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Experiments on auctions find that subjects make systematic bidding errors
that cannot be explained within the context of Nash equilibrium bidding models.
Experimenters and others have conjectured that learning by subjects could lead
to errors consistent with those observed. Here, we create and analyze a model
of adaptive learning and demonstrate that such a model can capture the bidding
patterns evident among human subjects in experimental auctions. Moreover, our
model provides a variety of insights into the nature of learning across different
auction institutions. Journal of Economic Literature Classification Numbers: C7,
C9. © 1995 Academic Press. Inc.

1. INTRODUCTION

In recent years there has been a growing interest in the theory of auc-
tions, and in experimental examinations of these theories. An important
and challenging result from these experiments is that subjects do not
generally adopt Nash equilibrium behavior, but instead make systematic
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errors in their bidding strategies.! Both experimenters and theorists have
puzzled over these ‘‘bidder errors,”” and it is generally perceived that the
“‘misbehavior’” of subjects must be addressed from a behavioral point of
view if we are to fully understand the experiments and their implications
for actual auction behavior.?

This paper examines these bidding errors in the context of adaptive
learning, and our analysis helps to reconcile the existing theoretical and
experimental results. The notion that learning could explain the observed
errors is not new. For instance, Kagel and Dyer (1988, p. 196) state that
subjects ‘‘display clear patterns consistent with genuinely evolutionary
learning processes.”’* Friedman (1992) echoed the view that adaptation
might usefully explain bidder choices. While the ability to compare experi-
mental outcomes to both rational and adaptive theoretical results has
obvious scientific advantages, the difficulty confronting researchers is how
to create and analyze general theoretical models of adaptive behavior.
Here, we perform numerical analyses on a general class of adaptive learn-
ing algorithms.

We study learning by performing ‘‘computational experiments’’ on sys-
tems of artificial adaptive agents (AAA). Such computational experiments
allow one to study the complex, dynamic, and stochastic processes inher-
ent in these models of learning. The AAA methodology examines the
interaction of computational agents modeled by adaptive learning algo-
rithms. The analysis of such systems provides a new approach to under-
standing fundamental economic and social phenomena that complements
existing theoretical and experimental methods (Holland and Miller, 1991).
Existing studies using this and related methodologies include Axelrod
(1987), Miller (1986, 1995), Marimon e al. (1990), Rust et al. (1992, 1994),
Boylon (1990), Binmore and Samuelson (1992), Crawford (1991), Miller
and Andreoni (1991), and Kollman et al. (1992).

The AAA systems we study here represent simple learning machines.
Unlike real subjects, they are incapable of learning by employing complex
counterfactual scenarios or deep introspection, but instead must rely on
a simple adaptive search for finding better solutions based on past experi-
ence. Nonetheless, such systems give us a lower-bound on the potential
impact of learning behavior on such systems, and thus represent an import-
ant step in developing an understanding of adaptation in economic games.

! See Cox er al. (1982, 1983, 1985), Kagel er al. (1987, 1988), Kagel and Levin (1985,
1986), Kagel and Dyer (1988), and Dyer et al. (1989).

2 See Harrison (1989) and the recent exchange in the American Economic Review by
Friedman (1992), Kagel and Roth (1992), Cox ef al. (1992), and Merlo and Schotter (1992).

3 Also see Kagel and Levin (1986, p. 917), Kagel et al. (1988), and Dyer er al. (1989).
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We find that adaptive learning is consistent with the main qualitative
results from experiments. In addition we find that the various auction
institutions display very different adaptive dynamics. Nash equilibrium
bidding appears to be easiest to learn in affiliated-values auctions and
most difficult to learn in independent-values auctions. While bidders in
independent-values auctions have the most complete information on the
distribution of the private values of other bidders, our results indicate
that this information serves mainly to complicate the task of the bidders.
We also find that risk aversion does not yield behavior more consistent
with Nash bidding in first-price auctions, which coincides with experimen-
tal findings. Also, by comparing small and large groups in common-values
auctions, we conclude that the winner’s curse observed in large groups
may have more to do with the fact that a given error is more costly in a
large group than with difficulties in learning or with meaningful deviations
from rationality. These and other results suggest that our general approach
may be usefully employed to shape future theoretical and experimental
studies in this area.

The next section discusses the particular learning algorithm used in this
paper. Section 3 describes the structures of the auctions studied. Sections
4 and S discuss the results, and section 6 provides a summary and con-
clusion. '

2. AN ADAPTIVE LEARNING MoODEL

This paper models adaptive learning behavior through the use of a
genetic algorithm. Genetic algorithms were developed by Holland (1975) as
robust methods for adaptive search, learning and optimization in complex
problem domains. They are based on natural models of selection and
evolution. In these models interacting strategies form a population and
compete against one another. Over time strategies that perform poorly
are removed, while strategies that perform well are retained and modified.
New strategies are created by combining structures from existing strate-
gies through the application of ‘‘genetic operators.”’* Such a model has
natural analogs to adaptive learning, where agents imitate those strategies
that perform well and innovate new strategies by recombining parts of
existing strategies.

The algorithm used here has the following design. A population of 40
binary strings (strategies) is randomly generated. Each string encodes two

4 For a detailed introduction to genetic algorithms see Goldberg (1989).
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parameters that define a linear bidding function.’ Depending on group size
(either four or eight), each string participates in a round of auctions (either
100 or 200 auctions respectively®). The payoff to each string is the sum
of its profits across all auctions conducted during a given round. A new
population of 40 strings is then formed by first assigning each string a
probability weight based on its relative payoffs in the last round, with
higher payoffs yielding greater weight.” Using these weights, 20 pairs of
strings are randomly drawn, with replacement, from the population. With
a 50% probability, a given pair of strings is inserted unaltered into the
new population. Otherwise, the pair is subjected to the crossover and
mutation operators. Crossover recombines parts of two existing strategies
at a randomly chosen point. Mutation alters the state of a single bit of the
string. Each bit of the newly crossed strings is mutated with an independent
probability of 8% (this rate is exponentially decayed with a half-life of
250 generations). This completes a generation. The new population of
strings is again introduced into the auction environment, and the procedure
is repeated for 1000 generations. The basic mechanisms of the algorithm
model two types of learning. The direct reproduction by performance
of the strategies captures the notion of imitating successful strategies.
Crossover and mutation allow the innovation of new strategies via the
recombination of useful parts of old strategies. Crossover and mutation
are simple mechanisms for agents to modify their existing strategies based
on past experience. Crossover allows an agent to create a new strategy
by borrowing parts of previously successful strategies. Mutation allows
an agent to make small modifications to old strategies in hopes of finding
something better. Although these operators are simple in action, they
have proven to be powerful ways to search nonlinear problems for better
solutions (sec Goldberg, 1989).

