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We explore three two-person public goods games with similar equilibrium predic-
tions, but with different rules of the game, different payoff possibilities, and, as we
show, different choices by subjects. Comparisons among games allow inferences of
what may or may not determine when the equilibrium prediction is a good approx-
imation of actual behavior. We find that the equilibrium prediction can fail even
when incentives off the equilibrium enforce it. Our result suggests that the selfish
prediction is prone to deviations when the equilibrium results in unequal distribu-
tions of payoffs, and there are alternative outcomes that increase both equality and
the payoff of the disadvantaged party. Furthermore, fairness is a function of more
than just the final allocations to subjects; it depends on the actions not chosen as
well as those that are. Journal of Economic Literature Classification Numbers: C92,
H41. 02002 Elsevier Science (USA)

1. INTRODUCTION

Experimental evidence has demonstrated that the selfish equilibrium
prediction frequently is a poor approximation of actual behavior. Games in
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which the equilibrium results in an unequal distribution of payoffs appear
to be particularly vulnerable to deviations. This has convinced many
researchers that concerns for fairness matter for experimental subjects.?
Many now see fair or unselfish behavior as a trait in people’s preferences,
much like the taste for another commodity or activity. It is a complicated
task, however, to determine and model just what goes into a person’s cal-
culation of what makes an allocation fair. Particularly tricky is the fact that
selfish equilibrium predictions are precise in some games but are mislead-
ing in others, even in very similar games. First and foremost, therefore, a
model of fairness must be able to predict when fairness will dominate the
selfish equilibrium predictions and when it will not.

A complication in determining when the selfish equilibrium prediction
is a good approximation is that fairness seems to be sensitive to subtle,
often non-strategic, changes in the environment. A model must be able
to determine how these seemingly non-strategic factors nonetheless come
to affect strategies and outcomes. This paper addresses this challenge by
comparing three slightly different versions of a two-player public goods
game. The games all have similar equilibrium predictions but differ in the
behaviors chosen by subjects. In comparing the three games we are able
to identify some of the important factors that any theory of fairness must
address.

It has been argued elsewhere that the selfish equilibrium prediction
is more likely to be observed if the incentives off the equilibrium path
“enforce” equilibrium play. We find that this distinction is not helpful in
characterizing our results. Rather, our results indicate that the selfish pre-
diction is prone to deviations when the equilibrium results in an unequal
distribution of payoffs, and there are alternative outcomes that increase
both equality and the payoff of the disadvantaged party. An important
finding is that the alternatives that were not chosen affect the evaluation
of fairness of those alternatives that actually are chosen. Hence, we argue
that a crucial input to the fairness of any given allocation is the set of other
allocations that could have been chosen—it is not simply the intentions of
subjects to play fairly that matters, but also the opportunities to play fairly.

The next section provides a brief summary of the key findings on altru-
ism and fairness. In Section 3 we discuss the experimental design and the

2 See, Forsythe et al. (1994) for an example of fairness in bargaining games, or see the
extensive review on bargaining by Roth (1995) or the discussion by Guth (1995). For examples
of related effects in models of gift exchange, see Fehr et al. (1993), in centipede games see
McKelvey and Palfrey (1992), in public goods games see Andreoni (1995) or Ledyard (1995),
and for the Prisoner’s Dilemma see Andreoni and Miller (1993). For evidence on fairness in
market transactions see Kahneman et al. (1986), and in coordination games see Van Huyck
et al. (1992). Also related are games on “trust,” such as those discussed by Van Huyck et al.
(1995) and Berg et al. (1995).
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equilibrium predictions, and in Section 4 we present the results. In Section
5 we summarize the primary findings of the experiment and determine
whether these can help us determine what encourages non-equilibrium
behavior. Section 6 is a conclusion.

2. BACKGROUND AND MOTIVATION

Many experiments have indicated that subjects have a preference for
altruism. Perhaps the most direct evidence of “rational altruism” is offered
by Andreoni and Miller (2002). They present subjects with a series of bud-
gets for payoffs between themselves and another subject, and go on to
check subjects’ choices for consistency with the axioms of revealed pref-
erence. They find that behavior is consistent with a significant preference
for altruism, and with a well-behaved preference ordering over own- and
other-payoff. Moreover, preferences appear to be convex, but not always
monotonic.

When turning to sequential games, it becomes clear that altruism alone
cannot explain everything. This is easily illustrated in ultimatum games.
Here the proposer offers a share X of a pie of, say, $10 to a responder. If
the responder accepts the offer he gets X and the proposer gets $10 — X,
but if the responder rejects the offer both sides get nothing. This game
has been conducted with pies of $1, $5, $10, and on up to $100, and each
time the results look similar—the modal split is 50% and offers of less than
30% are likely to be rejected.® This illustrates a willingness to pay to refute
unfair treatment or to punish selfishness in others.

This willingness to pay to refute unfairness is illustrated quite clearly
by Ochs and Roth (1989). They conducted two- and three-stage alternat-
ing offer bargaining games in which the pie shrinks after each rejection.
Remarkably, they find many examples of “disadvantageous counterpropos-
als,” that is, player two rejects an offer and then makes a counterproposal
that yields him less than he would have gained had he accepted the original
offer.* Moreover, many rejected offers were Pareto superior (in a mone-
tary sense) to the counterproposals, which would appear inconsistent with
purely altruistic motives. Instead, as Ochs and Roth note, the fact that out-
comes with Pareto inferior payoffs were revealed to be preferred by some
responders suggests that subjects care how their payoff compares with that
of others.

