What do Bargainers' Preferences Look Like?

James Andreoni

1 Introduction

Today's Paper: James Andreoni, Marco Castillo, and Ragan Petrie. "What do Bargainers' Preferences Look Like? Exploring a Convex Ultimatum Game." *American Economic Review*, 93(3), June 2003, 672-685.

What do Preferences for Fairness Look Like?

 $\pi_s =$ Payoff to Self

 $\pi_o = \text{Payoff to Other}$

 $U_s = U_s(\pi_s, \pi_o)$

Things to Consider:

- Pure allocations.
 - Are preferences consistent?
 - Are preferences monotonic?
- Opportunities to be fair.
- Intentions/Responsibility.

• "Entitlement"

Let $\gamma =$ environmental variables, e.g. the means to the allocation

$$U_s = U_s(\pi_s, \pi_o; \gamma)$$

For a given γ choices should adhere to an economic model of choice. As γ changes, choices should change systematically.

2 Understanding the Ultimatum Game

Standard UG:

$$\pi_p = (1 - a) \times m$$
$$\pi_r = a \times m$$

Proposer Chooses: $a \in [0,1]$ Responder Chooses: $m \in \{0,M\}$ so m=M is "Accept" and m=0 is "Reject"

Subgame Perfect Prediction: $\alpha = \epsilon$ and m = M

- Lots of "fair" offers and rejections of "unfair offers."
- Most puzzling behavior is rejections.
- This game "wastes" information about responders with non-convex choice set.

Convex UG:

$$\pi_p = (1 - a) \times m$$
$$\pi_r = a \times m$$

 $\begin{array}{ll} \text{Proposer Chooses:} & a \in [0,1] \\ \text{Responder Chooses:} & m \in [0,M] \\ & \text{now } 0 < m < M \text{ is also possible} \\ \end{array}$

Subgame Perfect Prediction: $\alpha = \epsilon$ and m = M

But in a Standard UG, the Responder can only choose a or aa, and nothing in between.

Note:

- The Convex UG will help us learn more about Responders
- May better inform these attempts to model fairness
- Convex game more "realistic"
 - Most bargaining is not "all or nothing"
 - Workers can slow down
 - Bargainers can reply slowly
 - They can agree to sections of the contract
- Also called "squishy game." Rabin (1997).

3 The Experiment

- Recruit 58 Subjects.
- Divide into two rooms:
 - 28 Standard UG + 1 monitor
 - 28 Convex UG + 1 monitor
- Subjects make decisions for both roles.
- M = \$12.
- Decision forms are collected, shuffled, split.
 - Half are Proposers, half Responders.
- Complete post-questionnaire.
- Paid with private "earnings envelopes."
- Repeat, total subjects: 112.

A. Divider chooses a rule by circling one letter in this column	B. Possible Dividing Rules Of each Dollar to divide, the rule is:
a	Divider gets 99¢ and Designator gets 1¢
b	Divider gets 90¢ and Designator gets 10¢
c	Divider gets 80¢ and Designator gets 20¢
d	Divider gets 70¢ and Designator gets 30¢
e	Divider gets 60¢ and Designator gets 40¢
f	Divider gets 50¢ and Designator gets 50¢
g	Divider gets 40¢ and Designator gets 60¢
h	Divider gets 30¢ and Designator gets 70¢
i	Divider gets 20¢ and Designator gets 80¢
j	Divider gets 10¢ and Designator gets 90¢
k	Divider gets 1¢ and Designator gets 99¢

	A.	В.		
	If the Divider chooses this Dividing Rule	then I choose to divide this many dollars (circle one for each Dividing Rule):		
a	Divider gets 99¢ and Designator gets 1¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
b	Divider gets 90¢ and Designator gets 10¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
С	Divider gets 80¢ and Designator gets 20¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
d	Divider gets 70¢ and Designator gets 30¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
e	Divider gets 60¢ and Designator gets 40¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
f	Divider gets 50¢ and Designator gets 50¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
g	Divider gets 40¢ and Designator gets 60¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
h	Divider gets 30¢ and Designator gets 70¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
i	Divider gets 20¢ and Designator gets 80¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
j	Divider gets 10¢ and Designator gets 90¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
k	Divider gets 1¢ and Designator gets 99¢	0 1 2 3 4 5 6 7 8 9 10 11 12		
	ı			

4 Predictions:

- 1. Money Maximizers:
- Accept all offers
- Offer $1 \not c, b = M$ in both games.
- 2. Convex but Monotonic Altruism
- Accept all offers
- b = M in both Games
- 3. Inequality Aversion Models
- Linear but non-Monotonic (Fehr-Schmidt Preferences)
- ullet Reject offers below a^*
 - Accept offers above a^*
- Bolton-Ockenfels: $U(\pi_s, \pi_s/(\pi_s + \pi_o))$
 - Never Shrink

- 4. Convex but not Monotonic:
- Responders may shrink the pie
- Gives repsonders more bargaining power
- May get more fair offers

Responder

Proposer

Responder

Proposer

5 Results

QUESTION 0: Were our results similar to others?