Note that genetic algorithms represent a robust and broad class of
adaptive algorithms. Such algorithms only require populations of ‘‘solu-
tions”’ to be reproduced by performance and to have new members created
via genetic operators. The algorithms are robust to actual algorithmic and

3 The first parameter was restricted to the range [0, 2] and the second one to [—2, 2].
Each parameter was coded by 10 bits. The 10 bits were interpreted as a binary integer (if
the parameter was signed, then the initial bit determined the sign) and normalized to the
appropriate range.

¢ The different number of auctions was designed to give identical information flows under
the two group sizes. Recall that each simulation has 40 total bidders. Hence, in the 4-bidder
groups there were (100 auctions)/(group) x (10 groups) = 1000 auctions per generation.
Similarly, in the 8-bidder groups there were (200 auctions)/(group) x (5 groups) = 1000
auctions per generation.

7 Strings with payoffs below 1.5 standard deviations from the mean were removed from
the population. After these strings were removed the scores were normalized. See Miller
(1995) for more detail.
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parametric choices (see, for example, Schaffer et al. 1989). To verify this
we considered a number of variations of both the parameters and algorithm
reported above, and found that our results are robust to reasonable algo-
rithmic and parametric changes that do not diminish the level of feedback
to the players. For instance, changing the mutation rate has little effect.
However, reducing the number of auctions in a round without increasing
the number of generations does change the dynamics. In particular, since
nonzero payoffs are only received when an auction is won, reducing the
number of auctions slows the convergence, although the relative perfor-
mance of the model across auctions is not affected. The results are also
not sensitive to our choice of the domain for the possible parameter values,
and increasing this domain in any direction generates similar paths for
the system. Thus, the behavior we observe appears to be contained in a
much larger equivalence class of adaptive behavior.

3. THEORETICAL AND EXPERIMENTAL BACKGROUND

In order to gain insights into the behavior of experimental subjects, our
computer auctions are deliberately tailored after existing auction experi-
ments. All of the auctions have common parameters and structures in
order to facilitate comparisons among them. Let n be the number of
bidders. For each individual auction, x, and ¢ are drawn randomly from
uniform distributions on the intervals [1000, 2000] and [0, 500] respec-
tively. We then use these parameters to randomly draw n numbers, x;,
from a uniform distribution on the interval [x, — &, x, + ¢]. By using
these numbers and altering their definitions to bidders, we can construct
affiliated and independent private-values and common-values auctions.
In this section we review current theoretical and experimental findings
concerning these three auction types.

3.1. Affiliated Private-Values Auctions

In private-values auctions, bidders have their own values for the item
being auctioned. These private values are affiliated if the bidders do not
know the distribution from which all other private-values were drawn,
but know only that the higher their own value, the higher others’ values
are likely to be. This will be true, for example, if an item is purchased for
its speculative value. This type of informational assumption is discussed by
Milgrom and Weber (1982a).

Our auctions derive their structure from the formulation of Kagel et al.
(1987). Here, x; represents bidder i’s actual private value for the good.
To make the auctions affiliated, bidders are not given full information
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about the distribution of private values. Hence, in addition to their private
value, bidders are only allowed to know &. For first-price auctions, Kagel
et al. (1987) show that the Nash equilibrium bidding function in this model
e 8

is

bix) = x, — 22 (1
n

Expected profits of the winning bidder are

We also conduct second-price (Vickrey) auctions, in which the object
goes to the highest bidder at a price equal to the second highest bid. As
is well known, it is a dominant strategy for all bidders to bid their true
values. In this case, the predicted Nash equilibrium profits of the winning
bidder are the expected difference between the nth and (n — 1)th order
statistic:

2¢e
n+1

Em= (2

Kagel et al. (1987) found that subjects in first-price affiliated private-
values auctions generally bid in excess of the risk-neutral Nash equilibrium
prediction, and made profits that were below the predicted levels. Behavior
often differed significantly from the Nash prediction. Nonetheless, they
found that the risk-neutral Nash model did a better job of explaining the
data than a model of (constant relative) risk aversion, or two ad hoc
models.

Kagel et al. (1987) also studied second-price auctions. The surprising
result from their experiments is that subjects bid well in excess of the
dominant strategy. In 80% of the auctions, the market clearing price
exceeded the Nash level by significant amounts.’

8 By restricting analysis to signals in the interval {1000 + &, 2000 — €], they show that
the Nash equilibrium bid function is b(x) = x; — 2e/n + y(x;)/n, where y(x) = [2¢/(n +
Dlexp[—(n/2e)(x; — 1000 — ¢)]. However, because of its negative exponent, y(x;), moves
negligibly close to zero as x; increases beyond 1000 + &. We do not believe that this
simplification of the bid function has any significant effect on our resuits or conclusions.
This will be discussed in subsequent footnotes.

9 This result was in clear contrast to the ascending-clock auctions that Kagel et al. (1987)
designed to test English open-outcry auction, which are, in theory, equivalent to second-
price auctions. In this case, bidders almost always dropped out of the auction when the
price exceeded their value, and market clearing prices were very near the Nash prediction.
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3.2 Independent Private-Values Auctions

In an independent private-values auction, agents know the actual distri-
bution generating the private values, that is, they are told x, as well as &.
Milgrom and Weber (1982a,b) demonstrated that if agents in a first-price
affiliated-values auction are given information about the distribution of
values, then the equilibrium price of the object will increase. Kagel er al.
(1987) show that the Nash equilibrium bid function for first-price indepen-
dent-values auctions is'®

bix) = 5’—;_—]):,. + %(xo —e). 3)

Expected profits of the winning bidder can be calculated as!!

