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Abstract
This paper investigates the usefulness of non-choice data, namely response times, 
as a predictor of threshold behavior in a simple global game experiment. Our results 
indicate that the signals associated to the highest or second highest response time 
at the beginning of the experiment are both unbiased estimates of the threshold 
employed by subjects at the end of the experiment. This predictive ability is lost 
when we move to the third or higher response times. Moreover, the response time 
predictions are better than the equilibrium predictions of the game. They are also 
robust, in the sense that they characterize behavior in an “out-of-treatment” exercise 
where we use the strategy method to elicit thresholds.

Keywords Response time · Threshold strategies · Global games

JEL Classification C71 · C9 · D03 · D89

1 Introduction

There is a long tradition in psychology and neuroscience of using non-standard 
(non-choice) data to explain the process of choice. In these studies investigators look 
for correlates with neural measures inside the brain to explain observed choices in 
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an attempt to find a link between what people do and what they think. The exer-
cise in many of these papers is to correlate observed behavior to neural measures 
with the arrow pointing from observable behavior to the brain.1 In this paper we 
reverse this procedure and use internal brain processes to make point predictions 
about future choices. In particular, we use Response Time (RT) to predict observed 
thresholds in a global games experiment. Global games are binary action games 
with incomplete information where payoffs are determined by a state variable that 
is not known to agents. Instead, agents observe noisy private signals about the state 
variable and payoffs are determined in such a way that they find it optimal to take 
one action for realizations of their signal above some critical threshold, and another 
action for realizations below it. We define a subject’s RT as the time that expires 
between when the subject first observes his signal and when he makes his binary 
choice. We can think of this as a subject’s contemplation time.

Our results suggest that by looking at observations associated to the highest or 
second highest RT at the beginning of the experiment (first 25 rounds) we can pre-
dict observed thresholds (albeit not necessarily equilibrium thresholds) at the end of 
the experiment (last 25 rounds). In particular, the signals associated to the highest or 
second highest RT during the first 25 rounds of the experiment furnish estimates of 
observable thresholds at the end of the experiment that are both unbiased and com-
parable to those that could be made using the observable choices of subjects in the 
first half of the experiment.

Our aim in this paper is exploratory, in the sense that we are interested in dis-
covering whether RTs can predict observed choices, whether there exists any inter-
esting heterogeneity of types in the population that exhibit different RT patterns, 
and finally whether other existing models of RT (mainly formulated for single-agent 
choice situations) are useful in explaining our data.

In pursuing this agenda we use our RT results to characterize two types of sub-
jects whom we call Intuitionists and Learners. Intuitionists seem to have an intuition 
about the use of a threshold strategy and even its precise value from the beginning 
of the experiment, but simply can’t articulate what it is. Hence, when offered a sig-
nal that is below their threshold they quickly take one action and when offered one 
above it they quickly take the other action. However, when a signal close to their 
true threshold is received for the first time, Intuitionists spend a longer time contem-
plating it since it is not necessarily clear which action to take.

Learners, on the other hand, act as if they understand the structure of the game, 
and maybe even the benefits of a threshold strategy, but do not know the appropriate 
threshold to use. They learn their threshold through experience in the game and trial 
and error. As a result, Learners are more prone to make mistakes in initial rounds, 
in the sense that in early rounds they violate the dictates of their eventual future 

1 Such a process is counter to the typical revealed preference methods used by economists (see, for 
example, Gul and Pesendorfer 2008).
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threshold. Once they converge on a threshold, however, their behavior becomes 
indistinguishable from that of Intuitionists.2

We present an “out-of-treatment” exercise where we analyze the results of a sec-
ond experimental treatment where subjects play a global game but we use the strat-
egy method and explicitly ask subjects to report thresholds to be able to observe 
their evolution over time. We find support for our characterization of Intuitionists 
and Learners by classifying 80% of the subjects in either one of these two groups.

This paper is by no means the first to use response times in economics.3 For exam-
ple, starting in 2006 and using a unique web site where a huge number of responses 
can be registered to play any listed game or decision problem, Ariel Rubinstein has 
been an early and persuasive advocate of the use of RTs.4 For example, Rubinstein 
(2007) suggests that not all strategic choices are equivalent in the sense that some 
are “intuitive” and respond to some salient features of the games being played, some 
are “cognitive” and require more serious thought, while others are “reasonless” and 
appear random. What is interesting is that these differences can be seen in the RTs of 
the subjects with more cognitive choices taking more time to decide. In other words, 
those choices which by inspection of the game appear to be more sophisticated, 
when chosen, are the same choices that are associated with longer decision times. 
In Rubinstein (2008) RTs are used to separate subjects into fast and slow types and 
look to see how their decisions correlate across different decision problems. Again, 
the information provided by RTs is valuable in understanding the types of decision 
makers distributed throughout the population. Finally, in Rubinstein (2013) RTs are 
used to evaluate when a mistake has been made in a particular decision problem 
with the signature that mistakes involve lower RTs. Again, these results present evi-
dence about the decision process that is hard to obtain by only observing choice 
data.

Other papers in the economics literature that use RT are Piovesan and Weng-
strom (2009), who find a relationship between egoistic choice and RT in a dictator 
game where higher RTs are correlated to fairer outcomes, and Wilcox (1993), who 
measures RT as a proxy for decision cost in the laboratory to study the relationship 
between decision cost and incentives in environments with different levels of risk.

Our study differs from these papers since we study RT in order to make point pre-
dictions of choices, as opposed to correlating RTs to observed choices. In a similar 
spirit to our study, Chabris et al. (2009) study the allocation of time in individual 
decision making to elicit time preferences and find an inverse relationship between 

2 The distinction between Intuitionists and Learners that we are making is not very different from what 
happens when we ask two different people who was the director of a film. While one person may know 
the answer but is not able to recall it (it is “on the tip of my tongue”), the other may never have known 
it. If you mentioned names to the first type (the Intuitionist) she would be easily able to reject wrong 
answers because she would know the right answer when she hears it. The second type (the Learner) 
would have to go through a very different process and perhaps need to do a search of each name men-
tioned, since they know they never knew the answer.
3 See Spiliopoulos and Ortmann (2014) for a discussion on the usefulness of RT in experimental eco-
nomics.
4 http://gamet heory .tau.ac.il.

http://gametheory.tau.ac.il
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average RT and the difference in expected value between the payoffs associated to 
each of the possible choices. They find support to the optimization theory of Gabaix 
and Laibson (2005) and Gabaix et  al. (2006) which predicts that agents will allo-
cate more time to choices between options of similar expected utility than to choices 
between options of dissimilar utilities. However, Chabris et  al. (2009) do not use 
RTs to make point predictions about choices. One paper that is close to ours in focus 
is Konovalov and Krajbich (2019) who look at response time to study indifference 
in preferences and who uses this indifference point to estimate parameters in a sub-
ject’s utility function.

Other papers focus on RTs as an output of the Drift Diffusion Model (DDM), 
a model that has a long history in the neuroscience literature (see Ratcliff 1978; 
Busemeyer 1985; Ratcliff and McKoon 2008). For example, Clithero (2018) com-
pares the predictions of a DDM that combines RT and choice data to the predic-
tions of a logistic model of individual decision making and find support for the 
DDM approach. This paper is similar in spirit to our paper, but differs in two main 
respects. One is that the task in Clithero (2018) is an individual decision task (choos-
ing between two food alternatives), while our paper studies a strategic environment. 
Second, Clithero (2018) uses RTs in combination with choice data to make predic-
tions of future choices, while we look only at observations related to RT to make our 
predictions and then combine them with choice data to see the additional predic-
tive power of RTs. Other papers studying the relevance of the DDM in economics 
include Fehr and Rangel (2011), Krajbich et al. (2014), Alos-Ferrer et al. (2016) , 
Fudenberg et al. (2018), Webb (2019), and Woodford (2014).

