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Rent Seeking with Bounded Rationality:
An Analysis of the All-Pay Auction

Simon P. Anderson, Jacob K. Goeree,
and Charles A. Holt

University of Virginia

The winner-take-all nature of all-pay auctions makes the outcome
sensitive to decision errors, which we introduce with a logit formu-
lation. The equilibrium bid distribution is a fixed point: the belief
distributions that determine expected payoffs equal the choice dis-
tributions determined by expected payoffs. We prove existence,
uniqueness, and symmetry properties. In contrast to the Nash equi-
librium, the comparative statics of the logit equilibrium are intu-
itive: rent dissipation increases with the number of players and the
bid cost. Overdissipation of rents is impossible under full rational-

ity but is observed in laboratory experiments. Our model predicts
this property.

I. Introduction

Many economic allocations are decided by competition for a prize
on the basis of costly activities. For example, monopoly licenses may
be awarded to the person (or group) that lobbies the hardest (Tul-
lock 1967), or tickets may be given to those who wait in line the
longest (Holt and Sherman 1982). In such contests, losers’ efforts
are costly and are generally not compensated. These situations,
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which are especially common in nonmarket allocations, are of con-
cern to economists precisely because competition involves the ex-
penditure of real resources, or ‘‘rent-seeking’’ behavior. Krueger
(1974) estimated the annual welfare costs of rent seeking induced
by price and quantity controls to be 7 percent of gross national prod-
uct in India and somewhat higher in Turkey. Mohammad and Whal-
ley (1984) reconsidered the cost of rent seeking in India and came
up with much larger estimates, on the order of 30-45 percent of
GNP. They conclude that “‘these numbers put rent seeking in India
into an entirely different category from more traditional policy is-
sues such as trade liberalization, tax reform, and the like”” (pp. 387-
88). In the United States, Posner (1975) estimated the social cost of
regulation to be up to 30 percent of sales in some industries (motor
carriers, oil, and physicians’ services).!

Following Tullock (1980), the literature on rent seeking is based
on the assumption that the probability of obtaining the prize is an
increasing function of one’s own effort. The limiting case in which
the prize is always awarded to the competitor who exerts the highest
effort is called an ‘‘all-pay auction.”” The auction formulation applies
when efforts are like monetary bids that can be ranked easily, as is
the case with awarding tickets to those who wait the longest in line
or choosing a weapon system on the basis of easily measured perfor-
mance criteria. The all-pay assumption is commonly used in the lit-
erature on lobbying (Hillman and Samet 1987; Hillman 1988) since
expenditures incurred in the competition for a government grant,
license, or contract are usually not reimbursed. Other applications
of the all-pay auction include research and development races, polit-
ical contests, and promotion tournaments.

The prize goes to the highest bidder in an all-pay auction, so each
bidder has an incentive to bid just above the highest of the others,
as long as this allows a positive payoff. Therefore, there is typically
no equilibrium in pure strategies. In symmetric all-pay auctions, the
mixed-strategy equilibria involve full dissipation of the rent; that is,
the sum of the expected bids equals the value of the prize (Baye,
Kovenock, and de Vries 1996). In particular, rents could never be
overdissipated with rational players who can always ensure a zero
payoff by bidding zero. However, overdissipation might occur when
people are not perfectly rational. Davis and Reilly (1994) report a
pervasive pattern of overdissipation for all-pay auctions in laboratory
experiments with financially motivated subjects.

! All these estimates are based on the assumption that rents are fully dissipated.
The analysis can also be criticized on other grounds, but the magnitude of these
figures suggests the importance of reducing rent seeking.
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This paper develops a theoretical model in which bidding behav-
ior is subject to error. The introduction of errors is motivated by the
observation that behavior in laboratory experiments can be ‘‘noisy”
(e.g., Bull, Schotter, and Weigelt 1987; Smith and Walker 19935,
1997) and can systematically deviate from Nash predictions.? To put
this into perspective, recall that a Nash analysis has two components:
perfectly rational decision making and consistency of beliefs and de-
cisions. Here, we relax the assumption of perfect rationality, while
keeping the consistency of beliefs and decisions.?

Our approach should be thought of as an equilibrium analysis
with boundedly rational players.* Bid decisions are assumed to be
determined by expected payoffs via a logit probabilistic choice rule,
where decisions with higher expected payoffs are more likely to be
chosen, although not with probability one. The sensitivity of deci-
sions to payoff differences is determined by an error parameter that
allows perfect rationality as a limiting case. The equilibrium is a fixed
point in probability distributions: the bid distributions determine

2 Deviations from Nash predictions are summarized in chaps. 2, 5, and 6 of Davis
and Holt (1993).

® Another possibility is to relax the consistency of beliefs and decisions. This raises
the related issue of learning and adjustment to equilibrium, as proposed by Sargent
(1993, p. 3). In Anderson, Goeree, and Holt (1997), we specify a stochastic evolu-
tionary model, for which the steady state is a logit equilibrium. In particular, players
are assumed to adjust their decisions in the direction of increasing payoffs, subject
to some randomness. The variance of the noise determines the error parameter
in the logit equilibrium. Alternatively, Chen, Friedman, and Thisse (1997) show
convergence to a logit-type equilibrium in a model of naive learning (fictitious play)
when players make decision errors that are determined by a probabilistic choice
rule. Brandts and Holt (1995) and Offerman, Schram, and Sonnemans (in press)
show that naive Bayesian learning, together with logit decision error, provides a
good explanation of the patterns of adjustment in data from laboratory experiments
with step-level public goods and signaling games. McKelvey and Palfrey (1996) pro-
vide a theoretical logit analysis of a step-level public goods game.

