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Abstract

We study experimentally costly information acquisition in coordination games with

incomplete information (global games). We identify a novel behavioral channel in the

form of self-selection where individual information choices influence subsequent behavior

in the game. Subjects who self-select by choosing a higher (lower) precision set lower

(higher) thresholds than those predicted by the theory (threshold-level effect). Moreover,

the behavior of higher precision types is more stable and predictable than lower precision

types, both individually and within pairs (threshold-quality effect). We provide evidence

in support of the self-selection mechanism in initial rounds of the experiment. This

behavior has significant welfare effects.
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1 Introduction

In many economic situations decision makers spend a considerable amount of time and re-

sources to acquire additional information in order to improve their decision-making. In coor-

dination environments these actions, while desirable from an individual perspective, may have

welfare-reducing consequences because individuals do not necessarily take into account that

their information choices, by influencing their subsequent actions, also affect aggregate out-

comes.1 The importance of these informational externalities has increased in recent decades

due to the growing abundance of information.2 These considerations have motivated an ex-

tensive theoretical literature that analyzes private information acquisition and its impact on

economic outcomes in coordination settings (e.g., Colombo et al. (2014), Myatt and Wal-

lace (2015), Szkup and Trevino (2015), or Yang (2015)). This literature provides a detailed

characterization of optimal information choices and effi ciency in a large number of economic

settings, with Gaussian-quadratic games (as in Morris and Shin (2002)) and global games

(as in Morris and Shin (1998)) being the prime examples. However, there is little empirical

understanding of the forces and predictions suggested by the theory. This is mainly due to

the diffi culty of observing agents’information sets in naturally occurring economic situations.

This paper attempts to fill this gap and provide empirical evidence by studying experi-

mentally costly information acquisition in a coordination game. Economic experiments are

a unique tool to study information processing questions as they provide a controlled envi-

ronment where the researcher can observe the information sets of agents and estimate how

actions and outcomes depend on them. For our theoretical benchmark we take the standard

global game of regime change (see Morris and Shin (1998, 2003)) and extend it to feature an

initial stage of costly information acquisition (as in Szkup and Trevino (2015)), but with a

finite number of players in order to serve as a benchmark for the experiment. We character-

ize the equilibrium in this game and test its theoretical predictions in the laboratory.3 Our

empirical analysis reveals three features that are not captured by the theory. First, subjects

who acquire more precise information tend to exhibit a higher quality of play (cleaner and

more stable individual strategies). Second, more precise information leads to more risky co-

ordination. Third, subjects who acquire more precise information than what is prescribed

in equilibrium on average earn higher payoffs than in equilibrium. We argue that these de-

partures from the theory are driven, at least partly, by self-selection via costly information

acquisition. Subjects exhibit substantial heterogeneity in their information choices. In par-

1Examples of coordination settings with spillover effects include price-setting decisions in monopolistically
competitive settings (Hellwig and Veldkamp (2009)), investment choices in the presence of positive demand
spillovers (Angeletos and Pavan (2004)), financing and rollover decisions (Morris and Shin (2004)), or political
revolts (Edmond (2013)). For additional examples, see Cooper (1998) and Veldkamp (2011).

2See Goldfarb and Tucker (2019) or Chung and Veldkamp (2019) for a discussion on the increasing abun-
dance of information and its falling cost in economic settings.

3While our theoretical model fits into the class of global games, our solution method departs from the
typical techniques used in the literature due to having a finite number of players with potentially asymmetric
noise distributions. Our theoretical equilibrium characterization is therefore a novel contribution.
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ticular, approximately one third of subjects over-acquire information, one third chooses the

equilibrium information level, and one third under-acquire information, and they do so per-

sistently. We argue that as a result of self-selection, subjects who choose the highest precision

use more effi cient, cleaner, and more stable strategies that lead to higher payoffs than the

equilibrium predictions, while the opposite is true for subjects who choose the cheapest, least

precise information.

In particular, the heterogeneity in information choices translates into heterogeneity in the

quality of play. We find that all subjects who choose a high precision of information use

threshold strategies, which are the optimal type of strategies in global games. Moreover, the

thresholds in this group are clean and predictable with low dispersion. The use of threshold

strategies for subjects who acquire the equilibrium level of information (medium precision)

decreases slightly to 93.75%. We see a significant decrease for subjects who choose the lowest

precision since 75% of them use threshold strategies, while the remaining 25% choose a fixed

action that does not depend on the signal they observe. We also observe a large dispersion of

thresholds in the low precision group and less predictability overall, opposite to what we find

for the high precision subjects. For comparison, experiments on global games with exogenous

information structures typically find that about 90% of subjects use threshold strategies and

find no differences in dispersion of thresholds across different precisions (see Heinemann et

al. (2004) or Szkup and Trevino (2020)). Finally, using the strategy method, we find that

subjects who acquire the most precise information tend to adjust their individual thresholds

minimally from round to round and they set very similar thresholds to their opponent, while

the opposite is true for subjects who choose noisier information. We refer to this as the

threshold-quality effect associated to selecting different levels of precision of information.

The heterogeneity in information choices also translates into heterogeneity in the propen-

sity and success of coordination for pairs that converge in their information choices. Subjects

who select a high precision seek to coordinate more often by setting thresholds that are lower

than the equilibrium threshold and closer to the effi cient threshold. In contrast, subjects who

acquire low precision set higher, less effi cient thresholds than those predicted by the theory.

This is in stark contrast to the theoretical predictions of the model where thresholds should

be increasing in precision. We refer to this departure from the theory as the threshold-level

effect. The presence of the threshold-level effect is consistent with the findings of Szkup

and Trevino (2020) of non-increasing thresholds for subjects who are exogenously endowed

with either a high, medium, or low precision. However, our result is starker since we find a

decreasing and more pronounced relationship between thresholds and precision choices.

The starker reversal of comparative statics and clear heterogeneity in subjects’behav-

ior that is related to their information choices (and illustrated by the threshold-level and

threshold-quality effects) suggests a previously unexplored self-selection mechanism that takes

place through the choice of information. Subjects that are more inclined to take the risky

action in order to extract a higher payoff whenever possible might be more “invested”in the

game and value information more than those subjects who might prefer to take a more conser-
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vative approach in the game or to not engage in the game as much. As a consequence, these

subjects acquire better information and invest more often using cleaner, more predictable

strategies than those subjects who are willing to forgo investment opportunities and save

money on information. Since purchasing a high precision makes their signals very accurate,

subjects who acquire precise signals are less likely to make the mistake of investing when

coordinated investment is not profitable. As a consequence, they earn a higher payoff.

The self-selection mechanism is also manifested in the stability of individual thresholds

and on the coordination of thresholds within pairs. Subjects in pairs that choose a high

precision set extremely stable thresholds over time and exhibit a high degree of convergence

in thresholds with their pair member. The individual stability of thresholds and convergence

of thresholds within pairs is substantially reduced as subjects choose lower precisions. We find

support for the self-selection mechanism from the early rounds of the experiment by showing

that precision choices are heterogeneous and individually stable from the very beginning,

meaning that subjects who start the experiment choosing high, medium, or low precisions

continue to do so throughout the experiment. This implies a lack of experimentation and

learning with precision choices and is consistent with the notion of subjects self-selecting early

on as high, medium, or low precision types. When studying how different precision types

play the game in the early rounds of the experiment we find further evidence for self-selection

since high precision types show a stronger response to their signal than medium and low

types. Moreover, individual thresholds for high types stabilize within the first 10 rounds,

in contrast to the continued variation that we observe for medium and, in particular, low

precision types.

Finally, we show that self-selection via information choices has significant welfare effects.

In particular, the subjects who self-select into choosing better information see welfare gains

with respect to equilibrium play, a result of setting low thresholds and exhibiting very pre-

dictable behavior that facilitates successful coordination. That is, their more aggressive and

accurate behavior in the game leads to welfare gains that offset the higher cost of information.

On the other hand, subjects who self-select into low precisions see large welfare losses with re-

spect to equilibrium, a result of setting high thresholds and exhibiting more erratic behavior.

As a consequence, these subjects experience welfare losses despite saving on information costs.

These empirical observations further underscore the importance of self-selection mechanisms

that is not captured by the theory.

Related Literature – Our paper contributes to different strands of the literature on global

games and, more broadly, on coordination games. Heinemann, Nagel, and Ockenfels (2004)

were the first to test the predictions of the global games model of Morris and Shin (1998)

experimentally. Other early work in this literature includes Cabrales, Nagel, and Armanter

(2007), who study whether subjects play risk-dominant strategies in global games and Duffy

and Ochs (2012), who investigate experimentally how static and dynamic entry games differ

from each other and from global games. Darai, Kogan, Kwasnica, and Weber (2017) and

Avoyan (2019) study how different types of public signals and different types of communica-
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tion, respectively, affect outcomes in experimental global games and Trevino (2020) studies

informational contagion in a global games setting. The closest paper to ours is Szkup and

Trevino (2020) who analyze how exogenous changes in information precision affect behavior

in global games. They show that comparative statics are reversed compared to the theoretical

predictions. In this paper, we consider endogenous information structures where subjects can

chose the precision of their signal, at a cost. Thus, we are able to investigate how self-selection

via information acquisition affects subjects’play. The results of Szkup and Trevino (2020)

can be viewed as a natural control treatment for this paper. By comparing our results to

theirs we can better understand the effects of endogenizing information, for different levels

of precision.

Our paper is also related to the experimental literature on beauty contest models with

incomplete information. This literature initially focused on understanding how exogenous

changes in the information structure affect welfare (see, e.g., Cornand and Heinemann (2014,

2015), or Baeriswyl and Cornand (2014)). More recently Baeriswyl and Cornand (2021) and

Szkup and Trevino (2022) analyzed experimentally information acquisition in that setting and

found that subjects generally pay less attention to most common and least private signals and

they tend to overacquire and overuse private information, respectively. Finally, our paper

contributes to the broader literature that studies how strategic uncertainty affects subjects’

play in coordination games (see Van Huyck, Battalio, and Beil (1990, 1991), Cooper, DeJong,

Forsythe, and Ross (1990, 1992), or Straub (1995), among many others).

Clearly, our paper is closely related to the theoretical literature on global games. Global

games, first introduced by Carlsson and van Damme (1993) and popularized by Morris and

Shin (1998, 2003), have been widely studied theoretically. Exogenous changes in the infor-

mation structure were studied theoretically by Iachan and Nenov (2014), Metz (2002), and

Shadmehr and Bernhardt (2011) among others. Szkup and Trevino (2015) study costly in-

formation acquisition in a global game with a continuum of players and our theoretical model

is a two-player version of their setting. Also related is Yang (2015) who considers flexible

information acquisition in global games.

2 The Model

In this section we describe and solve the theoretical model that serves as a benchmark for

our experiment. The model consists of two stages. In the first stage, which we call the

information acquisition stage, players choose the precision of the private signal they receive

at the beginning of the second stage. In the second stage, players observe their signals

and play a standard global game (see Carlsson and van Damme (1993), Morris and Shin

(2003), or Szkup and Trevino (2020)), with endogenously chosen precisions. Below, we follow

Morris and Shin (2003) and interpret our model as an investment game where players have

the opportunity to acquire additional information about the potential returns to investment
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before making the binary decision of investing in a project or not.4 The return to investment

depends on fundamentals and on aggregate investment, so the second stage of the game

is modeled as a coordination game. In what follows, we refer to the second stage as the

investment stage.

2.1 The setup

There are two identical investors, i ∈ {1, 2}, who choose privately the quality of their infor-
mation (information acquisition stage) and then decide whether to invest in the project or

not (investment stage). Investment is risky and if a player chooses to invest he has to pay

a cost T and gets payoff θ if the investment is successful. We refer to θ as the return from

investment. The investment is successful if either θ ≥ θ and the other player also invests,

or if θ ≥ θ, regardless of the action of the other player. Otherwise, the investment fails and

the investor earns no return.5 The payoff from not investing is certain and normalized to 0.

Thus, players face the following payoffs:

Success Failure

Invest θ − T −T
Not Invest 0 0

Note that for all θ ∈
[
θ, θ
)
investors would like to coordinate their actions. We further assume

that 0 ≤ θ < 2T < θ, which implies that the risk dominant equilibrium of the complete

information game (as defined by Harsanyi and Selten (1988)) belongs to the coordination

region
[
θ, θ
)
.

The return θ is a random variable and follows a normal distribution with mean µθ and

variance σ2
θ, that is θ ∼ N

(
µθ, σ

2
θ

)
. Investors do not observe θ. Instead, investor i observes

a noisy private signal xi about the realization of θ given by

xi = θ + σiεi,

where σi > 0 and εi ∼ N (0, 1) is an idiosyncratic noise, i.i.d. across investors, and inde-

pendent of the realization of θ. The precision of the private signal, determined by σi, is

player-specific and it is the vehicle by which investors choose the quality of their informa-

tion.6 After observing their respective private signals, investors simultaneously make their

investment decisions. Once investment decisions are made, payoffs are realized and the game

4As in the global games literature, the second stage of our model admits other interpretations, such as
speculative attacks against currencies (Morris and Shin (1998)), political revolts (Edmond (2013)), debt roll
over decisions (Morris and Shin (2004)), or technology adoption (Frankel and Pauzner (2000)).

5That the success of investment depends on the action of the other player captures complementarities that
are often present in investment decisions. See, e.g., Dasgupta (2007) for a detailed discussion.

6Recall that the precision of a normally distributed random variable is defined as the inverse of its variance.
In our theoretical analysis, we use the following terms to refer to the same situation: higher precision, lower
variance, or lower standard deviation.
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concludes.

In the first stage of the game, each investor decides how much information about θ to

acquire by choosing the precision of their private signal. This means that, starting from

an initial common standard deviation σ, investors can either keep this level of noise or

improve their precision by “buying”a lower σi at a cost C(σi).We assume feasible choices of

σi ∈ [0, σ] and that the cost function C(·) is continuous, with C(σ) = 0, C ′(σ) = 0, C ′(σ) < 0,

C ′′(σ) > 0, for all σ ∈ (0, σ), and limσ→0C
′ (σ) =∞, which are standard assumptions in the

literature; see, for example, Colombo et al. (2014). Precision choices are private and hence

not observed by the other player.

We solve the model by backward induction and focus on pure strategy Perfect Bayesian

Equilibria. The restriction to pure strategies implies that agents have non-degenerate beliefs

about each others’precision choices. We first consider the investment stage game assuming

an exogenous profile of information choice and then study incentives for unilateral deviation.

Precision choice vector σ = {σ1, σ2} corresponds to equilibrium precision choices if there are

no incentives to deviate from the prescribed profile of information choice. This approach

is standard (including the focus on pure-strategy equilibria) and follows Hauk and Hurkens

(2001) and Amir and Lazzati (2016).

