In a simi-
lar way the PFP and EFP predictions were cal-
culated based on the fictitious play expected
values EV,,(t) = FEV,(t). Like the equilib-
rium predictions, these models provide a vec-
tor of four probabilities. The FP predictions
are deterministic (three 0’s and one 1), a FP
model predicts that player i will always choose
the strategy that maximizes expected profit
given player j’s accumulated choice probabil-
ities. According to the BR model, player i is

long-range simulation of a single pair might begin the first
period with a different pair of choices than the subject pair
in question, and from that different initial experience con-
tinue to diverge. In contrast, in the previous sections, when
we did consider individual pairs, we generated multiple
predicted pairs to gain information about the predicted
variability. (Considering models at different levels of ag-
gregation, of time as well as of subjects or of games, al-
lows us to assess the usefulness of their predictions in
different ways.)
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expected to choose the strategy that maximizes
profit given player j’s last choice. When there
was more than one, all maximizing strategies
were assigned equal probabilities.

Two goodness-of-fit measures were then
calculated for each prediction: a mean-squared
deviation (MSD) score, and a proportion of
inaccuracy (POI) score. The MSD is the
mean-squared distance between the predicted
and the observed vector. For example, if the
observed vector is (1, 0, 0, 0) (that is, the sub-
jects chose A) and the prediction is (0.5, 0.3,
0.1,0.1), MSD = [(1 — 0.5)> + (0 — 0.3)” +
(0—-0.1)* + (0 — 0.1)*1/4 = 0.09. The POI
score returns the value 0 if the subject made
the most likely choice under the model, the
value 1 if the subject chose a strategy that dif-
fers from the most likely prediction, and 1 —
1/b if the model predicts that b strategies are
equally likely and the subject chose one of
them. (Thus the POI score judges all the mod-
els on the basis of their ‘‘deterministic’” pre-
dictions, which should facilitate comparison of
the deterministic models—fictitious play and
best reply—and the stochastic, reinforcement
learning models.)* At the final step of the
analysis average MSD and POI scores were
computed for each pair and for each game, and
the various models were compared.

A similar three-part analysis was conducted
for the 48 subjects (in three cohorts) that partic-
ipated in Ochs’ study and for the 20 subjects (in
10 pairs) that participated in the replication
study. In Ochs’ study we used the first trial (in
which the game was played ten times) to assess
initial propensities. Because in the replication
study subjects were not informed of the payoff
matrix, the expected values were computed as
EV,.(t) = REV,(t) for the FP models, and since
they did not observe the other players’ action we
take the best-reply rule to be the ‘‘win stay, lose
change’’ rule (see e.g., David M. Messick and
Wim B. G. Liebrand, 1995).

The mean goodness-of-fit scores and the com-
parison statistics are presented in Table 2. Sta-

** We include the POI score in order to answer the ob-
jection that models that make extreme predictions (e.g.,
deterministic models like fictitious play or best reply
which predict probabilities of O or 1) cannot be adequately
compared to models that make stochastic predictions.
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tistical significance was computed in a paired
t-test. The units of analysis were pairs for the
O’Neill and replication data, and individuals for
the Ochs’ data. Note that larger values reflect
worse fit. The data reveal that the basic rein-
forcement learning model outperformed the ver-
sions of fictitious play and best reply we
consider in the last (second) block of all studies.
In the O’Neill and Ochs’ studies this second
block advantage is significant. The observation
that the relative fit of probabilistic FP models
declines from the first to the second block sug-
gests that the effect of the positive habit param-
eter increases as subjects gain experience. The
insignificance of the difference between rein-
forcement learning and FP in the replication
study is potentially interesting (recall that in this
study subjects did not know the payoff matrix
and their opponent’s choices) but may also be a
result of the smaller number of subjects.