2
E?T—n+l. (4)

Again, second-price auctions for independent-values have a dominant
strategy of bidding one’s true value. Hence, the equilibrium profits are
the same as (2).

A striking result of auction theory, first noted by Vickrey (1961), is the
revenue equivalence theorem. This states that when risk-neutral bidders
have private values for an item, and when those values are completely
independent, then the first-price and second-price auctions will yield the
same expected revenue to the sellers. Therefore, (2) and (4) should be
identical.

Kagel et al. (1987) tested the Milgrom and Weber prediction by providing
subjects with x; after they bid in an affiliated-values auction, and thus
transforming the auction into an independent-values auction. In theory
this should cause bidders’ profits to fall. They found that average profits
across all treatments did fall, but that they did not fall in every treatment.
In three of the five treatments average profits were virtually unchanged,
even though bidders reacted strongly to the new information, and in one
of the treatments profits actually increased. Only in one treatment did the

1 In contrast to (1), (3) is the exact Nash bidding strategy. Hence, if the approximation
given in (1) has any effect, we would expect that, relative to the independent values auctions,
the approximation should hamper convergence to the predicted parameters in the common-
and affiliated-values auctions. As we will see, this does not appear to be the case. Hence,
any effect of the approximation, if it is present, would tend to work against our conclusions.

! Equilibrium expected profits can be found by substituting the expected value of the nth
order statistic, x", into (3), and evaluating x" — b(x").
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profits fall significantly. In a study of individual bidder behavior, Kagel
and Levin (1985) reject all models they considered to explain the data,
including asymmetric risk aversion.

3.3 Common-Values Auctions

In common-values auctions the bidders compete for an item that is of
unknown value at the time of the auction, but of identical value to all
bidders after the auction. Examples of such auctions include offshore oil
leases and construction contracts. The auction is by sealed bid, and the
highest bidder wins. The difficulty for bidders is that they must account for
the fact that there is information in being the highest bidder. In particular, if
bidders use similar monotonic bidding functions then the highest bidder
is the one who most ‘‘over-estimated’” the value of the item. A bidder
who fails to account for this possibility may suffer a “‘winner’s curse”’
since profits from winning may be unexpectedly low.

The structure of our simulated common-values auctions is the same as
that used in the Kagel and Levin (1986) experiment. Let x; be the common
value of the item. Each bidder, i, is given a signal of the item’s value, x;,
where ¢ is the maximum possible estimation error. Hence, each bidder’s
signal is an unbiased estimate of the value of the item. Kagel and Levin
(1986) solve for the Nash equilibrium bid function for this model, assuming
that bidders know the process by which values and signals are generated.
They find that the Nash equilibrium bid function is'

b(x) = x; — «. (5)
The expected profits conditional on winning are'?

2¢e

E7r=n_1.

Experiments by Kagel and Levin (1986) found that, in general, subjects
suffer a winner’s curse, especially in large groups (five to seven bidders).
However, they find that small groups (four bidders) eventually learn to

12 As before (see footnote 8), over the range [1000 + &, 2000 — &], the exact bid function
is b(x;) = x; — & + y(x;). Again, our simplified bid function captures the relevant dimensions
on this interval, and we therefore do not believe this simplification affects our results or
conclusions. In fact, y(x;) is almost always extremely small relative to the Nash equilibrium
bid.

3 In Nash equilibrium the bidder with the highest signal will always be the highest bidder.
Hence, the expected profits are the expected value of b(x;) — x,, conditioning on the fact
that x; is the highest signal.
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bid profitably on average, although they still earn less than the Nash
equilibrium prediction. The large groups continue to lose money, even
with experience.!* Dyer et al. (1989) found that these effects also exist
among ‘‘professional’’ bidders.

4. RESULTS OF AUCTIONS WITH AAA BIDDERS

We conducted all five auctions discussed above for both four- and eight-
bidder groups. For each auction experiment we ran 20 trials, with each
trial lasting 1000 generations. The algorithm searches over 2-parameter
linear functions in each auction. For common- and affiliated-values auc-
tions, the function’s variables are x; and ¢, while for independent-values
auctions the variables are x; and x, — &. The predicted Nash equilibrium
values of the parameters on the bid functions and the expected profits
(based on the mean value of & of 250) are provided in the appropriate data
tables. Note that for each auction there are two parameters that must be
chosen by the AAA bidders. From this perspective, the parameter space
over which the algorithm must search is identical for all auctions. This
means that any difference in the ability of the algorithm to find Nash
equilibria will not be attributable to the dimensions of the search space,
but rather to the informational differences in the auctions.

Three different environments are explored for each experiment: coevo-
lution, full-feedback, and Nash-opponents. In the coevolutionary environ-
ment strategies interact with other evolving strategies. Auctions are held
in randomly formed groups, and payoffs equal the bidder’s actual profit
or loss.'* This environment will be the focus of our study. We also explore
two other environments to help evaluate our results. In the full-feedback
environment, strings do not participate in auctions but instead each strat-
egy receives a payoff equal to minus its squared deviation from the Nash
equilibrium bid. This environment is used to test the algorithm’s ability
to solve the function fitting problem. The payoffs in the full-feedback
condition are independent of the choices of other agents, and do not
depend on winning auctions. In addition, the payoff space in the full-
feedback condition is identical across all auctions; that is, accuracy is
rewarded identically. In the Nash-opponents environment, each strategy

¥ These results have been replicated by Lind and Plott (1991).

15 In this environment, two populations of 40 bidders are simultaneously evolved, where
the two populations share no ‘‘genetic material.”” By having two populations coevolve
against one another some endogeneity problems inherent in evolving only a single population
are avoided. For instance, purely stochastic forces can cause a single population to rapidly
converge towards a common string. This genetic drift effect was first noticed in natural
populations.
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bids in auctions consisting entirely of opponents who use the Nash equilib-
rium bidding strategy. If the strategy wins the auction, then its payoff
equals its actual profit or loss, otherwise its payoff is zero. This differs
from the coevolutionary condition in that each strategy evolves against a
constant environment. Since the Nash equilibrium bid is the best response
in an environment consisting entirely of other Nash equilibrium bidders,
this condition tests the system’s ability, in a stable environment, to find
the best-response function.