ANSWER 0: Yes.

QUESTION 1: Are all offers Accepted?

ANSWER 1: No.

		_	
T -	I_ I	_	\sim
ıa	n	$\mathbf{\Omega}$	<i>7</i> Δ
ıa	u		

Table 2A				
	Choose			
	12	0	Shrink	
Standard UG:	89%	11%		
Convex UG:	68%	6%	26%	
For Selfish Offers				
Standard UG:	82%	18%		
Convex UG:	61%	9%	30%	

QUESTION 2: Are Preferences Convex and non-Monotonic?

ANSWER 2: People are Different

Table 2Classification of Responder Behavior

Category	Convex UG	Standard UG
Monotonic	26 (46%)	31 (55%)
Linear	7 (13%)	22 (39%)
Strictly Convex	23 (41%)	3 (5%)
Total	56	56

QUESTION 3: What do these Strictly Convex People look like? Errors or order? ANSWER 3:

Definition: Regular Preferences: As Offers get closer to the responder's most preferred offer, the dollars allocated do not decrease. In other words, responders' choices are "single-peaked."

- Similar notion to normal goods
- Condition is imposed by Rabin's model of fairness.

a. One-Sided Inequality Averse

c. Weakly Regular Two-Sided

d. Not Regular Preferences

FIGURE 4. EXAMPLES OF SUBJECT'S CHOICES

Table 3
Classification of Nonmonotonic and Convex Responders
by Minimum Distance of Choice to Linear
and Regular Preferences, Averaged Per Choice.

	Convex Ultimatum Game				Ultimatum	
	23 Subjects			3 Subjects		
	(41% of total)				(5% (of total)
	Regular	Regular Regular Weakly Not			Regular	Not
	One-	Two-	Two-	Regular	Two-	Regular
	Sided	Sided	Sided	Pref.'s	Sided	Pref.'s
Number of Subjects	9	4	7	3	1	2
Percent of Total	16%	7%	13%	5%	2%	3%
Min. Distance to Linear:						
Straight Average	\$1.34	\$2.36	\$2.94	\$2.73	\$2.18	\$3.82
Choice-Weigted Average	\$1.72	\$2.32	\$1.89	\$3.20	\$0.00	\$4.07
Min. Distance to Regular:						
Straight Average	0	0	\$0.34	\$1.39	0	\$2.73
Choice-Weigted Average	0	0	\$0.15	\$1.49	0	\$4.07

QUESTION 4: How does this affect Proposals? ANSWER 4:

Proposals by People who, as Responders, Accept Everything

Proposals by People who, as Responders, Do Not Accept Everything

QUESTION 5: Why Didn't the Convex Game Result in Fairer Offers? ANSWER 5: Risk Aversion?

Reaction Curve

Convex UG acts as a mean-preserving spread on expected offer, hence is more risky for proposers.

6 Conclusions

- The Convex UG gives us richer information on rejections and the preferences of Responders.
- Aggregate data, even on the Convex UG, hides a great deal of information.
- Half of responders care for something other than money maximization.
 - Similar to many other findings
- Responders can best be characterized as having strictly convex, but not monotonic preferences, most of which satisfy a regularity condition that is similar to a normal goods assumption.
- Proposers in the Convex game are far more aggressive than in UG.
 - This is opposite of what theory predicted.
 - This was not due to all subjects acting differently
 - * Subjects who care about fairness as responders also make fair offers as proposers and are not affected by treatments.
 - * Those who reveal only a concern for money-maximization are responsible for the adjustment.
 - What explains why they respond this way. Possibly risk aversion: The convex game has similar expected return but much less risk.

- Big finish: When conditioning on this game, it is possible to use a consistent and well-behaved preference ordering to describe behavior.
 - Letting subjects reveal preferences shows a great deal of heterogeneity and this heterogeneity is essential to understanding behavior in these games.