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Learning and Incentive-Compatible
Mechanisms for Public Goods Provision:
An Experimental Study

Yan Chen
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This is the first systematic experimental study of the comparative
performance of two incentive-compatible mechanisms for public
goods provision: the basic quadratic mechanism by Groves and
Ledyard and the paired-difference mechanism by Walker. Our ex-
periments demonstrate that the performance of the basic qua-
dratic mechanism under a high punishment parameter is far better
than that of the same mechanism under a low punishment parame-
ter, which, in turn, is better than that of the paired-difference
mechanism. We estimate three individual behavioral models: an
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exponentialized relative payoff sum model outperforms the gener-
alized fictitious play model. We also provide a sufficient condition
for convergence under the basic quadratic mechanism.

I. Introduction

How to design decentralized institutions to facilitate cooperation in
an environment with public goods has been a challenging problem
for economists for a long time. Natural processes, such as the volun-
tary contribution mechanisms, have been shown both theoretically
and experimentally to be unable to solve the ‘“‘free-rider”’ problem
(Ledyard 1995). Therefore, since the 1970s, economists have been
seeking decentralized mechanisms that are nonmanipulable and
achieve Pareto-optimal allocation of resources with public goods.

By now it is well known that it is impossible to design a mechanism
for making collective allocation decisions that is informationally de-
centralized, nonmanipulable, and Pareto-optimal (Green and Laf-
font 1977; Roberts 1979; Walker 1980). There are many mechanisms
that preserve Pareto optimality at the cost of nonmanipulability,
some of which preserve ‘‘some degree” of nonmanipulability. In
particular, some mechanisms that have the property that Nash equi-
libria' are Pareto-optimal have been discovered. They can be found
in the work of Groves and Ledyard (1977), Hurwicz (1979), and
Walker (1981).

All these “‘next-best’” mechanisms have very similar static proper-
ties, which leads one to consider properties other than optimality
of Nash equilibria in an effort to distinguish among them. One im-
portant additional dimension of performance is the dynamics in-
duced by these mechanisms in a laboratory. Any actual implementa-
tion is necessarily a dynamic process, starting somewhere off the
equilibrium path. The fundamental question concerning implemen-
tation of a specific mechanism is whether the dynamic processes will
actually converge to one of the equilibria promised by theory. If the
dynamic processes do not converge, then the nice properties in equi-
librium cannot be achieved. Therefore, it is crucial to study the dy-
namic properties of a mechanism and to extract the properties of
static mechanisms that induce convergence. This motivates the re-
search reported in this paper.

We select two Nash-efficient mechanisms to implement in a labo-

! Other implementation concepts include perfect Nash equilibrium (Bagnoli
and Lipman 1989), undominated Nash equilibrium (Jackson and Moulin 1992),
etc.
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ratory: the basic quadratic mechanism by Groves and Ledyard
(1977) and the paired-difference mechanism by Walker (1981).
While the basic quadratic mechanism has been studied in labora-
tories, the paired-difference mechanism has not been systematically
studied in laboratories. A comparison of these two families of mecha-
nisms has not been performed either. This comparison allows us to
abstract the properties that induce convergence when a mechanism
is implemented among boundedly rational agents, that is, to answer
the question, What properties of a static mechanism can induce the
subjects to learn to play an equilibrium strategy?

To study the dynamic learning processes induced by these mecha-
nisms, we use two major families of learning models: an exponen-
tialized relative payoff sum model and a generalized fictitious play
model. A static equilibrium model is also analyzed as a benchmark.

The paper is organized as follows. In Section II we review the theo-
retical properties of the basic quadratic and paired-difference mech-
anisms. Section III goes over the experimental design. Section IV
summarizes the group-level results. Section V introduces the learn-
ing models and uses them to analyze the data. Section VI discusses
two additional aspects of the mechanisms that induce good dynam-
ics and provides a sufficient condition for convergence under the
basic quadratic mechanism. Section VII reviews previous implemen-
tation of these mechanisms and compares the findings in this paper
with those in Chen and Plott (1996). Section VIII concludes the

paper.

II. The Mechanisms—Static and Dynamic
Properties

Two families of mechanisms are studied in the same environment:
the basic quadratic mechanism and the paired-difference mecha-
nism. These two mechanisms have very similar static properties. Both
are Nash-efficient and balanced with the same dimension of message
space. The paired-difference mechanism is also individually rational
in equilibrium. These properties are introduced in turn.

A.  The Basic Quadratic Mechanism: Static Properties

The basic quadratic mechanism is the first mechanism in a general
equilibrium model in which through a government allocation-
taxation scheme the behavioral equilibria (Nash) are Pareto-
optimal. And it balances the budget both on and off the equilibrium
path.
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The basic quadratic mechanism specifies each individual’s tax
share by

YOI D SR 4 [ ik T Ry
TP eilkey 620) = 70 b4 g [ 7 () c]
where Y > 0 is the punishment parameter; /is the number of people
in the economy; x; is individual 7’s message, indicating her proposed
addition to the total amount of the public good provided; and X =
2.; x; is the total amount of the public good. Define S_; = Zjﬂ- x; as
the sum of proposed increments by all other members of the group
except i, Ul_; = S_;/(I — 1) as the mean of others’ messages, and
02, = Y (2, — U=)?/ (I — 2) as the squared standard error of the
mean of others’ messages. Production of the public good exhibits
constant returns to scale, and b denotes the per unit cost of the pub-
lic good.

Therefore, an individual’s tax share is composed of three parts:
the per capita cost of production, (X 8) /I; a positive multiple, Y/ 2,
of the difference between her own message and the mean of others’
messages, [(I — 1) /I1 X (x; — 1-;)% and the squared standard er-
ror of the mean of others’ messages, 62;. While the first two parts
guarantee that Nash equilibria of the mechanism are Pareto-opti-
mal, the last part ensures that the budget is balanced both on and
off the equilibrium path. Note that the free parameter, y, determines
the magnitude of punishment when an individual deviates from the
mean of others’ messages. Although it does not affect any of the
static theoretical properties of the mechanism, as we shall see from
the experimental evidence, varying Y can induce very different dy-
namics.

The basic quadratic mechanism has two drawbacks: It does not
satisfy the individual rationality constraint (i.e., an individual can be
worse off as a result of participating in the process), and in a general
environment, multiple equilibria can exist (Bergstrom, Simon, and
Titus 1983). The way we deal with the first problem is to give every
subject an initial endowment. For the second problem, a quasi-
linear environment is used in which there exists a unique Nash equi-
librium. The equilibrium selection problem in a general environ-
ment is left for future research.

B.  The Paired-Difference Mechanism: Static Properties

The paired-difference mechanism implements Lindahl allocations
as Nash equilibrium outcomes. Therefore, besides all the nice prop-
erties of the basic quadratic mechanism, it is also individually ratio-
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nal in equilibrium; that is, no individual will be worse off as a result
of participating in the mechanism.