2.2 Equilibrium: Investment Stage

At the beginning of the second stage, each player observes his own signal xi = θ + σiεi,

where σi corresponds to player i’s choice of precision in the first stage, which we take as

given. Note that the heterogeneity of signal precision differentiates our investment stage from

standard global games. That is, the second stage of our game can be thought of as a standard

2× 2 global game with the notable difference that players are potentially heterogeneous with

respect to the precision of their signals.7

Let σ = {σ1, σ2} be the vector of investors’precision choices. As is standard in global
games, we focus on threshold strategies that determine each player’s action choice (denoted

by a(xi;σ)), given observed signal xi and precision choices σ:

a(xi;σ) =

{
1 (invest) iff xi ≥ x∗i (σ)

0 (not invest) iff xi < x∗i (σ)

That is, player i chooses to invest if and only if his signal is greater than a threshold x∗i
and does not invest otherwise. The optimal threshold x∗i is the value of the signal for which

investor i is indifferent between investing and not investing. That is, x∗i satisfies the following

equation

E
[
θPr

(
xj ≥ x∗j |θ

) ∣∣∣x∗i , θ ∈ [θ, θ] ]+ E
[
θ
∣∣∣x∗i , θ > θ

]
= T (1)

7Most of the global games literature focuses on models with a continuum of players that receive signals
with the same precision (see Morris and Shin (2003) and Angeletos and Lian (2018) for reviews of this
literature). The notable exception is Yang (2015) who considers flexible information choices in a closely
related coordination game with finitely many players.
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The RHS of Equation (1) captures the cost of investing. The LHS captures the expected

benefit from investing, conditional on observing signal x∗i , taking into account that investment

is successful if either θ > θ or if θ ≥ θ and the other player invests (which happens when

xj ≥ x∗j ). The next proposition shows that for any feasible choice of precisions, the investment
stage of our game has a unique, dominance solvable equilibrium.

Proposition 1 There exists σθ > 0 such that for all σθ > σθ and all σi ≤ σ, i ∈ {1, 2}, the
investment stage has a unique, dominance solvable equilibrium in which players use thresh-

old strategies {x∗1 (σ) , x∗2 (σ)}. Moreover, as σi, σj ↘ 0, with σi
σj
→ c ∈ R+, this equilib-

rium converges to the risk-dominant equilibrium of the complete information game (that is,

x∗i (σ)→ 2T , i ∈ {1, 2}).

The first part of Proposition 1 establishes that if the standard deviation of the prior is

suffi ciently large then the investment stage has a unique dominance solvable equilibrium,

regardless of the investors’precision choices. That equilibrium is unique only if the public

information is noisy enough is a standard result in the global game literature (see Hellwig

(2002) and Morris and Shin (2003, 2004) for a detailed discussion). However, because our

game features two asymmetric players who have unbounded utilities, to establish this re-

sult we take a different approach from the literature and rely instead on tools of monotone

supermodular games.8

The second part of Proposition 1 shows that as the noise in private signals vanishes, the

equilibrium converges to the risk-dominant equilibrium of the complete information game,

regardless of the way this limit is approached (i.e., for any σi
σj
→ c, c ∈ R+). This extends

the result of Carlsson and van Damme (1993) to games with asymmetric noise structures.

2.3 Equilibrium: Information acquisition

Recall that in the information acquisition stage investors privately choose the noisiness of

their signal, σi ∈ [0, σ]. If an investor chooses not to acquire information he will observe a

signal with a default precision σ. The expected utility of investor i, whose signal has standard

deviation σi, and who believes that his opponent’s signal has standard deviation σj and that

his opponent holds correct beliefs about his own choice of σi, is given by:

Ui(σi, σj) = E
[
1{xi≥x∗i (σ)}vi(xi, x

∗
j (σ) ;σ)

]
f (xi;σ) dxi − C(σi) (2)

where vi(·) is the expected payoff from investing when agent i observes signal xi and agent j

uses threshold x∗j (σ), f (xi;σ) is the PDF of xi given agent i’s precision choice, C(σi) is the

8 In particular, in the appendix we extend the result of Vives and van Zandt (2007) to prove the existence
of a least and a greatest Bayesian Nash Equilibrium in monotone strategies in games with unbounded but
integrable utility functions. We then show that the equilibrium conditions that determine thresholds define a
univalent mapping, implying uniqueness of a monotone equilibrium and dominance solvability of the investment
game.
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cost associated with investor i’s choice of precision, and 1{xi≥x∗i (σ)} is an indicator function
that takes value 1 if xi ≥ x∗i (σ).

Definition 1 (Equilibrium) A pure strategy Bayesian Nash Equilibrium is a pair of infor-

mation choices (σ∗i , σ
∗
j ), optimal decision rules for the investment stage ai(xi;σ), and belief

functions µi : [0, σ]→ [0, 1] such that for each i = 1, 2 we have:

• Ui(σ∗i , σ∗j ) ≥ Ui(σi, σ∗j ) ∀σi ∈ [0, σ],

• The belief function µi satisfies µi (σ∗j ) = 1 and µi (σj) = 0 for σj 6= σ∗j ,

• For i = 1, 2, given the belief function µi, player i’s action rule is given by

ai(xi;σ) =

{
1 if xi ≥ x∗i (σi, σ∗j )
0 if xi < x∗i (σi, σ

∗
j )

where x∗i (σ) solves

v(x∗i (σi, σ
∗
j ), x

∗
j (σ
∗
i , σ
∗
j );σ) = 0

The first condition is an optimality condition that requires player i to have no incentives

to deviate from his equilibrium precision choice. Note, however, that since each player’s

precision choice is private, when considering deviations by one of them we keep the strategy

and beliefs of the other one constant. The second condition is a restriction on the belief

function, namely, that a player assigns positive probability only to the actual equilibrium

choice of his opponent. Finally, the last condition requires each player to act optimally in

the investment stage, even after unilateral deviations in the information acquisition stage.

Proposition 2 There exists a pure-strategy Bayesian Nash Equilibrium of the investment

game with information acquisition. In any equilibrium, both investors choose to acquire in-

formation (i.e., σi < σ, i ∈ {1, 2}).

Proposition 2 establishes existence of an equilibrium where players acquire information.

Unfortunately, in contrast to the coordination games with a continuum of players that fea-

ture information acquisition (e.g., Colombo et al. (2014) or Szkup and Trevino (2015)), the

fact that investors are non-atomic and take into consideration the impact of their own ac-

tions on their opponent’s behavior hinders the analytical characterization of equilibria and

comparative statics for a wide range of parameters.

Below we derive theoretical predictions for the game we implement in the experiment.

2.4 Theoretical predictions for the experiment

The theoretical model is governed by a set of parametersΘ =
{
µθ, σθ, (θ, θ), T, {σi} , {C(σi)}

}
.

We choose the following parameters for our experiment:

Θ = {50, 50, (0, 100), 18, {1, 3, 6, 10, 16, 20} , {6, 5, 4, 2, 1.5, 1}}
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In particular:

• The fundamental θ is randomly drawn from a normal distribution with mean 50 and

standard deviation of 50.

• The coordination region is for values of θ ∈ [0, 100).

• The cost of taking the risky action is T = 18.

• A discrete choice set of precisions and the cost associated with each precision is pre-

sented in the form of a menu of six precision levels, standard deviations, and costs:9

Precision Standard Cost
level deviation
1 1 6
2 3 5
3 6 4
4 10 2
5 16 1.5
6 20 1

Table 1: Precision choices

We decided not to have a default precision chosen for subjects in order to avoid status quo

biases. The reason to introduce a discrete choice set for precisions was to simplify the choice

for subjects and the data analysis. We believe six is a reasonable number of options to observe

dynamics in the level of informativeness that subjects choose, without losing statistical power.

Given these parametric assumptions we can characterize the predictions of the model for

our experiment. The model predicts that subjects use threshold strategies in the second

stage of the game, for any precision choices in a pair. The unique equilibrium prediction is

that subjects coordinate on a precision level of 4 and set a symmetric threshold of 28.31.

For non-equilibrium precision choices, the model predicts that thresholds are increasing in

individual precision choices. We have chosen parameters such that the mean of the prior is

high with respect to the cost of investing to ensure that the effect of precisions on thresholds

does not depend on the precision of the prior (see Szkup and Trevino (2015)). Implicit in

this prediction is that precision choices are strategic complements, which leads players to

coordinate on both precisions and actions. As an additional feature of the model, note that

the equilibrium prediction in the limit, as signal noise vanishes, is equal to 2T = 36, which

corresponds to the risk dominant equilibrium of the underlying complete information game.

9 In the experimental part of the paper we refer to information choices as precision choices to be consistent
with the language used in the implementation of the experiment. We use the term precision as a qualitative
measure of informativeness of the signals, i.e., we compare levels of precision, and not magnitudes of standard
deviations.
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Previous experimental evidence shows that subjects coordinate on this limiting threshold

when playing a global game without information acquisition (see Heinemann et al. (2004)).10

3 The experiment

We present results of a series of laboratory experiments designed to test the implications of

the model from Section 2. The experiment was conducted at the Center for Experimental

Social Science at New York University using the usual computerized recruiting procedures.

Each session lasted 90 minutes and subjects earned on average $25. All subjects were under-

graduate students from New York University.11

Our experimental design is related to the work of Heinemann et al. (2004), who test the

predictions of the model of Morris and Shin (1998) in the laboratory and find that, on average,

92% of the strategies observed are consistent with the use of undominated thresholds that

coincide with the theoretical prediction of equilibrium in the limit, as noise vanishes. Our

experiment is closely related to Szkup and Trevino (2020) who used the same coordination

game to study how subjects behave in an environment with different levels of exogenously

given precisions. There are no studies, that we are aware of, that introduce costly information

acquisition into a global games model and test the predictions experimentally.

3.1 Experimental design

We implement a between subjects design that allows us to directly compare the behavior of

subjects across treatments. Each session consists of 50 independent rounds.

There are two main treatments. In the first treatment subjects play the investment

game with costly information acquisition as in Section 2, where subjects choose from a set

of discrete precisions with no default option, as described in Table 1, then receive a signal,

and choose an action. We refer to this treatment as the treatment with Direct Action choice

(DA), for which we have 60 subjects. Consistent with previous literature we find widespread

use of threshold strategies in our DA treatment, so we design the second treatment with the

purpose of studying the evolution of thresholds across rounds. In this treatment subjects

play the game with information acquisition as in the DA treatment but we use the strategy

method to elicit thresholds in the investment stage. That is, before observing their signal,

subjects have to choose a cutoff value such that they would take the risky investment action

if their signal was higher than this cutoff and choose the safe action of not investing if their

signal was lower than the cutoff they report. Hence, this treatment allows us to observe

thresholds directly, rather than infer them as in the DA treatment.12 We refer to this as

10Note that in our case with 2 players the risk dominant equilibrium coincides with the prediction of global
games in the limit, as the noise vanishes. Moreover, there is experimental evidence that shows that the risk
dominant equilibrium is often selected in 2× 2 coordination games (see Cabrales et al. (2000)).
11 Instructions for all treatments can be found at http://econweb.ucsd.edu/~itrevino/pdfs/instructions_st_endogenous.pdf.
12This feature of our treatment is related to the study of Duffy and Ochs (2011) who use the strategy

method to elicit thresholds in coordination games. See Brandts and Charness (2011) for a survey comparing
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the Strategy Method treatment (SM), for which we had 44 subjects. We had in total 104

subjects.

Our design follows closely the design and parametrization of Szkup and Trevino (2020).

In their treatments subjects play only the second stage of the game with a symmetric and ex-

ogenously set precision for their private signals, therefore they are natural control treatments

for our experiment.

Subjects were randomly matched in pairs at the beginning of the session and play with the

same partner in all rounds. We chose fixed pairs because the theoretical predictions assume

that players’ belief about information choices are correct in equilibrium. Fixing pairs, as

opposed to randomizing pairs each round, helps subjects’to form correct beliefs about their

partner’s play. This is particularly important given the complexity of our environment. In

addition, fixed pairs allows us to compare our results against Szkup and Trevino (2020),

who also used fixed pairings.13 It is important to note that our theoretical benchmark is

still relevant even when subjects face this repeated interaction. Under the parametrization

chosen for the experiment, the game that subjects play in each round (stage game) has a

unique equilibrium. Since there are finitely many rounds and the stage game is identical

across rounds, a standard backward induction argument implies that the finitely repeated

game has a unique subgame perfect equilibrium where players play the unique stage-game

equilibrium in every round. Therefore, we can still use the theoretical predictions of the one

shot game.14 Another possible concern is that fixed pairs might facilitate subjects’learning

of their partner strategies. As we discuss in Section 3.3 below, we do not find evidence

of such learning. Instead, we find that subjects pay only limited attention to each other’s

precision choices in earlier rounds, with their own early play being the best predictor of their

subsequent play.

To avoid framing effects, the experiment and instructions use a neutral terminology.

Subjects are told to choose between two actions, A or B, avoiding terms such as “investment”

or “coordination.”To avoid bankruptcies, subjects enter each round with an endowment of

24 tokens from which they subtract their precision cost. From Table 1 we can see that even

if subjects choose the most precise information, the lowest payoff they can get in a round is

zero (in case of an unsuccessful investment). To be consistent with the neutral framing of the

experiment, in the analysis of the data we refer to the action “invest”as the risky action and

the strategy method and direct action choices in experiments.
13For robustness Szkup and Trevino (2020) ran an additional session of the game with random matching

and found no evidence that matching protocol affected their results.
14 It has been shown that in experiments cooperation tends to emerge even in games with a finite horizon (see,

for example, Selten and Stoecker (1986), Andreoni and Miller (1993), or Cooper et al. (1996)). However, these
studies also report the “endgame effect,”where subjects revert to playing the unique stage-game equilibrium in
the last rounds. Such endgame effect also emerges in theoretical models that attempt to rationalize cooperation
in play in finitely repeated games (Kreps et al. (1992)). In our experiment, we do not observe endgame effects,
in fact, subjects’behavior in the last round is the same as their play in earlier rounds. Moreover, we do not
observe any evidence of cooperation, likely due to the complex nature of our 2-stage game and the incomplete
information structure. In such a complex setup, it is diffi cult to cooperate and to effectively detect or punish
deviations.
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to “not invest”as the safe action. We also refer to investment stage as coordination stage.

Before starting the first paying round, subjects had access to a practice screen where

they could generate signals for the different available precisions, and they were given an

explanation of the payoffs associated with each possible action, given their signal and the

underlying state θ. They could spend up to 5 minutes on the practice screen.

Each round of the experiment consisted of two decision stages:

1. Subjects choose from a menu of precisions and associated costs (see Table 1).

2. Subjects observe a signal xi ∼ N(θ, σ2
i ) and simultaneously decide whether to invest

(A) or not invest (B).

As stated above, in treatment SM subjects had to choose a cutoff value for their signal,

before observing the actual signal realization, in order to choose an action in the second step.

After each round, subjects received feedback about their own choice of precision, their

own private signal, their choice of action, the realization of θ, how many people in their

pair chose A, whether A was successful or not, and their individual payoff for the round.

In addition, each subject could have accessed the history of precision choices of both pair

members made over the previous rounds by pressing a button. At the end of the experiment,

the computer randomly selected five of the rounds played and subjects were paid the average

of the payoffs obtained in those rounds, using the exchange rate of 3 tokens per 1 US dollar.

The experiment was programmed and conducted with the software z-Tree (Fischbacher

(2007)).

3.2 Experimental results

We are interested in understanding how information choices affect subjects’subsequent ac-

tions and how overall behavior compares to the theoretical predictions. In order to do so we

start by focusing on the first stage of the game, presenting results about individual precision

choices and about precision choices within pairs. We then analyze how these precision choices

affect behavior in the second stage of the game. We study the effect of precision choices on

individual actions and how the use and level of thresholds depends on precision choices. We

then study the evolution of thresholds over time to better understand our results and we

discuss welfare implications of our findings.

