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Abstract

We study how the presence of strategic uncertainty affects how people

choose and use information in a simple game that can be easily transformed

into an individual decision task. Despite differences in initial choices, strate-

gic uncertainty has little effect on how people choose information once be-

havior has stabilized. While the modal precision choice corresponds to the

equilibrium prediction, we find that a substantial proportion of subjects

overacquires information. In terms of information use, we find substantial

overuse of private information in the strategic, but not in the individual deci-

sion environment. We argue that the overuse of information is driven by the

diffi culty to form beliefs about others’signals and strategies. Our analysis

also suggests that overacquisition might be driven partially by the overuse

of information and partially by an incorrect perception of the underlying

information structure. Finally, we characterize the welfare consequences of

the information overacquisition and overuse biases.
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1 Introduction

Information processing biases have been extensively documented in psychology and

economics. These systematic departures from the Bayesian paradigm can take dif-

ferent forms, depending on the information that is neglected or overweighed. The

vast majority of the evidence that has identified these biases comes from individual

decision-making environments where agents have to form beliefs about unknown

states.1 However, we have limited knowledge of how information processing biases

arise in strategic environments, which are characterized by a complex architecture

of beliefs. In games of incomplete information players face not only fundamen-

tal uncertainty, but also strategic uncertainty and thus form beliefs, respectively,

about states and about the actions and beliefs of others. Game theoretic mod-

els of incomplete information approach these complex belief systems by assuming

Bayesian rationality of players. However, in light of our robust understanding of

departures from Bayesian rationality in individual decision making, it is an im-

portant endeavour to characterize how information processing biases might arise

in strategic settings and to identify biases that could be intrinsic to these environ-

ments. Our paper is the first one that attempts to broadly characterize biases in

the choice and use of information that are driven by strategic uncertainty.

The objective of this paper is to study experimentally how the presence of

strategic uncertainty affects the choice and use of information. We use a simple

theoretical framework (based on Morris and Shin (2002)) which features a rich

information structure that leads to non-trivial trade-offs in the choice and use of

different types of information (private and public). Our theoretical setup nests an

individual decision making case, which allows us to easily compare behavior across

strategic and non-strategic environments, both theoretically and experimentally.

Thus, we are able to identify how the presence of strategic uncertainty affects the

choice and use of information.2

1See, for example, Tversky and Kahneman (1974), Kahneman at al. (1991),

Griffi n and Tversky (1992), Moore and Cain (2007), or Enke and Zimmermann

(2018). Rabin (1998) and Kahneman et al. (2001) provide overviews of this

literature.
2Dale and Morgan (2012) and Cornand and Heinemann (2014) test the pre-
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In terms of information choices, we find that, overall, subjects tend to make

similar choices in the strategic and individual environments characterized by both

high frequencies of equilibrium precision and overacquisition of information. How-

ever, in the initial rounds we see a much stronger tendency for subjects to overac-

quire information in the presence of strategic uncertainty and it is learning dynam-

ics that eventually lead to similar distribution of choices across environments. In

terms of how subjects use the information acquired, we find that strategic uncer-

tainty has a strong effect. While subjects use information similarly to the Bayesian

paradigm in the individual decision task, they strongly overuse private information

in the strategic setup, particularly those subjects who overacquire information. We

show that this overuse is not driven by uncertainty about the rationality of others

and explore how specific components of belief formation in strategic environments

can affect this result. We analyze the payoff consequences of the overacquisition

and overuse biases and find that overacquisition of information is responsible for

the observed losses.

As our theoretical benchmark we develop a two-player version of the beauty

contest model of Morris and Shin (2002), extended to feature an initial stage of

costly information acquisition.3 In the model, agents want to choose an action

dictions of Morris and Shin (2002) and Angeletos and Pavan (2007) regarding the

equilibrium use of information in games without information acquisition and find

that subjects underreact to changes in the precision of public information. Heine-

mann et al. (2007), Szkup and Trevino (2020), and Trevino (2020) investigate

how exogenous changes in the information structure affect subjects play in global

games. Few papers study information acquisition experimentally in strategic en-

vironments, such as Szkup and Trevino (2022), Gretschko and Rajko (2015), and

Battacharya et al. (2017). Baeriswyl et al. (2020) study endogenous attention

allocation and show that subjects allocate less attention to most common and

least private signal than predicted the theory. None of these papers study how

the strategic environment affects the way subjects choose or use information.
3We focus on a two-player setup since this is the simplest departure from the in-

dividual setup. This also avoids some of the diffi culties that experimental subjects

face when coordinating in larger groups (see Weber (2006)).
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that is close to an unknown state of fundamentals and to the other agent’s action.

We model this utility via a quadratic loss function where the mismatch can occur

along these two dimensions. Before choosing their actions, agents observe two

noisy signals about the fundamental: a public signal, with an exogenously given

precision, and a private signal whose precision is endogenously chosen by each

agent at the information acquisition stage, at a cost. The presence of coordination

motives and incomplete information implies that agents face a substantial amount

of strategic uncertainty as they have to make inferences not only about the action

of their opponent, but also about their information and beliefs. At the same time,

they face a trade-off between matching the fundamental and matching the action

of the other agent. This leads to a rich set of testable theoretical predictions.

The equilibrium action rules in the baseline model and in its various behavioral

extensions are always linear combinations of private and public information, which

makes this model an ideal benchmark to characterize departures from the Bayesian

paradigm in terms of biases.

In the theoretical analysis we characterize the unique Bayesian Nash equilib-

rium of our model. We also derive the corresponding predictions for the individual

decision-making version of our game where we remove strategic motives, i.e., where

agents care only about matching the state of fundamentals. Our paper relates to

the broader literature that studies theoretically information acquisition and use

in coordination games. Following Morris and Shin (2002), the tensions between

increased transparency of public information and welfare have been investigated

both when private information is exogenously determined (Angeletos and Pavan

(2007), Ui and Yoshizawa (2015)) and when it is endogenized (Hellwig and Veld-

kamp (2009), Myatt and Wallace (2012), Colombo et al. (2014), Pavan (2016)).

These papers assume Bayesian rationality of players. Our experiment validates

some of the predictions of this literature, such as the crowding out effects of in-

creased transparency of public information on private information acquisition, and

hints at welfare mechanisms. However, the biases we identify also suggest that

some of the predictions of these papers might need to be reevaluated.

With our theoretical results in hand, we design the experiment to understand

how strategic uncertainty affects the choice and use of information. In terms of

information choices, we observe no difference in the strategic and non-strategic
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environments once behavior has stabilized. In both environments the distribu-

tions of precision choice are bimodal with peaks corresponding to the equilibrium

prediction and overacquisition of information. The overacquisition of private in-

formation is sustained across different levels of transparency of public information

and, interestingly, its extent is not driven by strategic motives. In the strategic

environment information choices are strategic complements, so we could imag-

ine that precision choices off-equilibrium could differ across environments due to

this. However, we observe no significant differences in the individual decision mak-

ing environment and this is robust to varying parameters of the model, such as

strength of coordination motives or transparency of public information. We find

strong support for the theoretical prediction that an increase in the transparency

of public information crowds out private information acquisition (see Colombo et

al. (2016)).

While overacquisition of instrumental information has been documented in few

instances, it is not clear why subjects are prone to overacquire information.4 To

understand the sources of the observed heterogeneity we analyze the dynamics of

information choices in our experiment. We find that subjects who start choosing

high precisions rarely experiment with lower precisions, so they do not get to learn

the benefits of cheaper and less precise private information, leading to higher pre-

cision than the equilibrium becoming an absorbent state. By looking at learning

dynamics we find differences across the individual and strategic environments in

the initial rounds of the experiment, with relatively uniform choices across differ-

ent precisions in the individual setup and choices that clearly favor overacquisition

in the strategic setup. However, the distribution of precision choices in both en-

vironments converge to similar distributions. These results suggest that strategic

uncertainty does have an impact on subjects information choices encouraging them

initially to overacquire information, but its impact diminishes over time.

In contrast to our results about information choices, we see clear differences

in how subjects use information in the strategic and non-strategic environments.

4Conlon et al. (2016) and Reshidi et al. (2021) present evidence for overacqui-

sition of information in non-strategic environments, while Gretschko and Rajko

(2015) and Battacharya et al. (2017) do so under strategic uncertainty.
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While subjects in the individual decision making environment use their signals

closely to the Bayesian benchmark, we see a stark overuse of private information

in the strategic case, especially for those subjects who overacquire information. We

show that this overuse of information is not due to a sunk cost fallacy because the

bias is still present in the strategic setup in a treatment without costly information

acquisition. Moreover, the overuse of private information is robust to variations

in the strength of strategic complementarities. We show that our results cannot

be explained by standard models of bounded rationality in games (level-k, regret

aversion, quantal response equilibrium, or overconfidence). Likewise, we do not

identify any learning dynamics throughout the different rounds of the experiment

that could explain our results. Thus, we conclude that strategic uncertainty has

a strong and lasting impact on subjects’use of information.

We investigate possible channels through which strategic uncertainty may lead

to this disparity in the use of information. We refer to strategic uncertainty

broadly as the uncertainty about the behavior of the other player. In our setup

this is manifested in three ways. The first is captured by the theoretical model

where, in equilibrium, players do not know the other player’s signal, so they do

not know their action, but they do know the mapping between signals and actions

(i.e., the strategy). The second manifestation of strategic uncertainty that can

occur in our experiment, but not in the model, is that subjects do not know the

strategy of the other player so they have to form beliefs about the mapping between

signals and actions. Finally, strategic uncertainty can manifest in our experiment

as uncertainty about the rationality of the other player. To understand our results

about the overuse of private information in the strategic setting we focus on these

3 manifestations by devising 2 treatments where we shut down the first and third

manifestations, respectively, in a simple way.

We explore whether uncertainty about the rationality of others could be re-

sponsible for our results by running a treatment where subjects play against a

computer that follows the equilibrium action. Subjects do not know the signal or

the strategy of their opponent, but they know that their opponent behaves opti-

mally. We find persistent overuse of private information in this case as well, which

suggests that the overuse bias we identify in the game is inherent to strategic forces

that do not rely on beliefs about rationality. In a different treatment we shut down
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the strategic uncertainty related to forming beliefs about the signal observed by

the other player. This treatment is identical to the strategic baseline, except that

subjects are provided with the Bayesian estimates of their opponent’s private sig-

nal, which is based on the subject’s own signals. Qualitatively, we still observe

that subjects who overacquire information overuse private information with re-

spect to the Bayesian benchmark, but we see a drastic decrease in the magnitude

of this bias, suggesting that the diffi culty to form beliefs about the information

held by others contributes significantly to the overuse bias. The persistence of

this bias in this treatment, however, suggests that it is not just the diffi culty to

form beliefs about the observations of others, but that forming beliefs about the

mapping of these observations to actions might also be behind this bias.

We analyze realized payoffs and compare them to the payoffs that would result

if subjects behaved according to the theoretical benchmark to quantify the welfare

effects of the biases we identify. We find that the overuse of information has a

negligible effect on payoffs, whereas the overacquisition of information leads to

significant welfare losses due to the higher cost of more precise information. This

result is robust to treatment and parameter variations.

Our results might offer relevant lessons for economists, policy makers, and

professionals. The abundance of information in the digital world leads individu-

als, firms, investors, and policy makers to spend more time than ever gathering,

processing, and utilizing information. Our qualitative results, i.e., the identifica-

tion of biases, are relevant to understand these processes in a variety of settings

that feature key trade-offs emphasized in our model, such as firms’ technology

adoption, investment and pricing decisions, financial investors’portfolio choices,

or banks’lending decisions.

2 The model

The model used to derive hypotheses for the experiment is a modified version

of Morris and Shin (2002) with two players (as opposed to a continuum) and

extended to feature an initial stage of costly information acquisition. Therefore,

our model captures the interplay between endogenous information choices and

fundamental and strategic uncertainty. In the Online Appendix we discuss the

specific relationship between our model and Morris and Shin (2002).
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2.1 Preferences

There are two identical agents i = 1, 2. Agent i’s utility is given by

U (ai, aj, θ) = − (1− α) (ai − θ)2 − α (ai − aj)2 , (1)

where ai is agent i’s action, aj is the action of the other agent, and θ is a payoff-

relevant variable, which we refer to as the fundamental state. The constant α ≥ 0

captures the degree of strategic complementarity in agents’actions. This utility

function indicates that agents would like to choose an action close to the fun-

damental θ and close to the other agent’s action, with α capturing the relative

importance assigned to each of these motives. The higher is α the more agents

care about matching the other agent’s action relative to matching the state. When

α = 0 the strategic motive is absent, in which case the model corresponds to an

individual decision making problem. As is standard in the literature, we set α < 1

to ensure the existence of equilibrium (see Angeletos and Pavan (2007)). The

fundamental state, θ, is distributed according to a normal distribution with mean

µθ and variance τ
−1
θ , that is θ ∼ N

(
µθ, τ

−1
θ

)
. However, the realization of θ is not

observed by the agents.

2.2 The Information Acquisition Stage

In the first stage of the model each agent chooses privately the precision of their

private signal about θ, xi, that they receive at the beginning of the second stage,

where

xi = θ + τ
−1/2
i εi, εi ∼ N (0, 1) , (2)

with εi independent of θ and i.i.d. across agents. τ i is the precision that agent i

chooses for his signal in the information acquisition stage. We assume τ i ∈ [τ ,∞]

(with τ ≥ 0), where choosing τ i = ∞ implies observing θ perfectly. Acquiring

more precise information is costly: choosing τ i is associated with a cost C (τ i).

Assumption 1 The cost function C is continuously twice differentiable and sat-

isfies the following properties: (i) C is strictly increasing in τ i (C ′ (·) > 0),

(ii) C is strictly convex in τ i (C ′′ (·) > 0), (iii) C (τ) = C ′ (τ) = 0, and (iv)

limτ i→∞C
′ (τ i) =∞.
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These are standard assumptions in the literature on costly information acqui-

sition (see, for example, Colombo et al. (2014) or Szkup and Trevino (2015)). The

first and second part of Assumption 1 imply that more precise information is more

costly and that a marginal increase in precision is more costly when the precision

is already high; that is C (·) is increasing and convex. The third part states that
acquiring no information is associated with no cost and that an infinitesimal im-

provement in precision is costless. As a consequence, in equilibrium, both agents

will choose to improve the precision of their signals. The last property implies

that no agent will ever acquire perfectly informative signals.