3 Hoffman et al. (1996) show that behavior is similar with $10 and $100 pies. Slonim and
Roth (1998) replicate this finding but show that differences do emerge with repetition, as
those in high-stakes games are less likely to reject unequal offers.

4Ochs and Roth also found disadvantageous counterproposals in the data of Guth
et al.(1982), Binmore et al. (1985) and Neelin ez al. (1988). See Ochs and Roth’s Table 6.
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Prasnikar and Roth (1992) follow up on this insight by comparing the ulti-
matum game with a two-person best-shot game (Harrison and Hirshleifer,
1989). Best-shot is a sequential game in which a public good is supplied at
the maximum of the two players’ contributions. These two games are similar
in that both have subgame perfect predictions of unequal payoffs. However,
the equilibrium prediction is rarely observed in ultimatum games, while it is
commonly the outcome in best-shot games. Prasnikar and Roth argue that
this can be explained by the incentives off the equilibrium. In the ultimatum
game, the second mover’s incentives to accept an offer increase the further
it is from the equilibrium, whereas in the best-shot game the incentives for
the second mover to choose the best reply increase the closer the first move
is to equilibrium. Hence, deviations from the equilibrium enforce free rid-
ing in the best-shot game but not in the ultimatum game. This important
observation—one that is missing in theoretical models—will be reexamined
in our study.’

Next we describe an experiment designed to organize and build upon
these various findings. The study is designed to pinpoint what makes an
allocation fair, and therefore what may cause the equilibrium prediction
to fail.

3. EXPERIMENTAL DESIGN

We consider three slightly different versions of a two-person public goods
game, where all three versions have equilibrium predictions that entail very
unequal payoffs. The three games allow us to determine what effect the
off-the-equilibrium-path payoffs have on deviations. Furthermore, we can
look at two issues regarding the ability and willingness to play the selfish
best response when the equilibrium payoffs are unequal. First, we compare
two games with identical payoff structures, but which differ in the players’
abilities to commit to a free-riding strategy. Next we compare two games
in which players have equal ability to commit to a free-riding strategy, but
which differ in the payoffs off the equilibrium path.

3.1. Model

To motivate the game, consider the simple theoretical model in which
two people provide a public good. Let x; be consumption of a private good

5 This interaction of fairness and strategic features is underscored by Kagel et al. (1996).
They study ultimatum bargaining with asymmetric information about the values of the pie.
They find that both proposers and responders appear to make good use of any informational
advantage to move the outcome toward a more self-serving notion of fairness.
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by i and let g; be i’s contribution to the public good. Each individual faces
a budget constraint x; + g; = m;. Define G = g, + g, as the total supply
of the public good. Assume individuals each have utility functions U; =
x; + «;In G, where a; > «,. Then it is easy to verify that the best reply
function for each player will be g; = max(0, ; — g;), j # i, that is, each
player wants to bring the total contributions up to the level G = ;. If G
is provided through simultaneous contributions, then, since a@; > a, the
Nash equilibrium will be g; = «;, and g, = 0. Pareto efficiency, on the
other hand, requires g; + g, = a; + a,.

Next assume the game is played sequentially: player one moves first and
player two moves second, and each player moves only once. Now if «; and
a, are not too different, the subgame perfect equilibrium is for player one
to commit to choosing g; = 0, leaving player two to choose g, = a,. Being
in a position to commit to free riding, player one is clearly better off, and
player two is worse off. In addition, since «; > a, the total supply of the
public good is predicted to be lower than in the simultaneous case (Varian,
1994), but the set of Pareto efficient allocations remains unchanged.

Finally, consider a variant of this sequential game in which G =
max{g;, & }. This is now a best-shot game where the supply of the public
good is determined by the maximum of the two contributions. Again, let
player one move first. Now the best reply function for player two is g, = «,
if g < ay/exp(l), and g, = 0 otherwise. As in the sequential game, the
subgame perfect equilibrium is g, = 0 and g, = «,. However, Pareto effi-
ciency requires one of the players to contribute zero. Hence any allocation
such that g; =0 and a; < g; < oy + «,, j # i, is Pareto efficient.

Notice that if subjects are assumed to be money-maximizers then all
three versions of this game have very similar equilibrium predictions, that
is, one player provides all of the public good and earns a low payoff, while
the other player completely free-rides and earns a high payoff. In addition,
selfishness implies that the sequential and simultaneous versions of this
game have identical payoffs both on and off the equilibrium path, but differ
only in the ability of players to commit to free riding. The sequential and
best-shot games have identical equilibrium payoffs, and in both games the
first contributor can commit to free riding, but the off-the-equilibrium-path
payoffs differ. Comparing simultaneous with sequential play of the game
will allow us to see how the ability to commit to free riding affects the
outcome, and comparing the sequential to the best-shot games will allow us
to see how off-the-equilibrium-path payoffs affect the willingness of players
to accept subgame perfect equilibria with unequal payoffs.