The paired-difference mechanism specifies each individual’s tax
share by

T§D(Xi|s—i, d;) = (; + d—i)(xi + 5= ('g + X — xi+1)X,

where the level of individual i’s tax, T}, depends on her proposed
addition, x;; the sum of proposed additions of other participants,
S_;; and the difference between the amounts proposed by her two
neighbors, d_;. The amount (b/1) + x;_; — x;;, is ¢’s Lindahl price.

Therefore, an individual’s tax share is composed of two parts: the
per capita cost of production, (X- ) /I, and an amount determined
by the messages of her two neighbors, (x;-; — %;+1) X.

So far the two families of mechanisms have very similar static prop-
erties. The paired-difference mechanism has one more advantage
over the basic quadratic mechanism in that it is individually rational
in equilibrium. An interesting question is whether they will induce
similar dynamic paths and properties.

C. Dynamic Properties of the Mechanisms

As in Hurwicz (1972), the Nash equilibrium of a game form can be
viewed as a stationary point of some decentralized iterative adjust-
ment process. In such a process, players may have incomplete infor-
mation but continually revise their actions until a point is reached
at which unilateral deviation no longer pays. In most situations of
economic interests, when the provision of public goods is involved,
individual agents do not know the characteristics of others. There-
fore, we implement the mechanisms as finitely repeated games of
incomplete information.

Presumably one could conduct a traditional equilibrium analysis
of the repeated games by solving for the sequential equilibrium of
each game and check whether players followed the sequential equi-
librium. However, the informational and rationality requirements
needed to reach such an equilibrium are extreme: not only are the
rationality of the players and the payoffs common knowledge, but
the beliefs they hold about each other’s behavior also need to be
commonly known, which does not seem plausible in this experimen-
tal setting. Furthermore, in our experimental design, players know
only their own payoffs, so the sequential equilibrium analysis is not
applicable.

When summarizing some of the lessons emerging from the large
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accumulation of experimental findings on the behavior of subjects
in games, Smith (1990) suggests that (1) in a one-shot game, behav-
ior is not well predicted by equilibrium; (2) in a repeated, complete
information setting, players tend to ‘‘cooperate’’ and thus repeated
game effects emerge, though they are hard to predict; and (3) in
a repeated setting with incomplete information, where players have
knowledge only of their own payoffs, the best predictors of long-
run behavior are the equilibria of the one-shot game with complete
information.

Since the environment in point 3 is exactly the environment for
this set of experiments and is also the environment that most learn-
ing processes postulate, throughout the paper we adopt the working
hypothesis prevalent in the learning literature that subjects focus on
the stage game strategies (see, e.g., Crawford 1995). We explore the
hypothesis that stage game equilibrium is reached via a process of
gradual adjustment by boundedly rational players who encounter
each other in a repeated setting. The key question then is whether
a particular dynamic process will converge to an equilibrium. Typical
examples are Cournot best-response dynamics and the fictitious play
learning process. Precise definitions of both dynamics are provided
in Section V as special cases of the generalized fictitious play model.

There have been two theoretical papers studying the dynamic
properties of these Nash mechanisms. Muench and Walker (1983)
studied the convergence condition of the basic quadratic mecha-
nism using Cournot best-response dynamics in a parameterized qua-
dratic quasi-linear environment and found that the process con-
verged when y > I. In Section VI a generalization of this result to a
general quasi-linear environment and a much wider class of learning
dynamics will be provided. Kim (1986) proved that in certain qua-
dratic non-quasi-linear environments, game forms that implement
Lindahl allocations, including the paired-difference mechanism, are
unstable under any decentralized adjustment process. To our best
knowledge there has been no published theoretical study of the dy-
namic stability properties of the paired-difference mechanism in
quasi-linear environments.

III. Experimental Design

The experimental design reflects both technical and theoretical con-
siderations. The economic environment and experimental proce-
dures are discussed in the subsections below.

A. The Economic Environment

We are interested in an environment in which theoretically the vol-
untary contribution mechanism predicts zero provision, whereas the
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TABLE 1

PARAMETERS, EQUILIBRIUM VALUES, AND PaYOFFs (in Fictitious Currency)

x; o

. o, BQl BQIOO PD BQl BQIO0 PD
) 3 4 (5) (6) (7) (8) (9)

NS

A;
SUBJECT (1) (

1 26 1 200 -3 1 1.8 202 205 225
2 104 8 10 5 1 38 224 230 210
3 38 2 160 -1 1 1.8 204 200 210
4 82 6 40 3 1 —22 204 200 190
5 60 4 100 1 1 -2 207 200 200
Total 310 21 510 5 5 5

basic quadratic mechanism and paired-difference mechanism pre-
dict Pareto-efficient provision of the public good. A second consider-
ation is the influence of the punishment parameter in the basic qua-
dratic mechanism on the convergence of the dynamic processes.

The parameters chosen for the experiments involve five individu-
als, I = 5. In all experiments a simple constant unit cost, b, is used
to produce the public good, which is set to 100. Preferences are
induced on units of the abstract public good by an individually speci-
fied value function, V;(X), which indicates the amount of money an
individual will receive if the group choice of the public good is X
and if the individual pays nothing for it. For simplicity and for com-
parison of our results with previous experiments, the valuation func-
tions are set to be quadratic:

ViX) = A, X — B,X® + o,

Therefore, individual i’s payoff per period is &; = Vi(X) — TP,
where m € {BQ, PD}.

Given the size of the economy, the punishment parameter, 7, de-
fines a family of basic quadratic mechanisms. To study the effects of
the punishment parameter on the dynamics and learning processes
of the basic quadratic mechanism, we set Y = 1 and 100.

In implementation of the paired-difference mechanism, one
problem is the selection of one possible mechanism from an en-
tire family. Given an economy with 7 individuals, there are |I|!/ (21)
different possible circles and hence |I|!/(2I) corresponding equi-
libria. Of all the 12 circles that correspond to different paired-
difference mechanisms in this environment, we let the computer
randomly pick a circle, 1-2—-4-3-5, to implement.

Table 1 lists the parameters of individual subjects’ valuation func-
tions (A;, B;, and o;), their equilibrium proposals (x?), and payoffs
(m}) under the three different mechanisms. The particular values of
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the preference parameters, A;, B;, and a;, are chosen for the follow-
ing reasons: (1) In a voluntary contribution mechanism, the theoret-
ical equilibrium is a zero contribution for all subjects, but the three
incentive-compatible mechanisms predict the Pareto-efficient level
of public goods, X = 5, as shown in the last row. (2) The parameter
{Bi}; varies among subjects to induce diverse tastes for the public
good. (3) Initial endowments {0.;}; were set such that the equilibrium
payoffs of all subjects, ©;, tabulated in columns 7-9 of table 1, are
approximately the same in all three mechanisms. (4) The equilib-
rium contributions for BQ1 and BQ100 are all integers, and the
paired-difference equilibria multiplied by five are also integers. To
avoid fractions, the subjects actually chose 5x, and all formulas were
adjusted accordingly. Therefore, in all three mechanisms, subjects
could choose any integer from —20 to 30, which includes all the
stage game equilibria.