After making their information choices privately, agents move to the coordina-

tion stage.

2.3 The Coordination Stage

In the coordination stage, agents observe noisy signals about θ and choose their

actions. Additionally to the private signal with endogenous precision specified in

(2), both agents observe a public signal y, given by

y = θ + τ−1/2y εy, εy ∼ N (0, 1) , (3)

where τ y is the precision of the public signal and εy is independent of θ and εi.

After observing the private and public signals agents simultaneously choose

their actions to maximize their utility, defined in (1). When choosing their actions

agents face both fundamental uncertainty (about θ) and strategic uncertainty

(about the other agent’s action aj), and hence agents’actions need to balance their

desire of matching the fundamental and the action of the other player. Agents have

three sources of information to help them make their decisions: (i) the common

prior belief N
(
µθ, τ

−1
θ

)
, (ii) the private signal xi, and (iii) the public signal y. As

has been pointed out by Morris and Shin (2002) and Angeletos and Pavan (2007),

public information plays a key role in determining agents’actions. Just as private

information, it reduces fundamental uncertainty, but it also serves as a device to

reduce strategic uncertainty because it is observed by both agents.

2.4 Equilibrium

We now characterize the equilibrium of our model and derive testable predictions.

We solve the model using backward induction. Thus, we first characterize the equi-
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librium in the coordination stage for any given pair of precision choices, {τ i, τ j},
which specifies the optimal use of information. We then move to the information

acquisition stage and characterize equilibrium information choices. The detailed

derivations of the results reported below can be found in the Online Appendix.5

2.4.1 Equilibrium Use of Information

Consider agent i who observes private signal xi with precision τ i and public signal

y with precision τ y, and who believes that agent j acquires precision τ j. Agent

i’s strategy corresponds to ai : R2 → R that maps agent i’s signals {xi, y} into an
action. Therefore, taking as given the strategy of agent j, aj (xj, y), the optimal

strategy of agent i satisfies

a∗i (xi, y) = max
a′∈R

E [U (a′, aj (xj, y) , θ)|xi, y; τ i, τ j]

Given the functional form of the utility function (Equation (1)), the first order

condition associated with the maximization problem implies that

a∗i (xi, y) = (1− α)E [θ|xi, y] + αE [aj (xj, y)|xi, y] (4)

Let z ≡ (τ yy + τ θµθ) / (τ y + τ θ) and τ z ≡ τ y + τ θ. Agents’ common posterior

belief (i.e., posterior belief based only on public information) is given by θ|y ∼
N (z, τ−1z ) . In addition, for each i = 1, 2, let δi = τ z/ (τ z + τ i) so that E [θ|xi, z] =

δiz + (1− δi)xi, where δi is the weight assigned to public information in the
posterior of a Bayesian agent after observing both public and private signals. We

now characterize the equilibrium strategies of the coordination stage.

Lemma 1 Let τ = {τ i, τ j}. For each player i = 1, 2, the unique linear equilibrium

strategy of the coordination stage is given by

ai (xi, y) = β∗i (τ )xi + γ∗i (τ ) z, (5)

5Colombo et al. (2014) consider information acquisition in a general linear-

quadratic Gaussian setup but do so in the model with a continuum of agents.

Ui and Yoshizawa (2015) consider a general linear-quadratic Gaussian setup with

finitely many players but with exogenous information structure. We contribute

to this literature by solving in the Online Appendix a general quadratic-Gaussian

model with information acquisition and two players (of which our experimental

setup is a special case).
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where

β∗i (τ ) = (1− α) (1− δi)
1 + α (1− δj)

1− α2 (1− δi) (1− δj)
(6)

and γ∗i (τ ) = 1− β∗i (τ ). If α = 0 then β∗i (τ ) = 1− δi.

This result shows that in a linear equilibrium each agent’s action is a weighted

sum of his private and public information. However, as first pointed our by Morris

and Shin (2002), if α > 0 then agents rationally attach a weight β∗i to private

information, which is lower than the weight on private information in the Bayesian

posterior, (1− δi) . Only when α = 0 we have β∗i = 1 − δi. This result is driven
by the presence of strategic complementarities (as measured by α) and by the fact

that relying more on public information allows agents to better coordinate their

actions. The parameter α plays a key role as it measures the “equilibrium degree

of coordination”or, equivalently, the private value that agents assign to aligning

their choices.6 Finally, it is easy to see that β∗i is decreasing (or, equivalently, γ
∗
i

is increasing) in α and in τ z.

2.4.2 Equilibrium Choice of Information

We now consider choices in the information acquisition stage. The ex-ante utility

of agent i given precision choices {τ i, τ j} is

E [U (ai, aj, θ)| τ i, τ j]− C (τ i) , (7)

where expectations are taken over possible realizations of θ and the signals. Agent

i’s problem is to choose precision τ i to maximize the his ex-ante utility. The first

order condition associated with this problem is given by

∂

∂τ i
E [U (ai, aj, θ)| τ i, τ j]− C ′ (τ i) = 0 (8)

Equation (8) determines agent i’s optimal choice of precision, for each precision

choice of player j. The next result characterizes the unique equilibrium precision.

6In our simple model, the equilibrium degree of coordination is simply the

weight in the utility function attached to minimizing the distance between agents’

choices. In a more general model, the equilibrium degree of coordination is mea-

sured by the slope of agents’best-response function (see the Online Appendix or

Angeletos and Pavan (2007)).
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Lemma 2 In the unique equilibrium of the model, both agents choose precision

τ ∗, which is the unique solution to

τ ∗ =

√
1

C ′ (τ ∗)
− 1

1− ατ z (9)

Lemma 2 establishes that in the unique equilibrium, both agents choose τ ∗. There-

fore, at the coordination stage they use information symmetrically, i.e., δi = δj.

Corollary 1 Consider the equilibrium precision choice τ ∗.

1. The equilibrium precision choice τ ∗ is decreasing in the precision of public

information τ z, that is ∂τ ∗/∂τ z < 0.

2. The equilibrium precision choice τ ∗ is decreasing in the degree of strategic

complementarities α, that is ∂τ ∗/∂α < 0.

Corollary 1 states that, ceteris paribus, agents will choose to acquire less private

information if the precision of public information, τ z, is high or if the degree of

strategic complementarities, α, is high. These predictions are intuitive and aligned

with the literature. When τ z is high, agents already receive highly informative

signals and hence the marginal value of acquiring more precise private signal is

lower. When α is high, agents care more about coordinating their actions, rather

than matching the state. Since private information is relatively more useful for

estimating the state than for coordinating actions, it follows that the marginal

value of private information decreases. Thus, Corollary 1 predicts that agents

have the strongest incentive to acquire private information when α = 0 (given our

restriction that α ≥ 0).

Notice that this model corresponds to an individual decision making environ-

ment when we remove strategic motives by setting α = 0. These theoretical re-

sults serve as hypotheses for our experiment. That is, our benchmark is one where

agents are Bayesian and, thus, we characterize biases in terms of departures from

the Bayesian paradigm of the model.

2.5 Potential Mechanisms for Biases in the Strategic Environment

The above equilibrium analysis imposes strong assumptions both on the behavior

of agents and on their beliefs. Rationality assumptions have been challenged by

12



a large literature in economics and psychology. This literature motivates us to

understand whether such departures from rationality are present in our setup and

how strategic forces affect them. Therefore, in this section we decompose best

responses and utility functions in the strategic environment to understand how

different channels of bounded rationality can lead to biases in our experiment.

Use of Information Our starting point is the first order condition that deter-

mines optimal choices in the coordination stage. Equation (4) shows that agent i

needs to form beliefs about three different objects: (i) the fundamental state, θ,

(ii) agent j’s private signal, xj, and (iii) agent j’s strategy, aij (xj, y). For each of

these beliefs, the theory dictates that agents use Bayesian updating to determine

the weights given to their private and public signals. From a behavioral stand-

point, deviations from these weights can lead to biases in the use of information,

which can lead to actions that depart from equilibrium predictions. To better

understand these three possible channels for departures, we rewrite agent i’s best

response function explicitly in terms of each of these weights. We still assume that

agent i expects agent j’s strategy to be a linear combination of public and pri-

vate signals and that agent i’s expectations are a linear combination of the public

posterior belief and his private signal. Under these assumptions, we can write the

optimal action of player i as

â∗i = (1− α)
[
δ̂iz +

(
1− δ̂i

)
xi

]
︸ ︷︷ ︸

Ei[ θ|xi,y]

+ α{γ̂jz +
(
1− γ̂j

) Ei[xj |xi,y]︷ ︸︸ ︷
[η̂iz + (1− η̂i)xi]}︸ ︷︷ ︸

Ei[aij(xj ,y)|xi,y]

, (10)

where Ei [·] denotes agent i’s subjective expectations, aij (xj, y) denotes agent i’s

belief about the strategy used by agent j, and â∗i denotes agent i’s optimal action,

given these subjective beliefs. We define subjective non-Bayesian weights as fol-

lows: δ̂i is the subjective weight assigned by agent i to public information in his

posterior belief about θ, η̂i is the subjective weight assigned by agent i to public

information in his posterior belief about xj, and γ̂j is the weight that agent i be-

lieves that agent j assigns to public information when agent j chooses his action.

Note that in the equilibrium of Section 2.4, δ̂i = η̂j = δi and γ̂j = γj.

Equation (10) provides a systematic way to discuss deviations from equilib-

rium actions. Specifically, deviations can be due to biases in the estimation of θ
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(δ̂i 6= δ, which can also arise in the individual decision environment), biases when

forming beliefs about the other agent’s signal (η̂i 6= δ), or biased beliefs about the

strategy used by the other player (γ̂j 6= γj). We revisit this decomposition in our

experimental analysis.

Acquisition of Information Consider now agents’ information choices and

assume that agent i correctly understands that the signals are unbiased and the

noise components of signals are uncorrelated.7 Under these mild assumptions we

can write agent i’s expected ex-ante utility in the coordination stage as

E [U ] = − (1− γ̂i)
2 V ari (θ − xi)− γ̂2iV ari (θ − z)− C (τ i) (11)

− α
{
γ̂2jV ar

i (z − θ) +
(
1− γ̂j

)2
V ari (xj − θ)− 2γ̂iγ̂jV ar

i (z − θ)
}
,

where γ̂i is the weight that agent i assigns to the public signal when choosing

an action in the coordination stage (which is given by γ̂i = (1 − α)δ̂i + αγ̂j +

α(1− γ̂j)η̂i), γ̂ij is the weight that agent i believes that agent j assigns to public
information, and V ari (·) captures subjective beliefs about the variances of relevant
random variables.8

Equation (11) helps us identify three mechanisms for possible departures from

equilibrium precision choices. First, biases in the use of information (γ̂i 6= γ∗i ) may

lead agents to choose a non-equilibrium level of precision. Second, biased beliefs

about the weight assigned by agent j to the public signal may further distort

agents information choices. Third, agents may have an incorrect perception of the

joint distribution of {θ, xi, xj} meaning that they incorrectly asses how a more

precise private signal improves their ability to estimate θ, and hence also the

signal of the other player (V ari (·) 6= V ar (·)). We use Equation (11) to discuss

the potential mechanisms behind the biases in information choices that we identify

in our experiment.

7Alternatively, agents may simply ignore taking such considerations into ac-

count due to, for example, correlation neglect. See Section A.4 of the Appendix

for more details.
8To keep notation simple, we suppress the dependence of γ̂i, γ̂j, and V ar

i (·)
on agent i’s precision choice and his belief about precision choice of agent j.
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In what follows we refer to precision parameters in terms of standard devia-

tions, since this is the more intuitive language that we use in the experiment. This

implies the following notation changes: τ−1/2θ = σθ, τ
−1/2
i = σi, and τ

−1/2
y = σy.

3 Experimental Design

The experiment was conducted using the usual computerized recruiting proce-

dures. All subjects were undergraduate students from the University of British

Columbia and the University of California, San Diego. Sessions lasted between

60 and 90 minutes and subjects earned $25 on average. A total of 466 subjects

participated in the experiment. The experiment was programmed and conducted

using z-Tree (Fischbacher, 2007). We implemented a between-subjects design in

order to directly compare the behavior of subjects across treatments. Each ses-

sion consisted of 40 independent and identical rounds. For the strategic treatment

subjects were randomly matched in pairs in every round. In each round, subjects

made decisions simultaneously without a preselected action.9

Treatments varied in 3 main dimensions: the strength of strategic motives, α

(individual decisions, mild complementarities, and strong complementarities), the

nature of private signal precision (exogenous or endogenous), and the transparency

of public information, σy (high or low). Our baseline treatments correspond to

the case where private information is endogenously determined, the transparency

of public information is high (σy = 1), and we vary the nature of strategic motives

to have an environment of individual decision making (α = 0) and one with mild

strategic complementarities (α = 0.25).

Since our goal is to study the different behaviors in environments with and

without strategic motives, we choose mild complementarities as a baseline so that

the contrast between our treatments in terms of strategic uncertainty would not

be too stark. However, we also run treatments with strong strategic complemen-

tarities (α = 0.75) to test the robustness of our results across different strengths

of strategic motives. We choose high transparency of public information in our

baseline treatments because this leads to a more pronounced tension with pri-

9Instructions can be found at

https://econweb.ucsd.edu/~itrevino/pdfs/instructions_st_baseline.pdf.
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vate information acquisition. However, to investigate the effects of changes in the

transparency of public information we also run every treatment with a low trans-

parency (σy = 15). In addition, we also run sessions with exogenous private signal

precisions to control for any possible effects that private information acquisition

could have in the use of information, for all variations of α and σy. Finally, we run

two additional treatments of our baseline strategic condition (α = 0.25, σy = 1),

one where subjects interact against computers and one where subjects are pro-

vided with the best guess for the private signal of their pair member, given their

own private and public signals.

The rest of the parameters used in the experiment are as follows. For the prior

about the state θ we set µ = 0, σθ = 18, so that θ ∼ N (0, 182). For the treatments

with endogenous private information we provide subjects a menu of four possible

precision choices, specified in Table 1.10

Precision σ C (σ)

1 0.5 12

2 2 6

3 6 2.5

4 10 1

Table 1: Precision choices in the experiment

For the treatments with exogenous private signal precision we choose two differ-

ent precisions from Table 1, one corresponding to the equilibrium precision choice

and one to a higher precision than equilibrium (the second most popular choice

observed in our sessions with endogenous information). Table 2 summarizes our

experimental design.