After presenting our results we explore the predictions in terms of RT of three 
alternative models for our experiment: the Drift Diffusion Model, the Directed Cog-
nition Model, and the predictions in terms of RT that would emerge from the canon-
ical global games model that we present in Sect. 2. We find mixed support for these 
models.

The paper is structured as follows. In Sect.  2 we present the model of global 
games used in the experiment. The experimental design is explained in Sect. 3 and 
our results are presented in Sect. 4. We discuss three alternative models in Sects. 5 
and 6 concludes.

2  The global game

We use global games as our vehicle to investigate RT since the unique equilibrium 
in these games takes the form of a threshold strategy, which is easy for subjects to 
understand and execute in the lab. As we will see, signals close to the individual 
thresholds are harder to evaluate than those further away, and hence RTs should be 
reliable indicators of where individual thresholds lie.

A global game, as introduced by Carlsson and van Damme (1993), is a coordi-
nation game with incomplete information where payoffs depend on an unknown 
parameter � , which we call the state of the world, and on the actions of other players. 
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Global games have been applied to a variety of economic situations such as currency 
crises, investment decisions, or political revolts.5

In this game there are two agents in the economy who have to decide whether to 
take action A or action B. Action B is a safe action and yields a payoff of zero in all 
states of the world. Action A is a risky action and taking this action has a cost of T. 
The payoff from choosing action A depends on the state of the world, �, and on the 
actions of the other player. In particular, we can distinguish three different regions 
for the state � that will determine how (and if) the action of the other player affects 
individual payoffs:6

• If � ≤ � , then action B dominates action A, regardless of the action of the other 
player: 

� ≤ � A B

A −T ,−T −T , 0

B 0,−T 0, 0

• If � ∈ (�, �) , we are in the “coordination region” where action A yields a payoff 
of � − T  only if both players coordinate on this action. When only one of the 
players takes action A, his payoff is −T  : 

� ∈

(

�, �

)

A B

A � − T , � − T −T , 0

B 0,−T 0, 0

• If � ≥ � , action A dominates action B, irrespective of the other player’s action: 

𝜃 ≥ 𝜃 > T A B

A � − T , � − T � − T , 0

B 0, � − T 0, 0

In this game, however, players cannot observe the true value of � , instead they 
receive noisy private signals about it. In particular, they know that � is randomly 
drawn from a normal distribution with mean �� and standard deviation of �� , i.e.,

5 See Morris and Shin (2003) for an overview on global games.
6 In general, � and � are set in such a way that we can differentiate two dominance regions for � (one for 
� ≤ � and one for � ≥ � ) and an intermediate region (for � ∈

(

�, �

)

 ) which, in the presence of complete 
information, would exhibit multiple equilibria. Notice that in this intermediate region the optimality of 
taking action A heavily depends on the expectation that agents have about � with respect to T. In order to 
make the game non-trivial, T is assumed to be strictly smaller than �.
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Once � is realized, independent signals are privately drawn for each player according 
to a normal distribution with mean � and standard deviation �:

Given that players do not observe � directly, once they observe their signal they base 
their decision to take action A or B on the expectations about � and about the likely 
action of the other player. In particular, once they observe their signal players update 
their beliefs about � and make inferences about the probability of � being in either 
of these three regions. If they believe that � might be in the intermediate region then 
players have to form an expectation of the likely action of the other player, since in 
this region players need to coordinate in action A in order for action A to yield a high 
payoff.

As first proven by Carlsson and van Damme (1993), in these type of games the 
information structure leads players to use a monotonic decision rule in which they 
take action B for low realizations of their signals, and they take action A for high 
realizations of their signals. This effectively means that agents use a threshold strat-
egy such that they take action A if their signal is higher than a certain cutoff, x∗(�) , 
and they take action B if their signal is lower than x∗(�) . Formally, this decision rule 
can be written as:

The threshold x∗(�) is defined as the value of the signal for which an agent is indif-
ferent between taking action A or B.7 This means that when an agent observes sig-
nal x∗(�) , the expected payoff of taking action A is equal to the expected payoff 
of taking action B, which is zero in this case. Formally, if we assume that agents 
use threshold strategies in equilibrium, x∗(�) is the unique solution to the following 
equation:8

We can see in Eq. 1 how expected payoffs depend on the value of � and on the action 
of the other player. Recall that action A yields a payoff of � − T  under two 

� ∼ N
(

�� , �
2

�

)

xi ∼ N(�, �2
)

a(xi; 𝜎) =

{

A if xi ≥ x∗(𝜎)

B if xi < x∗(𝜎)

(1)
E
[

𝜃 | xi, xj ≥ x∗, 𝜃 ∈ (𝜃, �̄�)
]

× Pr(xj ≥ x∗ | xi, 𝜃 ∈ (𝜃, �̄�)) × Pr
(

𝜃 ∈ (𝜃, �̄�)|xi
)

+ E
[

𝜃 | xi, 𝜃 ∈ [�̄�,∞]

]

× Pr(𝜃 ∈ [�̄�,∞]|xi) − T = 0

8 A unique solution to Eq. (1) is ensured as long as the private signals are precise enough with respect to 
the prior, i.e. when 𝜎

𝜎𝜃
< K , where �� is the standard deviation of the prior about � and K is a constant that 

depends on the parameters of the model. This is a standard condition in the global games literature and it 
is met for the parameters used in the experiment (for a detailed discussion about the conditions for 
uniqueness see Theorem 1 in Szkup and Trevino 2019).

7 Note that the value of the threshold depends on the precision of the signal, which in the case of a nor-
mally distributed signal is equal to the inverse of its variance. In this case, the precision of the private 
signals is equal to �−2.
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conditions. Either 𝜃 ≥ �̄� , or � ∈

(

�, �

)

 and the other player also takes action A. The 
first condition is captured by the second term of Eq. 1 which simply corresponds to 
the conditional expectation of � times the probability of � being in this region. The 
second condition is captured by the first term of Eq.  1, which corresponds to the 
expected value of � times the probability of coordinating with the other player (i.e. 
the probability that the other agent observes a signal xj ≥ x∗(�) , which leads him to 
take action A as well), times the probability of being in the intermediate region 
(𝜃, �̄�) , everything conditional of the private signal xi . Taking action A always has a 
cost of T, irrespective of the value of � , so we subtract it in Eq. 1. Finally we equate 
the expected value of taking action A to zero, which is the payoff of taking action B, 
to find the value of the threshold that equalizes the expected value of both actions. 
Note that, by definition, when an agent observes a signal that has exactly the same 
value as the threshold he does not have any strict preference over actions. This effec-
tively means that for these signals agents are not sure about which action would 
yield a higher payoff in expectation.

In the RT analysis that follows we do not assume that the threshold used by sub-
jects is the equilibrium threshold predicted by the theory. Since subjects do not nec-
essarily use the equilibrium threshold they might have mistaken beliefs that make 
them indifferent between actions. Therefore, when we talk about high RTs being 
related to indifference between their binary choices, we do not necessarily refer to 
the theoretical equilibrium indifference portrayed in Eq. 1.

2.1  Parameters used in the experiment

The global games model presented above is governed by a set of parameters 
Θ =

{

�� , �� , (�, �), T , �
}

 . For the experiment, the parameters chosen are the 
following:

In particular:

• The fundamental � is randomly drawn from a normal distribution with mean 50 
and standard deviation of 50.

• The coordination region is for values of 𝜃 ∈ (𝜃, �̄�) = (0, 100).
• The cost of choosing action A is T = 18.
• The standard deviation of the private signals is � = 1.