Note that our design allows a special test of the central conjecture of
Prasnikar and Roth (1992). For all three games the predicted contributor’s
marginal incentive to contribute decreases with the predicted free rider’s
contribution. Prasnikar and Roth therefore would argue that deviations are
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Investment Returns to RED and BLUE Investors
Based on Total Investment by Both Investors.
(Returns are Listed in Cents)

Total Total Additional Total Additional
Investment Return Return to Return Return to
Units Purchased | to RED RED from to BLUE BLUE from

by Both from total  just the  from total just the
Investors investment  last unit investment last unit

0 0 0

1 15 15 16 16

2 30 15 32 16

3 45 15 48 16

4 60 15 64 16

5 75 15 80 16

6 90 15 93 13

7 103 13 104 11

8 114 11 115 11

9 125 11 124 9

10 134 9 132 8

11 142 8 139 7

12 149 7 146 7

13 156 7 152 6

14 162 6 158 6

15 168 6 163 5

16 174 6 168 5

17 180 6 173 5

18 185 5 177 4

19 190 5 181 4

20 194 4 185 4
over 20 194 0 185 0

Reminder: Investment Units cost 10 each.

FIG. 1. Payoftf table for simultaneous and sequential Games.

not encouraged, and that equilibrium play is enforced in all three games.
Hence, this is not likely to be a predictor of any differences observed in
our experiment.

3.2. Experimental Parameters

The experiment will have three conditions: the simultaneous summation
game, the sequential summation game, and the sequential best-shot game.
We will refer to these as simultaneous, sequential, and best-shot.

The payoff table used in the experiments reported here is shown in Fig. 1.
It contains all of the incentives described in the theoretical model above.
The game is played with two players. In the experiment, player one is named
Red and player two is named Blue. Players must decide how many “Invest-
ment Units” to purchase. Investment units cost $0.10 each. In Fig. 1 the
payoff from the public good to each subject depends on the total number of
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investment units purchased. In the simultaneous public goods game, both
players make their choice without knowing what the other will choose, while
in the sequential public goods and best-shot game, Red moves first.

As can be verified, the Red subjects would, if acting alone, bring the total
up to 9 investment units, while the Blue subjects would bring the total up to
8. That is, the best replies are g; = max(0,9 — g,) and g, = max(0, 8 — g;).
The Nash equilibrium in the simultaneous game is thus g =9 and g, = 0;
Red earns $0.35, and Blue earns $1.25. In the sequential game the subgame
perfect equilibrium is nearly the opposite: g; = 0 and g, = 8, with a payoff
to Red of $1.14 and a payoff to Blue of $0.35. In both cases it is Pareto
efficient for g, + g, = 17.

Converting this game to the best-shot is trivial. Simply replace the head-
ing in the first column in Fig. 1 with the words “The greater of the invest-
ment units purchased by Red or Blue.” Replace the heading above the third
column with “Additional return to Red from raising the greatest investment
by 1”7 and make a similar adjustment to the final column heading. Exactly
the same payoff table is used, but the definition of the public good changes
from the total supply of investment units to simply the greater of those
invested by the Red and Blue players. The players’ best replies differ from
that found above, with g, =9 if g, < 2, and g; = 0 otherwise, and g, = 8
if g, <2, and g, = 0 otherwise. As above, the subgame perfect equilibrium
is (g1, &) = (0, 8) with payoffs again of $1.14 and $0.35. Pareto efficiency
requires either g, = 0,8 < g, <17 or g, =0, 9 < g, < 17. Thus, the pre-
dictions are that in each game one player provides all of the public good
and earns a relatively small amount of money.

A session of our experiment went as follows. We recruited 14 subjects
per session from economics courses at the University of Wisconsin. Sub-
jects were randomly assigned to computer terminals, separated by blinders,
in a computer classroom. Subjects were given written instructions, which
the experimenter read over with the participants. The experimenter then
gave a quiz, asking subjects to calculate the payoffs in a specific example
of the game, which was collected and reviewed verbally. Half of the sub-
jects were then randomly assigned to be Red players and half to be Blue,
and they were informed that they would play the same role throughout
the experiment.® The subjects then were walked through an example using
the computers, and the experiment began. They played 14 iterations of the
game. In each iteration they were randomly and anonymously paired with
another subject, with the stipulation that no one played another subject
more than twice. Subjects’ identities were never revealed to one another.

6 Coats and Gronberg (1996) also consider a sequentially provided public goods game. Their
experiments are quite different, however, since they employ a discrete public good, and their
subjects change roles each round.
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After the 14 rounds, subjects participated in a “bonus round” which was
designed to test their understanding of the game. Finally, the subjects’ earn-
ings for all 14 rounds were tallied and added to a $3 show-up payment and
earnings in the bonus round. Subjects were paid anonymously and in cash.
We ran three sessions of each of the three games, for a total of 126 sub-
jects. The experiment typically lasted less than an hour, and subjects made
an average of $12.85 (standard deviation of $2.10, maximum of $19.25, and
minimum of $5.00). A copy of the instructions for the sequential game is
given in the Appendix.

4. RESULTS

We begin by asking how well the data conform with the equilibrium pre-
dictions. The average contributions for all three games are illustrated in
Fig. 2. Over the 14 rounds, the simultaneous game produces an average
G of 8.55, sequential produces 7.15, and best-shot 6.86. Over the last five
rounds, the average level of G is similar across all three games: 7.16 for
simultaneous, 6.55 for sequential, and 7.33 for best-shot.

When we explore the individual contributions, however, the differences
in the games become apparent. Figure 2a shows that the average choices
for the two players are almost identical for every round in the simultaneous
game, despite the prediction that player one would choose 9 and player two
would choose 0. Although outcomes in 10 of the 14 rounds show more giv-
ing by player one on average, the difference is not statistically significant.’