At the beginning of each session, subjects had access to two practice screens.

In the information practice screen, subjects could experiment with different levels

10In the experiment we use the term “precision”as a qualitative measure. That

is, precision level 1 corresponds to the highest precision, precision level 2 to the

second highest, and so on. We use the term precision in this qualitative way

throughout the rest of the paper.
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Treatment Strategic motives Transparency of Private signal Opponent

(α) public signal (σy) precision

Baseline I None (α = 0) High (σy= 1) Endogenous N/A

Baseline S Mild (α = 0.25) High (σy= 1) Endogenous Human

Low public I None (α = 0) Low (σy= 15) Endogenous N/A

Los public S Mild (α = 0.25) Low (σy= 15) Endogenous Human

Strong strat Strong (α = 0.75) High (σy= 1) Endogenous Human

Belief aid S Mild (α = 0.25) High (σy= 1) Endogenous Human

Computer S Mild (α = 0.25) High (σy= 1) Endogenous Computer

Exogenous 1 Mild (α = 0.25) High (σy= 1) Exogenous (σ = 2) Human

Exogenous 2 Mild (α = 0.25) High (σy= 1) Exogenous (σ = 10) Human

Exogenous 3 Mild (α = 0.25) Low (σy= 15) Exogenous (σ = 0.5) Human

Exogenous 4 Mild (α = 0.25) Low (σy= 15) Exogenous (σ = 2) Human

Table 2: Experimental design

of precision and generate as many different signals as they wanted, for any given

state, and they could also generate different states. The practice screen for actions

was devised with the intention of familiarizing subjects with the payoff function.

Subjects could experiment with different hypothetical values of the state, the

action of the other player (for the strategic treatments), and their own action to

calculate how many points they would earn.

In each paying round, subjects were endowed with 12 points to make up for

the cost of information. Each round of the experiment proceeded as follows. First,

for the sessions with endogenous private information, subjects privately chose the

precision of their private signals from Table 1. Then they stated their beliefs about

their opponent’s precision choice, which were incentivized by paying subjects an

additional $5 if their guess was correct in the round selected for payment (for

the strategic treatments). Then, subjects observed private and public signals and

simultaneously chose their action, with the option of using a hypothetical payoff

calculator to aid their calculations. Third, they received feedback about the state,

their observed signals, actions, precision choices, and their individual points for

that round.
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One round of the 40 rounds played was randomly selected for payment. The

objective function in the second stage of the game was transformed from the

specification in Equation (1) by adding 100 points in order for subjects to not

think that any outcome would lead to negative points, so in each round the

number of points they could earn in the action was determined by Points =

100 − (1− α) (ai − θ)2 − α (ai − aj)2. Despite this transformation, it is possible
for subjects to have negative payoffs in a round. To circumvent this issue, the

points earned in the round selected for payment were converted to probabilities in

a lottery that paid $20 with probability p and $5 with probability (1− p), where
p is a linear function of the points earned.11 In particular, p = 1 for Points = 112,

which is the maximum number of points a subject can make in a round. For sym-

metry we set p = 0 for Points ≤ −112 and the increment in probability to earn

the high lottery prize was 0.446% for every additional point earned in the experi-

ment. Therefore, the payment in dollars was composed of a $10 show up fee, the

outcome of the lottery whose probabilities were determined by their performance

in a randomly selected round, and $5 if they guessed correctly the precision choice

of their opponent in the round selected for payment (in the strategic treatments).

4 Experimental Results

In this section we present our main experimental results. We first discuss informa-

tion choices and characterize departures from the equilibrium predictions. Then

we study how subjects use the different types of information across environments

and characterize biases in the use of information with respect to the theoretical

weights predicted by the model. We then quantify welfare effects of the biases

we identify by analyzing payoffs. Throughout this section, we present our exper-

imental results by comparing the behavior of subjects in individual and strategic

environments. Most of the results of this section relate to the last 30 rounds of

the experiment, once subjects’behavior has stabilized, unless otherwise specified.

4.1 Choice of Information

To discuss the choice of information we refer to precision levels to be consistent

with the language used in the experiment. These levels are a qualitative measure

11See Roth and Malouf (1979) for a discussion of paying with probability points.
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of signals’informativeness and the specific labels (precision 1, 2, 3, or 4) do not

reflect the actual precisions of signals listed in Table 1.

Figure 1 presents the histograms of precision choices for the individual and

strategic environments (panels (a) and (b), respectively). Three main observations

emerge. First, we see that in both environments precision choices are surprisingly

similar. Second, in both environments the modal precision choice corresponds to

the equilibrium precision (level 4, black bar). Third, in both environments there

are significant departures from the equilibrium prediction, mostly to precision level

2, which represents overacquisition of information.

(a) Individual (b) Strategic

Figure 1: Precision choices, baseline treatment

Since the equilibrium precision choice in our baseline treatment is the lowest

precision, departures from equilibrium can only imply overacquisition of informa-

tion. To check the robustness of our results, Figure 2 presents similar histograms

for the treatments with the same parameters, except for the transparency of pub-

lic information, which is now low (σy = 15). In this case, the public signal is

very noisy, which increases the incentives to acquire more precise private informa-

tion. The equilibrium precision choice in this case corresponds to precision level 2

(black bar). Just as in our baseline treatment, the distribution of precision choices

in the individual and strategic environment is very similar, the modal precision

choice corresponds to the equilibrium prediction, and most of the departures from

equilibrium correspond to subjects overacquiring information. Thus, we conclude

that our findings are robust to changes in precision of public information and we

identify a bias of overacquisition of private information.

Interestingly, these results suggest that the sustained overacquisition of private
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(a) Individual (b) Strategic

Figure 2: Precision choices, low transparency

information is not driven by the presence of strategic motives since we see the same

choice patterns in the individual decision making environment. Theoretically,

in the strategic environment information choices are strategic complements due

to the complementarity in actions (Hellwig and Veldkamp (2009)), so we could

imagine that strategic considerations could affect precision choices off-equilibrium

and lead to different off-equilibrium choices than in the individual decision case.

Figures 1 and 2 support the prediction in the theoretical literature for the strategic

environment that an increase in the transparency of public information crowds

out private information acquisition (see Colombo et al. (2014)). This observation

holds both for equilibrium and non-equilibrium choices.

Our results indicate a clear heterogeneity of information choices in the form of

two main types of subjects: those who acquire the equilibrium precision and those

who overacquire information. We are agnostic about the specific sources of the

observed heterogeneity, such as intrinsic preferences for better information, but we

investigate how this pattern of information choices arises in both environments.

4.1.1 Learning Dynamics

To better understand information choices in both environments, we turn our at-

tention to the evolution of precision choices throughout the 40 rounds of the ex-

periment. Figure 3 presents similar histograms to Figure 1 for both environments

in our baseline treatment, but for the first 10 rounds of the experiment.

As we can see in Figure 3, initial precision choices in the individual deci-

sion making environment are similarly spread out across all four precision levels,

whereas in the strategic setup precision 2 is clearly favored. This difference in
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(a) Individual (b) Strategic

Figure 3: Precision choices in initial rounds, baseline treatment

initial choices suggests that strategic uncertainty might lead subjects to choose a

higher precision for their private signal, in an effort to reduce the uncertainty they

face in the coordination stage. Despite this difference in initial responses, sub-

jects’behavior across these two environments converges once learning takes place,

as illustrated by Figure 1 where precision levels 2 and 4 become clear absorbent

states and the differences across environments disappear.12 Therefore, it is not

that strategic uncertainty has no effect on the choice of information, but rather

that the learning dynamics of information choices lead the initial heterogeneity in

both environments to converge to the same typology of information choices.

To understand how this shift takes place we turn to Figure 4, which presents,

for each environment, the transition matrices of precision choices for rounds 1-10

and 11-40 separately. In each matrix the entry aij corresponds to the implied

probability of a subject choosing precision level j in round t+1, given their choice

of precision level i in round t, for i, j ∈ [1, 4]. The transition matrices for the

first 10 rounds can help us understand the level of experimentation with different

precisions in the early rounds of the experiment, whereas the matrices for rounds

11-40 help us understand how Precision levels 2 and 4 become absorbent states.

The transition matrices for the first ten rounds in Figure 4 show that subjects’

precision choices are relatively stable, in the sense that the probability of a subject

choosing the same precision in two consecutive rounds (main diagonal) is larger

12In particular, in the individual decision-making environment this convergence

occurs by round 20. In the strategic environment convergence occurs by round 30,

but after round 20 it is clear that precision levels 2 and 4 are absorbent states.

21



Rounds 1-10

Individual (α = 0) Strategic (α = 0.25)

P 1 P 2 P 3 P 4

P 1 0.73 0.17 0.09 0.01

P 2 0.13 0.64 0.15 0.08

P 3 0.11 0.23 0.43 0.23

P 4 0.02 0.06 0.08 0.84

P 1 P 2 P 3 P 4

P 1 0.55 0.32 0.13 0

P 2 0.07 0.79 0.07 0.07

P 3 0.06 0.34 0.42 0.18

P 4 0.02 0.16 0.05 0.77

Rounds 11-40

Individual (α = 0) Strategic (α = 0.25)

P 1 P 2 P 3 P 4

P 1 0.85 0.1 0.03 0.02

P 2 0.06 0.85 0.04 0.05

P 3 0.02 0.14 0.67 0.17

P 4 0.01 0.03 0.01 0.95

P 1 P 2 P 3 P 4

P 1 0.66 0.31 0 0.03

P 2 0.06 0.86 0.06 0.02

P 3 0 0.18 0.7 0.12

P 4 0 0.01 0.01 0.98

Figure 4: Transition matrices of precision choices

than the probability of choosing any other precision (off main-diagonal), for all

precisions and environments. However, we see two important ways in which sub-

jects transition across precisions that are present in both environments. The first

one illustrates how subjects converge towards precision levels 2 and 4 and away

from levels 1 and 3. The most likely movement from precision level 1 is towards

level 2 and from level 3 is towards both levels 2 and 4 (numbers in bold). The

second one shows that subjects who initially choose high precision levels (1 and

2) have an extremely low rate of experimentation with cheaper precisions: the

numbers in italics show a negligible probability of choosing precision level 4 after

choosing levels 1 or 2. This implies that those subjects who start the experiment

choosing high precisions do not get to learn the benefits of cheaper, less precise

private information.13 We quantify the cost of this behavior later on when we

13The diffi culties to engage in hypothetical thinking have been documented

in the experimental literature (e.g., Esponda and Vespa (2014) and Martinez-

Marquina et al. (2019)). For this reason, experimentation is especially important
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analyze realized payoffs in the experiment.

In rounds 11-40, we can see in Figure 4 that all states are relatively absorbent

in both environments (probability of choosing the same level of precision in two

consecutive periods is at least 66%). Precision levels 2 and 4 are clearly absorbent

as they have the largest probabilities of consecutive choices in both environments.

Moreover, most of the movement off the main diagonals is directed from precision

levels 1 or 3 towards precision levels 2 or 4 (numbers in bold), reinforcing the

pattern of convergence that we observe in the first 10 rounds.

We will discuss the possible drivers of overacquisition of information to Section

4.3, after we analyze how subjects use information, as we need to understand first

how subjects use information to be able discuss agents’incentives to overacquire

information.

4.2 Use of information

We now turn our attention to the analysis of how subjects use the different signals

at their disposal. To do this, we estimate the weights subjects assign to private

and public signals when choosing their actions in the coordination stage. Recall

from Equation (5) that optimal actions are linear combinations of private and

public signals. The theoretical weights given to these signals depend on the pa-

rameters of the model, in particular on noise parameters and on the coordination

motive α. We run random-effects linear regressions for each treatment to estimate

these weights, conditioning on individual precision choices and beliefs about the

opponent’s precision choice (for the strategic treatments), since when α > 0 these

beliefs affect the weights given to signals (see Equations (6)).14

We present the coeffi cients of these regressions for the individual and strategic

baseline treatments in Figure 5 (panels (a) and (b), respectively). In each graph,

to learn the potential benefits of cheaper, less precise information. These benefits

are large in our baseline treatments because the public signal is very informative

about the state.
14We tested the assumption of linearity by running regressions with higher order

terms, which were statistically insignificant in all specifications. Therefore, we only

focus on linear specifications.
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the vertical axis indicates the weights given to the different types of signals. The

vertical line in the horizontal axis separates the weights estimated to private and

public signals (left and right of the line, respectively). Each indicator on the

horizontal axis corresponds to a specific precision choice (individual treatment) or

to a combination of individual precision choice and belief about the opponent’s

precision choice (strategic treatment). Black dots indicate the theoretical weights

predicted by the theory and gray dots correspond to the weights estimated with

the data, for a given precision choice and beliefs about the other’s precision choice.

Given the results from Section 4.1, we focus on the weights corresponding to the

two most popular precision choices, levels 4 (equilibrium) and 2 (overacquisition).

(a) Individual (b) Strategic (α = 0.25)

Figure 5: Weights given to signals baseline treatments.

The use of information in the individual decision making treatment is qual-

itatively similar to the Bayesian weights predicted by the theory. In particular,

the weights to both private and public signals are not statistically different to the

theoretical weights when subjects choose precision 2. For precision level 4 the

estimated weights are statistically different from the theoretical weights to the 1%

level of significance, but they are qualitatively very similar (0.068 vs 0.01 for the

private signal and 0.905 vs 0.987 for the public signal).

We see a starkly different pattern in the use of information in the strategic

setup. In all cases the estimated weights are different to the theoretical weights

at the 1% level of significance. Since public information is very precise (σy = 1)

the theory predicts most of the weight should be assigned towards it, but instead

subjects overuse private information. The overuse of information is particularly
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pronounced for subjects who overacquire information (i.e., choose precision level

2), regardless of their beliefs about the precision choice of their opponent. Their

actions suggest that these subjects give a weight of about 0.4 to their private

signal, as opposed to the optimal theoretical weight once we adjust for more precise

private information, which is less than 0.2.

Panel (b) of Figure 5 also includes estimated weights for the strategic treatment

where the precision of private signals is exogenously determined (triangle markers),

one where we exogenously set precision level 2 and one where we set precision level

4. This allows us to check whether the overuse of private information is due to

a sunk-cost fallacy, where subjects who acquire more precise information might

use it more in an effort to “make up” for the high cost paid for it. We can

still see a significant overuse of private information for both precision levels. The

magnitude of this bias, however, is decreased for subjects in the treatment with

exogenously set precision 2, which can be interpreted as partial support for the

sunk-cost fallacy, but the qualitative finding of the overuse bias is still present.