3  Experimental design

We present the results of an experiment to analyze the role that RT has on predicting 
choices in global games. The experiment was conducted at the Center for Experi-
mental Social Science at New York University using the usual computerized recruit-
ing procedures. Part of the data generated by these experiments is a subset of the 

Θ = {50, 50, (0, 100), 18, 1}
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much larger data set generated by Szkup and Trevino (2019), whose emphasis was 
on the strategic play of the subjects and not on their RTs. The experiment was pro-
gramed in z-Tree (Fischbacher 2007).

All subjects were undergraduate students from New York University. Our experi-
mental design is closely related to the work of Heinemann et al. (2004), who test the 
predictions of the global games model of Morris and Shin (1998) and find clear sup-
port in the data for the use of threshold strategies. However, Heinemann et al. (2004) 
do not analyze RTs.

In each session subjects play the game for 50 independent rounds. Our treatments 
vary according to the type of action choice (direct choice vs strategy method). In 
the treatment with direct choice of action subjects observe signals and then choose 
actions (as portrayed by the model in Sect. 2), while in the strategy method treat-
ment we elicit thresholds in every period before the subjects observe their signal in 
order to study the explicit evolution of thresholds over time.9

Overall, we present the results of five sessions where we had a total of 104 par-
ticipants. Table 1 summarizes our experimental design.

Subjects were randomly matched in pairs at the beginning of each session and 
stayed with the same partner for all rounds. Each session lasted approximately 
60 min and subjects earned on average $20.

The state � is randomly drawn at the beginning of each round according to a nor-
mal distribution with mean 50 and standard deviation of 50. Once � is drawn, one 
private signal is independently drawn for each subject from a normal distribution 
whose mean corresponds to the chosen value of � and with a standard deviation of 
1. In order to minimize the noise in RT observations, at the beginning of each round, 
subjects have to click on a button to observe the signal that was generated for them, 
and then they have to choose an action, for the treatments with direct action choice.10 
The time between when the button was clicked to observe a signal and the moment 
when the choice was made is our measure of RT. For the strategy method treatment, 
before observing a signal, subjects have to report the threshold above which they 
would be willing to take action A and below which they would be willing to take 
action B.

After each round, each subject observed his own private signal, his choice of 
action, the realization of � , how many people in his pair chose A, whether the out-
come was favorable to A, and his individual payoff for the round.

The computer randomly selected five of the rounds played and subjects were paid 
the average of the payoffs obtained in those rounds, using the exchange rate of 3 
tokens per 1 US dollar.

9 The RT analysis is performed for the direct action choice treatment only. We use the strategy method 
treatment to provide out-of-sample evidence that is consistent with our RT analysis.
10 Having a subject click on a button gives more certainty in terms of when a subject actually first sees 
the signal, reducing the noise for cases when they might be day dreaming.
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4  Experimental results

We first present the analysis of the treatment with direct action choice to establish 
the results based on RT estimations and characterize subjects’ behavior. We perform 
the data analysis by studying RT in the first 25 rounds, when subjects are getting 
acquainted with the game and deciding on a strategy, to predict observed thresholds 
in the last 25 rounds, once subjects have, presumably, converged to a stable behav-
ior. We use our choice-based results of the last 25 rounds as the objective choice 
measures against which we compare our predictions based on RT.

We then move on to the results of the strategy method treatment to evaluate the 
robustness of our earlier characterizations by performing some out of treatment 
estimations.

4.1  Choice based estimations

Just as in Heinemann et al. (2004) we find that over 90% of our subjects use thresh-
old strategies during the last 25 rounds of the experiment. We say that a subject’s 
behavior is consistent with the use of threshold strategies if the subject uses either 
perfect or almost perfect thresholds. A perfect threshold is characterized by taking 
action B for low values of the signal and action A for high values of the signal, with 
exactly one switching point. This effectively means that the set of signals for which a 
subject takes action A and the set of signals for which he takes action B are disjoint. 
This type of behavior is illustrated in panel (a) of Fig. 1, which has the signals a sub-
ject receives on the horizontal axis and a binary value (0 for action B, 1 for action A) 
on the vertical axis. For almost-perfect thresholds, we allow these two sets to over-
lap for at most three observations. This means that subjects take action B for low 
signal values and action A for high signal values, but these two sets can intersect for 
at most three observations. Such behavior is portrayed in panel (b) of Fig. 1 where 
we fit a logistic function to the observed last-25 round data of a specific subject.

We observe the use of threshold strategies in 90.48% of our subjects in the DA 
treatment over the last 25 rounds of the experiment. Once we have identified the 
subjects who use threshold strategies, we estimate the threshold for each subject 
by taking the average between the highest value of the signal for which a subject 
chooses action B and the lowest value of the signal for which he chooses action A 
in the last 25 rounds. This number approximates the value of the signal for which a 
subject switches from taking one action to taking the other action, which is how we 
define a threshold.11 We find a median estimated threshold of the group to be 21.46 
with a standard deviation of 20.32.12

11 For a complete characterization of choice-based measures for thresholds in a global game see Heine-
mann et al. (2004) and Szkup and Trevino (2019).
12 Notice that on average, subjects do not seem to follow the equilibrium threshold predicted by the 
theory, which corresponds to 35.31. This is consistent with findings in the global games literature (see 
Heinemann et al. 2004, and Szkup and Trevino 2019). However, the purpose of this study is not to estab-
lish optimality of thresholds with respect to the theory, but to predict observed thresholds with RT.



96 A. Schotter, I. Trevino 

1 3

4.2  Response time estimations

We show in this section that during the first 25 rounds of the experiment, if we con-
sider for each individual the signal for which he has the highest or second highest 
RT, then either of those signals is an unbiased predictor of the threshold that the 
subject employs in the last 25 rounds of the experiment. In other words, we use RTs 
in the first 25 rounds to predict the observed thresholds in the last 25 periods, once 
behavior has stabilized. We discard the first round because there is in general a lot of 
noise in the RT data (e.g., subjects are getting acquainted with the interface).

To make our case, we look at the difference between the signals associated with 
a subject’s highest and second highest RT and that subject’s eventual, last-25-round, 
threshold. If either of these signals are predictive of last 25-round thresholds, we 
would expect to see these differences distributed around zero.13 The frequency dis-
tribution of these differences, for the highest, second highest, and third highest RTs, 
together with their CDFs, are portrayed in Fig.  2 and summary statistics are pre-
sented in Table  2. As we can see, the medians of the distributions of differences 
between estimated thresholds and signals associated to the highest and second high-
est RT are not statistically different from zero at the 1% level of significance. For this 
reason, we can interpret the signals associated to the highest or second highest RTs 
as unbiased estimators of the observed thresholds in the sample. However, this is 
no longer the case for the signals associated to the third highest RT. The median of 
the differences between estimated thresholds and the signals associated to the third 
highest RT is different from zero to the 1% level of significance, and the distribu-
tion of these differences is statistically different from the distribution of differences 
corresponding to the highest and second highest RT to the 1% level of significance, 
using a Kolmogorov–Smirnov test.