4.1 Affiliated-Values Auctions

The results of the first- and second-price auctions with affiliated-values
are listed in Table 1. The numbers in this table, and in all subsequent
tables, list the average values of the last 25 generations in each trial,
averaged over all 20 trials. The standard deviations refer to the differences
across trials.'®* We will refer to the parameters of the bid function as a
pair (83,, 8,) where B, refers to the parameter on x; in the bidding function.

We find that the model tends to support theoretical predictions in first-
price auctions under coevolution. For four-bidder groups the predicted
values of the bid function are (1, —0.5), while the model finds parameters
of (0.98982, —0.46417). The standard errors on these parameters are small,
indicating wide agreement on the bidding function across trials. Moreover,
average profits are 113.42, which is 90% of the Nash prediction of 125.
There is similar success with the eight-bidder groups. The predicted param-
eters are (1, —0.25), while the GA finds (0.99540, —0.24694). Again, the
standard errors across trials are small. However, eight-bidder groups earn
average profits of 36.79, which is only 58% of the Nash prediction.

We see that the algorithm has largely been able to converge to the Nash
equilibrium. The small errors that remain are only slightly costly to the
four-bidder groups, and more costly to the larger groups. This leads us
to ask whether these remaining errors can be attributed to the algorithm
per se, or whether they can be attributed to the kind of informational
environment present in a coevolutionary game. We can examine this
question with the Nash-opponents and full-feedback conditions. We see

16 Note that the only meaningful comparison here is across rather than within trials. The
reason is that the standard deviations within trials are very small by the 1000th generation,
usually on the order of 0.0001 to 0.05. This is due to the fact that the probability of mutation
has decayed from its initial 8% to about 4% by the last generation, coupled with the *‘founding
effect”’ phenomenon inherent in small populations. Thus, the members of a given population
are likely to become very homogeneous over time (see Goldberg (1989) for further details
about convergence in genetic algorithms). However, if different populations converge to
very similar strings, then this implies the existence of a very large and strong basin of
attraction for the learning dynamics. Hence, variance across population trials will be most
indicative of the algorithm’s ability to find a Nash equilibrium.
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RESULTS FOR AFFILIATED-VALUES AUCTIONS

TABLE 1

49

Bidding function

Information Group size X; € Average profit?
Predicted
First-price 4 1.000 —0.500 125.0
8 1.000 —0.250 62.5
Second-price 4 1.000 0.000 100.0
8 1.000 0.000 55.5
Coevolving
First-price 4 0.98982 —0.46417 113.42
(0.00725) (0.06139) 8.77)
8 0.99540 ~0.24694 36.79
(0.00347) (0.02816) (10.99)
Second-price 4 0.99955 0.00008 96.66
(0.01034) (0.07861) (7.99)
8 0.99754 0.04897 48.16
(0.00475) (0.04563) (4.39)
Nash-opponents
First-price 4 0.99116 ~0.46892 122.85
(0.00755) (0.05013) (13.37)
8 0.99303 —0.21685 42.07
(0.00395) (0.01925) (19.02)
Second-price 4 0.99821 0.00881 94,92
(0.00860) (0.06282) (11.89)
8 0.99471 0.03198 53.23
(0.00471) (0.04163) (8.06)
Full-feedback
First-price 4 0.99842 —0.49173 125.54
(0.00776) (0.03447) (4.55)
8 1.00130 —0.25634 61.88
(0.00515) (0.02009) (4.45)
Second-price 4 1.00107 —0.00495 100.11
(0.00290) (0.01620) 0.29)
8 1.00004 -0.00391 55.50
(0.00280) (0.01648) (0.15)

Note. Mean values and standard deviations (in parentheses) are over the last 25 genera-

tions.

¢ Profits reported for the Nash auctions are conditional on winning the auction. Profits
for the full-feedback auctions are calculated for each simulation as expected values, using
the average strategy over the last 25 generations. Means and standard deviations are calcu-
lated across simulations.

that in the Nash-opponents condition the model performs about as well
at finding the bid function, but does better as measured in profits. This is
true for both four- and eight-bidder auctions. This difference can probably
be ascribed to the fact that the variance of the bid functions across auctions
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is smaller. Turning to the full-feedback condition, we see that performance
improves even more. In both four- and eight-bidder auctions, the bid
functions are almost exactly those predicted by the Nash equilibrium.

These results indicate that, while the coevolutionary environment does
not generate the exact Nash prediction, it is nonetheless quite successful
at finding the Nash bidding strategies in affiliated-values auctions. This is
consistent with the experimental finding that Nash equilibrium bidding
organizes the data better than other models, although errors still remain.
The fact that the full-feedback auction can make the small improvements
necessary to find the exact Nash bidding strategy indicates that the failure
of the model to do even better in the coevolutionary environment cannot
be blamed on the algorithm per se—in ideal feedback conditions, the
algorithm can find the optimum. Instead, these results indicate that the
small errors of the coevolutionary condition appear to be due to the fact
that the feedback is less than ideal.

Turning to the second-price auctions we find similar results. For both
four- and eight-bidder groups the coevolutionary strategies are extremely
close to the Nash prediction of (1, 0). Moreover, average profits are 96%
of the Nash prediction for the four-bidder group, and 87% of the Nash
prediction for the eight-bidder group. The Nash-opponents condition per-
forms about as well as the coevolution condition, with slightly less variance
on the bid functions, while the full-feedback condition performs the best
by attaining almost the exact Nash strategy.

Figure 1 illustrates the evolution of bids in the four- and eight-bidder
second-price coevolving auctions. The figure shows the average deviation
of the winning bid from the dominant strategy bid over all 1000 generations
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(averaged over every 20 generations). The deviations converge to the
dominant strategy from above. We can explain this by examining the
dynamics of adaptive learning. A strategy that bids beneath the dominant
strategy will increase both its absolute and relative performance by raising
its bid to the dominant strategy level. However, if a bidder is bidding
above the dominant strategy, then moving to the dominant strategy will
increase the bidder’s absolute performance, but may reduce its relative
performance. This is because the other strategies will now earn higher
profits when this bidder is the second highest bidder. Hence, many situa-
tions exist in which a bidder will reduce its chance for survival by lowering
its bid to the dominant strategy level. That is, from an evolutionary stand-
point, truthful bidding may not always be dominant. Thus evolutionary
forces may quickly eliminate under-bidders (who win no auctions) as
well as the extreme over-bidders (who make losses), but may be slow to
eliminate moderate over-bidders. This implies that evolutionary learning
is likely to lead to convergence to the dominant strategy from above.
Again, this is consistent with the experimental results.