We investigate the robustness of the overuse of private information in the

strategic setup by looking at the treatment with strong complementarities (α =

0.75), where strategic motives are stronger and subjects care a lot about coor-

dinating with others. Figure 6 finds similar qualitative patterns in the use of

information as in our baseline with mild strategic complementarities, i.e., subjects

overuse their private signal with respect to the theoretical prediction, whether

information is endogenously or exogenously determined.

Figure 6: Weights given to signals, strong complementarities (α = 0.75).

The strong overuse of private information that we identify for overacquirers
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in panel (b) of Figure 5 and Figure 6 implies that the weights given to private

and public signals are “closer” to each other than what the theory suggests. It

is important to establish that the overuse bias we identify is not just a product

of subjects using a simple heuristic in the strategic environment where they give

roughly the same weight (“50-50”) to both signals.15 Under this heuristic, we

would see a similar pattern for weights, regardless of the precision of signals.

To refute this explanation, we turn to our treatments with a low transparency

of public information where σy = 15. Strategic uncertainty is still present in

these treatments, but the main difference with the baseline cases (σy = 1) is

that equilibrium predicts higher weights to private information, due to the low

precision of the public signal. Figure 7 recreates Panel (b) of Figure 5 and Figure

6 for the case where σy = 15. We can see that, contrary to our baseline case,

subjects clearly set weights far from the “50-50”midpoint. The “50-50”heuristic

would imply that subjects would underuse private information to a large extent

in these treatments as well, which is not what we observe. Therefore, we find no

evidence of an overarching heuristic in the strategic environment where subjects

give roughly the same weight to both signals.16

α = 0.25 α = 0.75

Figure 7: Weights given to signals, low transparency of public information

The fact that we do not observe subjects underusing private information when

15See Benjamin (2019) for a review of biases in probabilistic updating.
16Note that in the treatments with σy = 15 we do not observe overuse of private

information because the theoretical weights given to private information are large

enough that there is barely any scope to overuse this signal.
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σy = 15 also helps us to better characterize our bias in the use of information as

true overuse, and not misuse, of private information. When public information is

noisy (σy = 15), there is little competition between private and public information

and it is optimal to predominantly rely on the private signal. However, when public

information is precise, as in the baseline treatment, there is a tension between

private and public information that gives rise to the overuse bias that we observe.

From Figure 2, the lower precision of public information reduces the tensions

associated to the acquisition of private information because subjects do not have

a high-accuracy public signal anymore. This leads to a higher equilibrium precision

(level 2, black bars in Figures 2) and we observe the same shift in the data, both

for equilibrium and overacquisition of information. Absent this tension between

transparency of public information and private information acquisition, we do not

find evidence of qualitative biases in the use of information because, as shown in

Figure 7, subjects use their information remarkably well in both environments.17

4.2.1 Overuse of Private Information in the Strategic Environment

To understand why subjects use information differently in the individual and

strategic environments we turn our attention to the forces that are unique to

strategic reasoning. When observing signals, subjects in the individual setup have

to form beliefs only about the state, whereas in the strategic environments they

have to form beliefs about the state, but also about the actions and beliefs of oth-

ers. Our results in the individual setup suggest that subjects are relatively good

at forming beliefs about the state, which is intuitive because they observe signals

about the state and have to make inferences only about the state, which requires a

relatively simple mapping. In contrast, in the strategic setup the mapping between

signals and actions is more complex due to strategic uncertainty.

We refer to strategic uncertainty broadly as the uncertainty about the actions

17Notice that this tension has not been present in other papers that study these

games experimentally since they focus on environments where there is little ten-

sion between private and public information because both signals have identical

precision and subjects do not have the option to choose the precision of their

private signal.
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of the other player. In our experiment this is manifested in three ways. The first

is captured by the theoretical model where, in equilibrium, players do not know

the other player’s signal, so they do not know their action, but they do know

the mapping between signals and actions (strategy). The second manifestation

of strategic uncertainty in our experiment, but not in the model, is that subjects

do not know the strategy of the other player so they have to form beliefs about

the mapping between signals and actions. Third, in our experiment strategic

uncertainty can also manifest as uncertainty about the rationality of the other

player.

To understand the overuse of private information in the strategic environment

we focus on these 3 manifestations and run 2 additional treatments where we shut

down the first and third manifestations, respectively. First, we explore whether

uncertainty about the rationality of others is responsible for the overuse of private

information. Second, we revisit the decomposition of Equation (10) in an effort

to pin down the belief formation channel that could be behind this bias.

Uncertainty about the Rationality of Others Intuitively, if subjects are

unsure about the rationality of their opponent they might be inclined to offset

this added (strategic) uncertainty with a desire to purchase better private infor-

mation because it is the only tool at their disposal to reduce uncertainty, and then

using this information more than they should, leading to the overuse bias that we

document. This force is clearly present only in the experiment, since the theory

assumes rationality and common knowledge of rationality.

To explore this hypothesis, we run a treatment where subjects, instead of

interacting with one another, interact with a computer that follows the unique

equilibrium strategy. The experiment is identical to the baseline strategic treat-

ment, except that in the instructions subjects are told that their opponent is a

computer that chooses and uses information optimally. Subjects are not told what

the actual computer’s strategy is, in an effort to not influence their own strategy.

Therefore, in this treatment we shut down only the uncertainty about the rational-

ity of the opponent, while preserving the strategic uncertainty about the actions

of their opponent, as in the model.

Figure 8 plots the estimated weights given to private and public signals in
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Figure 8: Weights given to private and public signals, computer opponent

this treatment, controlling for individual precision choices and beliefs about the

computer’s precision choice, just as in Figure 5. We see the same qualitative

findings as in our baseline treatment, i.e., a clear overuse of private information

by those subjects who overacquire information. In terms of information choices,

Panel A of Figure 10 in the Appendix shows strikingly similar patterns in precision

choices as in the individual and strategic baseline treatments (Figure 1).

We conclude that uncertainty about the rationality of others is not the driving

force of the overuse of private information by overacquirers. Returning to the

analogy of our beauty contest model as an approximation to decision making in

financial markets, we could interpret these results as suggesting that the informa-

tion processing bias we observe might not be due to the presence of noise traders,

but rather to forces inherent to the uncertainty in the environment.

Decomposition of Beliefs in the Strategic Environment Our results sug-

gest that the bias we identify in the game is related to the way individuals form

beliefs about the beliefs and actions of others. To understand this further, we

revisit the decomposition of the best-response functions of the strategic environ-

ment described in Section 2.5. From Equation (10), we know that there are three

instances where subjects use their private and public signals when forming beliefs

that can potentially lead to biases. The first one is when subject i uses signals xi

and y to form beliefs about the fundamental θ. Notice that there is no strategic

component to this belief and that this is precisely the exercise that subjects in the

individual decision environment perform. Our results suggest that subjects are
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relatively good at forming beliefs about θ (as illustrated in Panel (a) of Figure 5).

This is consistent with the findings of Szkup and Trevino (2020) and Baeriswyl et

al. (2021) who found that subjects form accurate beliefs about fundamentals in

coordination games with incomplete information. Thus, we hypothesize that the

overuse bias that we observe in the strategic environment is unlikely to come from

a bias in the weights given to xi and y when forming beliefs about the state, θ.

The two other instances where subjects have to form beliefs using private and

public signals are unique to the strategic setup. Subject i uses signals xi and y

to form beliefs about the private signal observed by subject j, Ei (xj|xi, y), and

about the action taken by subject j, Ei (aj (xj, y) |xi, y). Equation (10) illustrates

how we can decompose these two expectations into weighted sums of public and

private signals, and these weights are potential sources of biases. In order to

disentangle these two forces, we run an additional treatment where we shut down

the first channel. That is, we provide subjects with Ei (xj|xi, y). The experiment

is identical to the baseline strategic treatment, except that subjects are provided

with the Bayesian estimates of their opponent’s private signal (referred to as the

“best guess”in the instructions), which is based on the subject’s own signals. The

instructions are clear about this being a statistical guess, and not the actual signal

observed by the other subject.

Figure 9: Weights given to signals, best guess of other’s signal provided

Figure 9 plots the estimated weights given to private and public signals in

this treatment, controlling for individual precision choices and beliefs about the

other’s precision choice, just as in Figure 5. We also include the weights esti-

mated in the baseline treatment (triangle markers) for comparison. For subjects
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who choose the equilibrium precision (level 4), providing subjects with the best

guess about the private signal of the other player removes any biases in the use

of information. Subjects who choose the equilibrium precision use their informa-

tion in a remarkably similar way to what the theory predicts. That is, we see a

significant improvement in the use of information for those subjects who choose

information optimally when we help them with the calculation about the infor-

mation observed by their opponent (i.e., when we reduce their cognitive load).18

Subjects who overacquire information still use their private signal more than what

the theory suggests, but the magnitude of the overuse bias is significantly reduced

with respect to the baseline case. The results from this treatment suggest that

part of the overuse bias that we observe in the strategic setup is related to the

complexity of forming beliefs about the information held by others that is only

present under strategic uncertainty.

4.3 Mechanisms behind overacquisition of information

Similar to the discussion of possible mechanisms behind the overuse bias, we now

discuss possible drivers of the overacquisition of information that we identify in

our experiment. From Section 2.5, recall that using Equation (11) we identified

three theoretical channels that can lead to deviations in information choices with

respect to the equilibrium prediction. First, the overuse of information that we

observe in the coordination game may encourage subjects to overacquire informa-

tion. Second, this incentive can be further reinforced if agents expect other agents

to overuse information. Third, subjects may have incorrect beliefs about the way

their information choices improve their ability to predict θ and xj. We investigate

how these mechanisms affect the incentives to overacquire information, which we

measure by the difference between the ex-ante expected utility from choosing the

equilibrium precision (level 4) and deviating to precision level 2 unilaterally. The

18It is relevant to note that the equilibrium precision is the modal choice, just

as in the baseline treatments, but the proportion of subjects who choose the equi-

librium precision is higher in this treatment than in the baseline treatment. Panel

B of Figure 10 in the Appendix shows the histogram of precision choices in this

treatment.
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details of these calculations can be found in Section B in the Appendix.

Our calculations suggest that overusing private information at the coordination

stage and expecting that the other agent also overuses information do increase the

incentives to overacquire information, but not enough to make that choice opti-

mal. Therefore, these two channels cannot rationalize overacquiring information

as an optimal choice for subjects in the presence of the overuse bias. Following

the decomposition of Equation (11), we hypothesize that the third channel, i.e.,

an incorrect perception of the joint distribution of {xi, xj, θ} (in particular, an
incorrect assessment of how a more precise private signal improves their ability to

estimate θ and xj) must play an important role in driving overacquisition. Panel

B of Figure 10 in the Appendix, which shows the histogram of precision choices in

the treatment where we provide subjects with the correct estimate of the other’s

signal provides indirect evidence in support of this channel. In that treatment we

see a decrease in subjects’propensity to overacquire information, with respect to

the baseline. One can interpret this reduction in overacquisition as being driven

by partially correcting subjects’perceptions of the joint distribution of {θ, xi, xj}
due to being given an estimate of xj. Given the complexity of this channel, we

are unable to investigate it deeper using our experiment. Understanding this bias

further is an important avenue for future research.

4.4 Welfare

In this section, we analyze realized payoffs in the experiment and compare them

to the payoffs that would result if players behaved according to the theoretical

benchmark, given the realized states and signals in the experiment. We do this

with the objective of quantifying the welfare effects of the two biases we identify.

That is, we investigate what is the cost, in terms of foregone payoffs, of overac-

quiring information, for both the individual and strategic treatments, and the cost

of overusing private information in the strategic treatment.

Table 3 reports the median payoffs for subjects in our baseline treatments as

well as payoffs that subjects would have obtained had they followed optimal strate-

gies, separated by precision choices that correspond to the equilibrium prediction

and to the higher level of precision that represents overacquisition.19 The second

19Theoretical payoffs are computed given the signals and fundamental state
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and third column correspond to the median payoffs of the two stage game, whereas

the fourth and fifth columns correspond to the payoffs only in the coordination

stage, that is, we abstract from payoffs related to precision choices.

Two-stage Model Coordination Stage

Individual Strategic Individual Strategic

Equilibrium σ 110.1 110.2 99.1 99.2

Overacquirers 105.3*** 105.1*** 99.3 99.1

Theoretical 110.4 110.8 99.4 99.8

Statistica l d ifference w rt theoretica l equ ilibrium payoffs at levels:*** 1% , ** 5% , * 10% .

Table 3: Realized payoffs for subjects who choose equilibrium precision and for

overacquirers, baseline treatment

We see similar payoffpatterns in the strategic and non-strategic environments.

In particular, average payoffs of subjects who choose the equilibrium precision are

not different from the theoretical benchmark in both environments. In terms of

the two biases that we identify, we find that the overuse of private information has

a negligible effect on payoffs, since there is little difference in the payoffs related

to the coordination stage across precision choices (equilibrium vs. overacquirers).

However, the overacquisition of information leads to significant welfare losses due

to the higher cost of more precise information. These results are robust to treat-

ment and parameter variations, as shown in Tables 4 and 5 in the Appendix. In

particular, when the transparency of public information is low (σy = 15), subjects

who overacquire information actually see payoff gains in the coordination stage,

but these gains are not enough to offset the high cost paid for precision, which

ultimately leads to overall payoff losses.

realization observed in the experiment, assuming that the other pair member also

behaves optimally.
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5 Discussion of Alternative Models

We have argued that the biases in the acquisition of information and its use are

driven mostly by subjects’biased beliefs about other subjects’signals and strate-

gies and by an incorrect assessment of how a more precise private signal improves

their ability to estimate θ and xj. However, one may wonder if there are alterna-

tive explanations for our findings. Below we argue that popular models of bounded

rationality are unlikely to explain our results. All proofs and detailed descriptions

of environments are relegated to the Online Appendix.

5.1 Level-k

Models with limited depth of strategic reasoning such as level-k and cognitive

hierarchy models (see Nagel (1995) or Costa-Gomes and Crawford (2006)). In

the context of beauty contest models to explain observed behavior in experiments

(see, for example, Cornand and Heinemann (2014) or Shapiro et al. (2014)).