The analysis that follows is based on behavior in the last 25 rounds of the experiment, once

behavior has stabilized. This is done mainly to allow subjects to stabilize in their individual

precision choices in order to be able to estimate individual strategies in the coordination

game. We analyze behavior in the first 25 rounds of the experiment in Section 3.3 where we

explore self-selection in early rounds.
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3.2.1 Information choices

Table 2 shows the frequencies of individual precision choices for the last 25 rounds of the

experiment. In order to better understand the evolution of precision choices, we also show

choices in the first 5 rounds and the last 5 rounds of the experiment.15 As we can see, the most

popular precision choice is level 4, the equilibrium precision, which seems to be the result of

choices shifting from other precisions as subjects gained more experience in the experiment.

However, we also see significant heterogeneity in information choices that prevails until the

end of the experiment.

Precision Standard Cost Precision choices in rounds:
level deviation 26-50 1-5 45-50
1 1 6 14.5% 18.46% 14.04%
2 3 5 9.46% 12.88% 8.85%
3 6 4 17.77% 23.27% 17.88%
4 10 2 35.15% 22.31% 35.19%
5 16 1.5 3.77% 5% 4.42%
6 20 1 19.35% 18.08% 19.62%

Table 2: Frequencies of individual precision choices, DA and SM treatments

Since thresholds depend on precision choices, we first need to establish stability of indi-

vidual precision choices over time in order to discuss the use of threshold strategies.16 Once

we establish stability of individual precision choices we analyze actions for the precision level

that was most often chosen by each subject.

We find that, on average, in the last 25 rounds of the experiment an individual subject

chooses the same level of precision for 22 out of the last 25 periods and that the most popular

precision choice is the equilibrium level 4. To illustrate this result, Figure 1 contains the

transition matrix of precision choices in the last 25 rounds. The entry aij of the matrix

shows the probability of choosing precision level j in round t+ 1, given that a subject chose

precision level i in round t, for i, j ∈ [1, 6] and t > 25.

Prec 1 Prec 2 Prec 3 Prec 4 Prec 5 Prec 6

Prec 1

Prec 2

Prec 3

Prec 4

Prec 5

Prec 6



0.94 0.04 0.002 0.006 0.002 0.01
0.06 0.83 0.06 0.025 0 0.025
0.006 0.03 0.84 0.09 0.004 0.03
0 0.01 0.04 0.91 0.02 0.02
0.01 0.01 0.08 0.14 0.63 0.13
0.01 0.01 0.02 0.04 0.02 0.9


Figure 1: Transition matrix of precision choices in the last 25 rounds, DA and SM treatments

15This includes choices in treatments DA and SM. We aggregate the data because the distributions of
precision choices are not statistically different between these two treatments. This was expected since the
treatment effect, if present, would be in the second stage of the game.
16 If individual precision choices were changing a lot over the last 25 periods, it would be diffi cult to estimate

thresholds by conditioning on a precision choice, since it would be constantly changing.
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By looking at the diagonal entries of the transition matrix, we can see that most precision

levels seem to be absorbent states, i.e., if a subject chooses a precision in one period, it is

very likely he will make the same choice in the next period.17 This effectively means that

individual precision choices are stable over the last 25 rounds. Given this stability result, we

characterize subjects by their preferred precision choice.

Table 3 shows the frequency of subjects that choose each precision level as their preferred

precision, confirming a substantial heterogeneity of subjects’ preferences for information.

Notice that the frequency of individual preferred precisions is similar to the frequency of

precision choices in the last 25 rounds, implying that the heterogeneity of choices reported in

Table 2 is driven by the between-subject heterogeneity reported in Table 3. We will revisit

this heterogeneity when we study how these different groups of subjects play the coordination

game, suggesting that the first stage of the game might serve as a self-selection device in the

two-stage game.

Precision Standard Cost Preferred
level deviation precision
1 1 6 14.42%
2 3 5 8.65%
3 6 4 17.31%
4 10 2 36.54%
5 16 1.5 4.81%
6 20 1 18.27%

Table 3: Preferred individual precision choices in the last 25 rounds, DA and SM treatments

We have established stability of subjects’ individual precision choices. However, recall

from Section 2.2 that thresholds depend on the precision choices of both pair members.

Thus, before we can estimate thresholds we have to establish a notion of convergence in

precision choices within a pair.

Our categorization is illustrated in Figure 2. We define individual convergence in precision

as a situation when a subject chooses the same precision level for the last 25 rounds, with

at most three deviations, and we say that a pair exhibits non-stable behavior if at least one

of its members does not converge individually in his precision choice (panel (a) of Figure 2).

A pair that exhibits stability but not convergence is a pair in which both members converge

individually in their own precision choices, but the levels at which they converge are more

than one level apart (panel (b) of Figure 2). We define weak convergence as pairs in which

both members converge individually to a level of precision and these two precision levels are

at most one level away from each other (panel (c) of Figure 2). We say that a pair exhibits

full convergence if both members converge individually to the same level of precision for the

last 25 rounds of play (panel (d) of Figure 2).18

17Precision level 5 is the least absorbent state. However, this is the least popular precision choice.
18Table A.1 in the appendix shows all the combinations of precision choices made by the different pairs

in our experiment (for both the DA and SM treatments). The diagonal entries correspond to the pairs that
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Figure 2: Examples of types of convergence in precision within a pair

In the analysis of thresholds of Section 3.2.3 we use the notion of weak convergence and

restrict our attention to pairs that coordinate on high precision (levels 1 and 2), medium

precision (levels 3 and 4), and low precision (levels 5 and 6). Note that weak convergence

includes full convergence. Table 4 summarizes the combinations of precision choices across

pairs according to this notion of weak convergence. If we use this qualitative characterization

we find that approximately two thirds of the pairs in our experiment exhibit weak conver-

gence in precision choices. Moreover, among these pairs, the majority converge to medium

precisions, which corresponds to the theoretical prediction.

High Medium Low
H 13.46% 19.23% 5.77%
M 32.69% 19.23%
L 9.62%

Table 4: Weak convergence of precision choices, DA and SM treatments

Tables 2-4 imply that subjects exhibit substantial and persistent heterogeneity in their

precision choices. Below, we show that these differences in behavior at the information

acquisition stage translate into systematic differences in behavior at the coordination stage

that diverge from the theoretical predictions. These results suggest that subjects use precision

choices to self-select in terms of how they intend to act at the coordination stage.

exhibit full convergence.
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3.2.2 Information choices and actions

We first study how different precision choices affect individual actions and then how precision

choices impact the use and estimation of thresholds.

For the DA treatment Figure 3 plots the cumulative distribution function (CDF) of the

decision to take the risky action (invest) for each signal realization, by individual precision

choice. The value of the signal for which subjects take the risky action with probability

0.5 determines the cutoff for their action rule. Looking at the intersection of the curves

corresponding to the different precision levels with the 0.5 line, from left to right, we can see

that those cutoff points tend to be larger for lower precisions. This suggests that a higher

precision leads to a higher likelihood of taking the risky action.19 While at odds with the

theoretical predictions, this is in line with existing experimental evidence on global games

with exogenously set precisions (see Szkup and Trevino (2020)). We explore this observation

further in Section 3.2.3.
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Figure 3: Probability of taking the risky action by precision choices, DA treatment

We also see that as we move towards lower precision levels the slopes of the CDFs decrease,

indicating that the dispersion of actions within each precision group increases as the precision

of information decreases. In particular, when subjects choose the lowest precision their choices

exhibit a large dispersion, indicating a lower predictability of their actions based on their

signals compared to subjects who choose higher precisions. This suggests that there is a

relationship between subjects’information choices and the stability and consistency of their

actions. Subjects who choose higher precisions (and are thus more “invested” in the game)

tend to have a more predictable action pattern (lower dispersion) than those who choose lower

precisions. Importantly, this relationship between predictability of actions and precision of

information is not present when precision is exogenously set (see Figure A.1 in Appendix A).
19We find further evidence of this relationship by running two regressions (one for the DA and one for the

SM treatment) to determine the statistical effect that each level of precision has on individual actions (for
DA) and on reported thresholds (for SM). This analysis is reported in Tables A.2 and A.3 in the Appendix.
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This is suggestive of subjects potentially using precision choices to self-select in the way they

play the game, not only in terms of the likelihood of taking the risky action (intersection with

the 0.5 line), but in the predictability or stability of their strategies (dispersion of precision

CDFs). We further explore these two effects when we discuss the estimation of thresholds

(Section 3.2.3) and their stability over time (Section 3.2.4).

3.2.3 Threshold estimation

For the DA treatment we identify three types of individual action rules in the coordination

game: subjects who use thresholds, those who use a degenerate strategy, and those who act

randomly. The use of thresholds can be either by a perfect or almost perfect threshold. We

say that a subject uses a perfect threshold if he takes the safe action for low values of the

signal and the risky action for high values of the signal, with exactly one switching point (i.e.,

the intersection of the sets of signals for which a subject chooses either action is null). For

almost perfect thresholds we allow these two sets to overlap for at most three observations.

This means that subjects take the safe action for low signal values and the risky action for

high signal values, but these two sets can intersect for at most three observations. We say that

a subject uses a degenerate strategy if his choice of action is constant and does not depend on

the signal (i.e., always taking the risky or safe action). A subject exhibits random behavior

when his choices are erratic and do not seem to follow a pattern based on the observed signal.

In total, 93.33% of the subjects in the DA treatment use threshold strategies for their

preferred precision choice, which is similar to the use of thresholds in the literature with

exogenous information structures (see, for example, Heinemann et al. (2004) and Szkup

and Trevino (2020)). Therefore, we find support for the theoretical prediction of threshold

use when information is endogenously determined. However, the frequency of threshold use

depends on precision choices. As shown in Table 5, we find that 100% of subjects whose

preferred precision is level 1, 2, or 3 use threshold strategies. For precision level 4, 95.45%

of subjects use thresholds, the one subject who does not use a threshold uses the degenerate

strategy of always taking the risky action. There are only 2 subjects choosing precision level

5, one uses a threshold and one behaves randomly. For precision level 6, 77.78% of the

subjects use threshold strategies and the rest use the degenerate strategy of always choosing

the safe action.

Precision Thresholds Degenerate strategies Random behavior
1 100% - -
2 100% - -
3 100% - -
4 95.45% 4.55% (risky) -
5 50% - 50%
6 77.78% 22.22% (safe) -

Table 5: Use of threshold strategies by preferred precision, DA treatment
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These observations support our conjecture of subjects using precision choices to self-select

in terms of how “invested”they are in the game, with subjects who choose a higher precision

being more likely to have monotonic, signal-dependent strategies than subjects who choose

a lower precision. The latter subjects, in turn, are more likely to set degenerate strategies

that never attempt to coordinate on the risky action. These results are consistent with the

observation from Figure 3 that shows a larger dispersion of actions for subjects who choose

lower precisions. It is important to stress that this pattern in the use of threshold strategies is

not found when information is exogenously given (see Szkup and Trevino (2020)), suggesting

that this self-selection takes place via the information stage..

We now turn our attention to pairs that weakly converge in precision choices. We first

characterize how the individual coordination attempts and successful coordination in the DA

treatment are determined by precision choices within a pair. Table 6 reports the number of

individual coordination attempts (risky choices) and the number of instances of successful

coordination as proportions of the total number of situations when the state falls in the

coordination region, θ ∈ [0, 100), for each combination of precision choices within pairs.20

The number of individual coordination attempts corresponds to the instances when at least

one of the pair members decides to take the risky action and θ ∈ [0, 100), while the number

of successful coordination attempts corresponds to the number of cases where both subjects

take the risky action and θ ∈ [0, 100).

From Table 6 we see that both the individual coordination attempts and instances of

successful coordination increase with precision choices when subjects coordinate on precision

(diagonal entries). This supports our earlier observation that subjects who choose a higher

precision choose the risky action more often. In addition, we can also see a clear monotonic-

ity off the main diagonal, implying that subjects who choose a lower precision are more

likely to take the risky action in response to their pair member’s higher precision choice.

This suggests that subjects are less (more) cautious when they expect their pair member

to choose a high (low) precision as they expect them to choose the risky action more (less)

often, ceteris paribus. Thus, subjects’ information choices have non-trivial spillover effects

in the coordination stage. In addition, we see that instances of successful coordination are

increasing in precision choices, implying that the tendency to take the risky action more often

as subjects get better information is justified. Note that these observations are in contrast

to the theoretical predictions from Section 2.4.

We provide further evidence for this result in Table A.4 in the Appendix where we report

the results of a random effects probit regression that shows how successful coordination is

more likely to occur when pair members converge to a higher precision.

We are now ready to test directly the theoretical predictions by turning our attention to

the estimation of thresholds. In Table 7 we compare, for high, medium, and low precision

20We restrict our attention to the DA treatment because individual coordination attempts are clearly iden-
tified when subjects explicitly choose an action after observing their signals, as opposed to the indirect action
choice that happens when subjects choose a threshold in the SM treatment.
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Individual coordination attempts
Total situations

Successful coordination
Total situations

High Medium Low High Medium Low

H 117
146 (80.14%)

155
196 (79.08%)

26
46 (56.52%)

108
146 (73.97%)

144
196 (73.47%)

10
46 (21.74%)

M 211
308 (68.51%)

75
160 (46.88%)

184
308 (59.74%)

56
160 (35%)

L 22
68 (32.35%)

10
68 (14.71%)

Table 6: Coordination attempts and successes by precision choices in a pair, DA treatment

levels, the theoretical equilibrium thresholds to the thresholds estimated using a random

effects logit and to the Mean Estimated Threshold (MET) for the DA treatment.21 For the

SM treatment, we compute the Mean Reported Thresholds (MRT) that subjects reported

using the strategy method. Recall that we define weak convergence to high precision as pairs

that converge to precision levels 1 or 2, medium precision as pairs that converge to precision

levels 3 or 4, and low precision as pairs that converge to precision levels 5 or 6. Therefore, for

each precision level (high, medium, low) we report equilibrium thresholds corresponding to

both precision levels. We also include the risk dominant threshold of the underlying complete

information game, since the theory predicts that this is what thresholds should converge to

as the signal noise converges to zero. Standard deviations are reported in parenthesis.