Figure 2b gives the same information for the sequential game. In this
game, the subgame perfect equilibrium is that player one chooses 0 and
player two chooses 8. Here we see more separation between the players,
with more given to the public good on average by player two. While the dif-
ference is clearly larger than in the simultaneous game, again the difference
is not statistically significant, and play of the subgame perfect equilibrium
is still fairly uncommon.®

Finally, Fig. 2c shows the results for the best-shot game. By the mid-
dle of the game, most interactions between subjects actually occur at the
subgame perfect equilibrium. Over the last five rounds, 61% of all best-
shot games are at the predicted outcome. This compares with 17% of the

" Looking at individual subjects, a rank-sum test reveals no significant difference between
the choices of the two types of players. A rank-sum U-test comparing average choices by
subjects over all 14 rounds yields a z score of z = —0.553. Looking at only the last five or last
three rounds yields z = —1.044 and z = —0.623, respectively. A description of this test can be
found in Freund (1971, pp. 347-349).

8 The rank-sum U-test yields z = 1.484 over all rounds, z = 1.019 for the last five rounds,
and z = 1.635 for the last three rounds.
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FIG. 2. Average contributions by round.
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sequential plays and only 1% of the simultaneous plays. Hence, we have
our first main result. The selfish equilibrium prediction is a poor approxi-
mation of actual behavior in both the simultaneous and sequential games,
but is a very good approximation in the best-shot game, despite the similar
game-theoretic predictions of the three games, and despite the equilibrium-
enforcing incentives. Next we look more closely at the differences across the
games.

4.1. Comparing the Simultaneous and Sequential Games

Table I shows the average choices of all players in the simultaneous public
goods game for all sessions. Here we see no sign of Nash equilibrium play,
but rather choices are very equitable—players give similar amounts to the
public good, whether measured by the average or the median. Likewise,
Table II shows the choices in the sequential public goods game. Again,
we see very little evidence of the selfish equilibrium prediction, but rather
choices that are fairly equitable, with the second players giving somewhat
more on average than first players.’

Looking at each player one’s role and using a non-parametric rank-sum
test, we see that over all rounds player one in the simultaneous game gives
significantly more than his counterpart in sequential games (z = 2.113).
However, by the end of the experiment the difference has largely disap-
peared (for instance, z = 1.270 for the last three rounds). Comparing the
second players in the simultaneous and sequential games, the overall differ-
ence is not at all significant (z = —0.075), and the difference stays insignif-
icant throughout the experiment (z = 0.780 for the final three rounds).
While the pressures of equilibrium should cause players of the same role
to be significantly different across games, we see that the pressures for fair-
ness are exerting roughly equal force in the two games—by the end of the
game, players of a given role are behaving, on average, similarly in the two
games.

4.2. Comparing Sequential to Best-Shot Games

Table III presents results from the best-shot game. Here we see that
the first players in the best-shot game are much more likely to choose the
subgame perfect contribution of zero. Over the last five rounds, 10 of 21
choose g; = 0 all five rounds, and 16 of 21 choose less than 1 on average.
Over all rounds, the average player one chooses 2.36, with a median choice
of 1. By the end of the game, however, most choices are zero, as predicted.

% Sequential and simultaneous play of a game of “claiming” shares in a finite resource was
considered by Budescu et al. (1992). They also find that simultaneous play generates more fair
play, and the first-movers fail to exploit their full bargaining power.
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TABLE I
Choices in the Simultaneous Public Goods Game, G = g, + &,

Average g, Average g,

Round Round
Subject All Last 5 adopted Subject All Last 5 adopted
Number rounds rounds g =9 Number rounds rounds g, =0
Session 1
1 2.36 1.6 — 2 4.29 2.8 14
3 3.58 22 — 4 2.79 2.6 —
5 3.36 22 — 6 3.07 0.8 11
7 3.64 2.8 — 8 5.50 1.6 11
9 5.21 4.0 — 10 5.93 4.4 —
11 5.57 42 — 12 4.36 2.4 —
13 2.71 22 — 14 4.71 4.0 —
Session 2
1 1.86 0.0 — 2 3.39 0.8 14
3 5.64 34 — 4 2.50 4.0 —
5 4.14 4.6 — 6 4.64 42 —
7 2.29 1.6 — 8 3.64 2.0 14
9 6.29 42 — 10 8.00 8.0 —
11 471 4.4 — 12 2.57 2.0 —
13 4.57 34 — 14 4.86 3.6 —
Session 3
1 4.36 4.0 — 2 0.72 0.6 —
3 35 6.0 — 4 0.00 0.0 1
5 4.43 3.8 — 6 7.36 7.8 —
7 7.71 72 — 8 1.93 1.6 —
9 3.36 34 — 10 5.00 5.4 —
11 7.64 7.6 — 12 3.14 2.8 —
13 6.36 8.2 13 14 8.00 8.0 —
Mean 4.44 3.9 4.11 33
Median 4 4 — 4 3 —

In fact, more than half of all subjects choose g; = 0 for all rounds after
11, and 16 of 21 choose zero in the final round—twice the number in the
sequential public goods game.