The main challenge when using Level-k or cognitive hierarchy models is choos-

ing the appropriate rule for Level 0 (L0) types, that is, the non-strategic, anchoring

types. In what follows we assume that agents of type L0 follow a linear strategy

in the coordination stage given by a = πz + (1− π)xi, where π is an integrable

random variable with support on [0, 1]. This specification is very flexible.20 In all

cases, we assume that L0 randomizes uniformly between all choices of information.

Given that type L0 follows a linear strategy at the coordination stage, all types

of level k (Lk), k ≥ 1 also use linear strategies.

We first argue that the level-k model cannot explain overuse of information.

Let τLk be the precision of the private signal that type Lk chooses in the infor-

mation acquisition stage. Given τLk, let δ (τLk) be the weight assigned to public

information in the Bayesian posterior belief about θ. Finally, denote by γLk the

20We follow Crawford and Iriberri (2007) by considering non-strategic L0 types

and reserving more sophisticated thinking for higher level types. Our specification

includes as special cases the specification where L0 ignores strategic considerations

and simply minimizes the distance between their actions and fundamentals, as in

Cornand and Heinemann (2014). It also includes “random types” that always

assign weight of one-half to private and public signals, as in Shaprio et al. (2014).
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weight that type Lk assigns to public information when choosing his optimal action

in the coordination stage.

Lemma 3 Consider k ≥ 1. Then for any τLk ≥ 0, we have γLk ≥ δ (τLk).

Applied to our particular experimental setup, Lemma 3 implies that level-

k agents would never assign a weight on private information higher than 0.2 if

they chose precision level 2, or 0.01 if they chose precision level 4. Since in our

experiment we see subjects using weights much higher than that, we conclude

that the level-k model cannot explain the overuse of private information that we

document.

We next argue that the level-k model cannot explain the overacquisition of

information we observe in our experiment.

Lemma 4 Applied to our experimental setup, for all α ∈ (0, 1) the Level-k model

predicts that all types Lk, k ≥ 1, choose to acquire precision level 4.

Together, Lemmas 3 and 4 establish that despite the very flexible formulation

of the level-k model that we consider, this model is unable to rationalize the biases

in the choice and use of information that we identify in the experiment.

5.2 Anticipated Regret Minimization

It has been suggested that anticipated regret minimization can help explain both

departures from equilibrium strategies (see Filiz-Ozbay and Ozbay (2007)) and

excessive information acquisition (see Gretschko and Rajko (2015)) in auctions.

To model regret, we assume that agents can feel regret about mismatching

the state and about miscoordinating with the other agent. The regret function

is quadratic and rθ, ra ≥ 0 are the weights that an agent assigns to regret from

mismatching the state and miscoordinating with the other, respectively. As above,

let δ (τ i) denote the weight assigned to public information in the posterior belief

about θ of a Bayesian player who observes a private signal with precision τ i.

Lemma 5 Let τ = {τ i, τ j}. For any ra, rθ ≥ 0 and any precision choices, we

have γi (τ ) ≥ δ (τ i).
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Lemma 5 establishes that the weight on public information assigned by an

agent that anticipates regret is always larger than δ (τ i). Since in our experiment,

for each level of precision, we find that subjects assign weights to public signal

much smaller than δ (τ i), we conclude that regret minimization cannot explain the

observed overuse of information.

We also find that in our particular setup, regret minimization cannot induce in-

formation overacquisition unless the weight on anticipated regret from mismatch-

ing the action, ra, is two orders of magnitude larger than the weight on actual

payoff loss, α. Moreover, if regret minimization does lead to information overac-

quisition, then it induces the choice of the most precise information (see Figure

11 in the Online Appendix). Given this, it seems unlikely that anticipated regret

minimization can be driving our findings.

5.3 Quantal Response Equilibrium

Quantal response equilibrium (QRE) is another popular model that has been suc-

cessful in explaining deviations from equilibrium in many experimental settings

(see e.g., McKelvey and Palfrey (1995) and Goree et al. (2016)). In the con-

text of incomplete information games, QRE assumes that agents have correct

beliefs about strategies used by other agents and they do not exhibit any biases in

information processing. However, QRE relaxes the assumption that agents best

respond to their beliefs by allowing them to make mistakes when choosing actions,

with mistakes that are more costly being less likely to occur.

To investigate whether QRE can explain our experimental findings, we consider

the popular symmetric logit QRE with logit parameter λ and apply it to the

coordination stage (we focus only on the coordination stage for computational

simplicity). Given the lack of closed-form solutions (a common feature of QRE),

we compute the logit QRE of the coordination stage numerically for a wide range

of λ’s, where λ = 0 corresponds to random behavior, while λ → ∞ corresponds

to behavior that converges to Nash equilibrium.21 For each λ, we simulate agents’

behavior a large number of times using computed numerically QRE best-response

21QRE is typically used in the context of complete information, finite-action

games and is not easily adaptable to environments with infinite action spaces

and incomplete information. Therefore, to compute QRE we discretize our setup
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functions and the signals observed in our experiment. Finally, using data from

each simulation separately, we estimate the weight on private signals the same

way as we did using our experimental data. Thus, for each λ we obtain a large

number of estimated signal weights.

Figure 12 in the Online Appendix depicts the average weight on the private

signal estimated using simulated data when both agents choose precision level 2

(overacquisition, left panel) and when both agents choose precision level 4 (equi-

librium precision, right panel) in the information acquisition stage. The shaded

areas represent two standard deviation bounds for estimated weights on private

signals with 95% of estimated QRE weights on the private signal lying within

these bounds.

Both panels show that average weights on the private signal implied by QRE

are very close to the equilibrium weights. Moreover, for all values of λ and in

all simulations, the estimated weight on private information lies below the weight

estimated using our experimental data. Based on these results, we conclude that

QRE is unlikely to explain our experimental results.

5.4 Overconfidence

Finally, we investigate whether our results can be explained by overconfidence

which leads to subjects erroneously treating private signals as more precise than

they objectively are. Formally, overconfidence would imply that each subject i acts

as if the private signal he observes is distributed according toN
(
θ, (ξiτ i)

−1), where
τ i is subject i’s precision choice at the information acquisition stage and ξi ≥ 1 is

the extent of overconfidence that subject i exhibits. Therefore, ξiτ i is the perceived

precision of the private signal by subject i.22 This form of overconfidence (often

referred to as overprecision) has been documented extensively in the literature

(see Moore and Healy (2008) and the references therein) and has been studied in

the context of financial markets (Odean (1998)), firm investment (Gervais et al.

considering fine but finite grids on both signals and actions. For more detail

regarding our implementation of QRE, see Section B.3 of the Online Appendix.
22As in Odean (1998), we assume that subjects exhibit overconfidence only with

respect to their own signal.
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(2011)), or corporate culture (Bolton et al. (2013)).

Overconfidence can potentially rationalize the overuse of information. How-

ever, there are several issues with this explanation. First, the required level of

overconfidence varies greatly across treatments and across precision choices. In

particular, as Table 6 in the Appendix shows, the degree of overconfidence needed

to rationalize the weights estimated with our data varies from 1.34 when α = 0

and subjects choose precision level 2 (column P 2) to 22.99 when α = 0.75 and

subjects choose the equilibrium precision and believe that their pair member does

the same (column P {4, 4}). Moreover, there is no level of overconfidence that can
rationalize the estimated weight observed for subjects who choose precision level

2 and believe that their pair member chooses the same precision when α = 0.75.

Furthermore, overconfidence is unable to explain overacquisition of informa-

tion. In the Online Appendix we argue that when τ y = 1, regardless of the

value of ξ, the theory predicts that an overconfident subject will always choose

the equilibrium precision level 4. Taken together, these observations imply that

overconfidence is unlikely to explain our results.

6 Conclusions

We have characterized empirically how people choose private information and use

private and public information in an experiment where subjects face fundamental

and strategic uncertainty. To our knowledge, this paper is the first attempt to

broadly characterize biases in the choice and use of information that are driven

by strategic uncertainty.

We use a simple 2-player beauty contest model with incomplete information

to investigate how strategic interactions affect subjects’information choice and its

use. We find that people choose information similarly in individual and strate-

gic decision making environments once behavior has stabilized. In particular,

in both environments the modal precision choice corresponds to the equilibrium

prediction, but we also see sustained overacquisition of information across treat-

ment conditions. We investigate learning dynamics and find that initial precision

choices differ across environments. In the individual decision environment initial

choices are close to uniform across precisions, whereas in the strategic case initial

choices clearly favor overacquisition. Learning dynamics in both environments
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shift choices towards the equilibrium and second-to best precision (overacquisi-

tion), leading to indistinguishable distributions in later rounds.

Unlike information choices, we see significant differences in how people use

information in individual and strategic environments. While subjects in the in-

dividual decision environment use information in a similar way to the Bayesian

prediction, we see significant overuse of private information in the strategic case,

especially for those subjects who overacquire information. This bias in the use of

information is robust to treatment variations, such as changes in the transparency

of public information or strength of coordination motives. We show that this bias

is not due to uncertainty about the rationality of others and investigate mecha-

nisms related to the belief formation process inherent to the strategic environment

to explain our results.

Finally, we quantify the welfare effects of the two biases that we identify by

comparing realized payoffs to theoretical benchmarks. We find that the bias in

information use (overuse of private information) has a negligible effect on payoffs,

while the overacquisition of information leads to significant welfare losses.

The biases we identify have implications for the large theoretical literature in

coordination games that studies welfare effects that result from changes in the

information structure when it is exogenously determined (Angeletos and Pavan

(2007)) or when it is endogenous, as in our setup (Colombo et al. (2014)). On

the one hand, we find empirical support for theoretical predictions such as the

crowding out effects of private information acquisition that results from higher

transparency of public information. On the other hand, we identify biases that

affect these predictions and show that welfare effects due to these biases are largely

driven by overacquiring private information.

In macroeconomic setups our results suggest that, for example, overacquisition

and overuse of information could potentially dampen business cycle fluctuations

(if applied in the context of Benhabib et al. (2016)) or decrease the destabilizing

effect of information choices on the volatility of asset prices (if considered in the

context of Bansal and Shaliastovich (2011)). Furthermore, these biases affect our

understanding of the desirability of greater transparency in financial markets and

the macroeconomy more broadly.
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Appendix
A Empirical analysis

(A): Computer opponent (B): Best guess about xj provided

Figure 10: Precision choices in robustness treatments.

σy = 1, σy = 1, σy = 15,

α = 0.25 α = 0.75 α = 0.25

Equilibrium 110.72 110.86 102.49

Endogenous, σeqi 110.16 110.07 100.59**

Exogenous, σeqi 109.35 109.49 101.09

Endogenous, σoveri 105.05*** 104.51*** 98.76***

Exogenous, σoveri 105.27** 105.08** -

Statistica l d ifference w ith resp ect to effi cient payoffs at levels:*** 1% , ** 5% , * 10% .

Table 4: Median realized payoffs for subjects who choose equilibrium precision

and for overacquirers, strategic treatments

B Incentives to Overacquire Information

We measure the incentives to overacquire information by looking at the difference

in the ex-ante utility of an agent that chooses to overacquire information (precision

level 2) and acquiring the equilibrium precision (level 4):

E [U (τ 2)]− E [U (τ 4)] = − (1− γ̂i (τ 2))
2 V ariτ2 (θ − xi)− γ̂2i ((τ 2))V ar

i
τ2

(θ − z)

+ (1− γ̂i (τ 4))
2 V ariτ4 (θ − xi) + γ̂2i (τ 4)V ar

i
τ4

(θ − z)

+2αγ̂j (γ̂i (τ 2)− γ̂i (τ 4))− (C (τ 2)− C (τ 4)) , (12)
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σy = 1, σy = 1, σy = 15,

α = 0.25 α = 0.75 α = 0.25

Equilibrium 99.72 99.86 96.49

Endogenous, σeqi 99.16 99.07 94.59

Exogenous, σeqi 98.35 99.49 95.09

Endogenous, σoveri 99.05 98.51 98.76

Exogenous, σoveri 99.27 99.08 -

Statistica l d ifference w ith resp ect to effi cient payoffs at levels:*** 1% , ** 5% , * 10% .

Table 5: Median realized payoffs in coordination stage for subjects who choose

equilibrium precision and for overacquirers, strategic treatments

where V ariτ i (·) is the variance conditional on agent i choosing precision τ i.23

We consider first the effect of overusing information on agent i’s incentives to

overacquire information when agent i (i) expects the other agent to follow the

equilibrium strategy and (ii) has the correct perception of the joint distribution

of {xixj, θ, y}.24 From our experiment, we know that subjects that overacquire

information (and expect their partners to choose precision level 4) assign weight

γ̂i (τ 2, τ 4) = 0.596 to public information. While we do not observe directly the

weight these subjects would use had they chosen precision level 4, we use the

data from sessions with exogenous information to impute this weight indirectly.25

23To keep notation simple, we suppress the dependence of utility and weights on

agent i’s beliefs about agent j’s choice of information and agent j’s beliefs about

agent i’s choice of information. Throughout this section, we assume that player j

chooses the equilibrium precision (i.e., precision level 4) and expects agent i to do

the same.
24In terms of Equation (12) this implies that γ̂j = γ∗ (τ 4, τ 4) ≈ 0.9925,

V ari (θ − xi|τ 4) = τ−14 , V ar
i (θ − xi|τ 2) = τ−12 , and V ar

i (θ − z|τ 4) = τ−1z .
25To impute this weight, based on our experimental evidence, we assume that

there are two types of agents: (1) those that choose the equilibrium precision level

and (2) those that overacquire information. Based on subjects’information choices

in our benchmark treatment, we compute the proportion of these types in our
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The imputed weight is γ̂i (τ 4, τ 4) = 0.84. Using these weights in Equation (11),

we find that the expected utility from following the equilibrium prediction is still

higher than from deviating to precision level 2 (i.e., E [U (τ 4)] − E [U (τ 2)] > 0),

but the loss from the deviation decreases by 42.5% compared to the case where

both agents behave optimally, both on and off the equilibrium path. This suggests

that while the overuse of information by itself cannot explain overacquisition of

information, it does increase the incentives to overacquire information.