High precision Medium precision Low precision
Logit (RE) (DA) 17.88 26.39 58.45

(8.61) (8.03) (21.76)
MET (DA) 15.52 29.84 50.65

(18.37) (26.79) (20.12)
MRT (SM) 20.32 34.34 31.27

(3.56) (16.39) (21.4)

Theoretical prediction x*
Info 1 Info 2
35.31 33.88

Info 3 Info 4
31.61 28.31

Info 5 Info 6
22.82 18.73

Risk dominant threshold 36 36 36

Table 7: Estimated thresholds and equilibrium predictions, DA and SM treatments

Table 7 shows that the estimated thresholds for high precision in both the DA and SM

treatments are significantly lower than the threshold predicted by the theory and significantly

lower than the estimates for medium and low precisions. In contrast, in both the DA and

21We use two different methods to estimate thresholds. First, for each precision level, we pool the data of all
the subjects who use thresholds in each treatment and fit a logistic function with random effects to determine
the probability of taking the risky action as a function of the observed signal. We estimate the mean threshold
of the group by finding the value of the signal for which subjects are indifferent between taking both actions,
i.e., for which the logistic function gives a value of 1

2
. For the second method we take the average, individual

by individual, between the highest value of the signal for which a subject chooses the safe action and the lowest
value of the signal for which he chooses the risky action. This number approximates the switching point for
the subject. We then take the mean and standard deviation of the thresholds in the group and refer to this
estimate as the Mean Estimated Threshold (MET).
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SM treatments, the estimated thresholds for medium precision are not statistically different

from the equilibrium predictions for precisions 3 or 4, so the subjects that coordinate on

a medium precision behave on average in accordance to the unique equilibrium predicted

by the theory.22 Finally, in the DA treatment the estimated thresholds for low precision

are statistically larger than the equilibrium predictions. The estimated thresholds for low

precision in the SM treatment are also larger than equilibrium but the difference is not

statistically significant.23 Overall, these results indicate two departures from the theory.

First, we see a reversal in comparative statics because the estimated thresholds tend to be

decreasing rather than increasing in precision choices, as predicted by the theory. Second,

we see a level effect because subjects who choose a high precision set lower thresholds than

equilibrium while the opposite is true for subjects who choose a low precision. In what follows

we refer to the these empirically observed departures from the theory as the threshold-level

effect of increasing precision.

The departures from the theory in our data are qualitatively similar to departures observed

when the signal precision is set exogenously, as documented in Szkup and Trevino (2020),

but they are starker under endogenous information. The observation of the threshold-level

effect under exogenous information allows us to rule out that subjects fail to see the precision

cost as a sunk cost as an explanation for this effect in our setup. As shown in Table A.5 in

the Appendix, when the precision of information is exogenous thresholds are non-increasing

in precision. In addition, the estimated threshold for high precision is significantly smaller

than the theoretical threshold and significantly lower than the estimates for medium and

low precisions, but the medium and low precision thresholds are not statistically different

from one another. In contrast, in our setup where the information structure is endogenous,

thresholds are strictly decreasing in precision choices and are statistically different from each

other. These observations indicate that while the threshold-level effect is also present when

information is exogenous, it is amplified when subjects choose the precision of their signals.

Szkup and Trevino (2020) propose a mechanism based on sentiments about the perception

of strategic uncertainty to explain the threshold-level effect, where players’ subjective be-

liefs about the probability that the other player takes the risky action are affected by the

fundamental uncertainty in the environment. In their data, subjects in environments with

high precision perceive lower strategic uncertainty than subjects in environments with low

precision. They also argue that popular models such as QRE, Level-k, or Cursed Equilibrium

cannot explain this result. A similar phenomenon might be at play in our experiment with

self-selection possibly affecting the way subjects form beliefs.

22This result suggests that these subjects understand the trade off between precision and cost by choosing
a medium level of precision and then apply this information optimally in the coordination game by choosing
the threshold that maximizes their expected profits, given that their opponent also chooses a medium level of
precision.
23Note that the strategy method might affect the way subjects play the game by imposing the use of

thresholds, thus putting more structure on their thinking. This might explain the differences between the DA
and SM treatments.

21



In what follows we focus on our DA treatment to make comparisons with the results of

Szkup and Trevino (2020) who only use direct action choice in their experiment. The ampli-

fication of the threshold-level effect can be clearly seen in Figure 4, which plots the estimated

thresholds in the DA treatments under exogenous and endogenous information, together with

shaded standard deviation intervals, as well as equilibrium and first-best thresholds. As we

discuss in Section 4, this amplification has non-trivial effects on outcomes in the game and

on payoffs.

Figure 4: Equilibrium, first-best, and estimated thresholds, DA treatment

These results suggest a specific channel for self-selection that becomes available when

information is endogenized. Subjects seem to self-select on a given precision level based on

their individual inclination to take the risky action. Subjects who are more inclined to take

the risky action choose to purchase a higher precision for their signal in order to minimize

the probability of choosing the risky action when it would be unsuccessful and to better

coordinate with their opponent by increasing the correlation between their signals. We can

think of these as subjects who are more “invested”in the game in the sense that they pay a

high price to get a better signal in the information stage and try to extract as much payoff

as possible in the coordination stage. On the other hand, subjects who are more inclined

to take the safe action choose a lower precision in anticipation of “playing it safe” during

the coordination stage by either setting a high threshold or by using the degenerate strategy

of always choosing the safe action, for all signal realizations (see Table 5). In terms of the

self-selection mechanism, these subjects seek to pay the lowest possible cost of precision since

they are less “invested”in the coordination game.

Figure 4 also indicates that the dispersion of thresholds is relatively stable under exoge-

nous information as we move across precisions. However, we see a clear increase in dispersion

of thresholds for subjects who self-select into a low precision. This suggests that, regardless

of the threshold level, different choices of precision give rise to different levels of dispersion or
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predictability of strategies within a precision group. We refer to this as the threshold-quality

effect. This effect was first suggested in Figure 3 when we observed an increase in dispersion

of individual actions as subjects chose lower precisions. The threshold-quality effect could

also affect the stability of thresholds over time. However, this effect cannot be properly stud-

ied in the DA treatment because the thresholds estimated in Table 7 and Figure 4 rely on

observing signals and actions throughout many rounds to estimate a single threshold. There-

fore, to investigate how subjects’strategies evolve over time we turn to the SM treatment

where subjects report a cutoff strategy before observing the realization of their signal.

3.2.4 Stability of thresholds and their convergence within pairs

We first analyze the evolution of individual thresholds in all 50 periods of the experiment

for subjects in pairs that coordinate on high, medium, and low precision. For each subject

we calculate the difference in absolute value between the threshold reported in one period

with respect to the threshold reported in the previous period. Then we compute the average

of these differences across all subjects from pairs that coordinate on a given precision level.

This is portrayed in Figure 5. The vertical bar at period t illustrates how much, on average,

a subject changed the value of his own threshold in period t with respect to the threshold he

reported in period t− 1.
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Figure 5: Convergence of individual thresholds, SM treatment

Figure 5 shows a lot of stability in individual thresholds for subjects in pairs that co-

ordinate on high precision levels. We observe some experimentation in the initial periods

(as expected), but thresholds quickly stabilize after 10 rounds and in the last 25 rounds the

mean difference is consistently zero, except for the last round. For medium precision levels

the mean difference of individual thresholds is less than 7 after the first 10 rounds. For low

precision levels it takes a longer time for individual thresholds to stabilize and in the last

25 rounds the mean difference is less than 7 in all but one period. Therefore, we see that

subjects who choose a high precision exhibit more stable threshold behavior and that this

individual stability seems to decrease as subjects choose lower precisions. This is in line with

Figure 3 and illustrates how self-selection gives rise to the threshold-quality effect by showing

that the individual thresholds are more stable and predictable over time for subjects who
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choose higher precisions.

Stronger evidence of self-selection and the threshold-quality effect comes from studying

convergence of thresholds within pairs. To analyze convergence of thresholds within pairs

we compute the average difference in absolute value between the reported thresholds of pair

members, for each period and each precision level. Recall that subjects do not receive feedback

about the threshold reported by their pair member, but only observe whether the action A

(risky action) was successful or not. Thus, it is not trivial for subjects to converge in their

thresholds within pairs. We plot our results in Figure 6.
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Figure 6: Convergence of thresholds within a pair, SM treatment

We see from Figure 6 that subjects from pairs that converge to high precision levels coor-

dinated extremely well on their thresholds, and that the extent of coordination of thresholds

becomes weaker as the chosen precision level decreases. The observed convergence of thresh-

olds within pairs that choose a high precision illustrates the threshold-quality effect of the

self-selection mechanism based on precision choices. The greater stability of individual ac-

tions for this group of subjects illustrated in Figure 5 naturally allows subjects in pairs that

converge to a high precision to better coordinate their strategies. However, when subjects

choose lower precisions individual strategies become less predictable (subjects are not as “in-

vested” in the game as those who choose high precision). Therefore, it becomes harder to

coordinate strategies within a pair, leading to large disparities of thresholds and less successful

coordination for low precision levels.

We refer to the threshold-quality effect as the mechanism behind the observed disparities

in stability and convergence of thresholds that depends on the level of precision chosen in

a pair. Unlike the threshold-level effect, which was also present in the case of exogenous

information, the threshold-quality effect is unique to the game with endogenous information.

This is because adding an initial stage of information acquisition opens the door to self-

selection. As a consequence, we see that regardless of the level of thresholds, the quality

of individual play improves with precision choices, as illustrated in Figures 5 and 6 (and

suggested by Figures 3 and 4 above and by Figure A.1 in Appendix A). Self-selection in this

case reflects how subjects who are more “invested”in the game are more likely to choose the

highest precision and set a “cleaner”strategy, while those who are not very “invested”in the

game (or who are unsure about how to play the game) might opt for the cheapest precision
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and choose actions in a less predictable way (even not signal-dependent) in the coordination

stage.24

Finally, note that the threshold-quality effect leads to a more nuanced interpretation of

the earlier result that subjects in pairs that choose a higher precision have a higher index

of successful coordination (see Table 6). This result might be intuitive since more precise

information allows subjects to better estimate each others’ signals and, hence, coordinate

their actions. However, Figure 6 suggests that at least some of the higher rate of successful

coordination achieved by these pairs is due to the convergence of subjects’ thresholds, an

effect that is absent in the theoretical model.25 Thus, Figure 6 suggests that self-selection,

via the threshold-quality effect, has also non-trivial implications for the extent of coordination

subjects achieve.

3.3 Understanding self-selection: Analysis of early rounds

We have argued that the stark difference in behavior across subjects who choose different

precision levels can be explained by thinking of information choices as a vehicle for subjects

to self-select in the way they play the game. We argue that behind this self-selection is the

subjects’subjective valuation of information, which determines their propensity to take the

risky action and the quality or “cleanliness”of their strategies. This analysis relied on the

last 25 rounds of the experiment because we wanted to allow enough time for individual

behavior to stabilize. In this section we look at the initial rounds of the experiment to

provide evidence in support of the self-selection mechanism. To do this, we follow the same

categorization as before and separate subjects according to the precision type to which they

individually converge in the last 25 rounds of the experiment: high (precision levels 1 and

2), medium (precision levels 3 and 4), or low (precision levels 5 and 6). We refer to this as

the subject’s “type”. Evidence of clear differences across the 3 different types of subjects in

early rounds would provide strong support for the self-selection mechanism.

Persistence of individual precision choices We first analyze precision choices in early

rounds to understand if subjects experiment with precision choices early on, learning from

their own experience and the past precision choices of their opponent. Instead, if precision

choices are persistent in early rounds with not much experimentation, this would be consistent

with the notion of self selection. Figure 7 plots the histograms of precision choices in the

24While we discuss the threshold level and quality effects separately, it is likely that these effects are related
to each other. For example, when subjects converge to a high precision, being able to better predict the other’s
behavior might encourage both subjects to set a lower threshold. It is important to note, however, that such
an argument goes against the theoretical mechanism of global games where an increase in the precision of
information increases strategic uncertainty for signals close to the threshold signal. This is precisely the reason
why the equilibrium thresholds are increasing in precision (see Morris and Shin (2003)).
25Our theoretical model predicts that all subjects who chose the same level of precision will also set the

same threshold, that is, there is no dispersion. From a behavioral point of view, the main benefit of a higher
precision is that each subject can better estimate whether his pair member’s signal is above or below the
threshold signal, leading to better coordination of thresholds.
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first 10 rounds of the experiment, by types. We can see clear differences in precision choices

in the early rounds by type, suggesting that subjects select an individual preferred precision

early on in the experiment, which is consistent with their future choices. Figure A.3 in the

Appendix plots the same graphs for the first 25 rounds, showing an even starker pattern.
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Figure 7: Histogram of precision choices by precision type, first 10 rounds

To further understand precision choices in early rounds, Figure 8 contains the transition

matrix of precision choices by type in the first 10 rounds and the first 25 rounds of the

experiment. The entry aij of each matrix shows the probability of choosing a precision

type j in round t + 1, given that a subject chose precision type i in round t, for i, j ∈
{high,medium, low} and t ≤ 10 and t ≤ 25, respectively.

First 10 rounds First 25 rounds
High Medium Low

High

Medium

Low

 0.78 0.15 0.07
0.08 0.81 0.11
0.06 0.17 0.77


High Medium Low

High

Medium

Low

 0.85 0.11 0.04
0.06 0.87 0.07
0.04 0.12 0.84


Figure 8: Transition matrix of choices of precision types in early rounds, DA and SM treat-
ments

As we can see, precision types are absorbent states since the early rounds, meaning that

subjects are significantly more likely to choose the same precision type (high, medium, low) in

consecutive periods than to change to other types, even in the first 10 rounds. This, together

with the results from Figure 7, is suggests that subjects might self-select by choosing an

individual precision type early on in the experiment, as opposed to arriving at their precision

type in the last 25 rounds by experimentation and learning with different precision types.

Similarly, we find no significant evidence that subjects’ precision choices in the initial

rounds of the experiment are determined by their opponent’s past precision choices. First, we

observe that only about a quarter of subjects clicked on the button to look at their opponent’s

past precision choices. In the first 25 rounds, subjects identified as high, medium, and low

precision types did so 25.83%, 28%, and 20.67% of the times, respectively.26 Note that the

26 In the last 25 rounds these numbers were 12.17%, 14.36%, and 5.67%, for high, medium, and low precision
types, respectively.
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propensity to look at this information is very similar across precision types, suggesting that

the interest in others’ past precision choices is not related to the precision level at which

subjects self-select. For those subjects who choose to observe their opponent’s past precision

choices we run regressions, for each group of precision type subjects, to understand how a

subject’s precision choice in period t depends on their own precision choice in period t−1 and

on their opponent’s precision choice in period t− 1, which is interacted with a dummy that

takes the value of 1 if a subject clicked the button to see their opponent’s previous precision

choices in period t − 1. Table A.7 in the Appendix shows that by far the most important

determinant of precision choices for these subjects is their own previous precision choice,

for all precision types. These results suggest that the persistence of individual precision

choices is mainly driven by subjects’own previous choices and not by subjects learning to

coordinate precisions with others. Overall, the above results provide support for the self-

selection mechanism.

