James Andreoni and Lise Vesterlund, "Which is the Fair Sex? Gender Differences in Altruism." Quarterly Journal of Economics, 116 (1), February 2001, 293-312.

1 Introduction

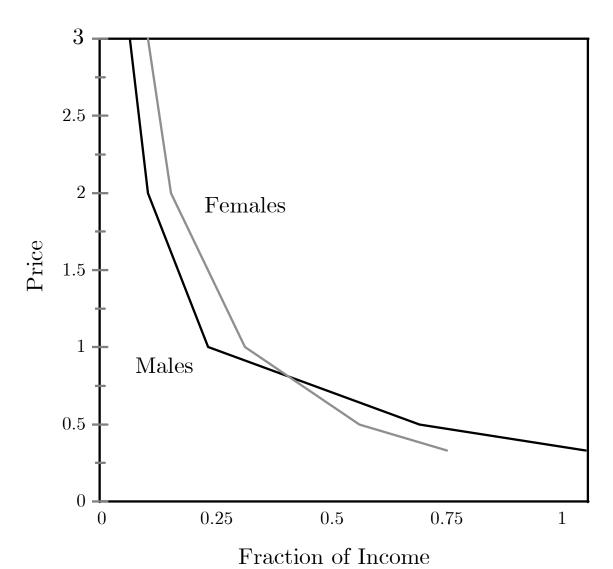
- Public Goods
 - Brown-Kruse and Hummels (1993) Males more cooperative.
 - Nowell and Tinkler (1994) **Females more cooperative.**
- Ultimatum
 - Eckel and Grossman (1996) Same in offers, females accept more unfairness.
 - Solnick (1995) No difference in actions, but females are expected to cooperate more.
- Dictator Games
 - Bolton and Katok (1995) No difference.
 - Eckel and Grossman (1997) Females more cooperative.
- Psychology Literature
 - Also lots of studies and lots of variance.

Why should we care about sex differences?

- 1. Are differences in altruism systematic? predictable?
- 2. Methodological question for experiments.
 - Should we report sex ratios?

2 Experimental Design

- Use the data from Andreoni and Miller (2002)
- Note: do not recruit based on sex or use same-sex groups.

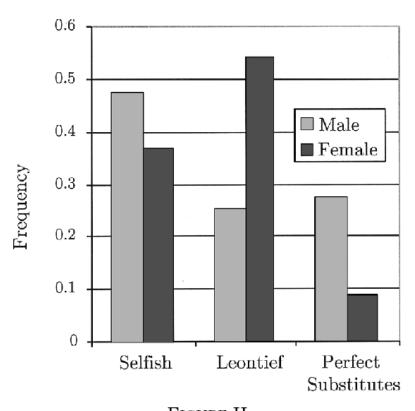

3 Results

• No difference in mean, but big variation

TABLE 2
Mean Payoff to other Party

	Token	Income		All	Male	Female	
		HICOHIC					
Budget	Endowment	m	p_o / p_s	Subjects	Subjects	Subjects	t-stat
1	40	4.00	1/3	3.79	4.18	3.01	1.96
2	60	6.00	1/2	4.02	4.30	3.49	1.48
3	75	7.50	1/2	4.68	5.00	4.03	1.53
4	60	6.00	1	1.54	1.36	1.91	-2.26
5	100	10.00	1	2.52	2.33	2.92	-1.42
6	60	12.00	2	1.42	1.21	1.82	-2.07
7	75	15.00	2	1.71	1.42	2.29	-2.35
8	40	12.00	3	0.89	0.67	1.32	-2.97
Average				2.57	2.56	2.60	-0.24←

Notice there is no significant difference on average. However, it would be misleading to stop there. When we look across all 8 budgets there seems to be real systematic differences.



Analysis of Utility Functions

• Separate out as in Andreoni and Miller

TABLE 4
Subject Classification by Prototypical Utility Function

		Male			Female	
Utility Function	Strong	Weak	Total	Strong	Weak	Total
Selfish	24	21	45	7	10	17
Leontief	13	11	24	10	15	25
Perfect Substitutes	8	18	26	0	4	4

 $\begin{tabular}{l} Figure \ II \\ Preference \ Distribution \ (Strong \ and \ Weak) \\ \end{tabular}$

Note:

- Women more likely to be Leontief, Men more likely to be other extremes
- Fits with Gilligan (1982) that men are "instrumentalists" and women are "contextualists."