4.2. Independent Private-Values Auctions

The results of the independent-values auctions are given in Table II. In
the four-bidder coevolution auctions the average parameters are (0.75817,
0.21890), as compared to the predicted values of (0.75, 0.25). Furthermore,
the profits are 81% of the predicted value. However, the standard errors
on the bid parameters and profits are relatively large. Hence, even though
the bid functions meet the prediction on average, there are very few trials
that are close to the Nash equilibrium functions. Turning to the eight-
bidder auctions, the performance of the coevolution condition erodes
further. Again, the standard deviations are relatively large, but the average
values of the bid function are not at all near the Nash prediction of (0.875,
0.125). Moreover, profits are almost zero. In fact, in 8 of 20 trials the
average profits are actually negative. This means that in the eight-bidder
auctions, the model is often not capable of finding functions that, on
average, bid less than their value. In the second-price coevolution auc-
tions, the parameter values are much farther from the predicted values
than in the affiliated-values auctions, especially the second parameter.
Moreover, the standard deviations are again very large. This is true for
both four- and eight-bidder groups. Finally, there is a clear divergence
from the revenue equivalence theorem, with bidders making more profits
in the second-price auctions, especially with eight bidders."

17 We also conducted auctions that allowed for the choice of three parameters, that is bid
functions of b; = ax; + oyxy + a3e, and obtained similar results. In fact, the GA performed
less well in this more general environment. For sake of brevity, and to maintain consistency
in the search spaces across auctions, we only report the results of two-parameter bid
functions.
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TABLE Il

RESULTS FOR INDEPENDENT-VALUES AUCTIONS

Information

Bidding function

Group size X Xy — € Average profit?
Predicted
First-price 4 0.750 0.250 100.0
8 0.875 0.125 55.5
Second-price 4 1.000 0.000 100.0
8 1.000 0.000 55.5
Coevolving
First-price 4 0.75817 0.21890 81.06
(0.19865) (0.24443) (20.42)
8 0.93919 0.02677 0.94
(0.12925) (0.17177) (18.95)
Second-price 4 1.11302 ~-0.14232 90.10
(0.20634) (0.25546) (8.40)
8 1.08450 -0.11753 41.29
(0.11450) (0.16327) (5.75)
Nash-opponents
First-price 4 0.94336 —0.03517 86.70
0.11131) (0.17945) (16.03)
8 1.00255 —0.07987 30.21
(0.05232) (0.08961) (23.96)
Second-price 4 1.13557 —0.18689 100.10
(0.17900) (0.23904) (12.72)
8 1.14978 0.22652 46.52
(0.16246) (0.25641) (7.81)
Full-feedback
First-price 4 0.82791 0.15733 87.29
(0.23577 (0.28406) (33.73)
8 0.82793 0.18357 62.03
(0.22899) (0.27461) (43.99)
Second-price 4 1.04453 —-0.05090 104.45
(0.29955) (0.36125) (29.96)
8 0.99099 0.01149 55.00
0.26940 (0.32228) (14.95)

Note. Mean values and standard deviations (in parentheses) are over the last 25 genera-

tions.

“ Profits reported for the Nash auctions are conditional on winning the auction. Profits
for the full-feedback auctions are calculated for each simulation as expected values, using
the average strategy over the last 25 generations. Means and standard deviations are calcu-
lated across simulations.

The model’s difficulty in finding optimal bidding rules in independent-
values auctions is in stark contrast to its relative success in the previous
auctions. We can examine this more carefully by looking at the Nash-
opponents and full-feedback conditions. As can be seen in Table 11, neither
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the Nash-opponents or full-feedback auctions are significantly closer to
the Nash equilibrium than are the coevolution auctions. This is true for
both first- and second-price auctions and for both large and small groups.
Of particular note are the relatively large standard errors on the parameters
of the bid functions for all three information conditions.

One hypothesis for why subjects do not reach Nash equilibria in auction
experiments is that the payoff space in independent-values auctions may
be very flat, hence there may be little incentive for improved bidding
(Harrison, 1989). There is some evidence for that here. For the four-
bidder coevolving auctions, only 10 of the 40 bid functions are within 0.05
of the Nash strategies on both parameters. However, when evaluating
the average bid in each trial, we find that 38 of 40 bid functions make bids
that are, on average, within 5% of the Nash bid, even though the functions
may be very different.” In the four-bidder second-price auctions, only 8
of the 40 bid functions are close to Nash, but 39 of them bid within 3%
of the Nash bid on average.'” Similar patterns emerge in the eight-bidder
auctions. Hence, there may be a large family of strategies that, over many
private values, do about as well as Nash. Significant movements toward
Nash behavior in function space may translate to only small improvements
in payoff space. This may make the convergence to the Nash equilibrium
particularly slow.

To examine the conjecture that flatness of the payoff space can explain
the failure to learn equilibrium play, we assumed that the population is
risk averse rather than risk neutral, and hence dislikes the variance that
is inherent in the non-Nash bidding strategies. We reran the first- and
second-price coevolutionary auctions using a risk-averse utility function
for the bidders. We assume, as in Kagel et al. (1987), a constant relative
risk-averse utility function U = #’, where r is the risk-aversion parameter.
On the basis of their experiments, we chose r = 0.5. To account for the
possibility that profits in the actual auctions may sometimes be negative,
we linearized the utility function in the neighborhood of zero. Hence, the
AAA bidders had the utility function

U { 703 ifr=0.01;
T 57 +005  ifw<0.0l.

¥ For instance, a bid function that is “*close,”” with parameters (0.74427, 0.24825), bids
on average 1426.72, while another bid function that is not close, with parameters (0.48912,
0.55425), bids on average 1426.49.