We next consider how agents’beliefs about other agents’use of information

affect the incentives to overacquire information. To do so, we continue assuming

that agent i overuses information, but we also assume that he also expects the other

agent to overuse information (while still believing that the other agent chooses

precision 4 so that agent i expects γ̂ij = 0.84). Under these assumptions, the

loss from deviation is decreased by 43%, compared to the case where both agents

follow the equilibrium predictions. If, instead, we assume that agent i believes

that the other agent completely neglects public information ( γ̂ij = 0), the loss

from deviating decreases by 45% compared to the equilibrium benchmark. Thus,

we see that beliefs about other agent’s use of information play only a minor role

in determining agent i’s incentives to overacquire information. This is intuitive

since the other agent’s use of information affects agent i’s incentive to deviate

only through the term 2αγ̂j (γ̂i (τ 4)− γ̂i (τ 2)) (see Equation (12)). If α is low and

agent i overuses information (so γ̂i are low), then the belief about γ̂j has little

impact on E [U (τ 4)]− E [U (τ 2)].

benchmark treatment. Assuming that (1) the distribution of subjects’types is the

same in the treatment with exogenous information and (2) both types of subjects

use information in the same way as in the baseline treatment, we can interpret the

estimated weight on the public signal in the treatment with exogenously provided

signals with precision level 4 as the weighted average of the weight used by both

types of agents. We can then obtain γ̂i (τ 4, τ 4) by simply computing the necessary

weight that implies the average weight in the treatment with exogenously provided

signals with precision level 4 to be 0.878.
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Uncovering Biases in Information Choice and its

Use: The Role of Strategic Uncertainty

(Online Appendix)

A Theoretical Model

We solve a general quadratic-Gaussian model with information acquisition, strate-

gic complementarities, and two players. The results stated in the paper follow as

simple corollaries of the general results established below. Our analysis com-

plements the results of Colombo et al. (2014) who considered a general linear-

Gaussian model with information acquisition and continuum of players and the

results of Ui and Yoshizawa (2015) who considered a general quadratic-Gaussian

model with finitely many players but with exogenous information structure.

We begin by describing the general quadratic-Gaussian model with informa-

tion acquisition, of which our setup described in Section 2 is a special case, and

characterize its equilibrium.

A.1 General Setup

The structure of the model is the same as of the setup described in Section 2

except that we allow for more general utility specification. The utility function in

our general setup is given by

U (ai, aj, θ) =
1

2
Uaaa

2
i + Uaa′aiaj + Uaθaiθ +

1

2
Ua′a′a

2
j + Ua′θa

′θ +
1

2
Uθθθ

2(13)

+Linear Terms,

where “linear terms”can be expressed as
(
va va′ vθ

)
×
(
ai aj θ

)′
. Note that

Equation (13) implies that Uaa is the second derivative of U with respect to own

action, ai, Ua′a′ is the second derivative of U with respect to action of the other

player, aj, and so on. The linear terms are grouped together as they play little

role in the analysis. The information structure and the sequence of agents’is the

same as in the setup described in Section 2.

We impose the standard regularity conditions on the utility function (see An-

geletos and Pavan (2007) and Colombo et al. (2014)).
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Assumption 2 Uaa < 0 and −Uaa′/Uaa ∈ (0, 1)

Assumption 2 ensures that the best-response function are well defined, that the

coordination stage has unique equilibrium, and that actions in the coordination

stage are strategic complementarities.

It is easy to see that the game we consider in Section 2 is a special case of the

general game described above with Uaa = −2, Uaa′ = 2α, and Ua′a′ = −2α and

va = va′ = vθ = 0. Therefore, Assumption 2 is satisfied in the model of Section 2

as long as α ∈ (0, 1).

A.2 Equilibrium under Complete Information

Consider the general model of Section A.1, but assume that both agents observe

θ. The equilibrium under complete information is pair of action choices for player

1 and player 2, {a1, a2}, such that for each i = 1, 2, ai solves

∂

∂ai
U (ai, aj, θ) = 0, j 6= i (14)

Using the fact the utility function is quadratic, it follows that the best-response

function is given by

ai (θ, aj) = − va
Uaa
− Uaθ
Uaa

θ − Uaa′

Uaa
aj (15)

Following Angeletos and Pavan (2007) and Colombo et al. (2014), we refer to the

slope of the best-response function as the equilibrium degree of coordination and

denote it by α∗, where

α∗ ≡ ∂ai
∂aj

= −Uaa
′

Uaa
(16)

Assumption 2 implies that α∗ ∈ (0, 1).26 Solving simultaneously F.O.C.s of both

agents we obtain the following result.

Lemma 6 The unique equilibrium of the complete information model is the pair

of action {ai, aj} such that

ai = aj = κ∗0 + κ∗1θ (17)

26In our simple model of Section 2, α∗ = −Uaa′/Uaa = α.
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where

κ∗0 ≡ − va
Uaa + Uaa′

(18)

κ∗1 ≡ − Uaθ
Uaa + Uaa′

(19)

A.3 Equilibrium of the Model with Incomplete Information

A.3.1 The Coordination Stage

Suppose that agents chose precisions {τ i, τ j} in the information acquisition stage.
In this section, we characterize agents’optimal actions in the coordination stage

given that both agents have correct beliefs about each other precision choices.

That is, we characterize the optimal play along a potential equilibrium path.

In the coordination stage, the problem of player i is given by

max
ai

E [U (ai, aj, θ) |xi, y] , (20)

where τ i and τ j affect the expectations through the joint distribution of {θ, y, xi, xj}.
The first-order condition is associated with the above problem is given by

E

[
∂

∂ai
U (ai, aj, θ) |xi, y

]
= 0 (21)

Since the utility function U is quadratic in its arguments, the above first-order

equation can be simplified to the following expression for ai:

ai = E [α∗aj + (1− α∗)κ∗ (θ)|xi, y]

where, α∗ ∈ (0, 1) is the equilibrium degree of coordination (see Equation (16))

and κ∗ (θ) = κ∗0+κ∗1θ is the optimal action choice under the complete information.

A strategy is a function that maps signals {xi, y} into actions. Denote the
strategy of player i by ai (xi, y), i = 1, 2. The equilibrium strategies of player i

and j have to satisfy simultaneously

ai (xi, y) = E [α∗aj (xj, y) + (1− α∗)κ (θ)|xi, y] (22)

aj (xj, y) = E [α∗ai (xi, y) + (1− α∗)κ (θ)|xj, y] (23)

Lemma 7 Let τ = {τ i, τ j}. For each player i, i = 1, 2, the unique linear equilib-

rium strategy is

a∗i (xi, y) = κ∗0 + κ∗1 (β∗i (τ )xi + γ∗i (τ ) z) , (24)
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where

β∗i (τ ) = (1− α∗) (1− δi)
1 + α∗ (1− δj)

1− α∗2 (1− δi) (1− δj)
(25)

and γ∗i (τ ) = 1− β∗i (τ ).

Proof. We guess that player i and j use the following linear strategies

a∗i (xi, y) = ζ∗i (τ ) + β∗i (τ )xi + γ∗i (τ ) z (26)

a∗j (xj, y) = ζ∗j (τ ) + β∗j (τ )xj + γ∗j (τ ) z (27)

respectively. Combining the guess (26) with Equation (22) and using the obser-

vation that E [θ|xi, y] = (1− δi)xi + δiz, where δi = τ z/ (τ i + τ z), we obtain

a∗i (xi, y) =
[
α∗ζ∗j (τ ) + (1− α∗)κ∗0

]
+ (1− δi)

(
α∗β∗j (τ ) + (1− α∗)κ∗1

)
xi

+
(
α∗β∗j (τ ) δi + α∗γ∗j (τ ) + (1− α∗)κ∗1δi

)
z (28)

Following the same steps we get

a∗j (xj, y) = [α∗ζ∗i (τ ) + (1− α∗)κ∗0] + (1− δj) (α∗β∗i (τ ) + (1− α∗)κ∗1)xj

+ (α∗β∗i (τ ) δj + α∗γ∗i (τ ) + (1− α∗)κ∗1δj) z (29)

Comparing the coeffi cients in Equations (26) and (27) with those in (28) and

(29), we see that the constants ζ∗i and ζ
∗
j have to satisfy

ζ∗i (τ ) =
[
α∗ζ∗j (τ ) + (1− α∗)κ∗0

]
ζ∗j (τ ) = [α∗ζ∗i (τ ) + (1− α∗)κ∗0]

From these equations we obtain that ζ∗i (τ ) = ζ∗j (τ ) = κ∗0.

Next, comparing coeffi cients on xi and xj in Equations (26) and (27) with those

in (28) and (29), we obtain a system of linear equations that {ζ∗i (τ ) , β∗i (τ ) , γ∗i (τ )}
and

{
ζ∗j (τ ) , β∗j (τ ) , γ∗j (τ )

}
have to satisfy. Solving this system of equations for

these unknowns yields the desired result.

A.3.2 The Coordination Stage after an Undetected Deviation

Suppose now that in a candidate equilibrium agents were to choose precisions

{τ i, τ j}. Furthermore, suppose that agent i deviated from this prescribed behavior
and chose instead precision, τ̂ . To keep notation simple let τ̂ = {τ̂ , {τ i, τ j}}, so
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that τ̂ is a vector that contains precision choice to which player i deviated and the

precision choices {τ i, τ j}, which agents were supposed to make in the information
acquisition stage. Note that since precision choices are made privately, agent j is

unaware of this deviation and behaves as if the agent i chose τ i. On the other

hand, agent i has correct believes about precision choice of agent j.

Given that agent j believes that agent i chose the prescribed equilibrium

precision, agent j finds it optimal to follows a linear strategy a∗j (xj, y) = κ∗0 +

κ∗1
(
β∗j (τ )xj + γ∗j (τ ) z

)
as characterized in Section A.3.1. Agent i’s optimal ac-

tion choice is the best-response to this strategy employed by agent j. That is,

agent i solves

max
ai

E
[
U
(
ai, a

∗
j , θ
)
|xi, y

]
,

where his precision choice is τ̂ instead of τ i. The following result follows immedi-

ately from solving the above maximization problem.

Lemma 8 Suppose that agents were expected to choose precisions {τ i, τ j}. Sup-
pose further that agent i instead chose precision τ̂ . Then, in the coordination

stage, player i’s optimal strategy is given by

âi (xi, y) = κ∗0 + κ∗1

(
β̂i (τ̂ )xi + γ̂i (τ̂ ) z

)
(30)

where, τ̂ = {τ̂ , {τ i, τ j}} ,

β̂i (τ̂ ) = (1− α∗)
(

1− δ̂
) 1 + α∗ (1− δj)

1− α∗2 (1− δi) (1− δj)
, (31)

δ̂ = τ z/ (τ z + τ̂), and γ̂i (τ̂ ) = 1− β̂i (τ̂ ).

A.3.3 The Information Acquisition Stage

We now consider agents optimal precision choices. A pair of precision choices

{τ i, τ j} constitutes an equilibrium if and only if neither agent has incentives to

unilaterally deviate from it. Thus, our first goal is to determine agents’ opti-

mal unilateral deviations in the information acquisition stage from a candidate

equilibrium precision choices.

Suppose that in a candidate equilibrium, agents are expected to choose preci-

sions, {τ i, τ j}. Consider agent i who is deciding whether to unilaterally deviate
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from the prescribed precision choice. That is, agent i is choosing an optimal pre-

cision choice in response to agent j (i) choosing precision τ j and (ii) acting in

the coordination stage according to the belief that precision levels chosen in the

first-stage were {τ i, τ j}. Agent i’s problem is then given by

max
τ̂

E
[
U
(
â∗i , a

∗
j , θ
)]
− C (τ̂) (32)

where the expectations are taken over {θ, y, x1, x2}, C (τ̂) is the cost of purchasing

precision τ̂ , â∗i is agent i’s optimal strategy in the coordination stage following an

undetected deviation (see Lemma 8), and a∗j is agent j’s optimal strategy in coor-

dination stage given that agent j believes that both agents will make prescribed

precision choices.

Lemma 9 Let τ̂ (τ ) denote agent i’s optimal deviation from any prescribed pre-

cision choice τ = {τ i, τ j}. Then for any τ ∈ R2+, τ̂ (τ ) is defined as the unique

solution to

F (τ̂ ) ≡
|Uaa|

(
κ∗1β̂

∗
i (τ̂ )

)2
2τ̂ 2

− C ′ (τ i) = 0, (33)

where τ̂ = {τ̂ , {τ i, τ j}}.

Proof. The first-order condition associated with agent i’s problem stated in (32)

is given by∫
(θ,y)

∫
{xi,xj}

U
(
â∗i , a

∗
j , θ
) ∂p (xi|θ, y)

∂τ i
p (xj|θ, y) dxidxjdP (θ, y) (34)

+

∫
(θ,y)

∫
{xi,xj}

Uk
(
â∗i , a

∗
j , θ
) ∂â∗i
∂τ i

dP (xi, xj|θ, y) dP (θ, y)− C ′ (τ i) = 0

Note that the second integral in Equation (34) can be written as∫
(xi,y)

∂â∗i
∂τ i

{∫
{θ,xj}

Uk
(
â∗i , a

∗
j , θ
) ∂â∗i
∂τ i

dP (θ, xj|xi, y)

}
dP (xi, y) = 0,

where we used the observation that the inner integral in the above expression

corresponds to agent i’s F.O.C. at the coordination stage following undetected

deviation. Next, we use integration by parts and simplify the first integral in

Equation (34). Following these steps we find that the above F.O.C. can be written

as
|Uaa|

(
κ∗1β̂

∗
i (τ̂ )

)2
2τ̂ 2

− C ′ (τ̂) = 0, (35)
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where β̂
∗
i is defined in Equation (31) and is a function of τ̂ = {τ̂ , {τ i, τ j}}.

Let F (τ̂ ) denote the LHS of Equation (35). It is straightforward to see that

∂F (τ̂ ) /∂τ̂ < 0, F (τ̂ ) > 0 at τ̂ = 0, and limτ̂→∞ F (τ̂ ) = −∞. Therefore,

Equation (35) has always a unique interior solution implying that τ̂ (τ ) is well

defined.

Lemma 10 τ̂ (τ ) is increasing in both τ i and τ j.

Proof. Using the definition of β̂
∗
i (see Equation (31)) is is straightforward to

see that β̂
∗
i /∂τ j > 0 and ∂β̂

∗
i /∂τ i > 0 implying that ∂F (τ̂ ) /∂τ j > 0 and

∂F (τ̂ ) /∂τ i > 0. Since, ∂F (τ̂ ) /∂τ̂ < 0, by the implicit function theorem ap-

plied to Equation (33), we conclude that τ̂ (τ ) is increasing in both τ i and τ j.