* Smith and Walker (19934, 1997) model decision error as noise around a target
decision level. This approach could be thought of as “implementation error’ in
that players know that they (or their agents) will imprecisely implement desired
actions. In the Smith and Walker model, players can decrease the variance of errors
at a cost. The model predicts that scaling up payoffs should shift the average out-
come toward that of rational play (with higher payoffs, players increase effort to
reduce the error variance) and decrease the variance of outcomes. (Similar proper-
ties hold under our approach.) Smith and Walker (19934) then show that these
predictions are broadly consistent with results from a survey of 31 experimental
studies. Smith and Walker (19935) provide further evidence for these hypotheses
(in the context of a first-price auction). One difference between their approach
and ours is that errors in their model are assumed to be centered around the Nash
equilibrium (with no error): the actual decision is equal to the Nash equilibrium
decision plus a random error with zero mean and a variance that is determined by
a costly effort. In contrast, the equilibrium distribution of decisions in our model
is not necessarily centered around the Nash equilibrium, and systematic biases can
occur even when the Nash equilibrium is not at a boundary of the set of feasible
actions.
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the expected payoffs for each bid, which in turn determine the prob-
ability distributions of actual bids. The model is closed by requiring
that the belief distributions correspond to the decision distributions.
This ““Nash plus logit’”” approach has been termed a logit equilibrium
by McKelvey and Palfrey (1996). The logit equilibrium is a stochastic
generalization of the Nash equilibrium and a special case of the
quantal response equilibrium proposed by McKelvey and Palfrey
(1995).°

One especially appealing feature of the incorporation of errors
into the equilibrium analysis is that comparative statics properties
are, in some cases, more intuitive than for the standard Nash analysis
(with no error). If two bidders’ prize valuations are known and dif-
ferent, for example, then an increase in value for the player with
the higher value will stochastically increase that player’s bids. In con-
trast, this increase in the high value will not affect the equilibrium
bid density of the high-value bidder in the mixed-strategy Nash equi-
librium. In other games, the logit equilibrium also provides a plausi-
ble explanation of data patterns that are consistent with economic
intuition but are not predicted by a Nash equilibrium.’

For the all-pay auction, Lopez (1995, 1996) identifies conditions
under which the logit and Nash equilibria are identical and there
is exact dissipation of rents in both cases. This equivalence holds
only with two bidders, identical prize values, and a maximum al-
lowed bid that equals the common value. We show that overdissipa-
tion is possible in the logit equilibrium when these assumptions are
relaxed, for example, when there are more than two players. In par-
ticular, the logit equilibrium model provides an explanation of over-
dissipation of rents observed by Davis and Reilly (1994) in laboratory
experiments. Moreover, the model allows us to analyze the trade-

5 Rosenthal (1989) pioneered the use of probabilistic choice in an equilibrium
framework: he essentially used a linear probability model instead of a logit formula-
tion. Our approach is closer to that of Lopez (1995), who considers Bertrand and
auction games with continuous choice variables. Lopez uses both the logit rule and
a ratio choice function that was first proposed by Luce (1959).

¢ In public goods games in which free-riding is a dominant strategy, the level of
voluntary contributions in laboratory experiments is increasing in the marginal value
of the public good. The logit equilibrium model explains both this and other anoma-
lous patterns in the data (Anderson et al., in press). Palfrey and Prisbrey (1996) use
an ordered probit analysis of the data from a public goods experiment, and they
conclude that errors are significant. The logit model also explains data patterns in
continuous coordination games; i.e., an increase in the cost of “‘effort” or in the
number of players reduces observed effort levels (Anderson et al. 1996). This pat-
tern is consistent with economic intuition, but not with Nash predictions (since any
common effort level is a Nash equilibrium). McKelvey and Palfrey (1995) evaluate
data from several normal-form games and reject the Nash equilibrium in favor of
the logit equilibrium.
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off between the costs of rent seeking and the benefit from allowing
the high-value bidder to compete more aggressively for the prize.

The model is described in Section II, and the equilibrium for the
two-player case is analyzed in Section III. Some key properties of
the n-player all-pay auction (existence, uniqueness, symmetry, and
comparative statics) are derived in Section IV. On a first reading, one
may wish to skip the proofs in Section IV and go on to the analysis
of rent seeking and efficiency in Section V. Section VI presents a
conclusion.

II. The Model

In an n-player all-pay auction, player 7 bids &, for a prize that is worth
V; dollars to player i. Bids are made simultaneously. The prize goes
to the highest bidder, but each player incurs the cost of bidding, cb,,
¢> 0.7 In the event of a tie for the highest bid, the prize is either
split equally or randomly allocated to one of the high bidders. This
model can be interpreted as a lobbying game in which ¢ is the cost
of lobbying effort that must be borne whether or not the effort is
successful. In many contexts, a maximum allowable bid, B, is speci-
fied by the rules of the auction or is implied by resource constraints.
For instance, subjects in a laboratory experiment may not be allowed
to bid more than their initial cash endowments given out at the be-
ginning of the experiment. In a Nash equilibrium (without errors),
the cost associated with the maximum observed bid will never ex-
ceed the prize value since higher bids are dominated by a bid of zero.
Therefore, in a Nash analysis of a symmetric model, there would be
no loss of generality in assuming that the maximal allowable bid is
equal to V/¢. However, in some laboratory experiments with ¢ = 1,
bids above value have been observed (Davis and Reilly 1994). To
permit this kind of error, we allow the cost of the maximum bid to
exceed the prize value (i.e., ¢cB = V), although our comparative
static and characterization results apply also to the case ¢B < V. In
particular, we show that overdissipation can occur even when the
cost of the maximum allowable bid is less than the prize value.®

"In most theoretical work, as in laboratory experiments, ¢ = 1. We chose not to
normalize in order to consider the effects of independent changes in the bid cost
and of differences in individuals’ bid costs. Moreover, normalizations are not innoc-
uous in a logit analysis. A multiplicative change in payoffs could be used to normalize
cto one. This would not affect the Nash equilibrium (with no error) since any payoff
difference, no matter how small, will determine which decision is made. However,
doubling payoffs will double all payoff differences, which reduces the impact of
errors in the logit model specified below (by halving the error parameter p).

¥ See the discussion following proposition 6 below. Note, however, that overdissi-
pation is precluded by assumption when the maximum bid, B, is less than V/cn,
since then the maximum total effort is ncB < V.
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The first step in the analysis is to establish the connection between
a player’s expected payoffs and the others’ bid distributions. Let
F;(b) denote the cumulative bid distribution for player j, so the prob-
ability of winning with a bid of 4is the probability that all other bids
are below b, that is, the product of the others’ distribution functions
evaluated at b. Thus the expected payoff for player 4, for a bid b, is®

ni(b) = V,»HFj(b) —c¢h, i=1,...,n. (1)
J#i

The second step is to introduce decision error, by specifying the
bid density as an increasing function of expected payoff, but without
having all of the probability located at the bid that maximizes the
expected payoff. The logit form is one particularly useful parametric
model of such probabilistic choice: it specifies decision probabilities
to be proportional to an exponential function of expected payoffs.°
In the continuous version of the logit model, the bid density is expo-
nential in expected payoffs: f;(b) = k; exp[n{(b) /], where W is an
error parameter and k; is a constant that ensures that the density
integrates to one. Since expected payoff in (1) is zero at b = 0, it
follows that k; = f;(0). The expected payoff in (1) is finite for all
possible bids, so the logit density is finite for all nonzero values of
K. Therefore, the resulting distribution functions are continuous,
and the probability of ties is zero in a logit equilibrium. By substitut-
ing the expected payoff from (1) into the logit choice density, we

obtain
Vi H F;(b) — cb

£:(8) = £:(0) exp ]‘u— , be[0,B], i=1,...,n. (2

The density in (2) is greatest at the bid that yields the highest
expected profit, but nonoptimal bids have densities that are nonzero
and increasing in the expected payoffs for those bids. The parameter
U reflects the degree of irrationality: as i1 tends to infinity, the density
function in (2) becomes flat over its whole support and behavior

° The right side of (1) would have to be modified if ties occurred with positive
probability. We show below that the logit equilibrium density is continuous, so ties
will occur with probability zero.