¥ For example, a close function with parameters (1.0268, —0.03770) makes an average
bid of 1493.14, while a bid function with parameters (1.2611, —0.3184) makes an average
bid of 1493.64.
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TABLE III

INDEPENDENT-VALUES AUCTIONS WITH RISK AVERSE BIDDERS

Bidding function

Auction Group size X; Xp— € Average profit
Predicted
First-price 4 0.85714 0.14286 57.14
8 0.93333 0.06667 26.14
Second-price 4 1.000 0.00000 100.00
8 1.000 0.00000 55.50
Coevolving
First-price 4 0.93108 0.4027 24.40
(0.10451) (0.14704) (23.22)
8 0.99476 —0.02763 27.43
(0.05532) (0.11483) (21.54)
Second-price 4 1.03363 ~0.06133 113.70
(0.06557) (0.09909) (14.63)
8 1.00832 —-0.02394 55.67
(0.04950) (0.07298) (10.34)

Note. Mean values and standard deviations (in parentheses) are over the last 25 genera-
tions.

Kagel et al. (1987) show that in first-price auctions the Nash equilibrium
bidding function is b; = [(n — 1)/(n — Nlx; + [(1 — r)/(n — N](xy — &).
For four-bidder groups the predicted parameters are (0.8572, 0.1428), with
profits of 57.14. For eight-bidder groups the predicted parameters are
(0.9333, 0.0667), with profits of 26.14. For second-price auctions, bidding
one’s value is still dominant, so the predictions are identical to the risk-
neutral case. '

The results of the auctions with risk aversion are listed in Table I1I.
The addition of risk aversion brought only slight improvements in the
first-price auctions. While the standard deviations are reduced somewhat,
the bid functions are still fairly inaccurate. However, for the second-price
auctions the average bid functions become much more accurate, while
the standard erorrs become relatively small. Hence, risk aversion appears
to help bidders in second-price auctions. Note also that the prediction
that risk aversion should reduce bidder profit was upheld in the four-bidder
auctions, but contradicted in the eight-bidder auctions. This matches the
contradictory nature of the evidence on risk aversion with human experi-
ments,

This suggests that the flatness of the payoff space alone cannot explain
the results in the first-price auctions. This view is also supported by the
results of the full-feedback condition. In this condition the payoff space
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is not flat, but is relatively steep. Moreover, the shape of the payoff space
is identical to that of the affiliated-values auction, yet in that auction the
algorithm has little difficulty. The difference between the two is the func-
tion space. With affiliated-values the algorithm fits parameters to (x;, €),
while with independent-values it fits parameters to (x;, x, — £). One import-
ant difference is that the correlation between x; and ¢ is p(x;, €) = 0, while
the correlation between x; and x, — € is p(x;, x, — &) = p(x;, xp) = 0.77
(this correlation has often been higher in human experiments). Hence,
one possibility is that it is difficult for adaptive agents to separate the
effects of x; and x; — €. As a result, a great deal of experimentation is
necessary to learn the appropriate bid function.

The last conjecture can be examined by writing the objective function
in a way that avoids the correlation. Recall that a general application of
the theory actually suggests a bid function with three parameters, b; =
B,x, + Byx, + Bse. Our initial simulations can be thought of as artificially
restricting the parameters to be 8, = —f;, which is the Nash equilibrium
solution. This maintains the dimension and quality of the search space
relative to the affiliated values auction. Instead, let us impose the restric-
tion B8,/8, = 1/(n — 1). Hence, we can rewrite the bid function b; =
Bix; + Balxg — &) as b; = Bi(x; + axg) — B.e, where a = B,/8,. Now
p(x; + axy, €) = 0. Looking at first price auctions, we set a = } for the
four-bidder groups, and a = # for the eight-bidder groups. This bid function
does not change the payoff space for the independent-values auctions,
but reorganizes the function space to eliminate the correlation.?® We find
that for four-bidder full-feedback groups the model converges to the opti-
mal values (8, = 0.752, SD = 0.005; 8, = 0.257, SD = 0.034). For cight-
bidder groups, sixteen of the twenty trials found the optimum (8, = 0.879,
SD = 0.007; 3, = 0.151, SD = 0.051), however, four trials strayed to other
values. This tends to confirm the hypothesis that the highly correlated
information in independent-values auctions, rather than the flat payoff
space, is complicating adaptive learning.

4.3. Common-Values Auctions

The results for common-values auctions are listed in Table IV. Looking
first at the four-bidder coevolutionary auctions, we see that the bid func-
tions are in the neighborhood of the Nash equilibrium strategies, with

0 Reorganizing the bid function in other ways does not eliminate the correlation. For
instance, rewriting the function as b; = 8,(x, — £) + B;(x; — (x; — ¢)), yields a correlation
of plxy — &, x; — (xy — €)) = 0.23. Even though this yields a smaller correlation, we prefer
our original formulation (3) since it makes the fewest assumptions on the cognition of our
adaptive agents, and, moreover, it more accurately represents the way the information is
actually presented in experiments.
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TABLE 1V

RESULTS FOR COMMON-VALUES AUCTIONS

Bidding function

Information Group size X; € Average profit?
Predicted 4 1.000 -1.000 100.0
8 1.000 -1.000 55.5
Coevolving 4 0.98238 —0.87873 81.90
8 (0.01993) (0.12753) (8.13)
0.99360 —0.94889 18.20
(0.00547) (0.04137) (15.73)
Nash-Opponents 4 0.86627 —0.34417 112.71
(0.10645) (0.48812) (18.80)
8 0.95150 —0.74271 35.10
(0.06015) (0.28120) (17.80)
Fuli-Feedback 4 0.99876 —0.98581 98.51
(0.00452) (0.02472) (3.42)
8 1.00040 —0.99486 54.05
(0.00226) (0.01196) (2.91)

Note. Mean values and standard deviations are over the last 25 generations.

@ Profits reported for the Nash auctions are conditional on winning the auction. Profits
for the full-feedback auctions are calculated for each simulation as expected values, using
the average strategy over the last 25 generations. Means and standard deviations are calcu-
lated across simulations.

small standard errors, but are much farther from the prediced levels than
are the affiliated-values auctions. In terms of profits, the coevolutionary
strategies earn 82% of the Nash prediction. In all 20 trials the AAA bidders
earned positive profits, with the maximum at 96.1 and the minimum at
72.2. Turning to the eight-bidder coevolutionary auctions we see that the
parameters of the bid function are closer to the Nash equilibrium values
than in the four-bidder auctions. Again, the standard deviations of these
parameters are small. Average profits are 18.20, which is only 33% of the
Nash equilibrium amount, and in two of the twenty trials the AAA bidders
actually made losses. Overall profits varied from 51.47 to —10.59. Hence,
even though the bidders in eight-bidder auctions appear to make smaller
errors, these errors are more costly.

