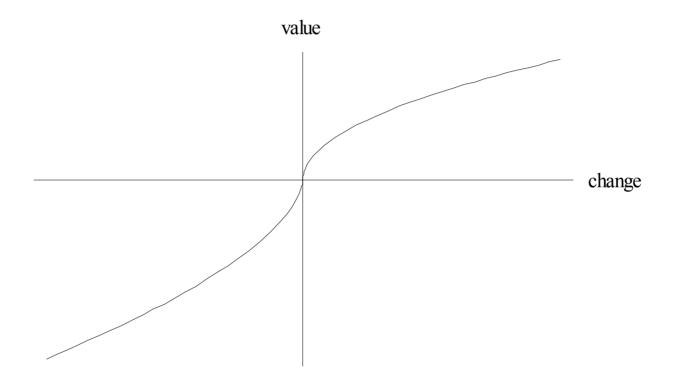
Prospect Theory


Kahneman and Tversky, "Prospect Theory: An Analysis of Decision Under Risk." *Econometrica*, March 1979, vol 47, p263—291.

- Noted another difference between Gains versus Losses
- Consider these options:

		Examp	le 4:	
Gamble	G Gamble I	<u></u>	Gamble G'	Gamble H'
x p	x p		x p	x p
6000 0.3	25 4000 .25		-6000.25	-4000 .25
	2000 .25	versus		-2000 .25
n=18	n=82		n=70	n=30

- Gambles G and H imply that u(6000) < u(4000) + u(2000) which is consistent with concavity of utility in gains.
- But G' and H' imply that u(-6000) > u(-4000) + u(-2000), which is consistent with utility being convex in losses. That is, Utility is S shaped with a possible kink at zero gains or losses.

• So the utility map needs to look like this:

Things to note:

- The theory has now been restated as preferences over gains and losses, not over final consumption.
- The data seem to suggest that EU doesn't quite hold we get fanning out. So Subjective EU seems to fit the data better.
- People seems to be risk averse over small gains, but risk loving over small losses.
- But,...most of this work was done with either small gambles or hypothetical gambles.
- This raises the question of do we still see problems with bigger, real gambles.

Second Demonstration: On each line choose either option A or option B.

Number your card from 1 to 10 and make a choice for each line.

Option A	Option B
1/10 of \$2.00, 9/10 of \$1.60	1/10 of \$3.85, 9/10 of \$0.10
2/10 of \$2.00, 8/10 of \$1.60	2/10 of \$3.85, 8/10 of \$0.10
3/10 of \$2.00, 7/10 of \$1.60	3/10 of \$3.85, 7/10 of \$0.10
4/10 of \$2.00, 6/10 of \$1.60	4/10 of \$3.85, 6/10 of \$0.10
5/10 of \$2.00, 5/10 of \$1.60	5/10 of \$3.85, 5/10 of \$0.10
6/10 of \$2.00, 4/10 of \$1.60	6/10 of \$3.85, 4/10 of \$0.10
7/10 of \$2.00, 3/10 of \$1.60	7/10 of \$3.85, 3/10 of \$0.10
8/10 of \$2.00, 2/10 of \$1.60	8/10 of \$3.85, 2/10 of \$0.10
9/10 of \$2.00, 1/10 of \$1.60	9/10 of \$3.85, 1/10 of \$0.10
10/10 of \$2.00, 0/10 of \$1.60	10/10 of \$3.85, 0/10 of \$0.10

Holt and Laury, 2002

- We need accurate measure of risk aversion for every kind of economics. But experimental measures are typically only collected with small stakes. Doesn't give us measures of curvature over large stakes.
- Psychologists say no problem, do hypothetical large stakes. People are imaginative enough to understand what they will do, and also will answer honestly.
- H & L test this claim directly.