The reinforcement model significantly
outperforms the equilibrium predictions in
Ochs and the replication data, but not in
O’Neill’s data. That the reinforcement mod-
els did not outperform the equilibrium pre-
dictions in O’Neill’s game does not imply
that subjects were insensitive to reinforce-
ments in this game. Rather, this finding may
be a result of the proximity of the initial pro-
pensities to the equilibrium. Support for this
conjuncture was obtained in an analysis that
compared each individual pair to simulations
initialized with the pair’s data. We initial-
ized 100 simulations with the observed first
35 choices in each of O’Neill’s 25 pairs. Re-
gression analysis reveals that the model’s
predictions can be used to predict the ob-
served dynamics. The dependent variable in
this analysis is the change in the proportion
of A choices between the first and the second
block of 35 trials. Two predictors were com-
pared for each of the 50 subjects: a predic-
tion that the subjects will move toward the
equilibrium, and the learning model predic-
tion. The results indicate that whereas the
dependent variable cannot be predicted
based on the convergence to equilibrium
predictions, it is significantly related to the
simulation predictions (:[49] = 2.95, p <
0.005). [This is a different observation than
Brown and Rosenthal’s observation that al-
though O’Neill’s subjects were close (on the
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TABLE 2—WITHIN-SUBJECT MODEL COMPARISON OF MSD AND POI (PROPORTION OF INACCURACY)

EREV AND ROTH: PREDICTING HOW PEOPLE PLAY GAMES

871

Data set: O’Neill (1987) Ochs (1995) Replication (S&A3n)
Model: Block MSD POI MSD POI MSD POI
Basic (reinforcement 1st 0.20 0.66 0.13 0.37 0.24 0.40
learning) 2nd 0.18 0.61 0.12 0.35 0.21 0.33
FP 1st 0.26 0.71 0.21 ns 0.39 ns 0.39 0.41 ns
2nd 0.24 0.69 0.20 0.37 0.31 0.34 ns
Best reply Ist 0.27 0.76 0.29 0.42 0.41 0.44
2nd 0.26 0.74 0.33 0.45 0.38 0.40
PFP 1st 0.19 0.71 0.14 ns 0.39 ns 0.24 ns 0.41 ns
2nd 0.19 0.69 0.15 0.37 0.22 ns 0.34 ns
EFP 1st 0.19b 0.71 0.14 ns 0.39 ns 0.24 ns 0.41 ns
2nd 0.19 0.69 0.15 0.37 0.22 0.34 ns
Equilibrium Ist 0.18 b 0.61b 0.15 0.45 0.31 0.49
2nd 0.18 ns 0.60 ns 0.14 0.42 0.30 0.51

Notes: Best fits are indicated by a bold italic font. (The basic reinforcement model provides the best fit for the Ochs and
replication data, while the equilibrium gives the best fit for the O’Neill data.) In most cases the fit of the basic reinforcement
model was significantly better (smaller score) than the fit of the alternative models. Exceptions are indicated by ‘‘b’’

when an alternative model significantly outperforms the basic model, and by ‘‘ns’> when the difference is insignificant

(at the 0.05 level in a one-tail paired t-test).

average) to the equilibrium, they did not ex-
hibit the independence from one period to
the next implied by the minimax strategy.?' ]

V1. Why Extensions of the Models Will Be
Required on Larger Classes of Games

We have concentrated so far on a very sim-
ple class of games. The good results we have
obtained make it plausible that reinforcement
learning can serve as an engine to study be-
havior on a wider class of games. It is worth
spending some time, even at this early junc-
ture, to reflect on some modifications in the
simple models we have so far considered

2! The serial correlation in O’Neill’s data and similar
results (the negative recency effect reviewed by Lee,
1971), and the overalteration tendency (Rapoport and
Budescu, 1992) are inconsistent with the current model
when only stage-game strategies are considered. Yet, as
shown by Rapoport et al. (1997) these phenomena can be
accounted for by the assumptions that subjects consider
“‘two-stage’’ strategies. The addition of such strategies
does not effect the model’s aggregate predictions, and
does predict serial correlations.

which will be necessary to accommodate
larger domains of games.