Five best-shot players are worth special note. Player 3 in session 1 and
player 3 in session 3 both chose 9 throughout most of the experiment.
A post-experiment questionnaire reveals that these subjects mistakenly
inferred (the first after being punished early on) that as the first player
they were in the disadvantaged position.! Subject 5 in session 2 settles on

10Since they choose 9 and get 0 as a reply for the rest of the game, they learn nothing to
disabuse them of this belief. This is suggestive of a notion put forth by Fudenberg and Levine
(1997) on how subjects learn only the part of the game tree they experience. Here a bit more
experimentation with free riding may have taught these two subjects to behave differently.
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TABLE II
Choices in Sequential Public Goods Game, G = g, + &,

Average g, Round Average g, Average G
Subject All Last 5 adopted  Subject All Last 5 All Last 5
number rounds  rounds g =0 number rounds rounds rounds rounds
Session 1
1 2.14 2.8 — 2 5.93 5.0 8.86 8.0
3 6.00 5.6 — 4 3.79 1.4 6.21 32
5 3.36 2.6 — 6 421 2.0 7.21 6.0
7 4.71 4.6 — 8 5.00 4.2 8.14 8.0
9 3.00 3.0 — 10 221 3.0 5.79 6.0
11 0.50 0.6 13 12 5.14 6.2 8.21 8.0
13 1.36 0.2 11 14 3.93 4.4 6.86 6.4
Session 2
1 0.71 0.0 4 2 1.57 1.6 5.50 54
3 1.07 0.0 4 4 4.07 2.6 571 3.4
5 2.57 0.4 12 6 4.07 5.6 5.21 6.4
7 4.14 4.2 — 8 6.00 72 8.07 8.0
9 3.50 34 14 10 2.43 1.8 6.36 7.6
11 5.21 6.4 — 12 321 2.0 6.43 4.8
13 1.36 1.8 — 14 3.36 1.8 6.00 32
Session 3
1 0.79 0.0 3 2 4.07 42 8.64 8.0
3 3.79 3.6 — 4 4.86 4.0 9.14 8.2
5 2.14 2.4 — 6 2.57 1.8 5.71 52
7 421 32 — 8 7.57 9.6 10.21 10.4
9 5.14 4.0 14 10 1.64 2.0 443 4.8
11 5.64 4.8 — 12 4.86 3.0 9.07 8.2
13 421 5.4 — 14 4.0 52 8.29 8.4
Mean 3.12 2.8 4.02 3.7 7.15 6.5
Median 3 3 — 4 3 8 8

giving 1, but then gives 2 in the final round, and subject 9 of session 1 gives
1 each round, beginning in round 6. In a post-experiment questionnaire,
these two express a desire to appease the second movers by sacrificing a
token amount. Finally, subject 7 in session 2 alternates between giving 0
and 9. The post-experiment questionnaire revealed that this person is try-
ing to share the burden with the second movers but clearly understands
the subgame perfect equilibrium. Hence, although concerns for fairness
are present the selfish prediction is an attractive tool for organizing the
data in the best-shot game.

Allowing these subjects to observe actual play of one other pair of subjects might have altered
their behavior (e.g., Duffy and Feltovich, 1999).
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TABLE III
Choices in Best-Shot Game, G = max(g;, &, }

Average g, Round Average g, Average G
Subject All Last 5 adopted Subject All Last 5 All Last 5
number rounds rounds g, =0 number rounds rounds rounds rounds
Session 1
1 2.79 0.8 — 2 6.36 6.4 8.21 8.2
3 7.50 9.0 — 4 571 6.4 7.93 8.2
5 0.79 0.0 7 6 4.64 6.4 7.86 8.2
7 0.86 0.2 11 8 1.57 1.4 3.36 3.4
9 1.86 1.0 — 10 571 6.4 8.00 8.2
11 1.57 0.0 4 12 5.86 8.2 7.43 8.2
13 1.50 0.0 4 14 2.29 22 2.36 22
Session 2
1 1.86 0.2 12 2 4.71 8.0 6.86 8.0
3 1.14 0.0 7 4 571 8.0 7.93 8.0
5 2.57 1.2 — 6 1.86 0.0 3.14 0.4
7 4.29 3.4 14 8 4.29 5.8 5.07 7.4
9 0.71 0.0 4 10 6.86 8.0 8.14 8.0
11 1.36 0.8 14 12 6.36 6.4 7.36 8.2
13 0.93 0.0 7 14 6.86 8.0 7.93 8.0
Session 3
1 2.29 0.0 6 2 5.14 4.8 8.64 104
3 9.00 9.0 — 4 4.86 6.4 6.57 8.2
5 0.64 0.0 2 6 493 8.8 7.79 8.2
7 0.71 0.0 4 8 5.43 6.4 7.29 10.6
9 3.29 4.8 13 10 571 6.4 7.71 8.2
11 1.00 0.0 7 12 5.79 6.4 7.86 7.4
13 3.00 0.4 12 14 4.14 6.4 6.57 6.4
Mean 2.36 1.5 4.99 6.1 6.86 73
Median 1 0 11 8 8 8 8

How does the best-shot game compare with the sequential game? Those
in the player one role give significantly more in the sequential game than
in the best-shot game. Interestingly, however, this difference only emerges
later in the experiment. In the first five rounds of the game, the sequential
and best-shot first players behave similarly, with average contributions of
4.12 and 3.70, respectively (z = 0.955). By the end of the experiment the
difference is highly significant, with contributions for the last five rounds
of 2.81 for sequential and 1.47 for best-shot (z = 2.465).!! The second
players behave differently throughout. Over the first five rounds the best-
shot second players give (marginally) significantly less than sequential, 3.54
versus 4.33 (z = —1.90), but over the last five rounds give significantly more,

' Over all 14 rounds, the difference is marginal, with z = 1.736.
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TABLE 1V
Punishments by Second Movers to Low Contributions to First Movers

Prob. Prob.
£ =0 8 €1[0,2]
Prob. given Prob. given

8 =0 & =0 g €10,2] g €10,2]

Sequential public goods

All rounds 26.5 30.8 45.2 37.6

Rounds 1-7 225 30.3 40.1 339

Rounds 8-14 30.6 31.1 50.3 40.5
Best-shot game

All Rounds 47.6 114 72.4 18.8

Rounds 1-7 30.0 13.6 59.9 239

Rounds 8-14 65.3 104 85.0 15.2

6.06 versus 3.74 (z = 3.308). What appears to be happening is that the first
players in both games try early on to use their power to commit to free
riding, but only in the best-shot game do the second players allow them to
do so.