! For example, if there are two decisions, D, and D,, with associated expected
payoffs of ] and n5, then the logit probability of choosing D; is an increasing (expo-
nential) function of its expected payoff:

exp (7!
Pr(D) = A —
exp(mi/|) + exp(my/|)

where the denominator ensures that the probabilities sum to one.
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becomes random. As the error rate becomes smaller, decisions with
higher payoffs are chosen with increasingly higher probability. In
the limit as the error rate goes to zero, only optimal decisions are
made, and we shall show in the next section that the logit equilib-
rium converges to a Nash equilibrium.

The logit equilibrium condition is that the distribution functions
that determine expected payoffs in (1) correspond to the choice
densities determined in (2). It follows from differentiation of (2)
that the equilibrium densities satisfy the logit differential equations:

194 .
ff:fl,l,, 2=19~",n’ (3)

where the primes denote derivatives and the b arguments of the
functions have been suppressed. Equations (2) and (38) are used in
Section IV to establish some general properties of the logit equilib-
rium: existence, symmetry (for the symmetric model), uniqueness
when all prize values are equal, and comparative statics effects.
These proofs are somewhat technical, and it is instructive to begin
by considering the special case of two bidders.

III. The All-Pay Auction with Two Players

In this section we derive closed-form solutions for the logit equilib-
rium, for both identical and asymmetric values. In the symmetric
two-player case with V; = V; = V, we can drop the subscripts and
express the expected payoff in (1) as VF(b) — cb. (The supposition
that identical values lead to identical equilibrium distributions is jus-
tified by proposition 3 below.) Substituting the derivative of this pay-
off function into (3) yields

_ -0
—

This equation can be solved explicitly by dividing both sides by
S(Vf = ¢) and rewriting the result to obtain

R VA | 5)
ff=o  c\Vi-—c f) W

n
which can be integrated to give

r (4)

< 1
V1— Kexp(ch/p)’

f(b) = (6)
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The constant of integration, K, is determined by equating the inte-
gral of the density over [0, B] to one, yielding

o SPLV = cB)/p] — 1
exp(V/p) —1

It is readily verified that the expression for K given in (7) ensures
that the density f(b) in (6) is positive on its support. If ¢cB = V, then
K = 0, and the density in (6) is constant on its support. Moreover,
itis independent of W, so that the Nash equilibrium and logit equilib-
rium coincide." It follows from (6) and (7) that the equilibrium
density is everywhere decreasing when ¢B > V. The intuition is as
follows. Given that people make errors, they will sometimes bid
above the prize value, and this reduces the profitability of high bids
to other players. Since the equilibrium density reflects relative -
profitability, it is falling away from the most profitable bid of zero.

For games with a finite number of strategies, McKelvey and Palfrey
(1995) show that the quantal response equilibrium converges to a
Nash equilibrium as the error parameter, i, goes to zero. This ap-
proach can be used to provide an alternative derivation of the
mixed-strategy Nash equilibrium bid density, which is uniform on
[0, V/c].”? Baye et al. (1996) show that this is the only Nash equilib-
rium.

In a Nash equilibrium, expected payoffs are zero for both players
because the support of the mixed strategies includes zero. Thus the
sum of expected payoffs is zero, and the rent is exactly dissipated in
this mixed equilibrium, irrespective of whether the cost ¢ is high or
low. Itis useful to disentangle two effects in this result: in a symmetric
equilibrium, the probability of winning is one-half, so the expected
payoff is (V/2) — cE{b}, where E{b} denotes the expected bid. Since
the expected payoff is zero in a Nash equilibrium, a reduction in the
cost parameter is exactly offset by an increase in bids. The behavioral
adjustment in a logit equilibrium is less extreme, which can lead to

(7)

! The mixed-strategy Nash density entails constant expected payoffs over the en-
tire interval, which in turn lead to a flat logit density by (2). This is why mixed Nash
and logit equilibria coincide when the mixed Nash equilibrium is uniform over the
whole range of feasible choices (Lopez 1995).

2 There are two cases to consider, depending on whether ¢Bis equal to or greater
than V. When ¢B = V, the density in (6) is the uniform density, f(b)) = 1/B on
[0, B]. Since this result is independent of y, this is also the mixed-strategy Nash
equilibrium. When ¢B > V, the term K exp (¢b/L) in (6) converges to —exp[(ch —
V)/u] as u goes to zero; thus f(b) in (6) converges to (¢/V){l + exp[(cb —
V)/ul} L As U tends to zero, this density converges to ¢/ Vfor b < V/¢and to zero
for higher values of 5. Thus when the cost parameter is high, the upper limit of the
support is V/¢, which is less than the maximum allowable bid, B, and the mixed-
strategy equilibrium density is uniform on [0, V/c].
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F16. 1.—The effect of the cost parameter, ¢, on net rent for p = 0.1 (solid line),
U = 0.2 (long dashes), and p = 0.3 (short dashes), given V=1, B=2,and n = 2.

overdissipation of rents. This can be shown by using (6) to calculate
expected bids and, hence, net rents for specific values of ¢ and p.
Figure 1 shows the relationship between ¢ and the sum of the two
players’ net rents, V — 2¢E{b}, for the case of V; = V, = 1 and B =
2. As expected, the rent is exactly dissipated when ¢ = V/B = 2 and
is overdissipated (negative net rents) for higher values of ¢.!* The
curve in figure 1 with the lowest net rent corresponds to the highest
error rate of 0.3. Notice that net rent is increased by lowering the
bid cost, for example, by making the waiting line more comfortable,
in contrast with the Nash prediction.