To further investigate how robust our results are with respect to the predictions 
based on RT, we look also at the signals corresponding to the fourth highest RT, 
fifth highest RT, and so on. The graph in Fig. 3 presents the median of the distribu-
tion of differences between last-25 round thresholds and signals corresponding to 
the highest RT, second highest RT, third highest RT, fourth highest RT, up to the 
24th highest RT, in the first 25 rounds of the experiment. In the horizontal axis we 
have the rank of the RT, starting from the highest at the origin to the 24th highest 
RT at the right end of the axis. On the vertical axis we have the median difference 
between the signals corresponding to the nth highest RT and estimated individual 

Table 1  Experimental design Treatment # Sessions # Subjects

Direct action choice (DA) 4 84
Strategy method (SM) 1 20

13 Note that we do not expect to observe these differences to be exactly zero because individual thresh-
olds are estimated numbers and the probability of getting a signal realization exactly equal to this number 
is very small.
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thresholds. Figure 3 illustrates how the signals associated to the RTs after the first or 
second highest are not good predictors of future choices, since the median difference 
of the signals associated with these higher RTs and the last-25 rounds estimated 
thresholds get further away from zero. Therefore, the accuracy of RTs as predictors 
of observed thresholds drops significantly when we move from the second longest to 
the third longest RT, and so on.14 

In terms of length of RT, Fig. 4 shows the median RT for the highest RT, second 
highest RT, third highest RT, and so on. Notice that the median RT for the high-
est RT observations is 11.78 s and it is 7.64 s for the second highest RT, while the 
remaining RTs quickly decline and eventually converge to 2 s. Despite the fact that 
the median RT for the third highest RT is close to that of the second highest RT 
(6.46 s vs 7.64 s), they are different to the 5% level of significance (p value of 0.027).

It is relevant to point out that these are aggregate results. In other words, on aver-
age, across all subjects, either the first or second longest RT is an unbiased predictor 
of eventual thresholds. Obviously, as our figures indicate, there is a variance around 
these estimates. This implies heterogeneity in the sample, which we study later on.

In order to compare the predictive power of RT estimates to equilibrium predic-
tions and other choice-based estimates, we refine our RT estimator. To aid us in this 
endeavor, we define the “Best Predicting Response Time” (BPRT) for each subject 
by looking at the signals associated with the highest and second highest RTs and 
selecting, for each individual, the signal that is closest to that subject’s estimated 
threshold. Hence, for some subjects the BPRT will be associated to the signal with 
the highest RT, while for others it might be the signal with the second highest RT. 
This selection will facilitate the characterization of subjects into two different types. 
Table 3 recreates Table 2 for the BPRT

If the BPRT is meaningful to subjects, then we would expect their contemplation 
time to be different before and after they exhibit the BPRT. That is, we would expect 
subjects to spend less time thinking when they receive signals after their BPRT, 

0
1
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TI

O
N

-100 -50 0 50 100 150
SIGNAL

(a) (b)

0
1

AC
TI

O
N

-100 0 100 200
SIGNAL

Fig. 1  Examples of perfect and almost perfect thresholds

14 Notice that the median difference between signal and threshold decreases again in period 8. This dif-
ference, however, is statistically different from 0 at the 1% level of significance.
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since experiencing their BPRT should make them feel more confident about what 
actions they should attach to each future signal, and hence they should spend less 
time thinking. Table 4 contains the median RT corresponding to the BPRT observa-
tions, observations before the BPRT, and observations after the BPRT. As is shown 
in this table, median RTs are lower after subjects have experienced their BPRT and 
this difference is significant at the 1% level. Note that when subjects receive the 
signal associated to their BPRT, the median subject spends 8.23  s thinking about 
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it, while for signals received before their BPRT the median subject spends 3.07 s, 
and after the BPRT only 2.48 s. Therefore, we interpret the high contemplation time 
of the BPRT as reflecting the fact that, given the signal observed, it is not obvious 

Table 2  Summary statistics 
of the difference between 
individual thresholds and signals 
corresponding to highest, 
second highest, and third highest 
RT, DA treatment

Statistical significance to the 1% (***), 5% (**), 10% (*) level

Median (H0: x = 0) Standard 
devia-
tion

Highest RT 3.46 47.44
p value 0.431
2nd highest RT − 4.28 50.01
p value 0.326
3nd highest RT 11.14*** 53.65
p value 0.005

Fig. 3  Median differences between signals associated to RTs and thresholds, DA treatment

Fig. 4  Median RTs, DA treatment
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for subjects what action to take, thus they need more time to deliberate. To provide 
further support for this argument, Fig. 5 plots the densities of observed RT at the 
BPRT and in the periods immediately before and after the BPRT. As we can see, the 
distribution of RT at the BPRT is strikingly different from the ones before and after 
the BPRT. Notice that the distributions immediately before and after the BPRT are 
similar to each other, but with the interesting difference that we observe a larger pro-
portion of short RT immediately after the BPRT, supporting our findings.

The results presented so far give us an indication that subjects behave differ-
ently pre and post BPRT, which implies that their extended thinking at the BPRT 
imparts some knowledge. Our presumption is that this is a moment of insight 
where they gain some certainty about the value of their threshold and thus know 
what their behavior rule should be, so that after this discovery their RT is less 
sensitive to the signal they observe. This is consistent with the interpretation that 
a threshold strategy corresponds to the value of the signal for which a subject is 
indifferent between taking either action, that is, the signal for which the subject 

Table 3  Summary statistics 
of the difference between 
individual thresholds and 
signals corresponding to the 
BPRT, DA treatment

Statistical significance to the 1% (***), 5% (**), 10% (*) level

Median (H0: x = 0) Standard 
devia-
tion

BPRT − 0.54 26.96
p value 0.25

Table 4  Summary statistics of 
distributions of RT before, after, 
and at BPRT, DA treatment

Median SD

RT exactly at BPRT 8.23 6.23
RT from t ∈

[

2, tBPRT
i

)

3.07 3.31

RT from t > t
BPRT

i
2.48 2.04

Fig. 5  Density of RT at BPRT 
and immediately before and 
after BPRT, DA treatment
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is not sure about which action to take. Moreover, the BPRT seems to serve as a 
structural break in terms of the behavior of RT. Table 5 contains the results of a 
random effects linear regression where the dependent variable is the logarithm of 
RT and the independent variables are Period, a dummy that takes the value of 1 
for all periods up to the BPRT and zero otherwise (D(beforeBPRT) in Table 5), 
an interacted variable between this dummy and Period (Period*D(beforeBPRT) 
in Table 5), and a dummy that takes the value of 1 at exactly the BPRT period, 
and zero otherwise (D(BPRT) in Table 5). We can see a significant change in the 
way RT behave before and after the BPRT via the highly significant coefficients 
of D(beforeBPRT) and Period*D(beforeBPRT). Moreover, there seems to be a 
strong break point at the BPRT, as we can see from the high and significant coef-
ficient of the BPRT dummy.

We now evaluate the predictive power of the signals associated with the BPRT 
to the equilibrium predictions of the theory. Table  6 shows the median differ-
ence between the equilibrium prediction (a threshold of 35.31) and the observed 
last-25 rounds thresholds. As we can see, the median difference is statistically 
different from zero to the 1% level of significance, indicating that the equilibrium 
predictions of the theory make rather poor predictions of actual eventual thresh-
old behavior. This is in contrast to the signals associated to the BPRT, which, as 
Table 2 indicates, are unbiased predictors of future thresholds. Therefore, we can 
conclude that, on average, the signals associated to the BPRT are better predictors 
of observed thresholds than the theoretical equilibrium prediction.

With respect to our second comparison, we ask how the predictions of even-
tual thresholds made on the basis of our RTs (a non-choice variable) compare to 
what we could get if we measure thresholds in the first-25 rounds (choice based 
estimates). As we can see from Table 6 , the thresholds estimated for subjects in 
the first 25 rounds are also good predictors of future behavior, just as the highest 
or second highest RT (median differences are not statistically different to the 1% 
level of significance). This is interesting since it indicates that a non-choice vari-
able (RT) can be as reliable a predictor of behavior as one based on choice data 
(first-25 round estimated thresholds). However, not all subjects that use threshold 
strategies in the last 25 rounds do so in the first 25 rounds. As we will see below, 
some of our subjects converge to a threshold by the end of the experiment by 
learning how to play the game, so their behavior in the first 25 rounds is not nec-
essarily consistent with a threshold strategy.