Effect of precision choices on early actions in the game We now analyze how

precision types affect the decision to take the risky action in the game in the initial rounds

of the experiment. In Table 8 we present the results of a random effects logit regression

where the likelihood of taking the risky action depends on the signals observed by subjects

that we characterize as high, medium, or low precision type, for the first 25 rounds of the

experiment, separately. Using low precision types as the baseline, we include a dummy that

takes the value of 1 for subjects that are identified as high precision types and 0 otherwise,

and a similar one for subjects that are identified as medium precision types. We interact

signals with these dummies. As we can see from Table 8, the insignificant coeffi cients for the

dummies that separate precision types indicate that the higher incidence of risky choices for

high precision types is not just a “level”effect (i.e., that different types are inherently more

or less aggressive in the game), but instead that different precision types respond differently

to their signals, with high types being more responsive to their signals than lower types (all

pair wise comparisons of signal coeffi cients are statistically different to at least the 5% level

of significance), which is consistent with the threshold-level effect related to self-selection.
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Variable Risky action {0,1}

D{high type} 0.803

(0.756)

D{Medium type) 0.302

(0.667)

Signal 0.0169***

(0.004)

Signal*high type 0.083***

(0.01)

Signal*med type 0.058***

(0.005)

Constant 0.621***

(0.066)

N 1200

Clustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table 8: Risky choices in the game as a function of observed signals, by precision type, DA

treatment

Taken together, these results suggest that the heterogeneity in behavior that we observe

in the experiment is a result of an underlying heterogeneity of preferences for information

that manifests itself from the very beginning of the experiment. This heterogeneity gives rise

to self-selection in the quality of information that subjects seek, which ultimately determines

not only how aggressively subjects seek to coordinate with others (threshold-level effect), but

also how “cleanly”they do so (threshold-quality effect).

4 Welfare

In this section we investigate the payoff consequences of the threshold-level and the threshold-

quality effects that result from self-selection. To do so, we compare the payoffs earned by

subjects with the theoretical equilibrium payoffs. In addition, to better quantify the effects

of self-selection via information acquisition we compare the payoffs in our experiment to the

payoffs of Szkup and Trevino (2020) when information is exogenously determined. Since that

experiment only uses direct action choices, in this section we focus only on our DA treat-

ment. To make payoffs comparable across different sessions, treatments, and experiments,

we normalize all the payoffs with respect to the first-best payoffs that correspond to the

recommendation of a social planner that faces no informational constraints (i.e., if subjects
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chose the risky action whenever it was profitable, θ ≥ T ).27,28 In what follows, we refer to

this ratio as the payoff-effi ciency index as it captures welfare losses or gains with respect to

optimal play.

Payoffs in the Coordination Stage We first investigate whether subjects’deviations

from the equilibrium thresholds, conditional on their precision choices, are payoff-enhancing

or payoff-reducing in the coordination stage (i.e., abstracting from the cost of information

acquisition). That is, we compare the payoff-effi ciency index of the observed action with

the payoff-effi ciency index associated with hypothetical equilibrium payoffs.29 In addition, to

separate the impact of self-selection via information acquisition from the effect of exogenous

variations in precision we compare the payoff-effi ciency index in our experiment to the one

computed using data from Szkup and Trevino (2020). Table 9 presents our results.30

Precision High Medium Low
Endogenous Information

Realized 0.96 0.88 0.49

Equilibrium 0.93 0.95 0.95

Exogenous Information

Realized 0.94 0.83 0.75

Table 9: Payoff-effi ciency index for observed and equilibrium payoffs, DA treatment

We focus first on the payoff-effi ciency indices in our data with endogenous information.

From Table 9, we see that the payoff-effi ciency index for subjects who converged to high

precision is higher than if they had followed the equilibrium strategies. In contrast, the

payoff-effi ciency index for subjects that chose medium precision is lower than the equilibrium

payoff-effi ciency index. Finally, for low precision, the payoff-effi ciency index is only half of

the payoff-effi ciency index that subjects would have earned had they followed the equilibrium

27We normalize payoffs to control for the fact that subjects could earn a high payoff even if they used
ineffi cient and poorly coordinated strategies in sessions where the average realization of θ is high. First-best
payoffs have the advantage of being computed directly using the observed realizations of θ and do not depend
on precision choices. In contrast, equilibrium payoffs in the coordination game depend on precision choices, so
we could only compute the expected equilibrium payoffs of the full game. The same issue applies to constrained
effi ciency payoffs.
28For completeness, in the Appendix we provide the average realized payoffs that subjects earned in each

treatment (see Table A.6).
29 In order to compute the equilibrium payoff-effi ciency index we constructed hypothetical equilibrium pay-

offs. That is, for each signal observed by a subject, we computed the action that he would choose if he
were following the equilibrium strategy (and do the same for his pair member) and then computed the payoff
implied by this hypothetical behavior. We then computed the ratio of the average equilibrium payoff and the
first-best payoff.
30Note that in our DA treatment the coordination stage follows the exact same experimental design that

was used in Szkup and Trevino (2020). Thus, the payoffs in two experiments are directly comparable.
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strategies. It is worth stressing that the payoff-effi ciency index for realized payoffs exhibits

a clear monotonicity that is not present in the case of the effi ciency index associated with

theoretical payoffs. This suggests that information affects subjects’ behavior beyond the

channels emphasized by the theory (i.e., beyond the ability to better predict fundamentals

and pair member’s signal).

These results suggest that the threshold-level and the threshold-quality effects described

above have significant welfare consequences. Recall that subjects who choose a high precision

set thresholds that are closer to effi ciency than the equilibrium thresholds and they coordinate

their thresholds extremely well. Subjects who choose a medium precision set thresholds close

to the equilibrium threshold but do not coordinate their thresholds as effectively. Finally,

subjects who choose a low precision in the DA treatment set ineffi cient thresholds far above

the equilibrium threshold, which results in lower payoffs. Therefore, Table 9 suggests that

both the threshold-level and threshold-quality effects are also manifested in terms of welfare,

leading to an increase in payoff-effi ciency for subjects who choose a high precision and a clear

decrease in payoff-effi ciency for subjects who choose a low precision.

To properly understand the payoff-effi ciency consequences of the threshold-level and

threshold-quality effects derived from self-selection, we also compare in Table 9 the payoff-

effi ciency index of our subjects to an analogous index with exogenously set precisions of Szkup

and Trevino (2020). As expected, we see that in both experiments the payoff-effi ciency index

is increasing in precision. This is because the threshold-level effect is present in both scenar-

ios, suggesting that subjects who observe more precise signals make more accurate decisions

and better coordinate their actions within a pair.

However, there are two notable differences between the payoff-effi ciency indices in the two

experiments. First, we see a larger decrease in payoff-effi ciency for subjects who choose a low

precision than when a low precision is exogenously set. Second, the rate at which the payoff-

effi ciency index is increasing is higher when subjects choose the precision of their signals.

These differences provide further support for the self-selection mechanism and highlight the

important welfare consequences of self-selection via information acquisition.

Payoffs in the Information Acquisition Game We now analyze payoffs in the two-

stage game, taking into account the costs of information. As above, we focus on the payoff

effi ciency index, but we now take into account the cost of information acquisition when

computing realized payoffs (though we leave the denominator unchanged). We report our

results in Table 10. Note that the differences in the payoff-effi ciency indices for a given

precision reported in Tables 9 and 10 capture the cost of information acquisition.

We can see that subjects who self-select by choosing a high precision end up experiencing

a slightly larger loss in terms of effi ciency than those subjects who chose medium precision,

despite their effi ciency gains in the coordination stage. This suggests that the payoff gains in

the coordination stage might not be enough to compensate for the cost of precision. On the

other hand, the poor performance in the coordination stage for subjects who choose a low
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Precision High Medium Low

Payoff-effi ciency index 0.76 0.78 0.45

Table 10: Payoff-effi ciency index in the two-stage game

precision could not be offset by low precision costs. Thus, subjects that choose a medium

precision reported the lowest payoff loss in terms of effi ciency, followed closely by those that

choose a high precision, while subjects who choose a low precision saw a significant decrease

in payoff-effi ciency.

5 Conclusion

We have studied how the choice of costly information in coordination games can have non-

trivial effects in actions and outcomes that are not captured by theoretical models. Our

results suggest that subjects in our experiment self-select via information choices and that

this self-selection is manifested in the form of a threshold-level and a threshold-quality ef-

fect in the coordination game. In particular, subjects who choose a high precision tend to

set lower thresholds, thus taking the risky action more often, and these thresholds tend to

be cleaner and more predictable, leading to more stability of individual behavior and co-

ordination within pairs that choose a high precision. We observe the opposite for subjects

who choose lower precisions: we estimate higher thresholds with high dispersion and low

predictability and, as a result, we observe poor stability of individual choices and of coor-

dination within pairs that choose a low precision. Qualitatively, the threshold-level effect is

consistent with previous results when subjects are exogenously provided with high, medium,

or low precision of information. However, when subjects endogenously choose their precision

this effect becomes more pronounced. The threshold-quality effect, which is responsible for

the differences in predictability and stability of strategies, is a novel finding that is specific

to our environment with endogenous information choices. The self-selection mechanism is

better illustrated with this effect because it suggests that subjects who are more “invested”

in the game will self-select into acquiring the best available information and set clean, clear

strategies in the game. On the other hand, subjects who are not too invested in the game

will not purchase better, more expensive information, and their behavior in the game will be

more erratic.

In terms of applications, it has been suggested that wealth inequality is the result of

high-income earners also earning higher rates of return on their investment (Becker (1967)).

Indeed, this relation has been shown to hold systematically in the data (Yitzhaki (1986)).

Arrow (1987) suggested two possible explanations. First, individuals may face different costs

of information acquisition, and those with lower costs acquire more information, earn higher

returns, and get wealthier over time. Alternatively, high-income individuals might have more
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incentives to acquire information since they tend to hold a higher share of their wealth in

the form of risky assets. Our results suggest yet another possibility. Namely, individuals

differ in their intrinsic propensity to acquire information and ability to use it as implied by

our self-selection mechanism. As suggested by our welfare analysis, these intrinsic differences

then would result in ex-post wealth differences even if individuals initially face the same

information costs and had the same wealth. Understanding the importance of self-selection

as a driver of wealth inequality is an intriguing avenue for future research.

Another interesting avenue for future research is to understand the psychological mo-

tivation behind the self-selection process. We can think of several reasons why some sub-

jects might choose the lowest possible precision and not engage in setting clean or surplus-

extracting strategies in the game. One possibility is that they find the cognitive effort of

setting such strategies to be too high. This could explain the larger incidence of degenerate

strategies that are not signal-contingent for low precision subjects. Similarly, a high cognitive

cost to find an optimal strategy could drive these subjects to engage in trial and error type of

behavior, which leads to noisier strategies. There are, of course, other possible explanations,

such as subjects choosing not to actively engage in the game and signaling this intent by

spending as little money as possible in information. Whatever the explanation, our results

suggest that the initial stage of costly information choice can help researchers understand

subjects’ intentions in the coordination game through the signaling mechanism that arises

due to self-selection.
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Appendix

A Additional Results

Choice of pair member 2

Prec 1 Prec 2 Prec 3 Prec 4 Prec 5 Prec 6

Prec 1 5.77% 1.92% 7.69% 9.62% 0% 3.85%

Choice Prec 2 5.77% 0% 1.92% 0% 1.92%

of pair Prec 3 3.85% 15.38% 0% 1.92%

member Prec 4 13.46% 3.85% 13.46%

1 Prec 5 0% 1.92%

Prec 6 7.69%

Table A.1: Combination of precision choices, DA and SM treatments

Exogenous information Endogenous Information

Figure A.1: Probability of taking the risky action by precision choices in the experiment
with exogenous information (data from Szkup and Trevino (2020)) and with endogenous
information.

Effects of precision choices on individual actions
For the DA treatment, we present in Table A.2 the results of a random effects logit where

the dependent variable is the decision to take the risky (1) or the safe (0) action and the

independent variables are dummies for the six precision levels, interacted with the signal

realizations.31 All the coeffi cients for the interacted variables are positive and significant to

the 1% level and the magnitudes of the coeffi cients decrease for lower precisions. Positive

coeffi cients imply that subjects are more likely to take the risky action for higher signal

31We interact precisions and signals because the decision in the game is determined by the value of the
signal, and the information choice affects how precise the signal is.
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realizations, for all precision levels, consistent with the monotonicity implied by threshold

strategies. The decrease in magnitude of the coeffi cients for lower precision implies that this

effect is stronger when subjects choose very precise signals than when they observe noisier

signals. We find similar evidence in the SM treatment. Table A.3 reports the results of

a random effects OLS regression where the dependent variable is the threshold reported

by subjects and the independent variables are dummies for each level of precision, setting

precision 1 as the baseline. Each of these dummies takes the value of 1 if the subject chooses

this precision level and 0 otherwise. We find that the reported thresholds depend positively

and significantly on the level of precision chosen. The magnitudes of the coeffi cients for

each precision level increase as we move towards less precise information, suggesting that less

precise information gives rise to higher thresholds, corroborating the findings of Table A.2

for the DA treatment.

Variable Choice of risky action {0,1}

Precision 1*signal 0.148***

(0.021)

Precision 2*signal 0.135***

(0.018)

Precision 3*signal 0.103***

(0.011)

Precision 4*signal 0.087***

(0.007)

Precision 5*signal 0.041***

(0.013)

Precision 6*signal 0.056***

(0.006)

Constant -2.837***

(0.376)

N 1500

Clustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table A.2: Choice of the risky action as a function of precision, DA treatment
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Variable Reported threshold

Precision 2 6.25

(4.00)

Precision 3 10.65***

(3.48)

Precision 4 10.78***

(3.39)

Precision 5 12.87***

(3.66)

Precision 6 12.54***

(3.23)

Constant 20.66***

(5.14)

N 1100

Clustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table A.3: Reported threshold as a function of precision, SM treatment

Variable Successful coordination {0,1}

(H, H)*signal 0.176***

(0.03)

(M, M)*signal 0.075***

(0.006)

(L, L)*signal 0.041***

(0.007)

(H, M)*signal 0.117***

(0.013)

(H, L)*signal 0.051***

(0.011)

(M, L)*signal 0.054***

(0.004)

Constant -3.338***

(0.41)

N 1500

Clustered (by pairs) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table A.4: Successful coordination as a function of combination of convergent precision

choices in a pair, DA treatment

Welfare
Table A.6 compares average realized payoffs of subjects for the DA and SM treatments,
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High precision Medium precision Low precision
Exogenous Information

Logit (RE) (DA) 27.61 40.16 35.79
(5.86) (9.13) (9.00)

MET (DA) 27.42 40.37 36.23
(19.16) (18.77) (23.36)

Theoretical prediction x*
Info 1 Info 2
35.31 33.88

Info 3 Info 4
31.61 28.31

Info 5 Info 6
22.82 18.73

Risk dominant threshold 36 36 36

Table A.5: Estimated thresholds and equilibrium predictions with exogenous information,
Szkup and Trevino (2020)

separated by precision, to three benchmarks.32 The first one is the average expected payoffs

that would have arisen if subjects had followed the equilibrium strategy for each realization of

the state θ observed in the different sessions of the experiment. The second is a constrained

effi ciency benchmark where players truthfully reveal their signals and jointly choose actions

to extract the maximum surplus, for each realization of θ observed in the experiment. Under

this benchmark subjects would still face fundamental uncertainty and would have to purchase

information for their signals to deal with it, but they would not face strategic uncertainty,

similar to a planner who faces the same informational constraints as players but who chooses

actions for both pair members to extract the maximum surplus. In this case, the optimal

precision choice would be level 6. The payoffs we report for these two benchmarks are expected

payoffs built using the observed realizations of θ in each round.33 The third benchmark

corresponds to the average payoffs that would have arisen if subjects had chosen a “first-best”

action under complete information, i.e., if they coordinated on the risky action whenever they

could get a positive payoff (θ > 18). This first-best corresponds to the case of a social planner

who observes the realizations of θ and prescribes the actions that maximize payoffs for both

players without informational constraints. Only the realization of θ in the experiment is used

to construct this benchmark and no signals are taken into consideration. For this reason,

under this benchmark subjects choose the lowest precision. Standard deviations are reported

in parenthesis.