We now consider the effect of value asymmetries, which can lead
to unintuitive comparative statics in a Nash equilibrium. In partic-
ular, if V; > V,, the Nash density for player 1 is independent of
that player’s value, V;. To show this, note that the expected payoff
for player 2 is VoFy(b) — cb. In a mixed-strategy equilibrium, the
expected payoff is constant on its support, so the equilibrium distri-

" Numerical calculations used to construct fig. 1 show that there is underdissipa-
tion when ¢ < ' Indeed, overdissipation is impossible (for any ) whenever ¢ <
V/2B = Y since then even maximal bids cannot dissipate the rent. Overdissipation
can occur when ¢ < V/Bif there are more than two players and a sufficiently high
error rate; see the discussion following proposition 6.
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bution F is a function of V; but not of V."* In contrast, the logit
equilibrium has the property that an increase in the higher value,
Vi, will stochastically increase player 1’s bids. We shall demonstrate
this result by solving for the equilibrium densities in the asymmetric
case.

With value asymmetries, the equilibrium conditions in (3) be-
come

N m 8
PR ®
2 m .

Multiply the top equation by V; and subtract the bottom equation
multiplied by V; to obtain

Vofi — Vify = —ﬁ(vm — Vifa),

which can be integrated to yield

Vifo() = Vafi (b) + A exp(—"ui”), (9)

where A is a constant of integration. Since we have V, f; as a function
of V, fi, we can write the top equation in (8) as a differential equation
in f1 only. We found a closed-form solution that is similar to a double
exponential distribution.” It is more interesting, however, to con-
sider the effects of changes in values on players’ bid distributions.
ProrosiTION 1. With two players, an increase in a player’s value

!4 To be more precise, it can be shown that player 2’s equilibrium expected payoff
is zero, regardless of V/. First, note that both players cannot have spikes of probability
at zero, since each player then would have an incentive to raise a bid a little above
zero to get a finite increase in the probability of winning. In a mixed-strategy equilib-
rium, the expected payoff of player i is equated to a constant, E;: VoFy(d) — ¢b =
E, and ViF;(b) — cb = E,. These equations imply that F;(b) will be steeper than
F5(b), so the only possible configuration is that F;(0) = 0 and F,(0) > 0; i.e., player
2 is the one with a spike of probability at zero. Thus E, = 0, and it follows that F; (b)
= cb/ Vo, which is independent of V;.

1* The differential equation in f; is f1 = fi[Vafi + A exp(—cb/p) — ¢l/p, and it
can be verified by substitution that the solution is

exp{—(A/c)e?® Dk + [¢(B — b)/ul)
(Va/ A) expl[—(A/ c)e“®D/] + K*

where K* is a constant that forces the density to integrate to one. The solution for
the other player’s density is obtained by replacing V; by V;. These formulas could
be useful in evaluating data from laboratory experiments.

fi(b) =

5
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results in an increase in that player’s bids (in the sense of first-degree
stochastic dominance).

Proof. Without loss of generality, let player 1 be the one whose
value will increase. Equation (9) can be integrated from zero to b

to obtain
ViFy(b) = VoFy(b) + (Eé>[1 - exp<_Td’)].
4

Evaluating this equation at b = B, we can determine the value of
the integration constant:

ool

Using these expressions, we can write the expected payoff for player
1, ViFy, — ¢b, in terms of F;, which allows us to write the density condi-
tion in (2):

fi(b) = £1(0)

1 _ 1 — exp(—cb/n) 3
X exp{u |:V2F1 + (Vi = Vo) 1 — exp(—<B/p) Cb]}. (10)

This is the equation that determines the density of player 1 in the
asymmetric model. When player 1’s value is increased to V', the
corresponding formula for the density, f{, becomes

T () = f§(0)

1 1 — exp(—cb/n)
- F* * —_ .
X exp{ [[/2 . N % Va) 1 — exp(—cB/1) cb]} (11)

The structure of the proof is to show that there can be only two
crossings of the distribution functions, F, and F¥, and since the dis-
tributions are equal at zero and B, these are the only crossings. We
subsequently show that F; starts out above F at low bids, so that bids
are stochastically higher under F¥. At any crossing, F; = Ff, and it
follows from (10) and (11) that the ratio of the slopes at a crossing
is

[0 _ fE0)
/B £i(0)

The ratio on the right side of (12) is strictly increasing in b since
V¥ > Wi If there were more than two crossings, the ratio of slopes

1 - exp(—cb/u)]’ (12)

1 s _
ex"[u T e/
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at successive crossings would either decrease and then increase or
the reverse, a contradiction. Since the ratio in (12) is increasing, it
must be less than one at b = 0 and greater than one at b = B. There-
fore, F; > Ff for all interior values of 5. The proof for the other
player is analogous. Q.E.D.

In particular, notice that a value increase for the player with the
higher value will stochastically raise that player’s bids. As noted
above, this intuitive result is not a property of the mixed-strategy
Nash equilibrium. Similar results hold when players have identical
prize values but different bid costs, ¢;. In particular, if ¢; > ¢,, then
player 2’s Nash equilibrium bid density is independent of ¢,, whereas
the logit equilibrium predicts that player 2 will bid stochastically less
in response to a higher bid cost. The effects of cost and value asym-
metries on rent dissipation are considered in Section V below.

Iv. The‘All-Pay Auction with n Players

Although closed-form solutions are not available for the general
asymmetric n-player case, we can prove some existence, symmetry,
and uniqueness results that are useful in the subsequent analysis of
comparative statics effects and rent dissipation.

PROPOSITION 2. A logit equilibrium exists for the n-player all-pay
auction.

The general existence proof for the n-player, asymmetric-value
case is given in Appendix A. The proof is based on Schauder’s fixed-
point theorem, which is a generalization of Brouwer’s theorem to
function spaces (which are not compact).'® When all the players have
the same prize value, we are able to derive the closed-form solution,
which is useful for the analysis of rent dissipation (see App. B).

The next issue is symmetry. The equilibrium will not be symmetric
across players if their values differ. In particular, the player with the
higher value will have stochastically higher bids. Nevertheless, we
can show that those with identical values have the same bid distribu-
tions, even if others’ values are different.

ProposITION 3. In any logit equilibrium for the all-pay auction,
players with identical values have identical bid distributions. When
players have different values, those with higher values bid more (in
the sense of first-degree stochastic dominance).