A. Adjustable Reference Points

Even a thought experiment suggests that the
simple form we have assumed for the rein-
forcement function, R(x) = X — X, 1S t0O
simple to be very general. For example, if x;,
were very much smaller than the average pay-
offs experienced in the game, then the simple
constant reference point approach would lose
the ability to distinguish between the most
commonly experienced payoffs.?* This is why
a more general approach, with adjustable ref-
erence points [R(x) = x — p(2)], seems nec-
essary, despite the cost of added parameters.

Experiments on individual choice show that
reference points can be important (e.g., Daniel

2 In a game with a dominated strategy that gave player
1 a payoff of —1,000,000, and with all other payoffs in
the range of 1 to 10, our simple fixed-reference-point re-
inforcement function would mostly give reinforcements
from 1,000,001 to 1,000,010.
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Kahneman and Amos Tversky, 1979), and can
be affected by previous outcomes (L. H.
Tinkelepaugh, 1928). Tinkelepaugh’s results
suggest that the reference point moves towards
the average reward. (He found that although
lettuce is a positive reinforcer for inexperi-
enced monkeys, monkeys who got used to a
banana reinforcement behaved as if lettuce is
anegative reinforcement.) In an earlier version
of the present paper (Erev and Roth, 1996) we
showed that a simple model with an adjustable
reference point could increase the descriptive
and predictive power of the reinforcement
learning model.”* (Much of the improvement
was obtained for the games having negative
payoffs.) But precisely how reference points
should be modeled (so as to accommodate
games which elicit different initial reference
points in high-information environments, or in
which reference points adjust at different
speeds in low-information environments) re-
mains a subject for future research. The ques-
tion of reference points will arise both when
we consider games with more variation in pay-
offs than those considered here, and when we
consider with more strategic complexity. But
for these games, discussed next, we also need
to develop ways to better model strategies.

B. Repeated Games in Which Stage-Game
Strategies Are Not Enough

The data we have just considered, from re-
peated play of games with a unique equilib-
rium in mixed strategies, has allowed us to see
that a learning model has very substantial abil-
ity to describe and predict the data. This is all
the more surprising because the strategy set we
considered for each player consisted only of
the stage-game actions. Thus these games al-
lowed us to investigate learning, without hav-
ing to investigate in detail the strategy sets
employed by the experimental subjects.**

* This variant of the current reinforcement model was
studied in Bereby-Meyer and Erev (1998), Erev (1998),
Erev and Rapoport (1998), and Rapoport et al. (1998).

' That is not to say that subjects may not sometimes
exhibit more complex repeated-game behavior even in
such games; see e.g., the games studied by Mookherjee
and Sopher (1994).
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Before going on to draw general conclu-
sions, we therefore want to emphasize that it
will of course not generally be the case that
learning behavior can be analyzed in terms of
stage-game actions alone. An easy way to see
this is to consider games whose repeated play
leads to experimentally observed behavior that
clearly depends on repeated-game strategies.
For example, an experiment involving re-
peated play of the following version of the
game of ‘‘Chicken’’ is reported by Anatol
Rapoport et al. (1976).

S> T,
S L1 -1, 10
T, 10,-1 =10, —10

They report that a majority of the ten pairs of
subjects they observed play the game for 300
rounds (without changing partners) quickly
settled in to an alternating strategy, with the
outcome changing back and forth between (S,
T,) and (T, S,), and with the outcomes on
the diagonal successfully avoided.”

It is apparent that this pattern of behavior can-
not be achieved with stage-game strategies
alone, since, for example, a player limited to
stage-game strategies cannot remember whether
it is his turn to play S or 7' (and so some diagonal
outcomes would inevitably result from indepen-
dently mixed stage-game strategies).