B.  Experimental Procedures

Seven independent computerized sessions for each mechanism were
conducted in March, April, and May 1996: four at Caltech and three
at the University of Amsterdam. All sessions were conducted in En-
glish by the first author. Thus the problems with the experimenter
effect and the language effect (Roth et al. 1991) are circumvented.
Our subjects were students from the two universities. No subject was
used in more than one session. This gives us a total of 105 subjects
and 21 independent sessions. Each session consisted of 100 rounds
with no practice round; the sessions lasted between 1 and 2 hours,
with the first half hour being used for instructions.

Table 2 summarizes session numbers, dates and places in which
experiments were conducted, and the conversion rates of these ex-
periments. The conversion rates were set such that the expected av-
erage earning per hour was approximately the same as that of other
experiments in each lab. The paired-difference mechanism took
longer than the basic quadratic mechanisms; therefore, the conver-
sion rate was set lower.

Subjects who participated in an experimental session randomly
drew an identification number. Then each of them was seated in
front of the corresponding terminal, with a folder containing a set
of instructions, payoff chart(s), and record sheets. After the instruc-
tions were read aloud, subjects were required to finish the review
questions, which were designed to test their understanding of the
instructions.? Afterward, the experimenter checked answers individ-

?In session 16 (04/05/96 [glcr]), one subject did not seem to understand the
instructions and answered all review questions incorrectly; this was discovered by
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TABLE 2

FEATURES OF EXPERIMENTAL SESSIONS

Conversion

Date (Code) Place Rate

Session (1) (2) (3)
PD Mechanism
1 03/31/96 (wb) Caltech 400
2 03/31/96 (wr) Caltech 400
3 04/01/96 (wb) Caltech 400
4 04/01/96 (wr) Caltech 400
5 05/08/96 (wb) Amsterdam 400
6 05/08/96 (wr) Amsterdam 400
7 05/08/96 (wy) Amsterdam 400
BQI1 Mechanism
8 04/04/96 (glib) Caltech 800
9 04/04/96 (glir) Caltech 800
10 04/05/96 (glib) Caltech 800
11 04/05/96 (glir) Caltech 800
12 05/06/96 (glib) Amsterdam 700
13 05/06/96 (glir) Amsterdam 700
14 05/06/96 (gliy) Amsterdam 700
BQ100 Mechanism

15 04/08/96 (glcb) Caltech 800
16 04/05/96 (glcr) Caltech 800
17 04/06/96 (glcb) Caltech 800
18 04/06/96 (glcr) Caltech 800
19 05/07/96 (glcb) Amsterdam 700
20 05/07/96 (glcr) Amsterdam 700
21 05/07/96 (glcy) Amsterdam 700

ually and answered questions. After this, subjects signed the financial
agreement.’ Then the experimenter read the computer instructions.

The mechanisms were implemented as finitely repeated games of
incomplete information. At round ¢, a subject submitted her pro-
posed addition, x;(¢). After everyone submitted his or her proposal,
the following information appeared on ¢’s screen:

{xi(t), S_i(t), 02,(¢8), mi(t), Z ni(s)} (in BQI1 and BQ100)

the experimenter only after the session. This was the only session in which a subject
gave wrong answers to the review questions. We decided that it was not comparable
to the rest of the sessions and therefore excluded it from the analysis.

® Of the 105 subjects who participated in the experiments, all but three (subject
5 in session 20 and subjects 2 and 4 in session 7) signed the financial agreement.
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or
{xi(t), S-.i(2), d-i(t), mi(1), z ﬂi(S)} (in PD).

Subjects were then required to record x;(¢) and ;(¢) on a record
sheet. Space was also provided for them to record S_;(¢) and d_;(t),
but this information was optional.*

During the experiment, subjects could access past history at any
time by hitting the history key. When subject 7 used the history key
at round ¢, the following information was available on ¢’s screen:

{x;(s), S_i(s), 62,(s), m(s)}'.; (in BQI and BQ100)

or
{xi(s), S-i(5), d-i(s5), Wi(s)}i=y  (in PD).

Some subjects did use the history page. Since most subjects had this
information recorded, they did not use the history page often.

The process was repeated for 100 rounds, as announced at the
beginning of the instructions. At the end of a session, the subjects
recorded their total earnings (in fictitious currency) for all rounds
and converted them to dollar (or guilder) payments. The conversion
rate was announced in the instructions and was written on the board
for their attention.

To summarize the information conditions, apart from the infor-
mation on her screen, each subject knew her own valuation func-
tion, the basic quadratic cost function, or the paired-difference cost
function. The subjects knew that other subjects in the same group
might have different valuation functions, but everyone faced the
same cost function. They did not know the distribution of prefer-
ences.

IV. Group-Level Results

The instructions and the complete data are available from the au-
thors on request. Results on the aggregate performance of the mech-
anisms are summarized in results 1-4. Two questions are of overrid-

* We required the subjects to record x;(t) and 7;(¢) to prevent the loss of data in
case of a computer crash. In the pilot experiments, x;(¢) and 7;(¢) were the only
two columns on the record sheets, but most subjects also recorded S_;(¢) and d_;(¢)
on the margin; we subsequently added this information to the record sheets with
a mark of [optional] in all the formal sessions. We found that all subjects recorded
x;(t) and m;(¢); about 80 percent also recorded S_;(¢) and d_;(¢).
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TABLE 3

STATISTICS FOR EXPERIMENTAL SESSIONS

Violation of

Average Individual

Standard Absolute Rationality

Efficiency Mean Deviation Deviation Constraint
Session (1) (2) (3) 4 (5)

PD Mechanism
1 741 4.596 3.566 2.708 101
2 787 4.840 3.250 2.344 62
3 .879 4.206 2.329 1.710 36
4 746 4.188 3.460 2.624 125
5 .628 4.790 4.302 3.226 117
6 878 5.322 2.448 1.294 126
7 577 5.576 4.552 3.708 150
BQIl Mechanism
8 .968 4.906 1.266 .826 14
9 .987 4.938 .839 .330 7
10 .945 4.670 1.628 1.026 26
11 .965 5.082 1.338 .642 15
12 .961 4.710 1.411 474 8
13 791 4.870 3.242 2.590 79
14 .965 4.976 1.343 .684 13
BQ100 Mechanism

15 997 4.982 .390 182 5
16 .995 5.010 510 .206 5
17 979 4.684 978 .688 29
18 985 4.946 .857 490 15
19 .986 4.836 .825 .256 6
20 973 4.910 1.152 .630 17
21 .983 5.088 911 492 10

ing importance. The first is related to the actual performance of the
basic quadratic and paired-difference mechanisms in general. The
second is related to the underlying principles of individual behavior.
We address the first question in this section. A more detailed exami-
nation of individual behavioral models is reserved for the next sec-
tion.