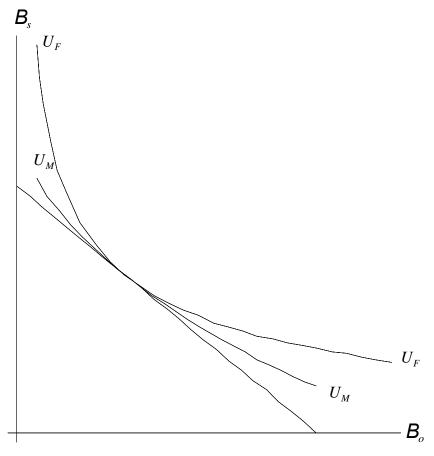
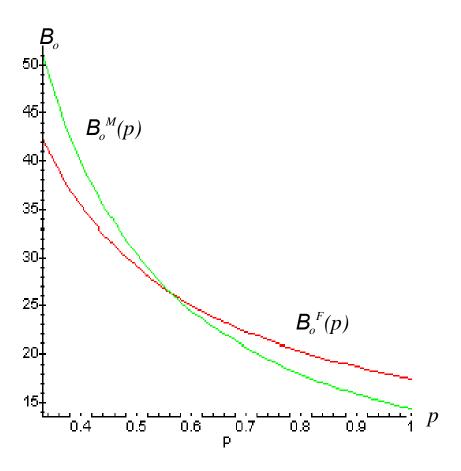

Demand Functions: $U_i = \left[\alpha \pi_s^{\rho} + (1-\alpha) \pi_o^{\rho}\right]^{1/\rho}$

TABLE 6
Estimates of CES Demand Functions


	Male and Female	Female	Male
Demand for π_o	$\frac{p^{-1.84}m}{p^{-0.84} + 5.66}$	$\frac{p^{-0.93}m}{p^{0.07} + 3.04}$	$\frac{p^{-2.66}m}{p^{-1.66} + 10.79}$
$\epsilon_o(p=0.5)$	-1.35	-0.87	-1.72

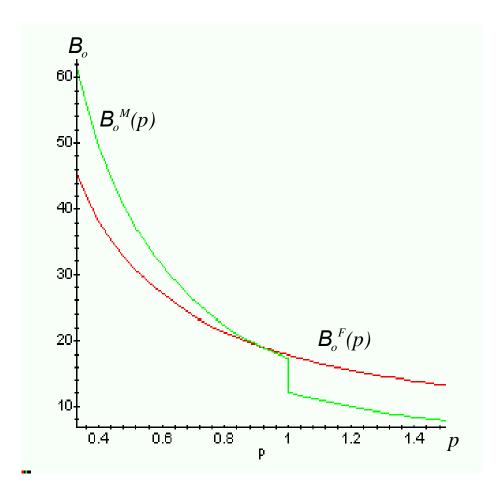
Note:

- Male and Female parameters are significantly different ($\chi^2_{[3]}=71.64$)
- $\alpha_M=$, $0.71,\, \alpha_F=0.77,\, {\sf not}$ significantly different (t=-1.61)
- $\rho_M=-2.66,\, \rho_F=-0.93,$ is significantly different (t=4.78).
- Males are more price elastic.

Male and Female CES Indifference Curves

Male and Female CED Demands at $m=60. \,$

TABLE 7
Estimates of Weak CES Demand Functions


	Male and Female	Female	Male
A	3.25(0.25)	2.72(0.25)	3.84(0.48)
r	-0.80(0.10)	-0.28(0.12)	-1.20(0.16)
N	632	232	400
In Likelihood	-248.64	-67.72	-169.61
$\epsilon_o(p=0.5)$	-1.51	-1.18	-1.74

Note: numbers in parentheses are standard errors of the coefficient estimates.

- ullet Males and females in the weak type are more similar, but still significantly different ($\chi^2_{[3]}=22.62$).
- Aggregate demands are

$$\pi_o(p, m) = q_w \pi_o^w(p, m) + q_l \pi_o^l(p, m) + q_{ps} \pi_o^{ps}(p, m) + q_f \pi_o^f(p, m)$$

- ullet Male and female aggregate demands are significantly different a $\chi^2_{[6]}=34.80.$
- Note, around p = 1 the two are similar.

Aggregate CES demand curve at m=60.

4 Comparison to Other Studies

Difficult to do since others tend to be all male or all female groups. Still, we can put some organization on the data

5 Conclusion

- No difference on average, but difference in variance.
- Males are more likely to be either perfectly selfish or to maximize total payoffs of both subjects
- Females are more likely to insist on equality.
- Males give more when it is cheap, females when it is expensive demand curves cross.
- Perhaps we should have gender-balanced experiments, especially when altruism in involved.