To put it another way, a learning model such
as ours would certainly fail if it were restricted
to the set of stage-game strategies alone. But
such a restriction would clearly be artificial
and undesirable in a general model of learning
to play a repeated game.*

% In fact, they report an index K = (S, T) + (T}, $,) —
|(Si, To) — (T, $2)|, where (S;, T)) is the percentage of
observations which have that outcome. This index has a
value of 100 only if ($,7) and (T, S,) are the only out-
comes observed, and occur with equal frequency. They
report (p. 157) that the values of K rise from 78 for rounds
1-50, to 99 for rounds 251-300, indicating that by the
end of the game virtually all players were successfully
alternating. (Rapoport et al. [1976] also report other var-
iants of the game in which less alternation was observed.)

26 Indeed, some of the success of our model on the non-
constant surn games in this data set may be due at least in
part to the fact that these games were run under conditions
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On the other hand, simulations with our model
show that it tracks this data quite well if the strat-
egy sets of each player are taken to be the stage-
game strategies plus the strategy of alternation.”’
But this is also an unsatisfactory approach, since
selecting one repeated-game strategy from the
multitude of possible strategies is like parameter
fitting in a model with an enormous number of
parameters. Consequently, while it will be both
natural and necessary to model repeated-game
strategies for repeated-game situations, a great
deal of thought will be needed to do so in a
systematic way which retains the predictive
power of the model. We think this is where fu-
ture work will have the greatest contact with
cognitive psychology.

That being the case, a few remarks are in or-
der about the relationship between strategies and
learning, and between the approach explored
here and current trends in the psychology
literature.

The traditional game-theory approach to re-
peated games is that at the outset of the game
each player chooses a strategy which deter-
mines his actions (perhaps probabilistically, in
which case it is called a behavioral strategy)
throughout the game, however long. While
such strategies can in principle describe any
behavior, it is not a helpful approach if we
wish to study learning, since a player who
chooses his strategy at the beginning, and
never deviates from it, can hardly be said to
learn. So, although the learning rules we con-
sider can be thought of as behavioral strate-
gies, our approach has been to concentrate on
short-term strategies, and study how the learn-
ing rule selects among them differently over
time. This is an approach which is also fol-
lowed in the psychology literature.

The Law of Effect, which is the basis of the
learning models supported in the present re-

that interfered with the use of repeated-game strategies.
Ochs’ subjects were not playing repeatedly against the
same opponent, and the nonconstant sum games in the
Suppes and Atkinson data were run without full infor-
mation about the game.

*’ For this purpose, the alternation strategy was for-
mulated as ‘‘if the outcome at time ¢ was off the diagonal,
then at time ¢ + 1 choose the action not chosen at time ¢;
otherwise choose each action with probability 0.5”’.
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search, was initially proposed to describe the be-
havior of cats (Thorndike) and pigeons
(Herrnstein), but we do not claim that choice
behavior can be understood without considering
“‘deeper’” thought processes. Nor do we argue
that people are no smarter than pigeons (cats are
obviously smarter). Rather, we contend that it
is useful to distinguish between the adaptive
learning process and other relevant thought pro-
cesses such as the strategies which players ex-
plore and learn about. This is in line with John
R. Anderson’s (1982, 1993) influential theory
of cognition (the ACT* theory), which distin-
guishes between ‘‘production rules’’ and learn-
ing. The game-theoretic definition of strategy
can be thought of as a description of a class of
production rules (all strategies are production
rules, but there are production rules in the ACT *
theory which are not strategies).

There are three relevant learning processes
in the ACT * theory: (1) encoding past events;
(2) converting knowledge into a production
rule form; and (3) strengthening the produc-
tion rules to affect their choices in the future.
The third process is similar to the learning
models we consider. It incorporates the law of
effect and implies the power law of practice;
however, it ignores cardinal payoffs.

The main criticism of the ACT* and similar
approaches is that they involve too many
unobservable production rules and learning
processes. Our results can be viewed as a dem-
onstration that in the context of matrix games
with unique, mixed strategy equilibrium in
which reciprocation is impossible, a very sim-
ple version of an ACT* system provides a
good description of behavior. This system has
well-defined, specific production rules (stage-
game strategies), and one robust learning
process.