Group efficiency, the mean and standard deviation of the level of
the public good, the average absolute deviation from the optimal
level of the public good, and the number of violations of the individ-
ual rationality constraint for each session are tabulated in table 3.

Group efficiency is calculated by taking the ratio of the sum of
the actual earnings of all subjects in a session and the Pareto-optimal
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earnings of the group. As a benchmark case, if no public good is
produced, the system efficiency is

total initial endowment in the private good

Pareto-optimal value of the group

525
1,035

= 50.73%.

Resurt 1. The ranking of group efficiency is highly significant:
BQ100 > BQ1 > PD.

Support. Column 1 in table 3 lists the sessional group efficiency
under the three mechanisms. Permutation tests (see, e.g., Siegel and
Castellan 1988, pp. 95-100) show that BQ100 > BQ]1 at a signifi-
cance level of 0.23 percent (one-tailed), BQ100 > PD at a signifi-
cance level of 0.03 percent (one-tailed), and BQ1 > PD at a sig-
nificance level of 0.20 percent (one-tailed).

Result 1 shows that BQ100 generates the highest group efficiency,
followed by BQI1, and then by PD.

As can be seen from column 2 of table 3 and confirmed by permu-
tation tests, the average levels of public good provision are not sig-
nificantly different across mechanisms since the mean averages out
the over- and underprovision of the public good across different
rounds. However, the standard deviations from the average levels of
the public good are significantly different.

ResuLT 2. The ranking of the standard deviation from the average
level of the public good is highly significant: BQ100 < BQ1 < PD.

Support. Column 3 of table 3 shows the standard deviation of the
average level of the public good. Permutation tests show that
BQ100 < BQI at a significance level of 0.17 percent (one-tailed),
BQ100 < PD at a significance level of 0.03 percent (one-tailed),
and BQ1 < PD at a significance level of 0.12 percent (one-tailed).

Result 2 shows that BQ100 induces the least amount of dispersion
in the level of the public good provided from period to period. It
is followed by BQI1 and then by PD.

To assess how successful each mechanism is in providing close to
the Pareto-optimal level of the public good, we define a measure

=\ X)) = 5]
P Z 100

as the average absolute deviation of the total level of the public good
each round from the Pareto-optimal level of five.
Resurt 3. The ranking of the average absolute deviation from
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the Pareto-optimal level of the public good is highly significant:
BQ100 < BQ1 < PD.

Support. Column 4 of table 3 shows the average absolute devia-
tion from the Pareto-optimal level of the public good. Permutation
tests show that BQ100 < BQI at a significance level of 2.10 percent
(one-tailed), BQ100 < PD at a significance level of 0.03 percent
(one-tailed), and BQl < PD at a significance level of 0.26 per-
cent (one-tailed).

Result 3 states that BQ100 produces the closest to Pareto-efficient
level of the public good, followed by BQ1 and then by PD.

One advantage of the paired-difference mechanism over the basic
quadratic mechanism is that it is individually rational in equilibrium.
However, if the equilibrium is not reached, the individual rationality
constraint can 'be violated.

ResuLT 4. The ranking of the number of violations of the indi-
vidual rationality constraints is highly significant: PD > BQI and
PD > BQ100.

Support. Column 5 of table 3 shows the total number of violations
of individual rationality constraints in each session. Permutation
tests show that PD > BQ] at a significance level of 0.12 percent (one-
tailed), PD > BQI100 at a significance level of 0.03 percent (one-
tailed), and BQ1 > BQI100 at a significance level of 19.30 percent
(one-tailed), which is not significant at the usual 5 percent level.

Result 4 is striking in that there are significantly more violations of
the individual rationality constraint in the paired-difference sessions
than in the basic quadratic sessions, even though theoretically the
paired-difference mechanism is supposed to be individually rational
in equilibrium. This result demonstrates the importance of the dy-
namic properties of the mechanisms, which had been largely ig-
nored in the literature.

The aggregate results indicate that the performance of BQ100 is
far better than that of BQ1, and both are better than PD. Since the
three mechanisms have very similar static properties, it is clear that
individual behavior is important in understanding the dynamics that
lead to the results above. In the next section, we evaluate several
learning models in an attempt to understand individual behavior.

V. Learning

“Learning” can be viewed as any systematic change of behavior due
to an accumulation of experience. A learning model, following the
probabilistic approach of Bush and Mosteller (1955), is a mathemati-
cal system that predicts the probabilities of available choices or feasi-
ble actions at the next occurrence. There are many learning models



646 JOURNAL OF POLITICAL ECONOMY

attempting to capture the principles of human learning behavior
(Tang 1995). Since it might be misleading to claim which model is
the “true” description, we evaluate two major classes of models to
see which one tracks the data better under different mechanisms.

To evaluate the accordance between model predictions and the
experimental data, one can measure the deviation of the model pre-
dictions from the actual choices by the quadratic deviation measure
(QDM), which is a proper scoring rule.’ We also evaluated all models
by two other scoring rules, the absolute deviation measure® and the
proportion of inaccuracy (POI) scores.” All qualitative results hold
under all three scoring rules, although only the QDM scores are
reported here. Other scores are available from the authors.

Recall that subjects can choose any integer, 5x; € {—20, . . ., 30};
namely, each has 51 stage game strategies under each mechanism.
We reduce the 51 strategies to 11 choice intervals by dividing a
choice number by five and rounding it up to the nearest integer in
order to have multiple observations for each strategy interval (see,
e.g., Roth and Erev 1995). Note that under this treatment, all equi-
libria in each mechanism are still treated equally, even if they are
not integers, since choices in the neighborhood of radius 0.5 of an
integer are also given credit.

Letj=1,..., 11 correspond to the strategies of choosing the
number {—4, —3, ..., 5, 6}.
Let c;(t) = (¢a(t), ¢io(t), ..., cn(t)) denote the indicator vector

of subject i’s contribution at round ¢:

1 if alternative jis chosen in round ¢
c.:(t) =
(0 0 otherwise. -

% A scoring rule is “proper” if it does not give the forecaster any incentive to
““ignore the verification system” or, even worse, to “‘play the system.” See Yates
(1990) for a recent survey and Selten (1995) for the axiomatization of the quadratic
scoring rule.