Proof. We start by proving the final statement in the proposition.
Let F; and F, denote the distributions corresponding to V; and V;

16 Other applications of Schauder’s theorem are given in Stokey and Lucas
(1989, chap. 17).
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(Vi > V,). Suppose that F; = F, on some interval of bids. Then the
derivatives of these distributions must also be the same on this inter-
val, which is impossible when one considers (2). At any crossing of
the distribution functions, F, = F; = F, and it follows from (2) that
the ratio of the slopes at all such crossings is

L) _ [ [ ]
—_— = Vi — VBF F. 13
w0 L0 PR ) 1_[2 (13

which is strictly increasing in F and hence in b. If there were three
crossings, the ratio of slopes at successive crossings would either de-
crease and then increase or the reverse, a contradiction. Since the
ratio in (13) is increasing, it must be less than one at & = 0 and
greater than one at & = B. Therefore, F, > F; for all interior values
of b. Next, consider the case of equal values, V; = V, = V, for which
we must show that the bid densities for players 1 and 2 are identical.
Consider a particular value of 4. Since Fy(b) > F;(b) for all V; > V,
and Fy(b) < Fi(b) for all V| < V4, it follows from a continuity argu-
ment that the distributions are equal at 6 when V; = V.. Obviously,
this argument holds for all values of 5. Q.E.D.

It is readily verified that when players have identical prize values
but different bid costs, ¢;, those with lower bid costs bid (stochas-
tically) higher. The proposition implies that the equilibrium will be
symmetric when all players’ costs and values are identical. This sym-
metry result is interesting because Baye et al. (1996) have shown that
there can be asymmetric mixed-strategy Nash equilibria (with no
errors), even in a symmetric model, as long as there are more than
two players. The effect of errors is to ‘‘smooth out’’ the best response
functions in a way that precludes asymmetric equilibria in the sym-
metric model.”” In addition, we can show that the symmetric equilib-
rium is unique.

ProPOSITION 4. The logit equilibrium is unique when values are
identical.

Proof. In light of the symmetry result in proposition 3, it suffices
to show that there is at most one symmetric equilibrium. Suppose
in contradiction that there are two symmetric equilibria, distin-
guished by I and II subscrlpts By dropping the player- spec1ﬁc sub-
scripts from (3) and using the derivative of the payoff in (1), we
obtain the following differential equations for the two candidate so-
lutions:

" In the limit in which [ goes to zero, the logit equilibrium ‘‘selects’ the symmet-
ric mixed-strategy equilibrium.
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_AVAFT (= 1) =

i . ’
i _ fulVAFi*(n = 1) — o (14)
u

Without loss of generality, suppose that f;(6) = fu(b) for bless than
some bid &, possibly zero, and that f;(b) > fu(d) for bjust above b;.
Since the densities must integrate to one, they must cross again at
some higher bid, by, with f; crossing from above. Thus, at b = by, it
must be the case that f{ = 1. However, at by, we also have f; = f;
and F; > Fy, which together with (14) imply f1 > f7, a contradiction.
Q.ED.

It is more difficult to establish uniqueness of the logit equilibrium
in asymmetric models, but the special case of two players is tractable.
Recall that (10) determines the bid density for player 1 in the asym-
metric model for n = 2. Suppose that there were two solutions, f;
and f§, to this equation. Taking the ratio of (10) to the analogous
equation for [, we obtain

fi(B) _ £i(0) [Vm -Fi")]
= exp .

(15)
JfE®) - f1(0) H

If the initial conditions for the two candidate solutions were equal,
then the differential equation in (10) would trace out the same den-
sity in each case. So without loss of generality, let f;(0) > f{(0).
Since both densities integrate to one, they must cross at some inte-
rior point, b, At the crossing, fi(b,) = f¥(b,) and F(b,) > Ff (b.),
which together with (15) contradict the initial assumption that
f1(0) > £ (0). Hence the bid distribution for player 1 is unique. An
analogous argument establishes uniqueness for the other player.™

Next we consider the effects of changes in the exogenous parame-
ters on the equilibrium bid distributions. As would be expected, bids
are stochastically decreasing in the cost parameter, ¢, and stochas-
tically increasing in both the value parameter, V, and the uppermost
bid, B.

ProprosITION 5. In the logit equilibrium for a symmetric all-pay
auction, bids are raised in the sense of first-degree stochastic domi-
nance by a decrease in the cost parameter, ¢, an increase in the com-
mon value, V, or an increase in the maximum feasible bid, B.

'8 We have not been able to use this method to prove uniqueness in the case of
value asymmetries with more than two players. Possible nonuniqueness would not
affect any of the propositions. In particular, the result of proposition 3, which per-
tains to the n-player asymmetric case, holds for any logit equilibrium.
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Proof. Let ¢; and ¢y be the common cost parameter for all players
(¢1 > cn), and let F; and F; denote the corresponding distributions.
As before, the structure of the proof is to show that the distribution
functions can cross only twice, at the boundaries. At any crossing,
F, = Fy, and it follows from (2), applied to the symmetric case, that
the ratio of the slopes at a crossing is

fu(®) _ fu(0) [(cl - cH)b]

— = ——exp|———|.

fi(d)  £(0) H
The right side of (16) is strictly increasing in 4. By the argument
used in proposition 4, this implies that the only two crossings occur
at the boundaries, and F; > Fj for all interior values. The proof for
an increase in the players’ common value is analogous. The effect
of an increase in the maximum feasible bid, B, is also proved along
the same lines. As before, let F; and F; denote the distribution func-
tions corresponding to B; and B, (B, > B,). For all b€ [0, B,], equa-
tion (2) implies that f;(8)/fu(d) = f1(0)/fu(0) at any crossing of
and Fy; that is, the ratio of slopes of the distribution functions at
any crossing on [0, B;] must equal the ratio of their slopes at b =
0. Therefore, the distribution functions can cross only once on this
interval (i.e., at & = 0). Since F; reaches its maximum value of one
at By, it lies everywhere above Fj, which reaches its maximum value
of one at B; > B,. Q.E.D.

In the benchmark case in which ¢ = 1 and B = V, it is natural to
consider what happens when B and Vare raised by the same amount.
A simultaneous increase in B and V can be decomposed into an
increase of Vwith B held constant, followed by an increase in B with
V held constant. It follows from proposition 5 that the combined
effect will raise bids since each effect alone raises bids. The method
of proof for proposition 5 cannot be used to determine the compara-
tive static effect of the number of bidders, 7, on the bid distributions.
In the next section, we evaluate the effect of » on net rents, using
the closed-form solution for the equilibrium distribution derived in
Appendix B.