The relative simplicity of the current
model supports the conjecture that, when a
well-defined economic environment is con-
sidered, an accurate model of the cognitive
game (strategies and payoffs) is possible.
Some support for this optimistic conjecture
also comes from results accumulated in ex-
perimental decision-making research. It ap-
pears that many of the observed regularities
can be described by few common cognitive
strategies (see for example, Tversky and
Kahneman, 1974; Jerome R. Busemeyer and
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In Jae Myung, 1992; John W. Payne et al.,
1993).%®

Thus, the approach taken here does not rep-
resent an attempt to revive behaviorism; i.e.,
we do not hope to explain strategic behavior
without considering players’ cognition. On the
contrary, our approach can be thought of as an
attempt to utilize knowledge that has been ac-
cumulated in game-theoretic and psychologi-
cal research, toward the development of a
low-rationality, cognitive game theory.

VII. Adaptive Game Theory
and Applied Economics

We have concentrated here on modeling
behavior observed in the laboratory. But the
adaptive game-theory approach we consider
would be of very limited interest to econo-
mists if it could not address the same range
of issues in natural markets and economic
environments which have made equilibrium
game theory such an important tool of mod-
ern economic theory. So we conclude with
some thoughts on how a well-developed,
cognitively informed adaptive game theory
will complement conventional game theory,
both as a theoretical tool and as a tool of
applied economics.

Consider the analysis of a market as some of
the underlying ‘‘rules of the game’’ change.”
The equilibrium approach is to calculate the
equilibrium under the old and new rules, and
suggests that we should anticipate a change
from one equilibrium to the other. The adap-
tive approach tells us to also consider
whether this transition might be very slow
(the environment may have changed again,
and all the current market participants may

2 And Erev et al. (1995), Sharon Gilat et al. (1997),
Erev (1998), and Rapoport et al. (1998) show that learn-
ing among cutoff strategies can be accounted for by the
present approach.

*If Schumpeter’s characterization of ‘‘creative de-
struction’” as the fundamental feature of capitalist econ-
omies is correct, we could argue that transition is the most
common condition of markets. But even without making
such an argument, there is no shortage of fundamental
transitions, e.g., in labor markets when minimum-wage
laws are changed, in markets for medical services when
third-party payment systems are changed, etc.

SEPTEMBER 1998

have died before equilibrium is reached ) and
whether, as we have seen in some of the ex-
periments discussed here, the initial adjust-
ment might even move in a direction
opposite that predicted by the equilibrium
comparative statics (in which case we might
feel differently about the empirical evidence
drawn from the period immediately follow-
ing the transition).

Both traditional and adaptive game theory
can be used to make specific predictions about
complex natural environments. Both ap-
proaches require a model of the game, but if
the game has enormous strategy spaces (as
close modeling of complex environments
would be likely to yield) then it will not in
general be practical either to solve for equilib-
ria or to simulate learning. So in practice,
simple models must be constructed which ap-
proximate the actual strategic environment.
The traditional game-theory approach, which
in principle considers all strategies, gives mod-
elers little guidance about how to do this, ex-
cept that the model of the game itself must be
simple enough for all its strategies to be con-
sidered. The cognitive approach to adaptive
game theory suggests that modeling observed
strategies (and not necessarily including all
the logically possible strategies that use the
same information) may be a fruitful alterna-
tive approach.

For some examples, consider the variety of
annual markets (mostly entry-level profes-
sional labor markets) described and analyzed
in Roth (1984, 1990, 1991) and Roth and
Xiaolin Xing (1994). In each of these mar-
kets, there was a period in which the time at
which transactions were completed moved
slowly earlier from one year to the next, as
agents reacted to their experience in the pre-
vious year’s market, which gave the greatest
rewards to certain kinds of employers if they
made transactions just a little bit earlier than
their competitors. The equilibrium of such a
process yields all transactions at some very
early date (see e.g., Nagel [1995] for a related
experiment ), but the observed behavior is
slow movement towards the equilibrium—
sometimes over a period of half a century
(which is only 50 iterations of an annual mar-
ket), rather than a rapid transition directly to
equilibrium. This is just the kind of behavior
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we should expect from reinforcement
learners.*