We focus on comparisons within columns, since different realizations of θ across pairs

can give rise to different magnitudes of payoffs. Subjects who choose a high precision in-

crease their payoff with respect to constrained effi ciency and equilibrium play in the DA

and SM treatments. For subjects with medium and low precisions equilibrium payoffs are

higher than realized payoffs. However, for the DA treatment, realized payoffs for subjects

with medium precision are on average 6.9% less than the corresponding equilibrium payoffs,

32We look at net realized payoffs substracting the cost of precision and the cost of taking the risky action,
if applicable.
33We do not use the observed signals from the experiment to calculate payoffs because for each benchmark

a specific precision is assumed to be chosen and each precision gives rise to a different distribution of signals.
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High precision Medium precision Low precision
Treatment DA SM DA SM DA SM
Realized payoffs 27.58 40.84 26.05 37.73 17.81 35.09

(4.82) (4.46) (6.47) (4.07) (14.02) (4.5)
Expected equilibrium 26.07*** 38.49*** 27.97*** 38.99*** 31.46*** 37.91***
payoffs (5.62) (0.77) (5.88) (1.01) (5.82) (2.18)
Expected constrained 26.39** 38.69*** 28.25*** 39.16*** 31.78*** 38.09***
effi cient payoffs (5.69) (0.76) (6.01) (0.97) (6.01) (2.15)
First-best complete 29.55*** 41.55** 30.84*** 41.9*** 34.05*** 40.97***
information payoffs (5.24) (0.65) (5.84) (0.77) (6.2) (1.88)
Statistica lly d ifferent from realized payoffs at the ***1% ; **5% ; *10% level of sign ificance

Table A.6: Average payoffs and effi ciency benchmarks, DA and SM treatments

whereas realized payoffs for subjects with low precisions are on average 43.39% less than the

corresponding equilibrium payoffs.34 Therefore, choosing a low precision leads to the highest

loss in individual payoffs with respect to equilibrium.

Some of the differences in the payoffs observed in Table A.6 between treatments DA and

SM treatments are due to the different realizations of θ in the experiment. Figure A.2 plots

the distributions of realized θ for each treatment. As we can see, the SM treatment featured,

on average, higher realizations of θ. Thus, it is not surprising to see higher payoffs for that

treatment.

Figure A.2: Theoretical predictions and estimated thresholds for exogenous and endogenous
information structures

Understanding self-selection
34Even if subjects who choose equilibrium precisions also set equilibrium thresholds, we can still observe

differences in realized payoffs with respect to the expected equilibrium payoffs. This is due to the fact that
we are comparing payoffs from the realization of θ for a small sample to the expected payoffs that would arise
according to the distribution of a population. By a similar argument, constrained effi ciency payoffs should,
on average, be higher than realized payoffs, but over finite samples this might not be the case.
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Figure A.3: Histogram of precision choices by precision type, first 25 rounds

First 10 rounds First 25 rounds

High Medium Low High Medium Low

Own prec choicet−1 0.611*** 0.626*** 0.628*** 0.602*** 0.65*** 0.706***

(0.055) (0.033) (0.051) (0.032) (0.02) (0.028)

Other prec choice†t−1 0.074* 0.054** 0.009 0.059*** 0.034** -0.007

(0.043) (0.023) (0.029) (0.022) (0.013) (0.018)

Constant 0.658*** 1.316*** 1.911 0.621*** 1.272*** 1.576***

(0.131) (0.129) (0.255) (0.066) (0.078) (0.151)

N 216 504 216 576 1344 576
†
Interacted w ith dummy that takes value of 1 on ly if sub ject observed history of other’s precision choices in t-1

C lustered (by sub ject) standard errors in parentheses; * sign ificant at 10% ; ** sign ificant at 5% ; *** sign ificant at 1%

Table A.7: Choice of precision as a function of own and other’s precision choice in previous

period, DA treatment
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B Proofs of theoretical results

In this section we provide the proofs of the claims stated in Section 2. We first show that the

game played by the agents in the second stage belongs to the class of monotone supermodular

games as defined by Vives and van Zandt (2007). We then characterize the equilibrium of

the second stage game for any feasible players’choice of information. Finally, we establish

existence of the equilibrium of the model with information acquisition.

Throughout this appendix, we denote by τ i = 1/σ2
i , i = 1, 2, the precisions of the players’

private signals, chosen in period 1. As usual, it is more convenient to work with precisions

rather than with standard deviations or variances. However, in several places we switch back

to using standard deviations since working with compact intervals (recall that σi ∈ [0, σ])

simplifies some of the arguments.

B.1 Relation to monotone supermodular games

Using the notation of Vives and van Zandt (2007), define N = {1, 2} as the set of players
indexed by i. Let player i’s type space be a measurable space (Ti,Fi) and denote by (T0,F0)

the state space that is capturing the residual uncertainty.35 We let F−i be the product
σ−algebra ⊗k 6=iFk. Let player i’s interim beliefs be given by a function pi : Ti →M−i, where

M−i is the set of probability measures on (T−i,F−i). Finally, let Ai = {0, 1} be the action
set of player i, A be the set of action profiles and ui : A× T → R be the payoff function.

Definition 2 A game belongs to the class of monotone supermodular games if

1. The utility function ui(ai, a−i, ω) is supermodular in own actions, ai, and has increasing

differences in (ai, a−i) and in (ai, ω).

2. The belief map pi : Ti → M−i is increasing with respect to a partial order on M−i of

first-order stochastic dominance.

The following proposition is the key result established by Vives and van Zandt (2007).

Proposition 3 Assume that a game Γ belongs to the class of monotone supermodular games.

Furthermore, assume that the following hold:

1. Each Tk is endowed with a partial order.

2. Ai is a complete lattice.

3. ∀ai ∈ Ai , ui(ai, ·) : T → R is measurable.

4. ui is bounded.

35 In a global games setting, we usually interpret (Ti,Fi) to be the space of possible signals that agent i
receives, while (T0,F0) corresponds to the measurable space of the underlying parameter of the game.
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5. ui is continuous in ai.36

Then, there exist a least and a greatest Bayesian Nash Equilibrium of the game Γ and

each one of them is in monotone strategies.

We now show that the game played in the second stage of our model belongs to the class

of monotone supermodular games as defined in Definition 2.

Note that in our model the type space is defined as follows: T0 = R, Ti = R for i = 1, 2,

where t0 = θ, ti = xi, tj = xj and Fi = B(R), a Borel σ-algebra on R, i = 0, 1, 2. The set

of probability measures M−i is simply the set of joint normal probability distributions over

(T−i,F−i) conditional on the realization of ωi. The belief mapping pi : R→M−i maps each

signal xi into the posterior distribution of (θ, xj) using Bayes’rule. Finally, the underlying

utility function for agent i is given by

u(ai, aj , θ) = 1{ai=1}

[
θ
[
1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

]
− T

]
(3)

and the expected utility of agent i when he takes action ai is:

vi(ai) = 1{ai=1}

[∫ ∞
−∞

∫ ∞
−∞

θ
[
1{θ∈[θ,θ]}1{sj(xj)=1} + 1{θ>θ}

]
f (θ, xj |xi) dxjdθ

]
− T (4)

where sj : Tj → Aj is a strategy of player j and f (θ, xj |xi) is the pdf of the conditional
distribution of {θ, xj} given xi.

The fact that generic global games belong to the class of monotone supermodular games

was noted first by Vives and Van Zandt (2007). The following lemma shows that our

coordination-stage game satisfies the conditions listed in Definition 2 so that it belongs to

the class of monotone supermodular games.

Lemma 1 The coordination stage of our model belongs to the class of monotone supermod-
ular games.

Proof. Since Ai is totally ordered it follows that u(ai, aj , θ) is supermodular in ai (Example

2.6.2(a) in Topkis (1998)). To see that u has increasing differences note that u(1, 0, θ) −
u(0, 0, θ) = θ1{θ>θ} − T and u(1, 1, θ)− u(0, 1, θ) = θ1{θ>θ} − T so that

u(1, 0, θ)− u(0, 0, θ) 6 u(1, 1, θ)− u(0, 1, θ)

That u has increasing differences in (ai, θ) follows from the observation that u(1, aj , θ) −
u(0, aj , θ) = θ

[
1{θ∈[θ,θ]}1{aj=1} + 1{θ>θ}

]
which is increasing in θ.

To show that the belief mapping is increasing with respect to first-order stochastic dom-

inance it is enough to show that the pdf of players’posterior belief about {xj , θ} satisfies
36When Ai is finite this condition is vacuous.
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the monotone likelihood ratio property. Let f (θ, xj |xi) denote the pdf of player i’s posterior
belief. Then

f (θ, xj |xi) = f (xj |xi, θ) f (θ|xi) = f (xj |θ) f (θ|xi) ,

where the last equality follows from the fact that xi and xj are independent conditional on

θ. Next, note that

f (θ|xi) = (τ i + τ θ)
1/2 φ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)
,

where φ (·) is the pdf of the standard normal distribution. It is straightforward to see that for
any two signal values x′′i , x

′
i ∈ R with x′′i > x′i the ratio f (θ|x′′i ) /f (θ|x′i) is strictly increasing

in θ. This implies that the family of density functions {f (θ|xi)}xi∈R parameterized by xj
satisfies the strict monotone likelihood ratio (MLR) property (Milgrom (1981)). Thus, we

conclude that f (θ, xj |xi) satisfies the monotone likelihood ratio property.
Next, we would like to apply Proposition 3 to our model to establish existence of equi-

librium at the coordination stage for any players’choices of precision. Unfortunately, in our

setup the utility function u(·) is not bounded, and, thus, we cannot apply the above propo-
sition to our problem directly. The next result shows, however, that the Proposition 3 can

be extended to the case where u (·) is bounded from below and there exists an integrable

function h that dominates u. The idea behind this extension of their result is to use the

fact that utility function is bounded from below to establish that best response mapping is

well-defined and the dominated theorem to establish that best-response dynamics converge.

Proposition 4 Assume that the game to the class of monotone supermodular games and
assume that assumptions (1)− (3) of Proposition 1 are satisfied. Furthermore, assume that:

1. u is bounded from below

2. There exists measurable function h such that h ≥ |u| and h is integrable with respect to
p(t−i|ti) for all ti.

Then there exists a least and a greatest Bayesian Nash Equilibrium of the game Γ and

each one of them is in monotone strategies.

Proof. We prove this result in two steps. First, assuming that the greatest best reply

mapping βi is well-defined, increasing, and monotone, we show that under the assumptions

of Proposition 4 the greatest Bayesian Nash Equilibrium (BNE) exists. Then, we show that

under the assumptions of Proposition 4 βi is indeed well-defined, increasing, and monotone.

Step 1: Suppose that βi, is well-defined, increasing and monotone and u satisfies of

Proposition 4. Then we can repeat the argument of Lemma 6 in van Zandt and Vives (2007)

to show that there is a greatest and least BNE in monotone strategies. We can relax the

boundedness assumption, since under assumptions of Proposition 4 we can interchange the

order of limit and integration by applying dominated convergence theorem. Since this is the
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only step in that proof of Lemma 6 that requires boundedness of the utility function, we are

done.

Step 2: Here we need to establish that βi is well-defined and increasing. Then, the
monotonicity of βi will follow from Proposition 11 in van Zandt and Vives (2007). The

sensitive part of this step is to show that βi is well-defined, and more precisely that it is a

measurable function of ti. For this purpose we extend the proof of Lemma 9 in Ely and Peski

(2006) to cover general measurable functions. The rest of argument follows from van Zandt

(2010).

Fix ai ∈ Ai and define Ui(ti, t−i) := ui(ai, sj(tj), ti, t−i). We need to show that a function

vi : Ai × Ωi → R defined by

vi(ai, ti) =

∫
Ω−i

Ui(ti, t−i)dp(t−i|ti)

is measurable in ti. To establish this fact, van Zandt (2010) uses the following Lemma from

Ely and Peski (2006).

Lemma (Ely and Peski (2006)) Let A and B be measurable sets and g : A×B → [0, 1]

be a jointly measurable map. If m : A → ∆B (where ∆B denotes the set of probabil-

ity measures defined on B) is measurable, then the map Lg : A → R defined as Lg(a) =∫
g(a, ·)dm(a) is measurable.

Note however, that the proof of their lemma is unchanged if we allow g : A × B → R,
as long as g is measurable and bounded from below. In this case, there exists an increasing

sequence of simple functions gn such that gn ↑ g , so by the extended Monotone Convergence
Theorem (Ash, 2000) we have

∫
gndµ→

∫
gdµ for a measure µ defined on A× B. Hence we

conclude that vi : Ai × Ωi → R is a measurable function of ti. The rest of the proof follows
directly from van Zandt (2010) section 7.5. Monotonicity of βi follows from Proposition 11

in van Zandt and Vives (2007).

Finally, we show that the utility function u defined in Equation (3) satisfies the additional

conditions listed in Proposition 4. In what follows let µxi be the probability measure implied

F (θ, xj |xj) , player i’s posterior belief CDF.

Lemma 2 Utility function u defined in Equation (3) satisfies

1. u is bounded from below;

2. There exists a function h, integrable w.r.t. µxi, such that |u| < h.

Proof. It is easy to see that u is bounded from below by −T . To prove part 2, we note that∫
|u| dµθ|xi =

∫ ∣∣∣1{ai=1}

[
θ
(

1{θ∈[θ,θ]}1{sj(xj)=1} + 1{θ>θ}

)
− T

]∣∣∣ dµxi
6

∫
|max {0, θ} − T | dµxi 6

∫
|θ| dµxi +

∫
|−T | dµxi <∞
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Thus, the function

h (ai, aj , θ) = |max {0, θ} − T |

is integrable and dominates the utility function u. This establishes the claim.

Corollary 1 The game played by the agents in coordination stage possess a least and a
greatest Bayesian Nash Equilibrium, each one of them is in monotone strategies.

B.2 Coordination Stage

The expected payoff to player i who takes a risky action after observing signal xi and who

expects that a player j will follow a monotone strategy with threshold x∗j is given by

v
(
xi, x

∗
j ; τ i, τ j

)
=

∫ θ

θ
θ

[
1− Φ

(
x∗j − θ

τ
−1/2
j

)]
(τ i + τ θ)

1/2 φ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)
dθ (5)

+

∫ ∞
θ

θ (τ i + τ θ)
1/2 φ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)
dθ − T

It is convenient to make the following change of variables in the above equation

z =
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

After performing this change variables, Equation (5) becomes

v
(
xi, x

∗
j ; τ i, τ j

)
=

L(θ,xi)∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

][
1− Φ

(
x∗j − z√

τ i+τθ
− τ ixi+τθµθ

τ i+τθ

τ
−1/2
j

)]
φ (z) dz

+

∞∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
φ (z) dz − T, (6)

where L (θ, xi) is defined as

L (θ, xi) ≡
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

(7)

Lemma 3 Payoff v
(
xi, x

∗
j ; τ i, τ j

)
has the following properties:

1. v
(
xi, x

∗
j ; τ i, τ j

)
is increasing in xi

2. v
(
xi, x

∗
j ; τ i, τ j

)
is decreasing in x∗j .