(16)

V. Rent Seeking

Allocations based on lobbying effort are likely to be used when ethi-
cal or equity considerations preclude selling the prize outright as in
a market transaction.” For example, it is not reasonable to expect

' In addition, the person awarding the prize may care about more than just the
net value of the prize to the contestants. The person making the award may have
an independent preference in favor of one of the contestants. This could make a
significant difference if the rent-seeking efforts are closely balanced. In other cases,
the person making the award decision may enjoy the attention that comes with rent-
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that the benefits that academic deans dispense could be sold in this
manner. Effort-based competitions, however, have the undesirable
feature of using up real resources, and this rent dissipation can be
considerable. In fact, when prize values are equal, rents are fully
dissipated in a Nash equilibrium and are overdissipated for a wide
range of parameter values in the presence of errors, as shown in
proposition 6 below. Here an equal division of the prize, if this is
feasible, is more efficient since there is no unnecessary expenditure
of real resources. (Many prizes such as grant money, funding for
computers, or teaching reductions are fairly divisible, despite the
fact that they are usually allocated in discrete lumps.) The counter-
argument, in favor of using effort-based competitions, is that contes-
tants with higher values will exert more effort and, hence, have a
higher probability of winning. This raises the issue of just how much
value asymmetry is required for the all-pay auction to achieve a
higher net rent than a simple random allocation or equal division.
Before dealing with value asymmetries, we consider rent dissipation
in a symmetric model.

The pattern of rent dissipation, shown in figure 1 for the symmet-
ric, two-player model, shows overdissipation for high costs, that is,
when ¢ > V/B = '/o. We now show that this result is true more gener-
ally.

ProPOSITION 6. In a logit equilibrium, there is overdissipation of
rent in the symmetric-value model with more than two players and
cB=V.

Proof. Recall that the logit equilibrium corresponds to the Nash
equilibrium in the limit as i goes to zero. For the Nash mixed-
strategy equilibrium, the lower bound of the support is zero, and
therefore expected payoffs are zero. Hence, the expected net rent
is zero, so there is exact dissipation in the absence of errors. In
addition, the symmetric mixed-strategy Nash equilibrium bid den-
sity, fx (8) = (n — 1)7' (¢/ V) V"D p& /07D s clearly decreasing in
bwhen n > 2 (Baye et al. 1996). Dividing both sides of the formula
for the logit equilibrium density in (2) by the Nash density f, ()
yields

£ _ f(0) exp[mb)n-l - cb:I. an

S (B)  fi (D) H

Recall that VF7(b) — ¢b= 0 for all b by construction of the mixed-
strategy Nash equilibrium, so we know that the term in brackets in

seeking efforts. In this section, we restrict attention to the total net rents for the
contestants. These qualifications should be kept in mind when we use the term
overdissipation.
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(17) is zero when the Nash distribution, Fy, crosses the logit distribu-
tion, F. It follows that f(b) /fi (b) = f(0)/fi(b) at crossings. Since
J«(b) is decreasing, the ratio on the left side of (17) is increasing at
successive crossings. Thus this ratio has to be less than one at the
lower bound and greater than one at the upper bound, and hence,
F(b) < Fy(b) at all interior points. It follows that the logit equilib-
rium distribution lies below the Nash mixed-strategy distribution
that fully dissipates the rent. A lower distribution function implies
higher expected bids, which in turn imply that rent is overdissipated.
Q.E.D.

Proposition 6 gives a sufficient condition for overdissipation,
which includes the benchmark case in which ¢ = 1 and B = V. How-
ever, overdissipation can also occur for ¢B < V. To see this, recall that
as the error parameter goes to infinity, bidding behavior becomes
completely random, that is, uniform on the interval [0, B]. There-
fore, the expected bid converges to B/2 for each player, and the
total effort cost converges to ncB/2. Thus the total effort cost can
exceed the prize value Vfor sufficiently large values of » and u, even
when ¢B < V.

Davis and Reilly (1994) conducted a series of all-pay auction ex-
periments with financially motivated human subjects. In their treat-
ments, ¢ = 1 and the maximum possible bid was not restricted to
be less than the prize value, so ¢B = V. There were four bidders, so
proposition 6 implies that rent will be overdissipated. They report
that the social costs of rent-seeking activities consistently exceeded
the prize value, so subjects lost money on average. This tendency
for losses was handled by providing each subject with a relatively
large initial cash balance.

Many annoying requirements that are imposed in all-pay competi-
tions can be understood as attempts to limit the number of contes-
tants, where direct exclusion may be perceived as being unfair. Indi-
rect exclusion is probably intended to make the task of comparing
bids easier for the person awarding the prize, but the effect of such
limits may be to reduce rent dissipation as well. We can use the
closed-form solution for the equilibrium distribution in the n-player
model, equation (B3) in Appendix B, to determine the effects of
changing the number of bidders on net rents. Figure 2 shows the
relationship between net rents and n for selected values of the error
parameter U. Notice that numbers restrictions raise net rents, but

¥ In these experiments, the worst errors (bidding above value) tended to occur
in early rounds. We would expect error rates to decline over time in stationary envi-
ronments, but not to disappear altogether. In fact, the error rates estimated by
McKelvey and Palfrey (1995) for simple matrix games decline in successive periods
of laboratory experiments, although some residual noise remains in most cases.
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Fic. 2.—The effect of the number of players, 7, on net rent for u = 0.05 (solid
line), u = 0.075 (long dashes), and u = 0.1 (short dashes), given ¢ = B= V= 1.

the effect is small when the error rate is low; indeed, rent is fully
dissipated in the Nash equilibrium case of p = 0 for all n.