VIII. Concluding Remarks

Even the one-parameter reinforcement
learning model we consider robustly describes
and predicts the data from these games with
mixed strategy equilibria better than the static
equilibrium predictions, whether we are look-
ing at predictions for the aggregate results of
an entire experiment, for the paths of play of
particular pairs of players, or for the individual
decisions of each player. Adding some *‘re-
sponsiveness’’ to the model which allows it to
adapt to the changing behavior of other players
improves the predictive power. Adding this in
a ‘‘higher rationality’’ way via belief-based
models does not appear to have an advantage
over ‘‘lower rationality’’ reinforcement mod-
els on this data set. It may therefore be useful
at this point to take a step back from the par-
ticular games and data and models which are
the subject of the present paper, and consider
once again the differences and similarities be-
tween the adaptive learning approach and how
traditional game theory might address the
kinds of data we consider.

It is an empirical question whether a theory
of very high rationality behavior may provide
the basis for a predictive theory of observed
behavior. Even the observation that existing
notions of equilibrium may leave much to be
desired from the point of view of prediction
does not preclude the possibility that further
developments of ‘‘high’’ game theory will
provide more accurate predictions of observed
behavior. It is in something of this spirit that
Fudenberg and Levine (1997a) have reexam-
ined some of the data reported in Roth and
Erev (1995) with respect to a generalized no-
tion of strategic equilibrium which they pro-
pose, and Richard D. McKelvey and Thomas
R. Palfrey (1995) analyze some of the data
considered here, with respect to a generalized

% See also the analysis of the Marseille fish market by
Gerard Weisbuch et al. (1996), who independently ex-
plore a reinforcement learning model related to the ones
considered here.
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notion of both the equilibrium and the game
being played.

Rather than expanding the kind of equilib-
rium considered, one might consider how the
preferences of the players may be systemati-
cally influenced by the nature of the game.
That is, in some games we might consider
whether players have particular preferences
for fairness, cooperation, or reciprocity, and
then proceed to remodel the payoffs of the
game to reflect these preferences, and use con-
ventional notions of equilibrium to predict the
outcome. This is basically the approach ex-
plored in Ochs and Roth (1989); Camerer
(1990); Gary Bolton (1991); Matthew Rabin
(1993); Bolton and Axel Ockenfels (1997);
Ernst Fehr and Klaus Schmidt (1997).

Like these other alternatives, the learning
approach we have taken here retains the basic
idea of noncooperative game theory, namely
the strategic model of the environment. The
present approach makes ‘‘lower’’ rationality
assumptions than the traditional approach in
two respects: (1) it does not assume that the
players consider all the possible strategies, and
(2) it does not assume that players are subjec-
tive expected-utility maximizers, or indeed
maximizers of any sort. Preferences do not
play any explicit role in our model, although
the model is agnostic about where the initial
propensities come from (e.g., there is room for
preferences in the explanation of how players
make their initial choices, although perhaps
these can also be explained without prefer-
ences—see also Werner Guth [1995] in this
respect).

The essential elements of our approach are
a learning rule and a model of the game. For
the learning rule, we have tried not only to
avoid behavioral assumptions we know people
do not conform to (e.g., universal hyperration-
ality ), but also to incorporate some of the ro-
bustly observed properties of individual
behavior from the psychology literature. Nev-
ertheless, the simple rule used here and in Roth
and Erev is meant to stand in for the large class
of actual learning rules which subjects may
employ. The surprisingly good results that can
be obtained even with our very simple learning
rule, and the roughly similar results obtained
for related learning rules like probabilistic fic-
titious play when they are modified somewhat
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to resemble reinforcement learning, argue that
in many environments the results are sensitive
only to the basic properties of the learning rule
we consider—namely, that it is a probabilistic
rule which obeys both the Law of Effect and
the power law of practice.