This difference is illustrated in Table IV. Here we indicate the “pun-
ishments” by second players conditional on the choice of the first players.
Define a punishment as a choice of g, = 0 in response to a g; = 0. Table IV
shows that the probability that a g; = 0 will be punished is about three times
higher in the sequential game than in the best-shot game. A similar result
follows if we define punishment more broadly to be a g, € [0, 2] in response
to a g; € [0, 2]. Hence, there is a significant difference in how players reply
to the subgame perfect move by a first player—in the sequential game they
are far more likely to punish it.

Finally, it is worth noting that in the sequential game there is little evi-
dence that second movers reward generous first movers. For instance, 24
of the 294 first moves were g; > 8. The average reply by second players is
1.5, and the median reply is 0. Hence, almost no one saw a need to reward
or equalize payoffs by giving above the best reply.

4.3. Summary

The main results can be summarized in Fig. 3. Here we illustrate the
frequency of outcomes over the last five rounds of play. We can easily see,
as we move from the simultaneous to the sequential to the best-shot, that
the data become more and more organized. Figure 3a shows that play in
the simultaneous game is fairly symmetric across the two players, and total
provision often falls above the equilibrium prediction of 9. Turning to the
sequential game (Fig. 3b), the data begin to fall along two axes. The first
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and most significant axis is along the diagonal where g, + g, = 8, that is,
where the second player chooses his best reply, bringing the total public
goods up to 8. However, there is a significant group of punishers. These
form the second axis along the opposite diagonal where g; ~ g,. Note that
while punishment is significant, few of the choices put the total above 8§,
that is, there is little rewarding.!?> Finally, Fig. 3c shows the best-shot game.
Clearly there is only one point of any significance here, and that is the
subgame perfect equilibrium.'?

5. IMPLICATIONS FOR THEORY

This study of three different, yet similar, public goods games has provided
some valuable insight into when we should expect the selfish equilibrium
prediction to be a good approximation for actual behavior. In all three
games the prediction is that only one person contributes to the public good,
and that the resulting payoff distribution strongly favors the free rider. Our
results reveal that this prediction fails in the two summation games. Subjects
behave very similarly in the sequential and simultaneous games despite the
equilibrium prediction that the behavior in one should be just the opposite
of the other. Hence there is no support for the prediction provided by
Varian (1994), and it is clear that the ability to commit to ride free does not
limit equilibrium deviations. While it is tempting to argue that the unequal
payoff distribution is what causes the prediction to fail, our results show
that not all such equilibria are prone to deviations. Although the predicted
distribution of payoff is identical in the best-shot and sequential games, we
find that the subgame perfect outcome is reached in the best-shot game.

How can we determine whether actual play of a game will be consis-
tent with the selfish prediction? Prasnikar and Roth (1992) propose that we
determine whether the incentives off the equilibrium discourage deviations.
While this explanation sheds light on the difference found between the best
shot and ultimatum games, it does not a priori help explain the difference
we observe between the best shot and sequential games. In both of these
games, player two’s incentive to play his equilibrium strategy decreases
as player one increases her contribution. Thus the equilibrium should be

21n contrast, Croson (1998) finds evidence of positively correlated contributions in linear
simultaneous-move public goods games.

13One may ask whether the differing complexities of the games affected the results. To
examine this we administered a test question at the very end of the experiment. Subjects were
told to make choices for both Red and Blue players and to calculate payoffs for each. We
then flipped a coin to determine the role for which subjects would be paid. Of the 42 subjects
in each game, three or four subjects per game made errors in calculating payoffs in the bonus
round. Thus, subject errors are not likely to explain the results.
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enforced in both games. Could our results be due to a difference in the
strength of this enforcement? Unfortunately it is not possible to determine
whether the incentive to deviate is stronger in one game than in the other.
While a small increase in the initial contribution has no effect on player
two’s response in the best-shot game, it causes an immediate reaction in
the sequential game. Thus, one might argue that locally there is a larger
incentive for equilibrium play in the sequential game.

However, if we examine the actual play and thus the incentives that arise
in the game, then the incentive hypothesis does suggest a difference. In the
sequential game the second movers are far more willing to punish selfish-
ness, and hence a player one can on average increase her payoff by devi-
ating from the equilibrium. This is not true for the best-shot game. Here
if player one deviates from the equilibrium she will on average reduce her
earnings. Unfortunately viewing the incentive hypothesis from this ex post
perspective does not help us determine when the selfish equilibrium pre-
diction is likely to be a good approximation. It does, however, suggest that
player two’s behavior is key to understanding when the selfish prediction is
appropriate.