Before proceeding further, note that if τ̂ = {τ i, {τ i, τ j}} then β̂
∗
i (τ̂ ) = β∗i (τ ),

where τ = {τ i, τ j}. Therefore, if τ ∗ =
{
τ ∗i , τ

∗
j

}
is a vector of equilibrium precision

choices, then τ ∗ has to satisfy

|Uaa| (κ∗1β∗i (τ ∗))2

2τ ∗2i
− C ′ (τ ∗i ) = 0 (36)

for each i ∈ {1, 2}, j 6= i.

Using the above observations, we now show that our two-stage game has a

unique equilibrium in which both agents choose the same precision level.

Proposition 1 The unique equilibrium precision choice for agent i, i = 1, 2, is

τ ∗, where τ ∗ is the unique solution to

τ ∗ =

√
1

2

|Uaa|κ∗21
C ′ (τ ∗)

− 1

1− α∗ τ z (37)

Proof. We first show that there exists a unique symmetric equilibrium. Let

τ i = τ j = τ ∗ and τ ∗ = {τ ∗, τ ∗}. Then

β∗ (τ ∗) ≡ (1− δ∗) (1− α∗)
1− α∗ (1− δ∗) (38)

and δ∗ = τ z/ (τ ∗ + τ z). Hence, the symmetric equilibrium precision choice has to

satisfy
|Uaa| (κ∗1β∗ (τ ∗))2

2τ ∗2
− C ′ (τ ∗) = 0 (39)
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Using the definition of β∗ (τ ∗) in the above equation and simplifying the resulting

expression we obtain

τ ∗ =

√
|Uaa|κ∗21
2C ′ (τ ∗)

− τ z
1− α∗ , (40)

It is straightforward to see that Equation (40) has a unique solution, which implies

that our model features a unique symmetric equilibrium.

To show that there exist no asymmetric equilibria we use iterative deletion of

strictly dominated strategies. Let, τ be the unique solution to

lim
τ i,τ j→∞

F (τ̂ ) = 0

Since τ̂ (τ ) is increasing in τ i and τ j (Lemma 10), we know that for all τ i,τ j ∈ R+

τ̂ (τ ) < τ

Since agents are symmetric, it follows then no agent will ever choose precision

larger than τ . Let τ 0 = τ and suppose that agents are prescribed to choose

τ 0= {τ 0, τ 0}. Since τ̂ (τ ) is increasing in both τ i and τ j, it follows that τ 1 =

τ̂ (τ 0) < τ 0. Since agents are symmetric, it follows that no agent will find it ever

optimal to choose precision larger than τ 1. Iterating in this fashion, we obtain a

decreasing sequence {τ k}∞k=0 bounded from below by 0. Therefore, this sequence

converges and we denote its limit by τ∞. Note that τ∞ has to satisfy

|Uaa| (κ∗1β∗ (τ∞))2

2τ 2∞
− C ′ (τ∞) = 0, (41)

where τ∞ = {τ∞, τ∞}, as otherwise we would be able to iterate further.
We then follow an analogous approach from “below”starting with τ 0 = 0 and

τ 0 = {τ 0, τ 0}. Following this approach we obtain an increasing sequence {τ k}
∞
k=0

bounded from above by τ∞. Therefore, this sequence converges and we denote its

limit by τ∞. Note that τ∞ has to satisfy

|Uaa| (κ∗1β∗ (τ∞))2

2τ 2∞
− C ′ (τ∞) = 0, (42)

where τ∞ = {τ∞, τ∞}. Comparing Equations (41) and (42) we see that τ∞ and

τ∞ satisfy the same equation which, as we argued above, has a unique solution.

Therefore, τ∞ = τ∞ = τ ∗, where τ ∗ is the unique symmetric equilibrium choice.

It follows that there are no asymmetric equilibria.
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Proposition 1 implies that in the unique equilibrium agents choose the same

precision, τ ∗, and follow symmetric strategies in the coordination game. Therefore,

in what follows we drop subscript i (j) when referring to agent i’s (agent j’s)

choices.

Lemma 11 Consider the equilibrium precision choice τ ∗.

1. The equilibrium precision choice τ ∗ is decreasing in the precision of public

information τ z, that is ∂τ ∗/∂τ z < 0.

2. The equilibrium precision choice τ ∗ is decreasing in the degree of strategic

complementarities α, that is ∂τ ∗/∂α < 0.

Proof. Immediate from the Equation (37).

A.4 Derivation of Equation (11)

In this section, we derive Equation (11) and discuss the assumptions regarding

agent i’s perception of the relations between signals and signals that one needs to

impose to arrive at this equation.

Recall that the ex-ante utility of agent i is given by

E [U (τ i)] = −E
[
(1− α) (ai − θ)2 + α (ai − aj)2

]
,

Assume that agent i uses a linear strategy given by ai = γ̂iz + (1− γ̂i)xi, where
γ̂i ∈ [0, 1] is the weight (potentially non-optimal) that player i assigns to public

signal. Furthermore, assume that player i believes that player j also follows a

linear strategy given by aj = γ̂jz+
(
1− γ̂j

)
xj, where γ̂j ∈ [0, 1] is the weight that

player i believes that player j assigns to public signal. We can now wrote ex-ante

utility as

E [U (τ i)] = −E
[
(1− α) (γ̂i (z − θ) + (1− γ̂i) (xi − θ))2

+ α
(
γ̂i (z − θ) + (1− γ̂i) (xi − θ)− γ̂j (z − θ) +

(
1− γ̂j

)
(xj − θ)

)2]
Up to this point, we only imposed linearity of strategies. If we further assume

that agents understand that signals are unbiased (which we emphasized to subjects
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in instructions), that is, E [xi − θ] = E [xj − θ] = E [z − θ] = 0, then we can

simplify ex-ante utility to

E [U (τ i)] = −γ̂iV ari (z − θ)− (1− γ̂i)V ari (xi − θ)− 2γ̂i (1− γ̂i)Covi (z − θ, xi − θ)(43)

−α
{
γ̂jV ar

i (z − θ)−
(
1− γ̂j

)
V ari (xj − θ)− 2γ̂j

(
1− γ̂j

)
Covi (z − θ, xj − θ)

}
+α
{

2γ̂iγ̂jV ar
i (z − θ) + 2γ̂i

(
1− γ̂j

)
Covi (z − θ, xj − θ)

+ 2 (1− γ̂i) γ̂jCovi (xi − θ, z − θ) + 2 (1− γ̂i)
(
1− γ̂j

)
Covi (xi − θ, xj − θ)

}
,

where V ari (·) and Covi (·) capture agent i’s subjective beliefs about of the vari-
ances and covariances of relevant random variables. If we further assume that

agents understand that

E [(z − θ) (xi − θ)] = E [(z − θ) (xj − θ)] = E [(xi − θ) (xj − θ)] = 0

then Equation (43) can be further simplified to

E [U (τ i)] = −γ̂iV ari (z − θ)− (1− γ̂i)V ari (xi − θ) (44)

−α
{
γ̂jV ar

i (z − θ)−
(
1− γ̂j

)
V ari (xj − θ)− 2γ̂iγ̂jV ar

i (z − θ)
}
,

which is Equation (11) in the text.

A.5 Comparison with Morris and Shin (2002)

The model used in the experiment is a natural simplification of the framework

introduced by Morris and Shin (2002). Nevertheless, this simplification does have

implications for some predictions of the model. In particular, in the unique equi-

librium of our model, agents underuse public information while in Morris and Shin

(2002) they overuse it. The reason for this difference is easiest to highlight in the

context of a model with a continuum of players.

Recall that in Morris and Shin (2002), agents’utility function is given by

UMS (a, θ) = − (1− α) (ai − θ)2 − α
(
Li − L̄

)
, (45)

where Li =
∫ 1
0

(ai − aj)2 dj is the average mean-squared difference between agent
i and other agents’actions, and L̄ =

∫ 1
0
Ljdj is the average of the mean squared

differences across all agents. Thus, in Morris and Shin (2002) agents care about

how far their mean-squared difference is from the average mean-squared difference.
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Since the average Li− L̄ across agents is zero, from a social perspective one should
not care about the coordination motive. However, from the individual perspec-

tive, coordination motive matters and, thus, from the social perspective agents

use public information too much. Therefore, equilibrium degree of coordination

exceeds the effi cient degree of coordination.

In contrast, suppose that the utility function was given by

U (a, θ) = − (1− α) (ai − θ)2 − αLi (46)

In this case, miscoordination of action is also important from social perspective.

However, agents do not take into account the effect that their actions have on the

ability of other agents to match their actions. As such, they underuse information.

In our 2-player model, utility function is given by U (a, θ) = − (1− α) (ai − θ)2−
α (ai − aj)2 and, thus, it captures ineffi ciencies arising from the utility function in
Equation (46) rather than the one in Equation (45).

B Alternative Models

B.1 Level-k model

Proof of Lemma 3. Consider the problem of type Lk player at the coordination

stage who chose precision τLk and who believes that type Lk−1 player assigns the

weight γLk−1 to public information, where γLk−1 is an integrable random variable

(independent of xj and θ) with mean γLk−1 ∈ [0, 1].27 Then, type Lk player

chooses action ai to solve

min
ai

E
[
− (1− α) (ai − θ)2 − α (ai − aj)2 |xi, y

]
where aj = γLk−1z+

(
1− γLk−1

)
xj and the expectations are taken over

{
θ, xj, γLk−1

}
.

Taking F.O.C. and rearranging, we obtain

ai = E
[
(1− α) θ + α

(
γLk−1z +

(
1− γLk−1

)
xj
)
|xi, y

]
27The randomness in γLK−1 captures the possibility that level Lk−1 agent may

randomize his precision choices. From type Lk’s perspective randomization over

precision choice translates then into randomness in γLK−1.
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Since γLk−1 is independent of xj and θ, and sinceE [xj|xi, y] = δ (τLk) z+(1− δ (τLk))xi

we have

ai =
[
(1− α) δ (τLk) + αγLk−1 + αδ (τLk)

(
1− γLk−1

)]
z

+
[
(1− α) θ (1− δ (τLk)) + α

(
1− γLk−1

)
(1− δ (τLk))

]
xi

Therefore, the weight that player of type Lk assigns to public signal is given by

γLk = δ (τLk) + αγLk−1 (1− δ (τLk))

It follows that γLk ≥ δ (τLk) with equality if and only if γLk−1 = 0.

Lemma 3 does not depend on the specific assumptions made in our experimen-

tal setup. In contrast, the proof of Lemma 4 makes use of specific assumptions

and parameter values chosen in our experimental setup.

Proof of Lemma 4. Let pn be the probability that agent of type Lk−1 chooses

precision level n, n ∈ {1, 2, 3, 4}, γLk−1 (τn) be the weight he assigns to public

information if he chose precision level n, and γLk−1 =
∑4

n=1 pnγLk−1 (τn). Denote

by τm precision level chosen by type Lk agent. From Lemma 3 we know that if

agent of type Lk chose precision τn then his optimal action at the coordination

stage is

a∗Lk (τm) = γLk (τm) z + (1− γLk (τm))xi,

where γLk (τm) = δ (τm) + αγLk−1 (1− δ (τm)) and δ (τn) = τ z/ (τ z + τm). Given

these observations and suppressing the dependence of weights on precision choices

for notational convenience, the expected utility of agent of type Lk who chooses

precision τm at the information stage is given by

ULk (τ k) = −
[
γ2Lkτ

−1
z + (1− γLk)

2 τ−1k
]
− 2α

4∑
n=1

pnγLkγLk−1τ
−1
z −∆,

where

∆ ≡ α
4∑

n=1

pn

[
γ2Lk−1τ

−1
z +

(
1− γLk−1

)2
τ−1n

]
captures the terms that do not depend type Lk agent’s precision choice.

We now show that ULk (τ 4) − ULk (τm) > 0 for m ∈ {1, 2, 3}. First, we note
that

γ2Lk (τ 4) τ
−1
z + (1− γLk (τ 4))

2 τ−14 < 1
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since by Lemma 3 we have γLk (τ 4) ≥ δ (τ 4) ≡ τ z/ (τ z + τ 4) and γ2Lk (τ 4) τ
−1
z +

(1− γLk (τ 4))
2 τ−14 is a convex in γLk and achieves its minimum at γLk = δ (τ 4).

Next, we note that given that τ z = 1, we have

γ2Lk (τm) τ−1z + (1− γLk (τm))2 τ−1k > δ2 (τm)

Therefore, for any m ∈ {1, 2, 3}, we have

ULk (τ 4)− ULk (τm) > C (τm)− C (τ 4)−
(
1− δ2 (τm)

)
+2α

4∑
n=1

pn [γLk (τ 4)− γLk (τm)] γLk−1τ
−1
z

> C (τ k)− C (τ 4)− 1

where the last inequality follows by observing that γLk (τ 4) − γLk (τm) > 0 and

δ2 (τm) > 0. Since C (τ k) − C (τ 4) > 1 for all m ∈ {1, 2, 3} (see Table 1), we
conclude that for all m ∈ {1, 2, 3} we have ULk (τ 4) − ULk (τm) > 0. Since the

above argument does not depend on the level of reasoning (except that agent must

best respond to the agent of lower level of reasoning), we conclude that all types

of level k, k ≥ 1, find it optimal to choose precision 4.

B.2 Anticipated regret

We denote an agent’s regret by R, where R : R2 → R and R maps (θ − ai) and
(aj − αi) into a real number. We assume that R is a quadratic function given by

R (θ − ai, aj − αi) = −rθ (θ − ai)2 − ra (aj − αi)2 , (47)

where ra, rθ ≥ 0, so that in the model with regret, agents maximize utility

UR = U +R,

where U is the underlying utility function (Equation (1)). This choice of regret

function is natural given our payoff function. Moreover, R has also an intuitive

property that agent i feels only a small amount of regret if his losses from mis-

matching θ and aj are small, but strongly regrets his choices when his losses are

large.28

28Filiz-Ozbay and Ozbay (2007) and Gretschko and Rajko (2015) consider

piecewise-linear regret functions. However, since in our setting choosing ai smaller
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Note that if rθ is large relative to ra then agents regret more mismatching the

state. This should make them use public information less in equilibrium than in

the benchmark model since in this case they value less the coordinating effect of

the public signal. Similarly, high values of rθ and ra may increase the value of

information since agents have stronger incentives to avoid large losses.