Notice that the model of players as adaptive
learners interacts with the model of the game
(the strategy sets of the players, and the payoff
structure) through the players’ initial propensi-
ties to play each of their strategies. Unlike in
equilibrium models, the strategic environment
faced by any player, and what kind of feedback
he gets from his choices, depends on what the
other players are doing, particularly during the
critical early periods when learning is fast. This
only enhances the importance of usefully ap-
proximating the strategies used by the players,
which we have argued (in connection with the
game of ‘‘Chicken’’) will be the area of future
research in which low-rationality adaptive game
theory will need to interact most closely with
cognitive psychology.”'

In our analyses and comparisons we have
been both estimating parameters and evaluating
predictions. For distinguishing among models,
we regard predictive power as of primary im-
portance. This has to do both with the nature of
the models we are considering, and what we
want to use them for. All of the models we con-
sider are approximations, and so are false at
some level of detail. Conventional methods of
hypothesis testing do little to illuminate whether
a model is (despite not being a true description
of the world) a useful approximation. And
whether an approximation is useful depends on
what it is to be used for. One reason we look at
prediction is it seems to us that this is the weak-
ness of current game theory that is most in need
of being addressed as game theory is increas-
ingly used to design new market mechanisms.*

* See also the ‘‘strategy method”” of Selten (1967)
(and the related paper by Selten et al., 1988). For game-
theoretic work in which a good deal of attention is paid to
both learning and the modeling of strategy, see Nagel
(1995) and Dale O. Stahl (1996a, b).

%2 See for example the Fall 1997 issue of the Journal
of Economics and Management Strategy, which is devoted
to papers related to the recent design of the Federal Com-
munications Commission’s auctions of radio spectrum, or
see Roth (1996a) and Roth and Elliot Peranson (1997),
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Note that, like some of the experiments we
considered, in many—if not most—naturally
occurring markets and games, players will not
know the full details of the game. They are
unlikely to know in detail what all other play-
ers are doing, and even less likely to be able
to observe all other players’ payoffs. The rea-
son that traditional game theory focuses so
much attention on the special case when play-
ers have complete information about these
things is that equilibrium predictions are easier
to motivate and derive in the complete infor-
mation case, and often have little empirical
content in the incomplete information case (in
which most outcomes may be consistent with
some equilibrium). But the reinforcement
learning models we consider are well suited to
modeling learning in quite general informa-
tional environments. So adaptive game theory
may well have implications for an even wider
range of economic phenomena than the tradi-
tional approach.

Having concentrated on a particular family
of learning models, we would be remiss if we
did not remark on the recent and fruitful in-
terest by both theorists and experimenters in
many different aspects and models of learning.
This makes us optimistic about the prospects
for increasingly fruitful interaction between
game theorists and experimenters. In this con-
nection there have already been a host of in-
teresting experiments, from many different
points of view, which begin to demonstrate the
promise of learning models for understanding
observed behavior in strategic environments.*

In closing, in this paper we have taken some
steps in the direction of a cognitive game the-
ory. We have shown that a simple model of
learning can organize a wide range of data, but
have also noted that it will be necessary on
many classes of games to pay more attention
to players’ thought processes as exhibited by

which describe the recent redesign of the entry-level labor
market for new American physicians.

* In addition to the papers already mentioned, a sample
of notable recent work of this sort might include Vincent
P. Crawford (1991, 1992); Jordi Brandts and Charles A.
Holt (1992, 1993); Cheung and Friedman (1994);
Cooper et al. (1994); John B. Van Huyck et al. (1994);
Kenneth B. Binmore et al. (1995); Nagel (1995); Terry
E. Daniel et al. (1996); Stahl (1996a, b).
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the strategies they are able to consider. The
robustness of our results suggests that it may
be possible to study learning in games using
simple general models, appropriately adapted
to particular circumstances, rather than having
to build or estimate special models for each
game of interest. Finally, we have argued that
the general approach of considering how par-
ticular games and economic environments in-
fluence the dynamics of learning is likely to
contribute to making game theory as useful a
part of applied economics as it already is a part
of economic theory.
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