4.3  RT and choice data: increasing predictive power

We use the BPRT to draw a better comparison between the predictive power of 
RT estimates and choice data. Figure 6 presents 2 histograms, analogous to those 
in Fig.  2, about the difference between the signals associated to the BPRT and 
the eventual threshold for each subject (panel a) and the difference between the 
first-25 round and last-25 round thresholds (panel b). These distributions are not 
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statistically different from each other, which further suggests that RT estimates 
and choice-based estimates are equally as good predictors of future behavior.

Given this observation, we now ask whether RT analysis can provide additional 
predictive power over and above choice data. In other words, can these two esti-
mates complement each other?

To answer this question we study, subject by subject, the relative importance 
of choice data and RT estimates for predicting future thresholds. In particular, we 
investigate whether we can think of a subject’s last-25 round threshold as a convex 
combination of their first-25 round threshold (choice data) and the signal associated 
to their BPRT (RT prediction), or if some people’s behavior is best predicted by just 
one or the other. We find, for each subject, the coefficient � that best fits the equation 
below:

As we can see in Fig. 7, there are 3 types of subjects in the data. The subjects por-
trayed in the leftmost vertical bar corresponding to � = 0 (30.435% of subjects) 
are better approximated by RT estimates, subjects portrayed in the rightmost bar 

Last-25 round threshold =�(First-25 round threshold)

+ (1 − �)(BPRT signal)

Table 5  Structural break of 
Log RT

Clustered (by subject) standard errors in parentheses
*Significant at 10%; ** significant at 5%; *** significant at 1%

Period − 0.018***
(0.002)

D(beforeBPRT) 0.405***
(0.053)

Period*D(beforeBPRT) − 0.034***
(0.004)

D(BPRT) 0.94***
(0.056)

Constant 1.387***
(0.052)

Table 6  Summary statistics 
of the difference between 
individual thresholds and 
equilibrium predictions, DA 
treatment

Median (H0: x = 0) Standard 
devia-
tion

Difference wrt theoreti-
cal equilibrium

13.86*** 20.32

p value 0.0003
Difference wrt first-25-

round thresholds
0.062 19.99

p value 0.971
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corresponding to � = 1 (30.435% of subjects) are better approximated by choice-
data estimates, and the rest (39.13% of subjects) are a strict convex combination 
of both RT and choice-data estimates with parameter � ∈ (0, 1).15 This implies that 
these two measures are actually complementary in predicting future choices because 
RT estimates approximate future thresholds for subjects whose first-25 round thresh-
olds are not good predictors of their future behavior, and vice versa. That is, we see 
a clear increase in predictive power by using RT estimates in addition to choice data.
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Fig. 6  Histograms of differences between last-25 round thresholds and a signal associated to BPRT, b 
first-25 round thresholds, DA treatment

Fig. 7  Distribution of lambdas, DA treatment

15 The vertical lines at � = 0 and � = 1 include subjects whose threshold can be explained only by one 
of these measures because they’re either greater or smaller than both measures. So these lines really cor-
respond to � ≤ 0 or � ≥ 1 , respectively.
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4.4  Subject types

With these results in hand, we now investigate if our RT estimators can give us 
more information about the way in which subjects make their decisions. We make 
use of the BPRT to characterize the reasoning that leads subjects to think longer at 
that point by distinguishing between two different types of people, which we call 
Intuitionists and Learners. As described in the introduction, Intuitionists are subjects 
who act consistently with having an intuition about their threshold from the very 
beginning of the experiment. These subjects act as if they knew what their threshold 
should be, but can’t fully articulate or recall it. However, once they observe a signal 
close enough to their eventual threshold, they stop searching. On the other hand, 
Learners are subjects who might understand what threshold behavior is, but who 
must learn from experience what their personal threshold should be.

This distinction between Intuitionists and Learners should be observable in 
the RT data.16 While Intuitionists can be expected to ignore signals far from their 
implicit threshold and think hard when they observe a signal close to it for the first 
time, Learners may receive a signal close to their eventual threshold and ignore it, 
since they are learning about what their threshold should be and may not recognize 
a good signal when it first arrives. As a consequence, the first time an Intuition-
ist observes a signal close to her eventual threshold, that signal should become her 
BPRT, while a Learner may experience several such signals in early periods without 
those signals becoming a BPRT. We use precisely this distinction to classify sub-
jects as Intuitionists if they do not observe a signal closer to their eventual threshold 
before they observe the signal associated to their BPRT, while we classify them as 
Learners if they do.

To give a simple example, say that a subject settles on a threshold of 25 in period 
26-50 and in the beginning of the experiment receives signals 10, 55, 3, 22 (in that 
order). Say 22 becomes her BPRT, in the sense that she spends more time thinking 
about that signal than any other signal received in periods 1–25. Since there was no 
other signal closer to 25 received before that BPRT was determined, we will clas-
sify this subject as an Intuitionist. Now, say we have another subject who also settles 
down to a threshold in periods 26–50 of 25, but receives the following signals before 
receiving her BPRT: 10, 55, 3, 22, 24, 67, 29. Say 29 becomes this subject’s BPRT. 
This means that she is spending a lot of time thinking about 29, despite the fact that 
she had earlier received signals closer to her eventual threshold. Since this subject 
did not deliberate when she received signals closer to her threshold than what even-
tually became her BPRT, she must have been learning when those signals arrived, so 
we would classify this subject as a Learner.17

16 Our use of term Intuitionist differs from Rubinstein (2007). For Rubinstein intuitionists tend to have 
lower RTs to a given problem, while in our paper there is no particular difference between the duration of 
the first or second longest RTs for Intuitionists and Learners. What we find is that Intuitionists discover 
their threshold in earlier rounds than Learners.
17 We have 37 intuitionists and 39 learners in our sample. 8 subjects were dropped from the sample 
because they do not use threshold strategies.
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This distinction between Intuitionists and Learners manifests itself in the indi-
vidual behavior of our subjects and the data they generate. More precisely, as a con-
sequence of our classification, we expect certain differences in the behavior of sub-
jects we classify as Learners and Intuitionists. For example, because Learners find 
the value of their threshold with experience while Intuitionists implicitly know it, 
Intuitionists should experience their BPRT in earlier periods than Learners (Learn-
ers need more time to learn, given identical signal distributions). Figure 8 illustrates 
this point by plotting, for each group, the distribution of periods corresponding to 
the BPRT, and Table 7, which presents the median of these distributions. Just as we 
expected, Intuitionists realize their BPRT in earlier periods than Learners. In par-
ticular, Table 7 indicates that while half of the Intuitionists experienced their BPRT 
by period 4, it took half of the Learners until period 14 to do so. Medians are statis-
tically different at the 1% level.18 As we see in Fig. 8 the two distributions of BPRTs 
appear considerably different, with the Intuitionists’ distribution exhibiting far more 
of a right skew and a mass on earlier periods. These two distributions are statisti-
cally different to the 1% level using a Kolmogorov–Smirnov test.