Similar to other experimental evidence, player two’s behavior reveals that
he has a preference both for his private payoff and for that of player one.
This leads us to ask whether recent models of social preferences can help
us understand the differences in play. One class of these models suggests
that subjects derive utility both from their private payoff and from an equal
distribution of payoffs.'* Thus, these “difference-aversion” models predict
that equilibria with unequal payoff distributions are less likely to be good
approximations of actual play. However, with preferences increasing in pri-
vate payoff they also predict that we should observe more equilibrium play
in the best-shot game. The reason for this is that although there are out-
comes that result in an equal distribution of payoffs, these also entail a
low private payoff for both contributors. Hence subjects who have a pref-
erence for both equality and private payoff will be more likely to choose
the equilibrium outcome in the best-shot game.

The insight gained from difference aversion is that the equilibrium pre-
diction is more likely to fail when the equilibrium payoffs are unequal and
there are equal payoff possibilities that provide the disadvantaged party
with an increase in private payoff. What matters is not only the opportu-
nity to play fairly but also the selfish motivation for doing so.

Unfortunately difference aversion fails in predicting what appears to
be one of the driving forces for the difference between the best shot
and sequential game: the change in player two’s response to an initial

4 Loewenstein et al. (1989), Bolton (1991), Fehr and Schmidt (1999), and Bolton and
Ockenfels (2000).
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contribution of zero. As shown in Table IV, second movers generally pre-
fer payoffs 7, = 0.35 and 7, = 1.14 to m, = 7, = 0 in the best-shot game,
whereas the opposite often holds in the sequential game. Since the models
of difference aversion are based solely on outcome, they cannot explain
this difference in response.

The only difference in the best-shot and sequential games is in payoffs
off the equilibrium, hence if a model of fairness is to capture this change of
preferences then the outcomes not chosen must somehow enter the eval-
uation of the outcome chosen. One class of models that does allow for
this possibility is the models of reciprocity. The argument in these models
is that subjects want to reciprocate kind actions with kindness and unkind
actions with unkindness. What is defined as an intentionally kind action
depends on the alternatives that could have been chosen.!> Rabin (1993)
and Dufwenberg and Kirchsteiger (2000) propose that the threshold for
what is kind is a function of the largest and smallest Pareto efficient out-
comes that could have been chosen. Falk and Fischbacher (2000) argue
instead that the reference point that defines a kind act is an equal distri-
bution, but that the intention behind an action depends on the options not
chosen.!® Levine (1998) proposes a model where kindness toward others
depends on others’ attitudes, which are inferred via actions. Changes in the
payoff opportunities may influence the ability to make such inferences and
thus affect one’s evaluation of the altruistic attitudes of an opponent. With
the evaluation of an action being a function of the action not chosen, these
models have a larger potential for predicting the change in preferences that
we observe in the two sequential games.

While all of the current fairness models provide valuable insight into
the deviations from equilibrium, they all fail in one respect. In predicting
behavior for the sequential game both classes of fairness models predict
that second movers, who are sufficiently concerned with fairness, increase
contributions in response to a large initial contribution. As shown in Fig. 3,
our experimental results do not support this increase in contributions.!”

15 Bolton et al. (2000) suggest that by incorporating an endogenous reference point in the
difference aversion models, these models may also explain the different response from the
second player. As stated above, we agree that what is needed to capture the difference between
these games is that the payoff at paths not chosen affects the evaluation of that chosen.

16 Since the intention of choosing the unequal payoff distribution is somewhat reduced in
the best-shot game, we should see an increase in the number of second movers who prefer
their best response.

7 This finding is consistent with that of Charness and Rabin (2000), who find that there is
little evidence of sacrifice to reciprocate good behavior.
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In sum, our results suggest that the selfish equilibrium prediction is frag-
ile when the equilibrium payoffs are unequal and there are alternative out-
comes that increase both equality and the payoff to the disadvantaged party.
Furthermore, if models of fairness are to predict the observed difference
across the three games then they must allow the evaluation of action to
depend on the actions not chosen.

6. CONCLUSION

With the mounting evidence on the importance of altruism and fairness
in economic laboratory experiments, there has been a move to develop pre-
dictive models of this behavior. Developing such models requires a careful,
deliberate, and systematic approach to the data. It is important to identify,
in controlled settings, the personal and environmental factors that are most
important to subjects in evaluating fairness.

We try to highlight several aspects of fairness by considering three very
similar games with identical payoff tables and nearly identical equilibrium
predictions. The difference between the sequential and simultaneous games
is simply the order of play. This difference reveals that, while the pull
of equilibrium is evident in early rounds—with the first movers attempt-
ing to exploit their advantaged position—the pull of fairness eventually
dominates—simultaneous and sequential play are very similar by the end
of the experiment. Moreover, while low contributions by first movers are
often punished, high contributions are seldom rewarded.

The difference between the sequential and best-shot games is solely in
the off-the-equilibrium-path payoffs. We find that, even though the sub-
game perfect equilibria are the same, only in the best-shot game is this
observed. In particular, selfish acts are tolerated in the best-shot game but
are punished in the sequential game. It thus appears that when payoffs off
the equilibrium path make it more difficult to be fair, a selfish act by the
first mover is seen as more tolerable. However, when the first mover has
the option to be fair, then a selfish move is seen as more egregious by sec-
ond movers. As a result, not only is the actual allocation producing fairness,
but the road to that allocation and the roads not taken along the way are
also inputs into the production of fairness.