3. For any x∗j ∈ R, we have limxi→−∞ v
(
xi, x

∗
j ; τ i, τ j

)
= −T
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4. For any x∗j ∈ R, we have limxi→∞ v
(
xi, x

∗
j ; τ i, τ j

)
=∞

Proof. Differentiating v
(
xi, x

∗
j ; τ i, τ j

)
w.r.t. xi we obtain

∂v
(
xi, x

∗
j ; τ i, τ j

)
∂xi

=

L(θ,xi)∫
L(θ,xi)

τ i
τ i + τ θ

[
1− Φ

(
x∗j − z√

τ i+τθ
− τ ixi+τθµθ

τ i+τθ

τ
−1/2
j

)]
φ (z) dz (8)

+

L(θ,xi)∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
τ i

τ i + τ θ
τ

1/2
j φ

(
x∗j − z√

τ i+τθ
− τ ixi+τθµθ

τ i+τθ

τ
−1/2
j

)
φ (z) dz

− τ i√
τ i + τ θ

θ

[
1− Φ

(
x∗j − θ

τ
−1/2
j

)]
φ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)

+
τ i√

τ i + τ θ
θ

[
1− Φ

(
x∗j − θ

τ
−1/2
j

)]
φ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)

+

∞∫
L(θ,xi)

τ i
τ i + τ θ

φ (z) dz

+
τ i√

τ i + τ θ
θφ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)

In the above expression, the first four terms corresponds to the derivative of the first integral

appearing in Equation (6) while the last two terms terms corresponds to the derivative of the

second integral appearing in that Equation. Simplifying Equation (8) we obtain

∂v
(
xi, x

∗
j ; τ i, τ j

)
∂xi

=

L(θ,xi)∫
L(θ,xi)

τ i
τ i + τ θ

[
1− Φ

(
x∗j − z√

τ i+τθ
− τ ixi+τθµθ

τ i+τθ

τ
−1/2
j

)]
φ (z) dz (9)

+

L(θ,xi)∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
τ iτ

1/2
j

τ i + τ θ
φ

(
x∗j − z√

τ i+τθ
− τ ixi+τθµθ

τ i+τθ

τ
−1/2
j

)
φ (z) dz

+
τ i√

τ i + τ θ
θΦ

(
x∗j − θ

τ
−1/2
j

)
φ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)

+
τ i√

τ i + τ θ
θ

[
1− Φ

(
x∗j − θ

τ
−1/2
j

)]
φ

(
θ − τ ixi+τθµθ

τ i+τθ

(τ i + τ θ)
−1/2

)

+

∞∫
L(θ,xi)

τ i
τ i + τ θ

φ (z) dz
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Note that since θ ≥ 0, it follows that

(τ i + τ θ)
−1/2 z +

τ ixi + τ θµθ
τ i + τ θ

≥ 0 for all z ∈
[
L (θ) , L

(
θ
)]

and so the second term in Equation (9) is strictly positive. The remaining terms are clearly

positive. Therefore, we conclude that

∂v
(
xi, x

∗
j ; τ i, τ j

)
∂xi

> 0

The derivative of v
(
xi, x

∗
j ; τ i, τ j

)
w.r.t. x∗j is much simpler. In particular, we have

∂v
(
xi, x

∗
j ; τ i, τ j

)
∂x∗j

= −

L(θ)∫
L(θ)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
τ

1/2
j φ

(
x∗j − z√

τ i+τθ
− τ ixi+τθµθ

τ i+τθ

τ
−1/2
j

)
φ (z) dz < 0

which is negative since

z√
τ i + τ θ

+
τ ixi + τ θµθ
τ i + τ θ

≥ 0 for all z ∈
[
L (θ, xi) , L

(
θ, xi

)]
Finally, to show that limxi→−∞ v

(
xi, x

∗
j ; τ i, τ j

)
= −T and limxi→−∞ v

(
xi, x

∗
j ; τ i, τ j

)
=

∞ we note that

∞∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
φ (z) dz−T ≤ v

(
xi, x

∗
j ; τ i, τ j

)
≤

∞∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
φ (z) dz−T

where

∞∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
φ (z) dz − T =

φ (L (θ, xi))√
τ i + τ θ

+
τ ixi + τ θµθ
τ i + τ θ

[1− Φ (L (θ, xi))]− T

∞∫
L(θ,xi)

[
z√

τ i + τ θ
+
τ ixi + τ θµθ
τ i + τ θ

]
φ (z) dz − T =

φ
(
L
(
θ, xi

))
√
τ i + τ θ

+
τ ixi + τ θµθ
τ i + τ θ

[
1− Φ

(
L
(
θ, xi

))]
− T

We note that for θ ∈
{
θ, θ
}

lim
xi→−∞

φ (L (θ, xi))√
τ i + τ θ

+
τ ixi + τ θµθ
τ i + τ θ

[1− Φ (L (θ, xi))]− T = −T

lim
xi→∞

φ (L (θ, xi))√
τ i + τ θ

+
τ ixi + τ θµθ
τ i + τ θ

[1− Φ (L (θ, xi))]− T = ∞
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Thus, we conclude that limxi→−∞ v
(
xi, x

∗
j ; τ i, τ j

)
= −T and limxi→−∞ v

(
xi, x

∗
j ; τ i, τ j

)
=

∞.
The above results implies the following corollary.

Corollary 2 For any x∗j ∈ R, there exists unique x∗i ∈ R such that v
(
xi, x

∗
j ; τ i, τ j

)
≥ 0 if

and only if x∗i ≥ 0. Moreover, ∂x∗i /∂x
∗
j > 0.

The equilibrium in monotone strategies is characterized by a pair of threshold {x∗1, x∗2}
that solve simultaneously the following two equations

v (x∗1, x
∗
2; τ1, τ2) = 0 (10)

v (x∗2, x
∗
1; τ2, τ1) = 0 (11)

Equation (10) states that when player 1 receives signal x∗1 then he is indifferent between taking

the risky action and taking the safe action given that player 2 follows a monotone strategy

with threshold signal x∗2. Equation (11) in turn states that when player 2 receives signal x∗2
then he is indifferent between taking the risky action and safe actions given that player 1

follows a monotone strategy with threshold signal x∗1. That there exists a pair of thresholds

{x∗1, x∗2} that simultaneously satisfy Equations (10) and (11) follows from Corollary 1.

Lemma 4 In the limit as τ1 → ∞, τ2 → ∞, with τ1
τ2
→ c ∈ R the game has a unique

equilibrium in monotone strategies characterized by thresholds
{
x∗,lim1 , x∗,lim2

}
, where

x∗,lim1 = x∗,lim2 = 2T

Proof. Let
x∗,lim1 ≡ lim

τ i,τ j→∞
τ i/τ j→c

x∗1 and x∗,lim2 = lim
τ i,τ j→∞
τ i/τ j→c

x∗2

First, note that agents will never use a threshold strictly larger than θ as in that case they

would be strictly better off using thresholds equal to θ. Similarly, agents will never use

threshold strictly less than θ as in that case they would be strictly better off using thresholds

equal to θ.

Next, we argue that in the limit both agents have to use the same thresholds, that is

x∗,lim1 = x∗,lim2 = x∗,lim

for some x∗,lim ∈ R.37 To see this note that as τ i,τ j →∞ (with τ i/τ j → c) player i’s payoff

37 In what follows, we assume that the all limits are well defined. It is a standard exercise to show that this
is indeed the case (see for example Szkup and Trevino (2020)).
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indifference condition converges to

x∗,limi

Li∫
Li

1− Φ

 lim
τ i,τ j→∞
τ i/τ j→c

x∗j − x∗i
τ
−1/2
j

φ (z) dz + x∗,limi

∞∫
Li

φ (z) dz − T = 0 (12)

where

Li ≡ lim
τ i,τ j→∞
τ i/τ j→c

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

and Li ≡ lim
τ i,τ j→∞
τ i/τ j→c

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

Similarly, the payoff indifference condition of player j converges to

x∗,limj

Lj∫
Lj

1− Φ

 lim
τ i,τ j→∞
τ i/τ j→c

(
τ i
τ j

)1/2 x∗i − x∗j
τ
−1/2
j

φ (z) dz + x∗,limj

∞∫
Lj

φ (z) dz − T = 0, (13)

where Lj and Lj are defined analogously to Li and Li. WLOG, suppose that x
∗,lim
j > x∗,limi .

In that case, Equation (12) becomes

x∗,limi

∞∫
Li

φ (z) dz − T = 0 (14)

while Equation (13) becomes

x∗,limj

∞∫
Lj

φ (z) dz − T = 0 (15)

where

Li = lim
τ i,τ j→∞
τ i/τ j→c

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

≥ lim
τ i,τ j→∞
τ i/τ j→c

θ − τ jx
∗
j+τθµθ
τ j+τθ

(τ j + τ θ)
−1/2

= Lj

since θ > θ and x∗,limj > x∗,limi . But since Li ≥ Lj , Equations (14) and (15) imply that

x∗,limi ≥ x∗,limj , a contradiction. Thus, we conclude that in the limit we have x∗,limi = x∗,limj =

x∗,lim.

It is straightforward to see that x∗,lim ∈
[
θ, θ
]
. We now argue that x∗,lim 6= θ and

x∗,lim 6= θ. To see this x∗,lim 6= θ define

κ ≡ lim
τ i,τ j→∞
τ i/τ j→c

x∗j − x∗i
τ
−1/2
j

(16)

It follows that

lim
τ i,τ j→∞
τ i/τ j→c

x∗i − x∗j
τ
−1/2
i

= lim
τ i,τ j→∞
τ i/τ j→c

−
x∗j − x∗i
τ
−1/2
j

τ
−1/2
j

τ
−1/2
i

= −κ
√
c
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Given that x∗,limi = x∗,limj = x∗,lim it follows that player i’s and player j’s indifference condi-

tions converge to

x∗,lim
L∫
L

[1− Φ (κ)]φ (z) dz + x∗,lim
∞∫
L

φ (z) dz − T = 0 (17)

and

x∗,lim
L∫
L

[
1− Φ

(
−κ
√
c
)]
φ (z) dz + x∗,lim

∞∫
L

φ (z) dz − T = 0, (18)

respectively, where

L ≡ lim
τ i,τ j→∞
τ i/τ j→c

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

= lim
τ i,τ j→∞
τ i/τ j→c

θ − τ jx
∗
j+τθµθ
τ j+τθ

(τ i + τ θ)
−1/2

L ≡ lim
τ i,τ j→∞
τ i/τ j→c

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

= lim
τ i,τ j→∞
τ i/τ j→c

θ − τ jx
∗
j+τθµθ
τ j+τθ

(τ i + τ θ)
−1/2

Suppose that κ 6= 0. Then Equations (17) and (18) can be simultaneously satisfied only

if L = L. However, from the definition of L = L we see that this can happen only if either

L = L = −∞ (which implies that x∗,lim ≥ θ) or L = L =∞ (which implies that x∗,lim ≤ θ).

In the former case, Equations (17) and (18) simplify to

x∗,lim
∞∫
−∞

φ (z) dz − T = 0

implying that

θ ≤ x∗,lim = T,

which contradicts the fact that θ ≥ 2T . In the latter case, we obtain T = 0, which is a

contradicts the assumption of positive costs of investment. Thus, we conclude that κ = 0, in

which case Equations (17) and (18) simplify

x∗,lim
1

2

L∫
L

φ (z) dz + x∗,lim
∞∫
L

φ (z) dz − T = 0 (19)

It is straightforward to see that Equation (19) imply that x∗,lim ∈
(
θ, θ
)
. Therefore, in the
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limit, payoff indifference conditions for player i and j are simply given by

x∗,lim
∞∫
−∞

1

2
φ (z) dz − T = 0

implying that x∗,lim = 2T . This completes the proof.

Having established uniqueness of equilibrium in the limit, we now provide conditions for

the equilibrium to exist away from the limit. We first show that for any τ1 and τ2 there exists

τ θ (τ1, τ2) such that given τ1 and τ2 the coordination game has unique equilibrium whenever

τ θ < τ θ (τ1, τ2). We then show that if we assume that τ1, τ2 ≥ τ for some arbitrary τ ∈ R
then we can find a uniform bound on τ θ, which we denote by τ θ such that if τ θ < τ θ then

the equilibrium is unique for any τ1, τ2 ≥ τ .38

Theorem 1 Let τ1, τ2 ≥ τ . Then there exists τ θ > 0 such that for all τ θ < τ θ and for all

τ1, τ2 > τ there exists a unique, dominance solvable equilibrium of the coordination game in

which both players use threshold strategies.

Proof. As shown above, the coordination game belongs to the class of monotone supermod-
ular games and therefore we know that there are the least and the greatest Bayesian Nash

Equilibria in monotone strategies. Therefore, to establish the theorem, we only need to show

that for suffi ciently high τ θ there exists a unique monotone equilibrium.

Any equilibrium in monotone strategies is determined by players’indifference equations

v (x∗1, x
∗
2; τ1, τ2) = 0 (20)

v (x∗2, x
∗
1; τ1, τ2) = 0 (21)

Let v (x∗1, x
∗
2; τ1, τ2) = 0 denote the above system of equations written in a vector form. We

argue that for suffi ciently low τ θ, the mapping v :R2 → R is univalent, which implies that
the above system of equations has a unique solution.39

We argue first that the equilibrium thresholds belong to a bounded interval. In particular,

let xi (τ i, τ θ) be the solution to

∫ ∞
θ

θ (τx + τ θ)
1/2 φ

 θ − τ ix
∗
i+τθµθ
τ i+τθ

(τx + τ θ)
−1/2

 dθ = T,

that is xi (τ i, τ θ) is player i’s optimal threshold when player j uses threshold x∗j = −∞ (i.e.,

38Of course the bound τθ depends on τ .
39A mapping v : E→ R, where E ⊂ Rn, is univalent if v is one-to-one on its domain.
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player j always takes the risky action) and xi (τ i, τ θ) is the solution to

∫ ∞
θ

θ (τx + τ θ)
1/2 φ

 θ − τ ix
∗
i+τθµθ
τ i+τθ

(τx + τ θ)
−1/2

 dθ = T,

that is xi (τ i, τ θ) is player i’s optimal threshold when player j uses threshold x∗j = ∞ (i.e.,

player j always takes the safe action). Since from Corollary 2 we know that x∗i is increasing

in x∗j , it follows that for given τ i and τ θ, x
∗
i ∈ [xi (τ i, τ θ) , xi (τ i, τ θ)]. Moreover, it is easy

to see that both xi (τ i, τ θ) and xi (τ i, τ θ) are continuous in τ i and τ θ and have finite limit

as τ θ → 0 for any τ i > 0. By symmetry, it follows that x∗j ∈
[
xj (τ j , τ θ) , xj (τ j , τ θ)

]
, where

xj (τ j , τ θ) and xj (τ j , τ θ) are defined analogously.

With this result in hand we now argue that v is univalent. As suffi cient condition for v to

be univalent is for the Jacobian of v to be diagonally dominant (see Parthasarathy (1983)).