Kagel and Levin (1986), and Dyer et al. (1989) showed that, with suffi-
cient experience, bidders in four-bidder groups are able to learn to bid
profitably, even though they make smaller profits than predicted, while
larger groups are generally unable to avoid losses. We find a similar
difference in profitability in the coevolutionary auctions. Kagel and Levin
(1986) conjectured that learning is ‘‘situationally specific,”” and that for
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large groups the situation leads to more aggressive bidding, contrary to
the Nash equilibrium prediction. This indicates that perhaps learning is
more difficult in larger groups. Our results are consistent with Kagel and
Levin (1986) in that bidders in the larger groups actually do learn to bid
more aggressively. This can be seen in the much lower profits earned by
the eight-bidder groups. It is interesting to note, however, that our results
indicate that the eight-bidder environment does not necessarily make
learning more difficult. In fact, the algorithm is more accurate at finding
the Nash bid function in eight-bidder auctions than in four-bidder auctions.
Instead, the main difference appears to be that small errors are more
costly in larger groups, so that bidders have to be more accurate to achieve
the same levels of profitability.?! These results indicate that the patterns
observed in experiments are consistent with evolutionary learning, but
they do not support the conjecture that larger groups make learning more
difficult.

Looking at the Nash-opponents and full-feedback conditions we can
see how learning in common-values auctions may differ from affiliated-
values auctions. In the full-feedback auction for both four- and eight-
bidder groups, we see that, as above, the model is able to find the Nash
function with good precision. This should be expected, since the function
space and the payoff space are identical to affiliated values auctions.
Turning to the Nash-opponents auctions, however, we see that the AAA
bidders find parameters that are farther from the Nash strategies than are
the coevolutionary strategies, and the variances on the parameters are
relatively large. The bidders in the Nash-opponents condition actually
make more profits when they win auctions than do the coevolutionary
strategies, and they make more than predicted by equilibrium Nash behav-
ior. Examining the individual bids, we found that in the Nash-opponents
condition the algorithm chooses functions that systematically bid beneath
the Nash equilibrium bid. As a result, the AAA bidders win less often,
but earn much more when they do, while the Nash bidders win more
often, and earn slightly less. The net effect is that the AAA bidders make
almost the same profits per auction as the Nash bidders.?? This indicates
that perhaps adaptively learning the best response is difficult in common-

2! For instance, in the four-bidder auctions, bids exceed the Nash equilibrium prediction
by 11.65 on average, but earnings are 80% of Nash equilibrium profits. The bid function for
the eight-bidder auction overbid by only 3.15 on average, yet earn only 33% of the Nash
equilibrium profits. (These values were calculated at the mean values of ¢ and x;.)

22 For example, we simulated 1000 auctions in which the AAA strategy bid against three
other Nash strategies. While the AAA strategy won only 158 auctions, it earned an average
of 142.40 when it won the auction. The Nash strategies earned an averaged of 84.80 when
they won. However, the earnings per auction were 22.5 for the AAA strategy and 23.8 for
the Nash.
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values auctions because there may be several bid functions that do about
as well as Nash on average, even though the variance of the returns is
very high. As a result, it may take many generations for the algorithm to
discover the innovations in the bid function that would take advantage of
the small gains available. Another possible explanation arises from the
fact that the best strategy in the population may sometimes make losses.
This means that in the short run the ‘‘best’ strategy will sometimes do
worse than others, even though in the long run it will always do better.
Hence, chance losses may bias the search mechanism away from Nash
strategies.?

S. RELATIVE DIFFICULTY OF THE AUCTION ENVIRONMENTS

One measure of the difficulty of learning is how frequently the model
can develop bid functions that are ‘‘close’’ to the Nash function. To
examine the relative difficulty of learning, define a strategy as ‘‘close”™
if both parameters are within a range of 0.075 to the Nash parameters
(comparable results obtain for other ranges). Figures 2 and 3 show the

B It does not, however, appear that the outcome in the Nash-opponents condition can
be attributed to the simplification in the Nash strategy. In particular, the approximation
does not hamper the search process in the coevolutionary auctions, leading us to suspect
that it is the feedback, rather than the approximation, that is responsible for this result.
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average number of generations in which the mean evolving strategy is
close to the Nash strategy.

Under full-feedback the algorithm is able to find parameters close to
the Nash equilibrium values in the affiliated and common-value auctions
in 50 to 60% of the generations, while in the two independent-values
auctions the evolving parameters are close to Nash strategies in only 25
to 33% of the generations. This provides further evidence that searching
the parameter space is much harder in the independent-values auctions
than in the other two.

In the Nash-opponents and coevolutionary environments we see that
the probability of convergence is greatest in the affiliated-values auctions.
The difficulty of convergence in the independent-values auctions is not
surprising since convergence is difficult even under full-feedback. The
relative lack of convergence in the common-value auction cannot be so
easily explained since under full-feedback, the convergence in the com-
mon-value auction is only slightly less than that observed in the affiliated-
values auctions. Instead, as conjectured in the previous section, it appears
that the adverse feedback may be having an effect on the adaptive dy-
namics.

Notice that in nine of the ten auctions the strategies in the coevolutionary
environment converge more often than those in the Nash-opponents envi-
ronment. One might expect that adaptation to a best response against Nash
opponents should be easier than adaptation against non-Nash opponents.
However, an environment consisting of all Nash opponents will very likely
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result in zero or negative payoffs to non-Nash players, whereas agents in
a coevolving environment will have more opportunity for positive payoffs.
Thus, in the coevolving environment the system gets a lot of information
about areas of the search space that are likely to be productive, while in
the Nash-opponents condition the only information forthcoming is about
nonproductive areas. Given the search task and the scarcity of productive
parts of the strategy space, coevolution may facilitate learning Nash equi-
libria better than the stationary environment of Nash equilibrium players.
This appears to coincide well with the common experience that one can
learn best in environments that are only slightly challenging—a beginner
will not learn to play tennis by initially facing John McEnroe.