% The absolute deviation measure is calculated as

00 1

i=1 =1 j=1

7 According to Erev and Roth (in press), the POI score ‘“‘returns the value of 0
if the subject made the most likely choice under the model, the value of 1 if the
subject chose a strategy that differs from the most likely prediction, and 1 ~ 1/bif
the model predicts that b strategies are equally likely and the subject chose one of
them. (Thus the POI score judges all the models on the basis of their ‘deterministic’
predictions, which should facilitate comparison of the deterministic models and the
stochastic models.)”’
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Letp;(t) = (pa(2), pi(t),. .., pm(t)) denote the predicted choice
probability vector for subject ¢at round ¢. Then the quadratic devia-
tion for subject ¢ at round ¢ is

QDM (1) = > [e5(t) = py(B)]*
j=1

It follows that the average quadratic deviation for an entire session is

100

QDM = Z Z Q.Dlzli(t) .

=1 t=1

And the overall average quadratic deviation measure for each mech-
anism is the average of the QDM scores over all seven sessions. Ap-
parently, the smaller the QDM score a model produces, the better
its prediction is.

Three different classes of models are evaluated on this data set:
a static benchmark, an exponentialized relative payoff sum (RPS)
model, and a class of population learning models, called a general-
ized fictitious play model. We focus on the last two categories of
learning models for two reasons: The RPS-type models emerge as
the top performers among the 18 different models evaluated in
Tang (1995); however, the fictitious play model, which revived a lot
of theoretical attention lately, is too influential to be ignored. In the
following subsections, we present the most important parts of the
learning models we have tested and discuss the implications of
the results.

A.  Static Benchmark: The Equilibrium Model

The equilibrium model uses the stage game equilibrium as the pre-
diction:

1 ifalternative jis a stage game equilibrium strategy for i
pi(t) = .
0 otherwise.

Note that while the QDM score of any learning model is an indica-
tor of how well the learning model performs, only the QDM score
of the equilibrium model is an indicator of how well a mechanism
performs. One important measure of the performance of a mecha-
nism is whether it induces convergence to its stage game equilib-
rium.
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TABLE 4

QUADRATIC DEVIATION MEASURE SCORES OF LEARNING MODELS: AVERAGE OVER
ALL SESSIONS

Mechanism Initial Values Parameters  Parameter Values ODM

Equilibrium Model

PD Stage game equilibrium e e 183.09
BQ1 Stage game equilibrium i cee 169.71
BQI100 Stage game equilibrium e e 13.03
Exponentialized RPS Model
PD 200 9 (.007, .70) 62.15
BQl1 200 @ (.007, .70) 33.05
BQ100 200 ()] (.006, .80) 12.46
Generalized Fictitious Play Model
PD (Y, ..., V) d .90 134.39
BQ1 (Y, ..., ) 3 .72 83.02
BQ100 (Y, ..., V) ) [.49, .52] U [.57, .64] 13.42
U [.67, .78]

Tables 4 and 5 summarize the numerical results from evaluating
all three learning models; the ‘‘best”” or minimum QDM scores are
tabulated for each model. Table 4 presents the initial values, the
estimated parameter values, and the average QDM scores over all
seven sessions for PD, BQI, and BQ100, respectively. Table 5 gives
the QDM scores of each individual session using the same estimated
parameter values as those listed in table 4. Recall that a QDM score
is the sum of 100 rounds of quadratic deviations between model
predictions and actual choices. Therefore, the smallest possible
score is zero if a model gives completely correct predictions, and the
largest possible score is 200 if every prediction is wrong.

One striking result is that the static equilibrium model produces
extraordinarily small QDM scores under BQ100 but very large QDM
scores under the other two mechanisms.

ResuLT 5. Individual players under BQ100 followed their stage
game equilibria at an extraordinarily high frequency, much higher
than under either BQ1 or PD. Individual players under BQ]1 fol-
lowed their stage game equilibria at a higher frequency than un-
der PD.

Support. The equilibrium model segment from table 4 shows that
the sessional average QDM scores for PD, BQI, and BQ100 are
183.09, 169.71, and 13.03, respectively. On the sessional level, the
equilibrium model segment from table 5 shows that QDM (BQ100)
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TABLE 5

QUADRATIC DEVIATION MEASURE SCORES OF LEARNING MODELS: INDIVIDUAL
SESSIONS

Mechanism QDM;, QDM,, QDM,, QDM, QDM, QDM,; QDM,,

Equilibrium Model

PD 182.80 174.70 179.20 189.20 183.60 197.60 174.80
BQl1 156.80 194.00 170.00 150.40 198.80 180.40 137.60
BQ100 6.40 4.80 26.00 10.40 8.80 20.80 14.00
Exponentialized RPS Model
PD 79.37 67.68 53.90  61.09 76.19 25.89 70.90
BQ1 34.27 19.84  43.67 17.44 14.22 81.00 20.93
BQ100 7.87 5.80 24.53 10.44 7.64 16.97 13.95
Generalized Fictitious Play Model
PD 13571 121.31 120.51 15851  142.51 99.31  162.91
BQIl 7971 83.71 94.51 62.51 64.11 13491 61.71
BQ100 6.91 4.51 26.51 10.91 8.51 21.71 14.91

Note.—Parameter values are the same as in table 4. QDM is the QDM score of session ¢ X s, where
s =1 for PD, s = 2 for BQ1, and s = 3 for BQ100.

< QDM (BQI) or QDM (BQ100) < QDM (PD) is so obvious that any
statistical test is superfluous. The permutation test shows that
QDM (BQ1) < QDM (PD) at a weak significance level of 8.4 percent
(one-sided).

As an extension of this result, we would like to see whether a mech-
anism induced convergence to its stage game equilibrium. Theoreti-
cally, convergence implies that no deviation will ever be observed
once the system equilibrates. In an experimental setting with long
iterations, even after the system equilibrates, subjects sometimes ex-
periment by occasional deviation. Therefore, it is necessary to have
some behavioral definition of convergence: a system converges to
an equilibrium at round ¢ if x;(s) = x;, for all ¢ and for all s = ¢,
except for a maximum of n rounds of deviation for s > ¢, where n
is small. For our experiments of 100 rounds, we let n =< 5; that is,
there could be a total of up to five rounds of experimentation or
mistakes after the system converged. Admittedly, the requirement
of n = 5 is to some extent arbitrary. However, it is necessary to have
some criterion in order to distinguish between sessions that con-
verged and those that did not converge and to have a measure of
the speed of convergence.

ResuLT 6. Every session of BQ100 converged to its stage game
equilibrium; most of the sessions converged fairly quickly. The ses-
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sions of BQ1 and PD never converged to their stage game equilib-
rium.

Support. The seven sessions of BQ100 (sessions 15-21) converged
to their stage game equilibria in the following rounds: 22, 9, 76, 44,
9, 44, and 60. In all seven sessions, every deviation after convergence
was made by a single subject whereas all other subjects still chose
their stage game equilibrium strategy. The other two mechanisms
never converged to their stage game equilibria. Moreover, stage
game equilibrium under BQ1 and PD was not even reached by all
subjects simultaneously at any round in any session.