In terms of stability of choices over time, we hypothesize that Intuitionists are 
more likely than Learners to behave in a manner consistent with their ultimate last-
25 round thresholds from the very beginning of the experiment. In other words, if 
Intuitionists have a better understanding about their threshold while Learners need 
to learn it, then if we estimate two different thresholds -one for the first and one 
for the last 25 rounds- and then calculate the difference between them, we would 
expect smaller differences for Intuitionists than for Learners. This would imply that 
the thresholds of Intuitionists are relatively more stable over time than the thresholds 
of Learners, whose behavior may change due to learning.19 To investigate this, we 
compute, for each subject, the difference (in absolute value) between their threshold 
in the last 25 rounds and their estimated threshold in the first 25 rounds. Figure 9 
plots the CDFs of these differences, for Intuitionists and Learners separately. As we 
can see, the distribution of absolute value differences between first-25 and last-25 
round thresholds for Learners stochastically dominates the one for Intuitionists. That 
is, the disparity between thresholds at the beginning and at the end of the experi-
ment is larger for Learners than for Intuitionists. Table 8 reports, for each group, the 
median difference of first and last 25-round thresholds (in absolute value) and the 
standard deviation of the distribution of these differences, which further suggests 
more stable behavior for Intuitionists. For example, the median difference between 
first-25 and last-25 round thresholds (in absolute value) for Learners is 10.5, while 

18 Such a difference might lead one to think that perhaps a better way to classify subjects would be by 
calling them either fast or slow learners and choosing some arbitrary number of periods before a BPRT 
is determined to separate them. While this would have the benefit of being an exogenous classification 
scheme, it would offer no explanation as to why some subjects are fast and some slow and would be 
unable to offer any insights into the stability of behavior in our SM treatment to be discussed later on.
19 It is important to note that the stable behavior that characterizes Intuitionists is not a consequence of 
matching. That is, it is not the case that Intuitionist subjects are better coordinated with their opponent in 
the game. In fact, looking at the composition of pairs Intuitionists are not more likely to be paired with 
other Intuitionists than Learners.
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for Intuitionists it is only 5.73, and these medians are different to the 5% level of sig-
nificance. A Wilcoxon test rejects the hypothesis that the sample of threshold differ-
ences in absolute value came from the same population at the 5% level. This implies 
that Intuitionists seem to have a clearer sense of what their threshold is in the earlier 
rounds of the experiment when compared to Learners, thus exhibiting more stable 
thresholds over time.20

As explained above, RT estimates and choice-based estimates from early rounds 
are not only similarly good predictors of future behavior, but actually complement 
each other. We recreate Fig. 7 but separating subjects by types in order to understand 
the relative predictive power of these two estimates for Intuitionists and Learners. 
This is illustrated in Fig. 10. For both types, approximately 39% of thresholds are 
better predicted by a strict convex combination of RT and choice data measures, 
similar to the overall sample. However, for the rest of the subjects, choice-data is 
better than RT estimates at predicting thresholds for intuitionists (38.89% vs 22%) 
and RT estimates alone are a better predictor of future thresholds for learners than 
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Fig. 8  Distribution of BPRT periods, by group, DA treatment

Table 7  Summary statistics of 
BPRT periods, by group

Median SD

Learners 14 6.32
Intuitionists 4 5.91

20 One might wonder if Learners are just noisier decision makers than Intuitionists. To investigate this 
we look at average violations of individual thresholds in the last 25 rounds for these 2 groups by count-
ing, for each subject, the number of times that their action in the last 25 rounds is not consistent with 
the threshold we estimate. We then take the average of these numbers for the subjects in each group. 
We find, on average, 2.11 violations for Intuitionists and 3.87 for Learners. However, the larger number 
of violations of Learners is mainly driven by 3 subjects. If we remove these outliers, we have, on aver-
age, 2.67 violations. Since these numbers are fairly similar, once we remove outliers, we remain agnostic 
about the potential role of RT in identifying noisy players in later rounds.
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Fig. 9  CDF of differences 
of individual thresholds (in 
absolute value) from first 25 and 
last 25 rounds, by group, DA 
treatment
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Table 8  Summary statistics 
of differences in individual 
thresholds from first-25 and 
last-25 rounds, by group, DA 
treatment

Median SD

Learners 10.5 15.23
Intuitionists 5.73 12.77

Fig. 10  Distribution of lambdas, by type, DA treatment



108 A. Schotter, I. Trevino 

1 3

choice data (39.39% vs 21.21%).21 These results give additional meaning to our 
characterization of subjects.

It is important to remember that in the last 25 rounds the subject behavior across 
types is indistinguishable from one another, since they all use thresholds and the 
mean estimated thresholds for each group are not statistically different from each 
other. This illustrates how RT analysis might give a broader insight about decision 
making than choice data alone. By studying RTs in the first rounds of the experi-
ment we are able to distinguish how the different types of subjects come to realize 
their thresholds. In the following subsection we explore more explicitly the relative 
predictive power of RT estimates and choice-data.

4.5  Out‑of‑treatment predictions

One exercise that has proven to be informative (see Caplin and Dean 2015) is to axi-
omatize the behavior of economic agents and then characterize what the data from 
an experiment must look like if subjects behave in a manner consistent with those 
axioms. In other words, in a revealed preference type of exercise, one looks to see 
what the implications are for choice data of behavior that satisfied a set of assump-
tions or axioms. In this section of the paper we would like to ask a similar question 
with respect to our characterization of Intuitionists and Learners. While we have 
proposed no axioms, if our characterization of types is relevant we should be able to 
distinguish between subjects based on their exhibited behavior in the first rounds of 
the experiment.

The question is simple: If we performed a treatment where, instead of giving sub-
jects a signal and then asking them to choose an action, we asked them before each 
period to state a threshold or cutoff level for realized signals above which A would 
be chosen, but below which B would be chosen, would we be able, from observing 
their reported thresholds, to classify subjects as Learners and Intuitionists? In other 
words, we are asking if we can observe Intuitionist and Learner behavior in an out-
of-treatment exercise. To answer this question we make use of the data from our 
SM treatment, where subjects play the same game as before but where, instead of 
observing signals and choosing actions directly, we use the strategy method to ask 
subjects to report their threshold.

If our characterization of types is correct, then we should observe a group of sub-
jects who report very stable thresholds from the initial rounds of the experiment, 
which would correspond to Intuitionists and another group, the Learners, whose 

21 It is not surprising to see that the thresholds of Intuitionists are better approximated by choice data 
since their behavior is in general very stable. To look at violations of individual thresholds in the last 
25 round, for each group, we count, for each subject, the number of times that their action in the last 25 
rounds is not consistent with the threshold we estimate. We then add these numbers and divide them 
by the total number of subjects in each group. We find, on average, 2.11 violations for intuitionists and 
3.87 for learners. However, the larger number of violations of learners is mainly driven by 3 subjects. If 
we remove these outliers, we have, on average, 2.67 violations. Since these differences are not too stark 
(controlling for outliers), we remain agnostic about the role of RT in identifying noisy players in later 
rounds of the experiment.
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period to period thresholds should exhibit far more variability in early rounds due to 
experimentation, and then stabilize. Our results indicate that by looking at the evolu-
tion of reported thresholds throughout the 50 rounds of the experiment we can cat-
egorize 80% of the subjects in this fashion. To perform this characterization we look 
at subjects who show some stability in reported thresholds in the last 25 rounds, to 
ensure convergence of behavior, and measure the standard deviation of their indi-
vidual reported thresholds in the first 25 rounds. The data gives us a straight forward 
distinction between the subjects that we can potentially categorize as Learners and 
Intuitionists, in the sense that there is a group of subjects that exhibit low individ-
ual standard deviations of reported thresholds in the first 25 rounds (0–4.26) and a 
group of subjects with very large standard deviations (9.95–25.54). To give a bet-
ter idea for how Intuitionists and Learners differ, consider Fig. 11 which offers an 
example of the evolution of reported thresholds for one subject categorized as Intui-
tionist (left panel) and one as Learner (right panel). Figures 2 and 3 in the online 
appendix plot these graphs for all subjects categorized in either of these groups.22