6. CONCLUSIONS

Experiments on auctions find that subjects make systematic bidding
errors that cannot be explained within the context of Nash or risk-averse
Nash bidding models. This paper has considered these errors using a
model of adaptive learning based on a genetic algorithm. We find that
artificial adaptive agents exhibit many of the same bidding patterns ob-
served in auctions with humans. In particular, while subjects in second-
price auctions do better than those in first-price auctions, bidders tend to
over-bid in all auctions. Independent values appear to lead to higher
variances in bidding relative to affiliated values. It appears that the addi-
tional information in independent-values auctions serves to complicate
the bidding task. This is even true in second-price auctions. Adding risk
aversion to the bidders improves the performance in second-price indepen-
dent-values auctions, but provides contradictory results in first-price inde-
pendent-values auctions. Finally, in common-values auctions bidders in
small groups do a better job of avoiding the winner's curse, just as in
human experiments. We find that adaptive learning can provide useful
insights into bidder behavior and can reconcile existing theoretical and
experimental results.

More specifically, we conclude the following:

1. The observed difference between small and large groups in com-
mon-values auctions may have more to do with how the probability of a
winner’s curse is increased in large groups than with the ability of subjects
to learn Nash bidding. Our results indicate that the size of the group alone
does not affect the ability of the bidders to learn Nash equilibrium bidding.
In fact, the eight-bidder groups actually outperformed the four-bidder
groups in strategy space. However, like human experiments, the larger
groups suffered a larger winner's curse, indicating that the observed differ-
ences may be attributable to the fact that a given error is more costly in
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larger groups, rather than to differences in learning or rationality across
groups.

2. Learning the dominant strategy in second-price auctions is not
simple, and adaptive learning can lead to systematic overbidding. Because
increasing one’s bid in a second-price auction creates a negative external-
ity on other bidders, increasing one’s bid can sometimes increase one’s
relative performance, even if that bid exceeds the dominant strategy. This
effect may tend to increase the fitness of over-bidding strategies relative
to dominant strategy bidders or under-bidders. As a result, dominant
strategy bidding will tend to converge from above.

3. Bidding errors in independent-values auctions cannot be attributed
only to the flatness of the payoff space. Comparing the full-feedback
condition of the independent-values and affiliated-values auctions, we see
that the pure function fitting problem is much easier in affiliated-values
auctions, even though the shape of the payoff space is identical for both
auctions. This implies that there must be something in the function space
that differs between the two. Because information given in independent-
values auctions is highly correlated it is difficult for bidders to distinguish
the effect of weight placed on x; from that placed on x, — e. Hence,
evolving toward Nash equilibrium may be more difficult in independent-
values auctions.

4. Affiliated-values auctions facilitate Nash equilibrium bidding bet-
ter than either independent- or common-values auctions. Compared to
independent-values auctions, correlation between the pieces of informa-
tion given the bidder in the affiliated-values auctions is much lower. Hence,
it is easier for bidders to distinguish the effects of different parameters
on the bid function. Compared to the common-values auctions, the infor-
mation is of the same quality, but the feedback is superior. In common-
values auctions the **best’” strategy in the population can sometimes make
losses. Chance events can make a strategy that is better ex ante look
worse ex post. Private-values auctions do not suffer from this adverse
and contradictory feedback, again making it easier to evolve toward Nash
equilibrium bidding rules.

5. Buyer’s profits are lower-—and hence seller’s profits are higher—in
first-price independent-values auctions than in second-price auctions. This
contradicts the revenue equivalence theorem. If this result generalizes to
real world auctions, then this provides one more hypothesis for why
second-price auctions are less common in practice than sealed bid first-
price auctions (see Rothkopf ez al. 1990); bidding errors in the favor of
sellers may lead them to choose first-price auctions.

6. Auctions are very difficult environments for evolutionary learning.
Even in the easiest auctions, the AAA bidders are only able to come
‘‘near’’ the Nash solution in about 600 of the 1000 generations on average,



62 ANDREONI AND MILLER

while for the hardest auctions this number is as low as 134, Compare this
to Miller and Andreoni’s (1991) examination of public goods experiments
in which adaptive agents converged to the Nash Equilibrium in under 40
generations. The relative difficulty of auctions appears to be attributable
to both the poor quality and low amount of feedback inherent in these
environments. Adaptive systems must spend many generations eliminating
bad strategies before they can begin to significantly strengthen the good
strategies. Furthermore, when a bidder wins profitably, it may be due to
a savvy strategy or simply to chance. Hence, a great deal of experimenta-
tion and innovation is necessary to determine what, if any, improvements
are needed. This again slows the search for better strategies. Most human
experiments give subjects experience in about 18 to 30 auctions. While
this amount of experience is quite sufficient by most experimental stan-
dards, our results indicate that, in general, auctions are a relatively difficult
environment for adaptive learning. Thus, experiments designed to test
the ability of bidders to learn optimized bidding rules may require much
longer exposures of subjects to the auction games.

7. Participating in an environment of other evolving strategies ap-
pears to facilitate learning a Nash equilibrium better than trying to learn
a best response to a fixed environment of Nash equilibrium players. There
are several reasons for this. An environment of Nash equilibrium players
is very challenging for adaptive learning. The evolving strategies are more
likely to receive zero or negative payoffs than positive payoffs, and thus
the task of searching for sets of good strategies is enormously complicated
relative to coevolving systems.

We have shown that adaptive learning may provide an explanation for
the divergence between theoretical and experimental results in auction
markets. By performing computational experiments on generalized adap-
tive algorithms, we can begin to characterize dynamic learning behavior
in these auctions. Along with reconciling existing theory and experiments,
this approach also suggests some new research directions. Central to our
work is the ability to study a generic adaptive system. Computational
methods allow the feasible analysis of simple systems of interacting adap-
tive agents that lead to complex stochastic dynamics. The addition of
adaptive benchmarks to the large amount of existing theoretical and experi-
mental results enhances current research efforts, and has broad potential
throughout economic analysis.
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