Proof of Lemma 5. We have

UR (ai, aj, θ) = 100− (1− α + rθ) (θ − ai)2 − (α + ra) (aj − αi)2

Therefore, the above utility function fits into the general setup described in Sec-

tion A.1 of this appendix, with Uaa = 2 (1 + rθ + ra), Uaa′ = 2 (α + ra), Uaθ =

2 (1− α + rθ), Ua′a′= (α + ra), Ua′θ = 0, and Uθθ = 0. Therefore, from Lemma 7

in this appendix, we know that the equilibrium weight on public information is

given by

γ∗ =
δi + α∗δj (1− δi)

1− α∗2 (1− δi) (1− δj)
,

where α∗ = −Uaa′/Uaa = α+ra
1+rθ+ra

∈ (0, 1). Since γ∗ = δi if α∗ = 0 and ∂γ∗/∂α∗ > 0

if follows that

γ∗ ≥ δi

Finally, from the expression for α∗, we see that this bound is achieved only as

rθ →∞.

B.3 Quantal Response Equilibrium

B.3.1 Overview

In this section, we describe in detail how we implemented quantal response equi-

librium in our setting. Note that QRE is typically applied in the context of

finite-action models with complete information (see Goree et al. (2016) and ref-

erences therein). Even in those relatively simple settings, QRE often has to be

solved numerically. In contrast, our model features a continuum of actions and

incomplete information. With a continuum of actions the so-called statistical re-

action functions (which play the role of best-response functions in QRE) may not

be well-defined. In addition, due to incomplete information, even if statistical

or larger than θ or aj leads to symmetrical utility losses, we choose a symmetric

regret function.
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(a) α = 0.25 (b) α = 075

Figure 11: Equilibrium precision choices for different combinations of rθ and ra

reaction functions are well-defined they will be complex functionals that map any

pair of signals {xi, y} ∈ R2 into a probability distribution over R. This makes
implementation of QRE in our setting challenging.

We focus on the so-called logistic QRE (see McKelvey and Palfrey (1995))

where agents’choices are subject to errors that follow type I extreme value distri-

bution. To compute logistic QRE, we discretize the model, that is we consider an

approximation to our model where actions and signals take values on fine but finite

grids. Discretizing action space allows us to circumvent the issue that statistical

response functions may be not well-defined. Discretizing signal space implies that

statistical response functions will take the form of matrices rather than functions.

Finally, to further decrease computational diffi culty, we focus on the coordination

stage assuming that both agents chose the same precision level and they have

correct beliefs about the precision choice of the other agents.29

Computing QRE Denote the common private precision choice by τx. All other

parameters of the model are the same as in the experiment. The algorithm to

solve for QRE consists of two parts: discretization of the model and computation

of statistical response functions in the discretized model.

29Our implementation of QRE allows us to extend it to the case of asymmetric

precision choices but at a cost of an additional computational burden.
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Discretization of the model To discretize the model perform the following

steps.

1. Fix a realization of public signal, y (and, hence a realization of z).

2. Restrict action choices to belong to interval [−100, 100] and choose an equally

spaced grid on this interval consisting of nA points. Denote by a (i) the ith

element of the gird over possible actions.

3. Restrict private signals to belong to interval [−100, 100] and choose an

equally spaced grid on this interval consisting of nx points.30 Denote by

x (i) the ith element of the gird over possible signals.

4. Let Px (m,n) = Pr (xj = x (m) |xi = x (n) , z) so that Px is a matrix whose

{m,n}th element is the probability that agent i who observed private signal
x (n) assigns to agent j observing private signal x (m). To compute Px we

adapt Tauchen method for discretizing AR(1) processes (Tauchen (1986)) to

our setting as follows.

(a) Recall that xj|xi ∼ N
(
δz + (1− δ)xi, (τx + τ z)

−1 + τ−1x
)
, where δ =

τz
τz+τx

.

(b) Denote by x (1) is the smallest signal on the grid over signals. Then,

we set

Px (1, n) = Φ

x (1)− δz + (1− δ)x (n)√
(τx + τ z)

−1 + τ−1x


for each n ∈ {1, ..., nx}.

(c) Denote by x (nx) is the largest signal on the grid over signals. Then,

we set

Px (nx, n) = 1− Φ

x (nx)− δz + (1− δ)x (n)√
(τx + τ z)

−1 + τ−1x


30In our experimental data all signals belong to the interval [−60, 60]. Thus, the

chosen interval includes all observed signals. Moreover, given the parameters used

in experiment, conditional on observing the highest (lowest) signal, the probability

attached by agent i to either θ or xj exceeding 100 (or being lower than -100) is

negligible.
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for each n ∈ {1, ..., nx}.

(d) For all m ∈ {2, ..., nx − 1} and all n ∈ {1, ..., nx} we set

Px (m,n) = Φ

x (m)− δz + (1− δ)x (n)√
(τx + τ z)

−1 + τ−1x

−Φ

x (m− 1)− δz + (1− δ)x (n)√
(τx + τ z)

−1 + τ−1x


This concludes the discretization step. At this point we have a grid over

actions, a grid over signal, and a matrix that captures each agents’beliefs about

the private signal observed by the other agent. In our numerical analysis we set

na = nx = 1001 so that Px is a 1001-by-1001 matrix.

Computing QRE We next describe how we compute logistic QRE in our dis-

cretized model. For a given z, our goal here is to find matrix Pa where {m,n}th

element of this matrix, is the probability that each agent i plays action a (m)

conditional on observing private signal x (n) given that he believes that the other

agents chooses his actions according to Pa.

1. Fix λ ≥ 0, the logistic parameter.

2. Keep z fixed at the same value as in the discretization step.

3. Guess Pa, the matrix of probabilities with which agents play actions on the

grid for each private signal on the grid.

4. Compute the probability that agent i who observed private signal x (n) as-

signs to player j taking action a (l), and denote this probability by Paj |x (l, n).

This probability is given by

Paj |x (l, n) = Pr (aj = a (l) |xi = x (n) , z) =

na∑
m=1

Pa (l,m)Px (m,n)

Repeat this for each action a (l) and each private signal x (n) on the grids

to obtain Paj |x.

5. Let U be a matrix whose {k, n}th element is agent’s expected utility from
taking action k conditional on observing signals x (n) and z and given Paj |x.
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Compute U (k, n), agent’s expected utility from taking action a (k) condi-

tional on observing signal x (n), according to

U (k, n) = − (1− α)E
[
(θ − a (k))2

]
− α

na∑
l=1

Paj (l, n) (a (l)− a (k))2 ,

which can be simplified to

U (k, n) = − (1− α) (τx + τ z)
−1 + (δzz + (1− δ)xi − a (k))2

−α
na∑
l=1

Paj (l, n) (a (l)− a (k))2

Repeat this for each action and each private signal on the grid.

6. Let P̂a be a matrix whose {k, n}th element is the probability with which an
agent chooses action a (k) conditional on observing private signal x (n). To

compute P̂a (k, n) apply the logistic choice function so that

P̂a (k, n) =
eλU(k,n)∑na
`=1 e

λU(`,n)

Compute the above probability for each action and each signal on the grid.

7. Set Pa = P̂a and repeat Steps 1− 5

8. Iterate till max
(∣∣∣Pa − P̂a∣∣∣) < ε, where the max operator is taken over all

elements of
∣∣∣Pa − P̂a∣∣∣ matrix and where ε is the chosen tolerance level.

The above procedure computes the statistical response functions, Pa, that

constitutes a QRE. In our implementation of the above algorithm, we set ε = 10−7

and set initial guess to a uniform distribution over all actions for each possible

value of private signal.

B.3.2 Simulate Data

Having solved numerically for QRE, the final step is to simulate agents behavior

using signals observed in the experimental data. That is, our goal is to obtain

simulated actions for each pair of private and public signals observed in our ex-

periment. In what follows we consider only the observations in which subject chose

precision k and believed that the pair member also chose precision level k ∈ {2, 4},
as these were the most commonly chosen precision levels.
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Let Sk be a matrix such that its first column contains to all private signals

observed by subjects who chose precision k and believed that other subject also

chose precision k while the second columns contains corresponding public signals

that were observed by these subjects. Thus, nth row of Sk is the nth pair of signals

{xi, y} observed by a subject who chose precision k and believed that other agent
also chose precision k in the experimental data.

To simulate actions follow the steps outlined below.

1. Fix the logistic parameter λ ≥ 0.

2. Consider the first pair {xi, y} that belong to Sk.

3. Compute z and solve for Pa associated with z using the algorithm described

above.

4. Find a signal on the gridpoint that is closest to xi. Let n denote the index

of that gridpoint.

5. Use a random number generator to draw a random number, call it ξ, from a

continuous uniform distribution on [0, 1] and find the smallest index k such

that

ξ <
k∑
l=1

Pa (l, n)

Then set a (k) as the simulated action of an agent who observed signal

{xi, y}. Store this action as the first entry in a column vector Ak.

6. Continue in this fashion for each pair of signals that belong to Sk.

7. Regress Ak on Sk to estimate the implied weights by agents to private and

public signals.

8. Repeat this N times, N ∈ N.

In our simulations we set N = 1000 and repeat the above simulation for 60 dif-

ferent values of λ in the interval [0, 10]. Thus, we obtain 1000 estimates of weights

on private and public signals implied by logistic QRE with a given parameter λ.

Figure 12 is generated using this data.
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Figure 12: Comparison of estimated weights using QRE for different values of λ

with the theoretical and estimated weights.

B.4 Overconfidence

We model overconfidence as in Odean (1998). That is, we assume that each

agent i, i ∈ {1, 2}, believes erroneously that the acquired precision of his signal
is ξiτ i, with ξi ≥ 1. When ξi = 1 then agent does not exhibit overconfidence

and perceives precision of his signal correctly. In addition, we assume that agents

perceive precision of other agents correctly.31

Lemma B.1 Suppose that agent i chose precision τ i and believes that subject j

chose precision τ j. Then for any β̂ ∈
[
β∗, β

]
, where β = (1− α)

1+α(1−δj)
1−α2(1−δj) , there

exists ξi such that optimal weight assigned by agent i to private signal is β̂.

Proof. Following the same steps as in the proof of Lemma 7 one can show that the

optimal weight assigned by the agent i to private signal when his overconfidence

31Odean (1998), motivated by the behavioral literature, assumes that agent i

actually underestimates the precision of others’signal. This allows the model to

capture another type of overconfidence, referred to as overplacement (overcon-

fidence about one’s performance relative to others). This additional source of

overconfidence would only strengthen the case against overconfidence as a driver

of our results as it would lead to shrinking of set of weight on private signal that

overconfidence could justify.
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level is ξ is given by

β∗ (ξi) = (1− α) (1− δi (ξ))
1 + α (1− δj)

1− α2 (1− δi (ξ)) (1− δj)
,

where δi (ξ) = τ z/ (τ z + ξτ i) and δj = τ z/ (τ z + τ j). Note that if ξi = 1 then the

above weight corresponds to the optimal weight in the baseline model. Further-

more, we have

∂β∗ (ξi)

∂ξ
= (1− α)

1 + α (1− δj)
[1− α2 (1− δi (ξ)) (1− δj)]2

τ zτ i
(τ i + τ z)

> 0

Finally,

lim
ξi→∞

β∗ (ξi) = (1− α)
1 + α (1− δj)
1− α2 (1− δj)

Setting β = (1− α)
1+α(1−δj)
1−α2(1−δj) establishes the claim.

Constructing Table 6 To compute levels of overconfidence needed to ratio-

nalize the estimated weights using our experimental data we first check whether

the estimated weight is smaller than β. If α = 0.75 and agent i chose precision

level 2 and believes that agent j also chose precision 2 then the estimated weight

exceeds β and, hence, there exists no value of ξi ≥ 1 that can rationalize esti-

mated weight. In all other cases, the level of overconfidence needed to rationalize

particular estimated weight can be found by solving

β∗ (ξi) = β̂

By Lemma B.1 this equation has unique solution. Table 6 reports ξi that solves

the above equations across treatments and precision choices.

Overacquisition The next Lemma considers our specific experimental setting

with public signal having standard deviation of σy = 1 and agents facing only four

precision choices as specified in Table 1.

Lemma B.2 Suppose that α = 0. Then for any ξi ≥ 1, agent i finds it optimal

to acquire the lowest level precision.

Proof. Using the properties of Gaussian distribution, it is straightforward to

show that the perceived ex-ante utility of an overconfident agent as a function of

precision choice τ i is given by

E [U (τ i)] = − (1− δi (ξ))2 (ξτ i)
−1 − δ2i (ξ) τ−1z − C (τ i) ,
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where δi = τ z/ (τ z + ξτ i) is the weight assigned by an overconfident agent to

public signal in his posterior about θ belief. Simplifying the above expression we

obtain

E [U (τ i)] = − 1

τ z + ξτ i
− C (τ i) ,

It follows that for all ξ ≥ 1 and all τ i and τ i′ such that τ i < τ i′ we have

E [U (τ i)]−E [U (τ i′)] > −
1

τ z + ξτ i
+[C (τ i′)− C (τ i)] ≥ −

1

τ z + τ i
+[C (τ i′)− C (τ i)] ,

where the last inequality follows from the fact that ξ ≥ 1.

Given the parameters of our model chosen for the experiment, we have 1
τz+ξτ4

>

0.987 and C (τ 3) − C (τ 4) = 1.5, C (τ 2) − C (τ 4) = 5, and C (τ 1) − C (τ 4) = 11.

Thus, it follows that E [U (τ 4)] > E [U (τ i)] for all i ∈ {1, 2, 3}. That is precision
choice four, τ 4, leads to the highest ex-ante utility for any level of overconfidence.

To investigate whether overconfidence can explain information overacquisition

when α > 0 we solve our model numerically. In particular, we consider a grid over

possible overconfidence levels of both agents. For each agent we then choose level

of overconfidence from this grid and solve the model with overconfident agents

numerically. Figure 13 plots equilibrium precision choices for each of these sim-

ulations, where each equilibrium precision choice pair is denoted with different

color.32 As can be readily observed, for all pairs of
{
ξi, ξj

}
in equilibrium agents

choose to acquire signals of the lowest precision (precision level 4). Thus, Figure

13 indicates that overconfidence cannot explain overacquisition of information.
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Figure 13: Equilibrium precision choices as players’degree of overconfidence varies
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