As we can see, the panel on the left offers a perfect picture of what our arche-
typal Intuitionist should look like in the SM Treatment. Previously we character-
ized Intuitionists as subjects who have a good idea of what their threshold should 
be but cannot explicitly verbalize it. In the DA treatment, subjects observe signals 
and implicitly set a threshold, whereas in this treatment (SM) they are forced to 
report it. This implies a different psychological process when establishing an action 
rule, which forces Intuitionists to explicitly verbalize their threshold. In line with 
our original description, Intuitionists act consistently with their threshold from the 
beginning of the experiment. Learners, on the other hand, are defined as subjects 
who are not quite sure what the right threshold should be and thus experiment in the 
initial rounds (see right panel in Fig. 11). For the SM treatment this would imply 
that Learners set many different thresholds in the initial periods, and then converge 
to a threshold. To support this claim, in Table 9 we present summary statistics for 
the individual period-to-period changes in reported thresholds in the first 25 rounds, 
by groups, and we find that the median period-to-period change in reported thresh-
olds for Intuitionists is 0, while for Learners it is 6, with standard deviations of 2.51 
and 16.36, respectively. Medians and standard deviations are significantly different 
at the 1% level. As a result, it seems clear that for one group of subjects (whom we 
label as Intuitionists) there is very little variability in the thresholds they set in early 
rounds while in another (whom we label Learners) there is quite a bit of variation. 
This is in line with our categorization of subjects into these two groups.

Consistent with our previous results in the DA treatment, if we only looked at the 
last 25 rounds, both groups of subjects exhibit very stable thresholds of similar mag-
nitude, making them indistinguishable.

22 The online appendix can be found at: https ://econw eb.ucsd.edu/~itrev ino/pdfs/onlin e_appen dix_rt.pdf.

https://econweb.ucsd.edu/%7eitrevino/pdfs/online_appendix_rt.pdf
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5  Discussion: related models

In this section we discuss three existing models that could potentially make predic-
tions for our data by relating high RTs to choices between two alternatives that have 
similar valuations to the decision maker. We investigate the predictions of these 
three models for our experiment and find some, but limited, support for them for the 
aggregate data (pooled across subjects), and mixed evidence for individual behav-
ior, which is what we aim at understanding. More precisely, we will demonstrate 
that each of the models we describe below makes an identical qualitative prediction, 
which is that RTs should be decreasing in the distance between the signal that a 
subject receives and his threshold. Put differently, individual RTs should be a con-
cave function of the signals received by a subject, with a maximum for signals that 
coincide with the observed threshold. It is this prediction at the individual level that 
fails in our data.

The first model is the Drift Diffusion Model (DDM; Ratcliff 1978; Ratcliff and 
McKoon 2008), which is a widely used model in psychology and neuroscience that 
studies the way in which the brain compares values to make binary choices. One 
of the key outputs of this model is the RT of subjects in these tasks. This model 
assumes that decisions are made by a noisy process that accumulates information 
over time from a starting point toward one of the two responses (or boundaries), and 
a response is chosen once one of these boundaries is reached (Ratcliff and McKoon 
2008). The rate of accumulation of the information is assumed to be determined 
by the quality of information extracted by a stimulus. Ratcliff and McKoon (2008), 
for example, use a motion discrimination task where the stimulus is composed by a 
set of dots in a circle and, in each round, a proportion of the dots moves coherently 
either to the left or to the right, and the rest of the dots move in a random direc-
tion. The task for subjects is to decide in which direction the coherent dots move. 
When varying the proportion of dots that move coherently, they find that higher RTs 
are associated to higher levels of difficulty (i.e. low coherence) and to an almost 
equal probability of choosing the right and the wrong direction. On the other hand, 
when a high proportion of the dots move coherently, subjects make the right choice 
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Fig. 11  Examples of evolution of thresholds in SM treatment, by group
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more often and they exhibit lower RTs. What this effectively means is that higher 
RTs arise as decisions become harder for subjects because they cannot clearly assess 
what is the right choice, given the information presented to them. So for Ratcliff and 
McKoon (2008) a stimulus that is more coherent is one that gives subjects a better 
idea of what choice to make.

Mapping the DDM to our experiment is not as straight forward a task as one 
might think, since there are some differences between our experiment and the typi-
cal DDM experiment. One clear difference is that the DDM studies individual deci-
sion making, while our experiment involves strategic interaction. Another important 
difference is that in a typical DDM experiment subjects are faced with an environ-
ment where each trial in the experiment is independent from the last, so there is no 
carry over between trials. This is true in the original Ratcliff (1978) experiments 
as well as more recent papers (e.g. Milosavljevic et al. 2010; Krajbich et al. 2010; 
Clithero 2018), where choices are made in a value-choice context. In our experi-
ment, quite the opposite is true, since we present subjects with a learning task (they 
need to learn the best threshold to use), which involves arriving at the right set of 
expectations about the true state, but also about their opponent and his strategy. 
Information from previous trials is essential in this task and hence the trials are not 
independent from one another. A valid application of the DDM model to our context 
would therefore need to be a dynamic model where, based on previous experience, 
a subject updates the starting value of the DDM process. Such a model is beyond 
the scope of this paper. Finally, another important difference between our study and 
DDM studies is that we use RT to study individual learning processes, i.e. we study 
how each subject learns to set a threshold as he moves across rounds receiving dif-
ferent signals.

However, the DDM can, in a limited way, be used to think about the task fac-
ing subjects that we describe as Intuitionists. Consistent with our view of Intui-
tionists, the DDM can predict RTs in situations where, for example, subjects have 
to assess whether a certain number is higher than a fixed reference number (the 
Intuitionists’ implicit threshold). According to the model for memory retrieval 
(Ratcliff 1978), subjects might have a hard time remembering a reference num-
ber, and if they receive a stimulus in the form of another number and have to 
decide whether this stimulus is higher than the reference number, the DDM pre-
dicts higher RTs for numbers that are closer to the reference number, since they 
require subjects to make a higher effort when assessing its value with respect to 
the reference (i.e. for very high or very low numbers it is “easier” to decide that 
they are higher or lower than the reference number). In our context, we think 

Table 9  Summary statistics of differences in individual reported thresholds in the first 25 rounds in the 
SM treatment, by group

Median SD N

Learners 6 16.36 7
Intuitionists 0 2.51 9
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of Intuitionists as subjects who hold a threshold in their head which they try to 
retrieve once they are presented with a signal in a given round. Using the DDM 
language, a more coherent signal could be an extreme value, either very high or 
very low, and very far from the subject’s threshold, which should imply an easy 
choice for subjects and hence a low RT. Likewise, a less coherent signal would 
be one for which subjects cannot easily assess which action to take (in our case, 
because it is close to their eventual threshold), and this would be associated to a 
higher RT.

Bearing this in mind, the DDM would predict that subjects in our experiment 
should exhibit longer RTs as they receive signals closer to their personal thresholds 
and that RTs should decrease as signals get further away from their personal thresh-
olds. In this sense, we should expect the relationship between signals and RTs to be 
concave with a maximum at the observed threshold for each subject.

A similar prediction arises from the model of Gabaix and Laibson (2005) and 
Gabaix et al. (2006), that is tested in the experiment of Chabris et al. (2009). These 
papers propose an optimization theory called the Directed Cognition Model (DCM), 
which is based on dynamic programming and assumes that agents have limited cog-
nitive resources. When time is a scarce resource, the DCM predicts that agents will 
allocate more decision time to choices between options of similar expected utility 
than to choices between options of dissimilar utilities. Just as the DDM, the DCM 
would predict, in the context of our paper, an inverse relationship between RT and 
the distance between signals and thresholds.

It is important to emphasize, however, that the DDM and DCM are designed to 
analyze individual decision problems, and not games.