TABLE 1-THE TEN PAIRED LOTTERY-CHOICE DECISIONS WITH LOW PAYOFFS

Option A	Option B	Expected payoff difference
1/10 of \$2.00, 9/10 of \$1.60	1/10 of \$3.85, 9/10 of \$0.10	\$1.17
2/10 of \$2.00, 8/10 of \$1.60	2/10 of \$3.85, 8/10 of \$0.10	\$0.83
3/10 of \$2.00, 7/10 of \$1.60	3/10 of \$3.85, 7/10 of \$0.10	\$0.50
4/10 of \$2.00, 6/10 of \$1.60	4/10 of \$3.85, 6/10 of \$0.10	\$0.16
5/10 of \$2.00, 5/10 of \$1.60	5/10 of \$3.85, 5/10 of \$0.10	-\$0.18
6/10 of \$2.00, 4/10 of \$1.60	6/10 of \$3.85, 4/10 of \$0.10	-\$0.51
7/10 of \$2.00, 3/10 of \$1.60	7/10 of \$3.85, 3/10 of \$0.10	-\$0.85
8/10 of \$2.00, 2/10 of \$1.60	8/10 of \$3.85, 2/10 of \$0.10	-\$1.18
9/10 of \$2.00, 1/10 of \$1.60	9/10 of \$3.85, 1/10 of \$0.10	-\$1.52
10/10 of \$2.00, 0/10 of \$1.60	10/10 of \$3.85, 0/10 of \$0.10	-\$1.85

A is safe, B is risky.

Expected Pay difference is the amount in favor of A.

Go down the chart and the additional payoff for taking the riskier B option steadily increases.

Everyone should start out at A, eventually switch over to B.

A risk neutral person would maximize expected value, switch at 5.

A risk averse person will switch later – Safe A has to get really bad, compared to risk B, for them to switch.

Innovation is to do this experiment hypothetically, and with large amounts - \$100's.

Table 2—Summary of Lottery-Choice Treatments

Treatment	Number of subjects	Average earnings	Minimum earnings	Maximum earnings
20x Hypothetical Only	25	\$ 25.74	\$ 19.40	\$ 40.04
20x Real Only	57	\$ 67.99	\$ 20.30	\$116.48
20x Hypothetical and Real	93	\$ 68.32	\$ 11.50	\$105.70
50x Hypothetical and Real	19	\$131.39	\$111.30	\$240.59
90x Hypothetical and Real	18	\$226.34	\$ 45.06	\$391.65

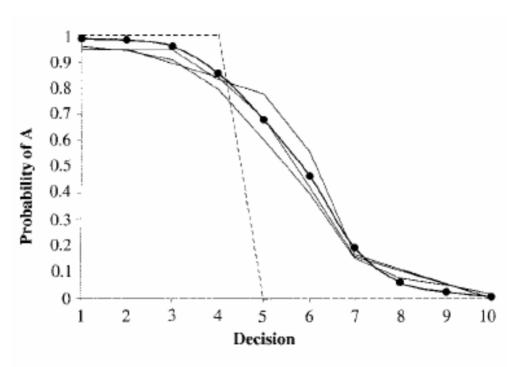


Figure 1. Proportion of Safe Choices in Each Decision: Data Averages and Predictions

Note: Data averages for low real payoffs [solid line with dots], 20x, 50x, and 90x hypothetical payoffs [thin lines], and risk-neutral prediction [dashed line].

TABLE 3—RISK-AVERSION CLASSIFICATIONS BASED ON LOTTERY CHOICES

Number	Range of relative risk		Proportion of choices		
of safe choices	aversion for $U(x) = x^{1-r}/(1-r)$	Risk preference classification	Low real ^a	20x hypothetical	20x real
0-1 2 3 4 5 6	r < -0.95 -0.95 < r < -0.49 -0.49 < r < -0.15 -0.15 < r < 0.15 0.15 < r < 0.41 0.41 < r < 0.68 0.68 < r < 0.97	highly risk loving very risk loving risk loving risk neutral slightly risk averse risk averse very risk averse	0.01 0.01 0.06 0.26 0.26 0.23 0.13	0.03 0.04 0.08 0.29 0.16 0.25 0.09	0.01 0.01 0.04 0.13 0.19 0.23 0.22
8 9–10	0.06 < r < 0.97 0.97 < r < 1.37 1.37 < r	highly risk averse stay in bed	0.03 0.01	0.03 0.03	0.11 0.06

^a Average over first and second decisions.



Figure 2. Proportion of Safe Choices in Each Decision: Data Averages and Predictions

Note: Data averages for low real payoffs [solid line with dots], 20x real [squares], 50x real [diamonds], 90x real payoffs [triangles], and risk-neutral prediction [dashed line].

Conclusions:

- Even with prizes < \$4, some risk aversion
- Sharp increases in aversion, with larger payoffs.
- *No change* when hypothetical payoffs are increased.
- People general *underestimate* their actual risk aversion. This means that hypothetical tests will exaggerate risk aversion.

- So real vs. hypothetical matters. People really are risk averse, and risk aversion increases as the stakes increase.
- This raises the possibility that a lot of the issues and data we've gotten from prior studies could be misleading because the gambles were small or hypothetical.