Results 5 and 6 provide further evidence in ranking the perfor-
mance of the mechanisms. Although the equilibrium model is not
really a dynamic learning model, it provides a baseline for the com-
parison of genuinely dynamic learning models. In the next subsec-
tion we shall present results that rank the performance of two dy-
namic learning models.

B. Dynamic Learning Models

This subsection contains an analysis of the exponentialized RPS
model and the generalized fictitious play model.

The basic idea of the RPS-type model is that an individual is more
likely to choose a strategy that has yielded relatively higher payofts
to her in the past. Therefore, it is also called a reinforcement learn-
ing model or stimulus response model (Fudenberg and Levine
1996). Learning models in this spirit have a long history in biology
and psychology, but their systematic application in experimental
economics seems to start from Roth and Erev (1995). In that paper,
several variants of the basic linear form were used to construct com-
puter simulations at the group or population level to track the ulti-
matum bargaining, best-shot, and market game experimental data
from a comparative study in Jerusalem, Ljubljana (Slovenia), Pitts-
burgh, and Tokyo. They did not generalize their simulations to non-
linear functional forms.

Since each of our experimental sessions consists of 100 rounds,
which is long enough for performing a more detailed analysis than
the possibility available to Roth and Erev (1995), we can compare the
performance of various learning models in tracking the data down to
the individual level.

We use a nonlinear variant of the basic RPS model called the expo-
nentialized RPS model. Define M;(¢) as the discounted payoff sum
of individual ¢ to choose strategy j:

M;(t) = gM(t — 1) + ¢;(2) Ta(2),
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where ¢ € [0, 1] is the time /memory discount factor. Then the pre-
dicted probability for subject i at round ¢ + 1 is

M(t)

pl](t+1)= 11 Vi,j,
Z & Min(0)
k=1

where A = 0 helps to scale up (when A > 1) or scale down (when
A < 1) the relative weights of the discounted payoff sums. When
A = 0, the model degenerates into a random choice model.

This model is also called the quantal response learning model
(Mookherjee and Sopher 1996), which is a dynamic learning version
of the quantal response equilibrium model of McKelvey and Palfrey
(1995). This approach originated in the multinomial logit frame-
work used in the econometric models of discrete choice (see, e.g.,
McFadden 1984).

One advantage of the exponentialized RPS model is that negative
payoffs can be treated the same as positive payoffs, since the expo-
nential function gives a positive number whether the discounted
payoff sum is positive or negative.

The initial value we used for the exponentialized RPS model is
M;;(0) = 200, for all i, j, since the first-round payoffs for most of
our subjects were around 200. We have also tried various other initial
values, ranging from 10 to 500, which produced little difference. It
seems that because of the long sequence of play, as long as the initial
values are not set too large or too small, the performance of the
model is hardly affected.® Furthermore, these initial values result in
probability predictions around the centroid, (Y1, . . ., Y11), a some-
what ‘“‘natural” starting point for the first round when no history
information is available. For this model we have searched the dis-
count factor ¢ € [0, 1] at a grid size of 0.05 and the A parameter
at a grid size of 0.001 until the minimum QDM scores are ob-
tained.

Compared with the exponentialized RPS model, where an individ-
ual subject bases her decision on her own past payoff information
only, population learning models allow an individual to base her
decision on some summary statistics of the population as well. We
use a generalized fictitious play model (Cheung and Friedman 1995)
to analyze the data.

It is straightforward to calculate the best response for both mecha-

8 Roth and Erev (1995) found that the performance of their model was robust
to various initial values for both the best-shot and market games, although initial
conditions seemed to be sensitive for the ultimatum bargaining game.
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nisms. For the basic quadratic mechanism, a player’s best response
to some predicted population characteristics is

x; = a; 8. t b
where
_ /D - 2B,
[y - 1)/I1 + 2B/
A; = (b/1)

i

T (- 1)/ + 2B,

For the paired-difference mechanism, the best-response function is
x; = m; — n;d_; — S_;,

where

A — (b/1)
mp=—— o, n; =

1
2B, 2B;

The dynamics of the decision process is specified according to a

retrospective learning rule. For some discount factor, 0, we assume
that players predict the S_; and d_; at round ¢ + 1 according to

t—1
S(1) + Z 8S_,(t — u)
SL(t+ 1) = L :

d_i(t) + z 8 d_i(t — w)

u=1
t—1
1+ u
Z 8

Note that this model is quite general. When 8 = 0, it yields the Cour-
not best-response model, S_;(t + 1) = S_;(¢) and d_,(t + 1) = d_;(¢).
When 8 = 1, it yields the fictitious play model. The usual adap-
tive learning model assumes 0 < § < 1, so all observations influence
the expected state but more recent observations have greater
weight.

For the same reason as with the exponentialized RPS model, we
have used the centroid, (Y11, . .., Y1), as the starting probability

d_(t+ 1) =
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prediction vector for the first round for the generalized fictitious
play model. The discount factor, § € [0, 1], was searched at a grid
size of 0.01.

Since BQ100 induces fast and stable convergence to its stage game
equilibria, all learning models perform very well under this mecha-
nism. The relatively volatile dynamic paths of BQ1 and PD provide
a sharp separation of the performance of the exponentialized RPS
model and the generalized fictitious play model.

ResuLT 7. The exponentialized RPS model fits the BQ1 and PD
data much better than the generalized fictitious play model.

Support. Tables 4 and 5 show that the generalized fictitious play
model produces much larger (almost double) QDM scores than the
exponentialized RPS model, not only at overall averages but also at
independent sessional averages. The difference is so obvious that
statistical tests are superfluous. Either permutation test or Wilcoxon
test can give a clear-cut statistic separation at the 1 percent signifi-
cance level (one-tailed).

One might argue that these two types of learning models are not
entirely comparable since the generalized fictitious play model is a
deterministic model that makes extreme predictions of zero or one,
whereas the exponentialized RPS model makes stochastic predic-
tions. To correct for this bias, we also evaluated both learning mod-
els under the absolute deviation measure and POI scores. All the
results still hold under these two scoring rules.

VI. Incentives to Learn, Deviation Sensitivity,
and Stability

Since implementation of a static mechanism usually starts some-
where off the equilibrium path, disequilibrium aspects of a mecha-
nism are especially important in inducing convergence to the equi-
librium. We define deviation cost, DC*, as a subject’s net utility loss
when she deviates € from the equilibrium strategy, that is,

DC* = n(x®) — w(x® + €),

where x° is the equilibrium strategy of a player. Subscripts are sup-
pressed for simplicity. It is straightforward to calculate the deviation
costs for the two mechanisms:

DC(BQ) = [V(S + x°) — T™(x’|u, 6*)]
— [V(S + x* + €) — T™(x* + €|p, 6%)]

I—1
=|B+ —— 2
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and

DC¢(PD) = [V(S + x°) — T*™(x°|S, d)]
— [V(S+ x4+ €) — TP (x*+ €S, d)]

= Be

The measure DC* captures the incentive a mechanism gives a sub-
ject to learn to play equilibrium strategies. When a subject is away
from the equilibrium, the higher the punishment is, the higher an
incentive she has to learn to play an equilibrium strategy. This incen-
tive is captured by the possible increase in utility (or monetary pay-
offs). Since

DC*(BQ100) >> DC¢(BQl) > DC*(PD),

the punishment for deviation from equilibrium strategies is much
higher in BQ100 than in either BQ1 or PD. This partially explains
why convergence was so fast in BQ100 and why the frequencies with
which the subjects play their stage game equilibrium strategies follow
the same ordering. When a mechanism is implemented and a player
is not playing her equilibrium strategy, she should ‘‘know”’ that she
is not doing her best. Under BQ100 it can really result in big losses
if one is not doing one’s best, but not so much under BQ1 or PD.