Finally, we investigate the effects of asymmetries on rent dissipa-
tion, using an equal division or random allocation of the prize as a
basis of comparison. For simplicity, we restrict attention to two play-
ers. We start with different values, V; > V5, and identical bid costs,
¢ = 1. Recall that net efficiency in an all-pay auction depends on
the trade-off between the costs of rent seeking and the increased
probability that the prize is awarded to the person who values it the
most. This trade-off is very simple to evaluate with full rationality
(w = 0).In a mixed Nash equilibrium with V; > V,, Baye et al. (1996)
show that the expected payoff of the high-value player is V; — Vj,
whereas the expected payoff of the low-value player is zero. Thus
total net rent in the Nash equilibrium is V; — V. In comparison,
an equal division or random allocation involves no effort cost and
produces a net rent of (V; + V;) /2. It follows from these observa-
tions that the all-pay auction with fully rational bidders is less effi-
cient than a random allocation unless V; — V; exceeds (V; + V,) /2
or, equivalently, V; > 3V,. This three-to-one ratio seems like a rela-
tively large value asymmetry, considering that the all-pay auction is
likely to be replaced by a unilateral, dictatorial allocation when value
asymmetries are so great as to be obvious to all concerned ex ante.
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Net Rent
5

T

F16. 3.—The effect of value asymmetry on net rent, given ¢ = V; = 1, B= 6, and
n = 2. The upper (lower) solid line shows net rent in the logit model with u = 0.1
(u = 0.3). Net rent in a Nash equilibrium is given by V; — 1 (short dashes), and in
an equal division by (V; + 1) /2 (long dashes).

In the presence of decision error, we can calculate net rents using
the formulas for the bid densities in note 15. Figure 3 shows the
relationship between net rent and the high value, V;, when the low
value is set equal to one. The solid lines show net rent for the logit
equilibrium for p = 0.1 and p = 0.3. The line with short dashes
shows net rent for the Nash equilibrium. For comparison, the net
rent line for the equal-division allocation is shown as a line with long
dashes, which is higher when V; < 3. The effect of adding errors is
to further increase the inefficiency of the all-pay auction.

Another aspect of the inefficiency of the all-pay auction is appar-
ent when different players have different bid costs, ¢. Suppose for
illustration that player 1’s value exceeds that of player 2 but the lat-
ter’s bid cost is much lower. The optimal allocation is to give the
prize to player 1. In a Nash equilibrium, player 2 will bid more ag-
gressively when Vi/¢, < V,/¢,, and therefore the player with the
lower value will win more often. Cost differences are a major deter-
minant of the final allocation in the auction but are irrelevant to
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the optimum. The all-pay auction is inefficient not only because
of the rent dissipation but also because it relies on a sorting criterion
that is inappropriate for choosing the contestant who would benefit
the most.

V1. Conclusion

The all-pay auction has been widely studied because it is an alloca-
tion mechanism in which competition for a prize involves the expen-
diture of real resources, for example, lobbying. Since losers also in-
cur costs, economists have considered the extent to which rents
associated with the prize are dissipated by the competitive process.
In theory, full dissipation is possible, but overdissipation is impossi-
ble in a Nash equilibrium because a zero effort ensures a zero payoff.
The approach taken here is to introduce the possibility that players
are not perfectly rational: bid choices are probabilistic, with an error
parameter that allows perfect rationality in the limit. The resulting
logit equilibrium yields a continuous relationship between the extent
of rent dissipation and the cost of bidding. The overdissipation ob-
served in the Davis and Reilly (1994) experiment is consistent with
the predictions of the logit equilibrium.
The logit equilibrium provides a number of intuitive comparative
statics predictions, which can be tested in laboratory experiments.
In the symmetric-value case, for example, the extent of rent dissipa-
- tion is increasing in the number of players, which might explain
eligibility restrictions that are sometimes imposed. (In contrast, rent
is fully dissipated in a Nash equilibrium.) With asymmetric values,
the all-pay competition provides the high-value player with a higher
probability of obtaining the prize, but the added cost of competitive
efforts more than offsets this benefit unless value differences are
relatively large. Value asymmetries suggest other cases in which the
Nash and logit equilibria differ. With two bidders, the high-value
player’s bid distribution is independent of the player’s own value in
the Nash equilibrium (with no error). In contrast, increases in values
result in stochastic increases in bids for the logit equilibrium.
Economists have long suspected that some of the most glaring
inefficiencies in an economy arise in nonmarket allocations. The
standard way of analyzing behavior in nonmarket situations is to
apply the notion of a Nash equilibrium or some refinement thereof.
Although mathematically appealing, game theory is difficult to eval-
uate empirically because the predictions often depend on subtle,
difficult to measure effects of informational and preference asym-
metries. To date, the most direct evaluations of game theory have
come from the laboratory. Many experimental studies report system-
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atic differences between Nash predictions and data patterns. Even
where behavior appears to be converging to a Nash equilibrium,
there is almost always some residual noise in the data. Statistical tests
are generally based on adding symmetric noise to the Nash predic-
tion (in an ad hoc manner), which becomes the baseline from which
the significance of deviations can be assessed. The disparities be-
tween Nash and logit predictions in the all-pay auction, summarized
above, indicate that modeling endogenous decision errors can be
quite different from adding symmetric, exogenous noise to the Nash
prediction. Moreover, the logit equilibrium is convenient for empiri-
cal work because it specifies a likelihood function and because it
nests the Nash equilibrium as a limiting case; that is, it allows arbi-
trarily small deviations from perfect rationality and provides a natu-
ral null hypothesis (L = 0). It is important to point out that the
Nash equilibrium does provide reasonably good predictions in many
contexts. The logit equilibrium should be viewed as a generalization
of Nash that preserves its usefulness in organizing the data but offers
a new perspective in explaining anomalies. Although the logit
choice function can be derived from basic axioms, we recognize that
it is a specific parameterization that can be generalized in a number
- of ways. Other parameterizations may generate even better predic-
tions in specific contexts. Nevertheless, in terms of qualitative predic-
tions, the logit equilibrium seems clearly better than the Nash equi-
librium.

Appendix A

Proof of Proposition 2 (Existence
of Equilibrium)

Let F(b) denote the vector of bid distributions, whose ith entry, F;(9), is
the bid distribution of player ¢, for ¢ = 1, . . ., n. Integrating the left- and
right-hand sides of (2) yields an operator T that maps a vector F(5) into
a vector TF (b), with components

L exP{[WHE-(y) - m’]/#]dy

TF,(b) = , , . (Al)

LB eXp{[ViHFj(y) - ciy]/u]dy

JEL

The vector of logit equilibrium distributions is a fixed point of this operator,
that is, TF;(b) = F(b) for all b€ [0, Bl and ¢ = 1, ..., n. Since the right
side of (Al) is continuous in b even when the distributions F; are not, the
equilibrium distributions are necessarily continuous. So there is no loss of
generality in restricting attention to C[0, B], the set of continuous functions
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on [0, B]. In particular, consider the set § = {Fe C[0, B]|||F|| =< 1}, where ||
denotes the sup norm. The set S, which includes all continuous cumulative
distributions, is an infinite-dimensional unit ball and is thus closed and
convex. Hence, the n-fold (Cartesian) product $* = S X - - - X Sis a closed
and convex subset of C[0, B] X - - - X C[0, B], the set of all continuous
n-vector valued functions on [0, B]. This latter space is endowed with the
norm |[|F|, = max,;__,||F]. The operator T maps elements from S” to it-
self, but since S is not compact, we cannot rely on Brouwer’s fixed-point
theorem. Instead, we use the following fixed-point theorem due to
Schauder (see, e.g., Griffel 1985).