What does our work portend for future research on fairness? Fairness,
it seems, is a complex and dynamic concept with many varied inputs. The
rules, the payoff possibilities, the intentions, and the context of the game
are all potential inputs into the production of fairness. With deliberate and
carefully designed studies in the future, subjects can reveal to us what makes
an allocation more or less fair and can help us build a better predictive
model of behavior in situations with unequal equilibrium payoffs.
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APPENDIX: SUBJECTS’ INSTRUCTIONS FOR
THE SEQUENTIAL PUBLIC GOODS GAME

The University of Wisconsin,
Department of Economics

WELCOME

This experiment is a study of group and individual investment behaviors.
The instructions are simple. If you follow them carefully and make good
investment decisions you may earn a considerable amount of money.

The money you earn will be paid to you, in cash, at the end of the
experiment. A research foundation has provided the funds for this study.

HOW YOU MAKE MONEY

First, you will get $3.00 put into your earnings account just for being
willing to participate. The money you make from your investment decisions
will be added to this account as the experiment proceeds.

Your identity will be kept private throughout the experiment. Neither the
people running the experiment nor the other participants will ever know
your name, nor will they be able to link you with any of the decisions made
in the experiment.

Your decisions will be recorded by the computer. At the end of the exper-
iment you will receive your cash payment in a sealed envelope so that no
one but you knows how much you have earned.

Please do not talk to any other participant during the experiment.

THE TWO INVESTORS

In this experiment you will make a series of 14 investment decisions. For
each investment decision you will be randomly paired with one other par-
ticipant. Your investment returns will depend on the investment decisions
that you and the other participant make.

IMPORTANT NOTICE: For each investment decision you will be ran-
domly paired with a different participant. You will never play against the
same participant two times in a row.

In each investment decision, one participant will be known as the BLUE
Investor, and one participant will be known as the RED Investor. We will
tell you at the start of the experiment whether you will be a BLUE investor
or a RED investor. Your color will be the same throughout the experiment.
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YOUR INVESTMENT DECISION

Each of the two investors can purchase Investment Units. Investment
units cost 10 cents per unit. For instance, if you purchase 6 units, we will
subtract $0.60 from your investment earnings. Each participant can pur-
chase anywhere from 0 to 20 units.

What you earn from the investment will depend on the number of units
purchased by you and the other participant. The two investors, however,
will not earn the same amount of cash from the investment. Your earnings
will depend on whether you are the BLUE investor or the RED investor.

The table on the following page can help you calculate the earnings from
the investment. As you can see in the table, earnings depend on the TOTAL
number of investment units purchased by both participants.

MAKING THE INVESTMENT CHOICES

For every investment decision, the RED investors will always make their
investment decisions first. When all RED participants have entered their
decisions into the computer, the computer will randomly match each RED
participant with a BLUE participant. The choice of the RED investor will
then be revealed to the BLUE investor. The BLUE investors will then
be asked to make their investment choices, each knowing the number of
investment units already purchased by the RED investor in their pair. When
all the BLUE participants have entered their decisions, the computer will
calculate the returns for both investors.

[The Table shown in Fig. 1 appears on the following page of the Instruc-
tions. ]

CALCULATING YOUR EARNINGS FOR EACH
INVESTMENT CHOICE

The best way to explain how to use the table to calculate your earnings
is with some examples.

ExXAMPLE 1. Suppose both investors purchased zero investment units.
Then both investors would get a return of $0 and spend nothing on invest-
ment units, hence earning nothing for this investment decision. If either
investor had purchased one unit, at a cost of $0.10, RED’s return from the
total investment would go up by $0.15, and BLUE’s would go up by $0.16.
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ExAaMPLE 2. Suppose the RED investor chooses to purchase 5 invest-
ment units, and the BLUE investor purchases 2 units. Then the total units
purchased is 5+ 2 = 7. Turning to the row labeled 7 in the table, we
see that the RED investor will earn $1.03 from the investment and the
BLUE investor will earn $1.04 from the investment. However, the RED
investor must pay 5 x $0.10 = $0.50 for his 5 investment units, yielding net
earnings of $1.03 — 0.50 = $0.53. Likewise, the BLUE investor must pay
2 x $0.10 = $0.20 for his 2 investment units, yielding net earnings of $1.04 —
0.20 = $0.84. Notice, we can also use the table to see how investors can
change their earnings. If either investor had purchased one more unit, at
a cost of $0.10, RED’s return from the total investment would go up by
$0.13, and BLUE’s would go up by $0.11.

INFORMATION TO YOU

After all participants have made their decisions, the computer will inform
you of the outcome of your investment. You will be told the investment
decisions, the investment returns, and the net earnings after paying for
investment units of both investors. No one will be told of the investments
or earnings of other participants in the experiments.

YOUR CASH EARNINGS

Your investment earnings will be tallied by the computer. At the end
of the experiment your earnings from investments will be added to the $3
starting payment to determine your total cash earnings. This will be paid
to you in a sealed pay envelope at the end of the experiment. Neither
the people running the experiment nor the other participants will ever be
able to tie you to any of your investment decisions or to your investment
earnings.

Your decisions and earnings are strictly private information.

SUMMARY

The important things to remember are:
1. Investment Units cost $0.10 each, which will be subtracted from
your Investment Return.

2. Investment Returns depend on the total amount invested by both
Red and Blue investors.
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3. The Red investor moves first. After learning what the Red investor
chose, the Blue investor moves second.

4. For each round you will be randomly matched with a new partner.
5. There are 14 rounds in total.

6. Your earnings and choices are all secret, private information.
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