A practical measure of system stability in actual implementation
is how sensitive the system is to deviation. When a system reaches
equilibrium, if one person deviates from equilibrium, what are the
effects on the rest of the subjects? Does the noise get diminished
or amplified? For simplicity, the following analysis assumes best-
response dynamics. One could easily carry out the same analysis with
other models, for example, generalized fictitious play.

Suppose that player j deviates € from her equilibrium message at
time ¢, x;({) = x; + €. Then for everyone else at time ¢ + 1, the
summary statistics are changed to

S (t+1)=8,¢) +te Vi#j
and
d(t) —e ifi=j+1
di(t+1)=1d(t) +te ifi=j—1
d_i(t) ifizj— 1,7+ 1.

Under the basic quadratic mechanism, player ¢’s (i # j) best re-
sponse at time ¢ + 1 is
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xi(t+ 1) = x,(¢) + [ (/1) — 2B, ]e.

Yy— (v/I) + 2B;

If the planner knows the distribution of preferences, then she can
pick y such that the deviation sensitivity coefficient

(y/I) — 2B; }
Y — (y/I) + 2B,

DS* =

With the parameters of our experiments, this is satisfied for both
Y= 1and 100. Therefore, any noise in the system due to deviation or
a mistake of some player gets diminished under the basic quadratic
mechanism. Furthermore, notice that 0DS®/07 < 0; that is, the
noise gets diminished more, the larger the population is. The reason
is that with the basic quadratic mechanism, players react to the mean
of everyone else’s message. In a large population, noise created by
deviation gets averaged out.

This is not true with the paired-difference mechanism. Under the
paired-difference mechanism,

€

x;(8) —e—— fi=j5+1

@ 2B, /
AT D =9 0y —e+ - ifi=j—1

(1) 2B, J
x;(t) — € ifi#j— 1,7+ 1.
Therefore, the deviation sensitivity coefficient for the paired-
difference mechanism is

—~

1+ 2| ifi=j+1
2B,
PD — <
DS }1——1— ifi=j—1
2B,
L1 ifizj— 1,7+ L

So noise in the system from someone’s deviation or mistake does
not get diminished except possibly for ¢ = j — 1; rather, it either
remains the same (¢#j — 1, j + 1) or gets amplified (¢ = j + 1),
which can cause the system to unravel.

For a full stability analysis of the two families of mechanisms in a
general quasi-linear environment, a sufficient condition for conver-
gence under a wide class of learning dynamics is provided below for
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the basic quadratic mechanism, and an observation is made for the
paired-difference mechanism.

For a general quasi-linear utility function, V; = u;(X) + o, where
u;(*) is C* and concave, the payoff to individual i is ©/" = u;(X) +
o; — T7, where m € {BQ, PD}. From Milgrom and Roberts (1990),
we know that supermodular games®’ converge to their unique Nash
equilibrium under a wide class of interesting learning dynamics, in-
cluding Bayesian learning," fictitious play, adaptive learning, Cour-
not best-response, and many others. Therefore, supermodularity is
a very robust stability criterion for public goods mechanisms.

ProposITION 1. The basic quadratic mechanism is a supermodular
game in a quasi-linear environment if Y€ [ —min e y{0? u;/ 0 X2}, +o0)
and if the strategy space is bounded.

Proof. Since ;is C?, it has increasing differences in (x;, x_;) if and
only if 0*1}2/9x,0x; = 0, for all i # j (Milgrom and Roberts 1990).
Since

o’ 9%u, 1
dx;0x; 0X? I

. a I+
€ |—miny——¢1I, +o|,
y ieN 8X2

then =; has increasing differences or strategic complementarity
between players’ strategies. Note that the strategy space is one-
dimensional, so T; is automatically supermodular in x;. These two
conditions, together with bounded strategy space in R!, give us
a supermodular game. Q.E.D.

Proposition 1 generalizes Muench and Walker’s (1983) conver-
gence result to a wider class of learning dynamics over a more gen-
eral set of preferences. It also explains why BQ100, which is a super-
modular game, converges so fast and remains stable under all
learning models evaluated. On the other hand, BQI1 is not a super-
modular game.

if

? A supermodular game is one in which, for each player i, her strategy space is a
subset of a finite Euclidean space, &; has increasing differences in (x;, x_;), and =;
is supermodular in x;.

1 By Bayesian learning, we mean that each player has a prior belief about her
opponents’ types or possible payoff functions, which is updated according to Bayes’s
rule after each round of repeated play. In each period players play a Bayesian Nash
equilibrium for their current probability beliefs about their opponents’ types (see,
e.g., Fudenburg and Levine 1996).
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For the paired-difference mechanism, we have

'82ui e
ﬁ-'_l lfl=]+1

24

0% u; e, .
3x? ifixj— 1,7+ 1.
-

Therefore, with general convex preferences the paired-difference
mechanism is not a supermodular game.

The analysis above suggests that the success of a mechanism de-
pends not only on its properties in equilibrium but also on its dis-
equilibrium properties. The comparative performance of the basic
quadratic mechanism and the paired-difference mechanism, as well
as their disequilibrium properties, provides some lessons for mecha-
nism design. Two aspects are identified: the incentives to learn and
deviation sensitivity. The deviation cost, DC¢, imposes incentives for
subjects to learn to play their equilibrium strategies by punishing
deviations. With proper incentives, such as that of BQ100, a mecha-
nism can successfully induce a subject to play equilibrium strategies.
The deviation sensitivity coefficient affects whether noise in a system
gets diminished or amplified. A mechanism that uses population
characteristics, such as the mean of others’ messages, can be de-
signed in such a way that the noise gets diminished in the system.
On the other hand, a mechanism that uses individual players’ char-
acteristics, such as the difference of one’s two neighbors’ messages,
tends to get unstable because idiosyncrasies or mistakes of a single
player can cause the entire system to unravel. A supermodular mech-
anism has a robust stability property since a wide class of learning
dynamics converge to its Nash equilibrium.