SCHAUDER’S SECOND THEOREM. If $”is a closed convex subset of a normed
space and H" is a relatively compact subset of S", then every continuous
mapping of §” to H" has a fixed point.

To apply the theorem, we need to prove (i) that H* = {TF|F € $" is
relatively compact and (ii) that T is a continuous mapping from S* to H".
The proof of part i requires showing that elements of H" are uniformly
bounded and equicontinuous on [0, B]. From (Al) it is clear that the map-
ping TF;(b) is nondecreasing. So |TF,(b)| = TF,(B) = 1 for all x € [0, B],
FeS,andi=1,..., n, and elements of H" are uniformly bounded. To
prove equicontinuity of H", we must show that for every € > 0 there exists
a 8 > 0 such that |TF(6;) — TF(b;)| < € whenever |b; — by| < 8, for all
F,eS§ i=1,..., n Consider the difference

jzexp{[V,« HFj(b) - cib]/p.}db‘

b i

j exp{[ViHF}(b) - c,«b]/p.}db
0 i

We can bound the right side by replacing the distribution functions with
1 in the numerator and with 0 in the denominator to obtain
be

exp (Vi — ;) /pldb

by

| TF; (b)) — TF;(by)| =

| TF;(by) — TFi(by)| =

B
J exp(—c;b/1)db
0

This inequality is maintained if & is replaced by 0 in the integrand of the
numerator and by Bin the integrand of the denominator. Then integration
yields

16s — byl exp (Vi/ 1)
Bexp(—¢B/p)

Thus the difference in the values of TF, is ensured to be less than e for all
FeS,i=1,...,n, bysetting |5 — by| < 3, where

. —Vi— B
8 = €B min exp(—T).

| TF:(by) — TFi(by)| =

i=1,..., n

Therefore, TF is equicontinuous for all F € S$*.
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Finally, we prove continuity of 7. The mapping T is continuous if, for
all F, F? € S"and for all € > 0, there exists a § > 0 such that | TF' — TF?|, <
e when ||[F! — F¥|, < 8. In order to geta bound on || TF! — TF?|,, let us write
F}(b) = F3(b) + hi(b), with =8 < hy(b) < 8forall be[0,B],i=1,...,
n. Using the upper bound, we derive

HF}(b) < H [F?(b) + 3].
J#i J#i
The right-hand side can be bounded by first extracting [1.; F; (¢) from the

product and then replacing all the distribution functions by 1 in the remain-
der, to get

HF}(b) < HF]?(b) + 1+ - 1.
J#i J#i

Similarly, using the lower bound, we derive
HF}([J) > HFf(b) -1+ + 1
i ji

Consider the definition of TF; (8), for i = 1, ..., n, given in (Al):

J BCXP{[VL[F i - czy] / u}dy.
JO eXP{[ViL[F} O - ciy]/u}dy

We can use the upper bound for the product in the numerator and the
lower bound for the product in the denominator to obtain

b
J eXP({ViHF?()’) —cay+ ViIA+ ! - 1]}/}1)(1))
0

TF; (b) =

j#i

B
J exp({ViHF?(y) —¢y— Vi[A+ 9! - 1]}/].1)(1)1
0

J#Ei

TF; (b) <

= K:(®) TFi (b),

where the constant is given by K;(8) = exp{2V;[(1 + &' — 1]/u}. The
same approach can be used to show that TF} (b) > K(8) ! TF?(b). Thus we
conclude that

Ki(8) "' TF2 (b) < TF' (b) < Ki(8)TF2(b), i=1,...,n.
Notice that K;(8) is strictly i 1ncreasmg for & > 0, with K;(0) = 1, for all
i=1,..., n The final step is to obtain a bound on ||TF2 - TFY, =

“““ .|| TF} — TF?. Suppose without loss of generality that the (maxi-
mum) supremum is attained for i = 1, b = b*, at which TF} > TF;. We also
have TF} < K;(8) TF? at b*. So
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ITF* — TF?|, = | TF} (6%) — TF}(b%)|
< [Ki(8) — 1] TF}(5%)]
=K ) - 1.

Since K;(9) is continuous and increasing in § with K;(0) = 1, there exists
a 8*(e) such that the far right side of the inequality above is less than € for
all 0 < 8 < &*(e). Hence T'is a continuous mapping from S” to H". Q.E.D.

Appendix B
Closed-Form Solution for the Symmetric Case

Here we derive the closed-form solution for the symmetric-value case. In
a symmetric situation, the equilibrium condition in (2) simplifies to

£(B) = f(0) exp [VF—(:)—_”—”]

Multiplying both sides by exp (— VF*"! /L), one obtains

exp [:W;;l(”)]ﬂb) — /(0)exp (_T””)

We integrate both sides from zero to b, with x denoting the variable of
integration, to get

b n— b _
J exp [M] f(xydx = f(O)J exp(—”‘)dx. (B1)
0 U o n

The left side of (B1) can be rewritten using the transformation of variables
y = F!(x), whereas the right side can be directly integrated so that

F(byn-1 —W _
1 J yE=m/(=1) exp(—y>dy = Ef(O) |:1 - exp(—d)ﬂ. (B2)
n—1J u ¢ H

When b = B, the upper limit of the integral on the left side of (B2) is one,
and the resulting equation can be used to determine f(0), which yields

F(b)n-1 —
J y(2—n)/(n—1) exp (_Vj_’)dy
0 n

_ 1 —exp(=ab/W) le(z—n)/(n—l) exp —-w dy.
1 — exp(—cB/u) Jo n
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A closed-form solution for F(b) can be obtained by using the definition of
the incomplete gamma function:

z

I'(z, a) = f t*Lexp(—t)dt

0

(see, e.g., Wolfram 1996). We find
1- 7/
F(b)n—l = Er‘(—l) exp( “ /IJ') T Y’ 1 s 1 s (BS)
i |4 1—exp(—eB/W) \Wn—-1,)n-1

where I'D denotes the inverse of the incomplete gamma function. The
closed-form solution in equation (B3) was used to plot figure 2.
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