From the proof of Lemma 3 we know that

∂v
(
x∗i , x

∗
j ; τ i, τ j

)
∂x∗i

−

∣∣∣∣∣∣
∂v
(
x∗i , x

∗
j ; τ i, τ j

)
∂x∗j

∣∣∣∣∣∣ (22)

=
τ θ

τ i + τ θ

L(θ)∫
L(θ)

[
(τ i + τ θ)

−1/2 z +
τ ix
∗
i + τ θµθ
τ i + τ θ

]
τ

1/2
j φ

x∗j − (τ i + τ θ)
−1/2 z − τ ix

∗
i+τθµθ
τ i+τθ

τ
−1/2
j

φ (z) dz

+

L(θ)∫
L(θ)

τ i
τ i + τ θ

1− Φ

x∗j − (τ i + τ θ)
−1/2 z − τ ix

∗
i+τθµθ
τ i+τθ

τ
−1/2
j

φ (z) dz + Γ

where

L
(
θ
)
≡
θ − τ ix

∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

and L (θ) ≡
θ − τ ix

∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

and

Γ (τ θ) ≡
τ i√

τ i + τ θ
θΦ

(
x∗j − θ

τ
−1/2
j

)
φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2


+

τ i√
τ i + τ θ

θ

[
1− Φ

(
x∗j − θ

τ
−1/2
j

)]
φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2


+

∞∫
L(θ)

τ i
τ i + τ θ

φ (z) dz

> 0
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Moreover, limτθ→0 Γ (τ θ) ≥ 0 while

lim
τθ→0

L(θ)∫
L(θ)

τ i
τ i + τ θ

1− Φ

x∗j − (τ i + τ θ)
−1/2 z − τ ix

∗
i+τθµθ
τ i+τθ

τ
−1/2
j

φ (z) dz > 0

for all τ θ. Finally, we note that

lim
τθ→0

τ θ
τ i + τ θ

L(θ)∫
L(θ)

[
z

(τ i + τ θ)
−1/2

+
τ ix
∗
i + τ θµθ
τ i + τ θ

]
τ

1/2
j φ

x∗j − z

(τ i+τθ)−1/2
− τ ix

∗
i+τθµθ
τ i+τθ

τ
−1/2
j

φ (z) = 0

Therefore, we conclude that for any pair of {τ1, τ2} there exists τ θ (τ1, τ2) such that if

τ θ < τ θ (τ1, τ2) then for i = 1, 2, j 6= i, we have

∂v
(
x∗i , x

∗
j ; τ i, τ j

)
∂x∗i

−

∣∣∣∣∣∣
∂v
(
x∗i , x

∗
j ; τ i, τ j

)
∂x∗j

∣∣∣∣∣∣ > 0

It follows that the Jacobian of v is diagonally dominant implying that there exists unique

equilibrium in monotone strategies. Corollary 1 implies that this is the unique equilibrium

of the second stage.

We now show that if τ1, τ2 ≥ τ for some τ > 0 then there exists τ θ > 0 such that for all

τ θ < τ θ the equilibrium is unique (i.e., we want to establish existence of uniform bound on

τ θ that ensures the uniqueness of equilibrium). Towards this goal define

f (τ θ) ≡
∂v
(
x∗i (τ θ) , x

∗
j (τ θ) ; τ i, τ j , τ θ

)
∂x∗i

−

∣∣∣∣∣∣
∂v
(
x∗i (τ θ) , x

∗
j (τ θ) ; τ i, τ j , τ θ

)
∂x∗j

∣∣∣∣∣∣
where we express x∗i and x∗j explicitly as functions of τ θ. Let τ θ (τ1, τ2) be the smallest

solution to

f (τ θ) = 0

so that for all τ θ < τ θ (τ1, τ2) we have f (τ θ) > 0. We know that τ θ (τ1, τ2) is well defined by

the earlier argument. Moreover, note that ∂vi/∂x∗i and ∂vi/∂x
∗
j are continuous in all their

argument, and so are x∗i and x
∗
j . Therefore, it follows that τ θ (τ1, τ2) is a continuous function

of τ1 and τ2 on T =
{
{τ1, τ2} ∈ R2

∣∣ τ i ≥ τ , i = 1, 2
}
, where τ > 0.

We now perform everywhere a change of variables σ1 = 1/
√
τ1, σ2 = 1/

√
τ2 and σθ =

1/
√
τ θ, that is we switch from using precisions to using standard deviations as a measure of

informativeness. Note that the set of feasible choice of σi, i = 1, 2, is given by [0, σ] , where

σ ≡ 1/
√
τ . According to the above argument, for each {σ1, σ2} ∈ [0, σ] × [0, σ] there exists

σθ (σ1, σ2) such that for all σθ ≥ σθ (σ1, σ2) the equilibrium is unique. Moreover, σθ (σ1, σ2)

is continuous and finite for all {σ1, σ2} ∈ [0, σ] × [0, σ]. But since [0, σ] × [0, σ] is compact
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and σθ (σ1, σ2) is continuous it follows that σθ (σ1, σ2) achieves a maximum on [0, σ]× [0, σ] ,

call it σθ, with σθ <∞. Setting τ θ = 1/σ2
θ completes the proof.

Lemma 5 The risk-dominant equilibrium of the coordination game is a strategy-pair
{
βRD1 , βRD2

}
such that

βRDi =

{
Choose action A if θ ≥ 2T

Choose action B if θ < 2T

Proof. Recall that according to Harsanyi and Selten (1988) a strategy A risk-dominates

strategy B if A is associated with the larger product of deviation losses.40 When both

players play A then the product of players’ deviation losses is equal to (θ − T )2. If both

players play B then the product of players’deviation losses is equal to T 2. Therefore, A

risk-dominates B if

(θ − T )2 ≥ T 2,

or if

θ ≥ 2T

B.3 Information Acquisition

In Section B.2 we showed that for any pair {τ1, τ2} of players precision choices such that
τ i ≥ τ , i = 1, 2, the coordination stage has a unique equilibrium in monotone strategies. The

goal of this section is to prove existence and uniqueness of equilibrium in the model with

information acquisition. Throughout this section we make the following assumption.

Assumption 1 The precision level τ is large enough so that for all {τ1, τ2} ≥ τ we have

{x∗1, x∗2} ∈
(
θ, θ
)
×
(
θ, θ
)
. Moreover, τ θ is large enough so that equilibrium of the coordination

game is unique for any feasible choice of precision (i.e., for any {τ1, τ2} ≥ τ).

Note that by Lemma 4 and Theorem 1 such τ and τ θ exist. Having made the relevant

assumptions we now analyze players’precision choices. Each player i chooses his precisions

privately to maximize his ex-ante expected utility given by

U (τ i; τ j) = B
(
τ i; τ j , x

∗
j

)
− Ĉ (τ i) ,

where

B
(
τ i; τ j , x

∗
j

)
≡
∫ ∞
x∗i

v
(
xi;x

∗
j , τ i, τ j

) 1√
τ−1
θ + τ−1

i

φ

 xi − µθ√
τ−1
θ + τ−1

i

 dxi

40Player 1’s deviation loss from {A,A} is given by the change in player 1’s payoff in case he switches from A
to B, when player 2 plays A. Similarly, player 1’s deviation loss from {B,B} is given by the change in player
1’s payoff in case he switches from B to A, when player 2 plays B.
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is the expected benefit to player i from acquiring precision τ i when player i expects the other

player to choose precision τ j and use threshold x∗j and

Ĉ (τ i) ≡ C
(
τ
−1/2
i

)
= C (σi)

is the cost of precision τ i. We now establish several useful properties of functionB
(
τ i; τ j , x

∗
j

)
.

Lemma 6 Consider the benefit function B
(
τ i; τ j , x

∗
j

)
.

1. limτ i→0
∂B(τ i;τ j ,x∗j)

∂τ i
= 0

2.
∂B(τ i;τ j ,x∗j)

∂τ i
> 0 for all τ i <∞

3. B
(
τ i; τ j , x

∗
j

)
is concave in τ i.

Proof. (Part 1) Note that B
(
τ i; τ j , x

∗
j

)
is given by

∞∫
−∞

Φ

(
θ − x∗i
τ
−1/2
i

)[
θ1{θ≥θ} + θ1{θ∈[θ,θ]}

(
1− Φ

(
x∗j − θ

τ
−1/2
j

))
− T

]
τ

1/2
θ φ

(
θ − µθ
τ
−1/2
θ

)
dθ (23)

Differentiating the above expression w.r.t. τ i and performing a change of variables z =

τ
1/2
x (θ − x∗i ) in the resulting expression we obtain

∂B
(
τ i; τ j , x

∗
j

)
∂τ i

=

∞∫
−∞

z( z

τ
1/2
i

+ x∗i

)1{θ≥Λi} + 1{θ∈[Λi,Λi]}

1− Φ

x∗j − z

τ
1/2
i

− x∗i

τ
−1/2
j

− T
(24)

× 1

2τ
3/2
i

τ
1/2
θ φ

 z

τ
1/2
i

+ x∗i − µθ

τ
−1/2
θ

φ (z) dz,

where Λi = τ
1/2
i (θ − x∗i ) and Λi = τ

1/2
i

(
θ − x∗i

)
. Applying dominated convergence theorem

to interchange the order of limit and integration, we conclude that

lim
τ i→∞

∂B
(
τ i; τ j , x

∗
j

)
∂τ i

= 0

(Part 2): Differentiating the expression for B
(
τ i; τ j , x

∗
j

)
in (23) we obtain

∂B
(
τ i; τ j , x

∗
j

)
∂τ i

=

∞∫
−∞

{[
θ1{θ≥θ} + θ1{θ∈[θ,θ]}

(
1− Φ

(
x∗j − θ

τ
−1/2
j

))
− T

]

× τ1/2
θ φ

(
θ − µθ
τ
−1/2
θ

)
φ

(
θ − x∗i
τ
−1/2
i

)(
θ − x∗i
2τ

1/2
i

)}
dθ (25)
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Equation (25) can be equivalently written as

∂B
(
τ i; τ j , x

∗
j

)
∂τ i

=

∞∫
−∞

{[
θ1{θ≥θ} + θ1{θ∈[θ,θ]}

(
1− Φ

(
x∗j − θ

τ
−1/2
j

))
− T

]

× (τ i + τ θ)
1/2 φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
1/2

( τ θτ i
τ i + τ θ

)1/2

φ

x∗i − µθ√
τ i+τθ
τθτ i

(θ − x∗i
2τ i

) dθ(26)

Now, let

f (θ) =

(
τ θτ i
τ i + τ θ

)1/2

φ

x∗i − µθ√
τ i+τθ
τθτ i

 θ,

g (θ) = θ1{θ≥θ} + θ1{θ∈[θ,θ]}

(
1− Φ

(
x∗j − θ

τ
−1/2
j

))
− T ,

w (θ) = (τ i + τ θ)
1/2 φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
1/2


and note that f and g are increasing functions and w (θ) is a pdf. Therefore, the continuous

version of weighted Chebyshev’s sum inequality implies that

∂B
(
τ i; τ j , x

∗
j

)
∂τ i

=

∞∫
−∞

f (θ) g (θ)w (θ) dθ

≥
∞∫
−∞

f (θ)w (θ) dθ

∞∫
−∞

g (θ)w (θ) dθ

Moreover, since f and g are strictly increasing for all θ > θ and w (θ) > 0 for all θ, we

conclude that the above inequality is strict. Finally, note that

∞∫
−∞

g (θ)w (θ) dθ = v
(
x∗i , x

∗
j ; τ i, τ j

)
= 0

Therefore, we conclude that

∂B
(
τ i; τ j , x

∗
j

)
∂τ i

> 0
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(Part 3): We have

∂2B
(
τ i; τ j , x

∗
j

)
∂τ2

i

= − 1

4τ2
i

∞∫
−∞

{[
θ1{θ≥θ} + θ1{θ∈[θ,θ]}

(
1− Φ

(
x∗j − θ

τ
−1/2
j

))
− T

]

τ
1/2
θ φ

(
θ − µθ
τ
−1/2
θ

)
φ

(
θ − x∗i
τ
−1/2
i

)
θ − x∗i
τ
−1/2
i

1 +

(
θ − x∗i
τ
−1/2
i

)2
 dθ

Note that

τ
1/2
θ φ

(
θ − µθ
τ
−1/2
θ

)
φ

(
θ − x∗i
τ
−1/2
i

)
= (τ θ + τx)1/2 φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2

( τ θ
τ i + τ θ

)1/2

φ

x∗i − µθ√
τ i+τθ
τθτ i


Therefore,

∂2B
(
τ i; τ j , x

∗
j

)
∂τ2

i

= − 1

4τ2
i

∞∫
−∞

l (θ) k (θ)w (θ) dθ

where

k (θ) ≡ θ − x∗i
τ
−1/2
i

1 +

(
θ − x∗i
τ
−1/2
i

)2
( τ θ

τ i + τ θ

)1/2

φ

x∗i − µθ√
τ i+τθ
τθτ i


l (θ) ≡

[
θ1{θ≥θ} + θ1{θ∈[θ,θ]}

(
1− Φ

(
x∗j − θ

τ
−1/2
j

))
− T

]

w (θ) = (τ θ + τx)1/2 φ

θ − τ ix
∗
i+τθµθ
τ i+τθ

(τ i + τ θ)
−1/2


Moreover, note that both k (θ) and l (θ) are both increasing in θ and strictly increasing

for all θ ≥ θ while w (θ) is a pdf. Therefore, the weighted continuous version of weighted

Chebyshev’s sum inequality and the properties of k (θ) and l (θ) imply that

∂2B
(
τ i; τ j , x

∗
j

)
∂τ2

i

= − 1

4τ2
i

∞∫
−∞

l (θ) k (θ)w (θ) dθ

< − 1

4τ2
i

∞∫
−∞

l (θ)w (θ) dθ

∞∫
−∞

k (θ)w (θ) dθ

Finally, we note that
∞∫
−∞

l (θ)w (θ) dθ = v
(
x∗i , x

∗
j ; τ i, τ j

)
= 0
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Thus, we conclude that ∂2B
(
τ i; τ j , x

∗
j

)
/∂τ2

i < 0, which establishes the claim.

With this result in hand we can now prove the existence of equilibrium in our global game

model with information acquisition.

Theorem 2 There exists a symmetric pure-strategy Bayesian Nash Equilibrium of the game

with information acquisition.

Proof. From Lemma 6 we know B
(
τ i; τ j , x

∗
j

)
is a concave increasing function function with

lim τ i→∞B
(
τ i; τ j , x

∗
j

)
= 0. Therefore, the best response function

τ∗i (τ j) = arg max
τ i≥τ

Ui (τ i; τ j)

is well defined and continuous in τ j . At this point, it is convenient to go back to considering

players’choices of standard deviations rather than precisions. In particular, let σ = 1/
√
τ

and define σ∗i : [0, σ] → [0, σ] with σ∗i (σj) = 1/

√
τ∗i

(
1/σ2

j

)
. Thus, σ∗i is player i’s best

response to player j’s choice of standard deviation. Note that since τ∗i is continuous so is

σ∗i . Therefore, the best-response σ =
{
σ∗i , σ

∗
j

}
is a continuous function that maps [0, σ]2 into

[0, σ]2. Hence, by Brouwer’s Fixed Point Theorem, σ∗(·) has a fixed point. This completes
the proof.
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