VII. Comparison with Previous Work

There has been little experimental work on the paired-difference
mechanism. Robin Hanson (School of Public Health, University of
California at Berkeley) ran a pilot experiment testing the paired-
difference mechanism with the Smith process and found nonconver-
gence. Results of his pilot experiments have not been published or
summarized in a working paper. This paper reports the first system-
atic experimental study of the paired-difference mechanism.

There have been three groups of experiments with mechanisms
motivated by the basic quadratic mechanism.
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First, Smith (1979) conducted two sets of experiments using a sim-
plified version of the basic quadratic mechanism, which only bal-
anced the budget in equilibrium. The process used was the Smith
process, where all the subjects need to repeat the same choice three
times in a row to finalize the production of public goods, and they
were paid only when agreements were reached.

Second, Harstad and Marrese (1982) had run experiments using
the complete version of the basic quadratic mechanism. The seria-
tim process used by Harstad and Marrese also requires unanimity of
the subjects to produce the public good, but it differs from the Smith
process in that subjects need to repeat their messages only once for
an iteration to end.

Neither Smith nor Harstad and Marrese studied the effects of the
punishment parameter, 7y, on the performance of the mechanism.
More recently, Chen and Plott (1996) did the first set of experiments
to assess the performance of the basic quadratic mechanisms under
different punishment parameters, Y = 1 and 100. The periodic pro-
cess used by Chen and Plott implemented the public goods game
as a finitely repeated game, where subjects proposed a contribution
each period and were paid for each decision they made. Unanimity
was not required to produce the public good.

Our experimental design for the basic quadratic mechanism re-
sembles the Chen and Plott experiments in that we also consider
two treatments, Y = 1 and y = 100; but it differs significantly in the
experimental procedures, which lead to much sharper statistical
comparisons of different treatments. The individual behavioral mod-
els analyzed in this paper are much richer than those in Chen and
Plott. Our theoretical result on the sufficient conditions for conver-
gence of the basic quadratic mechanism is new. These differences
will be explained in detail below.

The Chen and Plott experiments consist of four sequential ses-
sions: two sessions with the order of Y = 1 following y = 100 and
the other two with the reversed order. Since the two treatments are
not independent, it is almost impossible to disentangle the learning
effects from the incentive effects provided by the mechanism. In
contrast, we have run seven independent sessions for each treat-
ment, which allows us to perform an analysis that requires statistical
independence. Note that one session is only one independent obser-
vation due to the intrinsic strategic interaction among subjects
within each session. To compare the dynamic paths induced by the
mechanisms, we used much longer iterations, 100 rounds per session
with no practice rounds, whereas the Chen and Plott experiments
have only 25 rounds per mechanism with five practice rounds before
each trial. Practice rounds, as well as the sequential treatments that
mixed up different mechanisms, interfere with the experimenters’
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control for learning effects; and 25 rounds are not enough to study
the learning dynamics.

On the aggregate level, because of the lack of independent treat-
ments, Chen and Plott compared the efficiency and public goods
levels of BQ1 and BQ100 by comparing the average. No statistical
results were presented. In comparison with all previous experiments
on the basic quadratic mechanism, this is the first time some clear
and highly significant statistical results are presented.

On the individual behavioral level, Chen and Plott examined the
Cournot and fictitious play learning models, both of which are spe-
cial cases of our generalized fictitious play model. Our estimation of
the generalized fictitious play model suggests that the best discount
factor lies generally between .5 and .9, which yields neither the Cour-
not nor the fictitious play model. Apart from that, we also present
some highly significant statistical results about the comparative per-
formance of the exponentialized RPS model, the generalized ficti-
tious play model, and the static equilibrium model. Our new results
show that the exponentialized RPS model fits the BQ1 and PD data
much better than the generalized fictitious play model and that indi-
vidual players under BQ100 followed their stage game equilibria at
a much higher frequency than under either BQ1 or PD.

On the theoretical level, Chen and Plott did not provide a convinc-
ing dynamic theory to explain why BQ100 performed so much better
than BQI; therefore, they did not answer the question about the
range of Yy that ensures stability of the mechanism. Proposition 1 in
this paper provides a sufficient condition for the convergence of the
basic quadratic mechanism in a class of general quasi-linear environ-
ments, thus giving the precise range of y that induces stability under
a wide class of learning dynamics. This result also generalizes theo-
retical work on the dynamic stability of the basic quadratic mecha-
nism by Muench and Walker (1983).

Therefore, from the perspectives of the experimental design, ag-
gregate and individual-level analysis and results, and theoretical
findings, this study is a major substantive advance over Chen and
Plott’s study and other previous experimental and theoretical stud-
ies of the basic quadratic mechanism.

VIII. Concluding Remarks

The free-rider problem has been the cornerstone of the problem
of public goods provision. Many mechanisms promise a solution.
Two of the most famous ones are the basic quadratic mechanism
and the paired-difference mechanism. Both have very similar static
properties: Nash efficiency and a balanced budget with the same
dimension of message space. The paired-difference mechanism also
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satisfies the individual rationality constraint. However, our experi-
ments show that they induce very different dynamics. Despite all the
perfect static theoretical properties of the paired-difference mecha-
nism, the empirical evidence from our experiments indicates that
in a simple quasi-linear environment the basic quadratic mechanism
with a properly chosen punishment parameter has much better dy-
namic properties.

Comparing the performance of the basic quadratic mechanism
under a high punishment parameter (y = 100), a low parameter
(y=1), and the paired-difference mechanism, we conclude that the
performance of BQ100 is far better than that of BQ1, which, in turn,
is better than that of PD, in terms of system efficiency, close to
Pareto-optimal level of public goods provision, less violation of the
individual rationality constraint, and convergence to the stage
game equilibrium. All rankings are statistically highly significant.

These results suggest that when we design a mechanism, standard
considerations, such as incentive compatibility, individual rational-
ity, and balanced budget, are not enough to guarantee that these
desirable properties can actually be obtained in a dynamic process
with real human subjects. Other disequilibrium aspects, such as devi-
ation costs, which impose incentives for subjects to learn to play their
equilibrium strategies, and deviation sensitivity, which can either am-
plify or diminish noise in a system, are also important to induce good
dynamics and stability of a mechanism. We present a sufficient con-
dition for the basic quadratic mechanism to converge under a wide
class of learning dynamics, which provides a rigorous theoretical ex-
planation for the good dynamic properties of BQ100.

Individual learning rules are important for us to understand the
dynamic properties of incentive-compatible mechanisms. In an at-
tempt to understand the principles of individual learning behavior,
we estimate three individual behavioral models. The exponen-
tialized relative payoff sum model outperforms the population
model of generalized fictitious play on this data set.

To abstract aspects of mechanisms that induce boundedly rational
individuals to play equilibrium strategies is an important but difficult
task, which requires experimental studies of many mechanisms. This
study begins to give us some intuition from comparing two interest-
ing mechanisms. Further experimental study of other mechanisms
is needed to confirm the intuition obtained from this study.
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