The third model that we present here is an interpretation, in terms of RT, of the 
canonical global games model, as presented in Sect.  2. From Eq.  1 note that, by 
definition, when an agent observes a signal that has exactly the same value as the 
threshold, he does not have any strict preference over actions. This effectively means 
that for these signals agents are not sure about which action would yield a higher 
expected payoff. Interpreting this condition in terms of RT, a subject should exhibit 
a higher RT when confronted with signals that are closer to the subject’s threshold 
than when observing signals that are far from it. This model, as the other two theo-
ries, would predict a concave RT function for each subject, with a maximum at the 
threshold chosen by them.

In summary, each of the models described above predicts that our RT data should 
exhibit a negative and significant relationship between RT and the distance between 
signals and future individual thresholds. We explore this prediction by performing 
a random effects OLS regression for the data, pooled across subjects, that has RT 
as the dependent variable and the difference (in absolute value) between the signal 
associated to each RT and the individual threshold that each subject converges to in 
the last 25 rounds as the independent variable.

Bearing our caveats in mind about the applicability of the DCM and DDM mod-
els to our data, we explore this prediction. In the DDM and the DCM models this 
stylized fact should describe behavior in all rounds of the experiment, while in our 
analysis, this effect should be stronger before the BPRT is reached. This is expected 
to be true whether the subject is classified as a Learner or an Intuitionist.
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In order to investigate this, we run a series of OLS random effects regressions, 
reported in Table 10. In specification 1 we have the logarithm of RT as the depend-
ent variable and the difference (in absolute value) between the signal and the thresh-
old as the independent variable. We observe a negative and significant relationship 
between these two variables, just as hypothesized by the DDM and DCM. In specifi-
cation 2 we add a variable for the round in which each decision takes place because 
we know that, on average, RTs decrease as we move across rounds, and find that the 
previously established relationship still holds, which again supports the DDM and 
DCM models. Specification 3 is similar to specification 2, with the addition of a 
coefficient for the Period squared, since in later rounds there is a flattening of RTs.

The results in specifications 1–3 support this stylized fact (negative and signifi-
cant coefficient for the variable |signal − threshold|), and thus for the predictions 
of the DDM and DCM. Note that these regressions are run on data generated by all 
of our subjects, i.e., both Learners and Intuitionists. The fact that we get significant 
results, therefore, is notable since we do not necessarily posit that the relationship 
will hold for Learners. To separate our conjecture from the DDM and the DCM we 
run specifications 4–6, where we include two more independent variables. One is a 
dummy that takes the value of 1 for periods up to the BPRT (D(BPRT) in the table), 
and zero for the remaining periods, and the other variable is an interacted term that 
multiplies this dummy to the absolute value difference between the observed signal 
and the individual threshold. When we introduce this control for the periods before 
and after the BPRT, we find that the influence of the signal (or its distance from the 
threshold) is twice as large (on average) for the periods up to the one correspond-
ing to the BPRT than after (comparing the coefficients for |signal − threshold|×
D(BPRT) to |signal − threshold| in specifications 4–6), which supports our conjec-
tured behavior. In other words, subjects seem to exhibit periods of stronger active 
consideration before their BPRT period than after, supporting our interpretation that 
the BPRT is a period of discovery. Therefore, we find only partial evidence for the 
DDM and DCM predictions, and we find that our RT observations are meaningful in 
terms of these predictions. An implication of this result is that it is possible that two 
different decision processes are used by a subject in the same experiment.

5.1  Strategic considerations

Studying RT in a game might bring a layer of complexity that is not present in indi-
vidual decision making tasks. In our setup, for example, one might believe that sub-
jects who fail to coordinate with their partners across the different rounds of the 
experiment are more likely to exhibit longer RTs on average. In other words, since 
subjects are not sure about the action that their partner will take, in every round it 
takes them a longer time to make a decision because they are constantly trying to 
adjust to their changing beliefs about their opponent’s strategy.

To explore this possibility we look at the data at the pair level. We create a meas-
ure of convergence of behavior within a pair by taking the absolute value difference 
between the thresholds in the last 25 rounds of each pair member. We study whether 
a higher distance between the thresholds in a pair (less convergence) leads to higher 
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RTs. Table  2 in the online appendix reports the results of a similar regression to 
specification 2 above, but where we account for the distance between thresholds in a 
pair. We find no such effect.

We do a similar analysis looking at the types that we have described above, Intui-
tionists and Learners, since the behavior of the former is more stable and does not 
seem to be adjusted from round to round, while the behavior of the latter is the oppo-
site. In that sense, it is important to understand if these types are endogenous in the 
sense that the matching protocol affects whether a subject becomes an Intuitionist or 
a Learner. In other words, is it the case that Intuitionists exhibit stable behavior from 
the get go because they are more likely to be matched with an Intuitionist and learn 
their partner’s strategy early on, while Learners might take longer to set a threshold 
because they are matched with other Learners like themselves. We do not find any 
evidence that is consistent with this type of reasoning. In particular, over 76% of 
pairs are composed by one subject who is classified as an Intuitionist and one who is 
classified as a Learner, and the median difference in threshold behavior within pairs 
are not statistically different from those of the pairs that are constituted by subjects 
who are both Intuitionists or Learners. Likewise, the median difference in threshold 
behavior within pairs are not statistically different for pairs of Learners and pairs of 
Intuitionists.23

Table 10  RT as a function of the distance between signals observed and individual thresholds

Clustered (by subject) standard errors in parentheses
*Significant at 10%; ** significant at 5%; *** significant at 1%

1 2 3 4 5 6

| signal - threshold | − 0.013*** − 0.013*** − 0.014*** − 0.007*** − 0.006** − 0.008***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

| signal - threshold | ×
D(BPRT)

− 0.014*** − 0.016*** − 0.014***
(0.004) (0.004) (0.004)

D(BPRT) 2.635*** 1.836*** 1.66***
(0.255) (0.283) (0.285)

Period − 0.122*** − 0.352*** − 0.082*** − 0.278***
(0.01) (0.045) (0.013) (0.047)

Period2 0.008*** 0.007***
(0.002) (0.002)

Constant 4.63*** 6.25*** 7.438*** 3.538*** 4.953*** 6.074***
(0.17) (0.218) (0.317) (0.203) (0.306) (0.401)

23 This lack of statistical significance is expected since there are very few data points to have sufficient 
power.
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6  Conclusion

In this paper we have attempted to gain insights into the thought process of subjects 
engaged in global games using the response times of their decisions. Quite remark-
ably, we have found that by looking at the highest or second highest response time 
exhibited by subjects in the early rounds of the experiment we can predict the even-
tual threshold they use in future rounds. This result is rather striking since response 
times are used not only as a way to gain qualitative insights into how different 
choices are represented in the decision making process, but rather as a tool to predict 
future choices. We know of few papers that attempt to do this.

We have shown that the accuracy of response time estimates as predictors of 
future behavior is comparable to that of choice data in early periods. Moreover, we 
have shown that these two measures are actually complementary since response time 
estimates provide additional predictive power over and above choice data.

In addition, we have presented evidence that these high response times represent 
different thought processes for different types of subjects. Based on the best pre-
dictor among the two highest response times, we classify subjects as Intuitionists 
and Learners and differentiate their behavior in the initial rounds of the experiment. 
This classification allows us to understand the different reasoning processes that lead 
different subjects to choose a similar threshold. That is, if one were to only look 
at choice data these two groups would be indistinguishable in terms of the thresh-
olds they eventually set. In this sense, studying response times gives us an additional 
insight into the thought process that leads to setting a strategy in a global game.

We have also presented evidence in support of our distinction between Intuition-
ists and Learners in an out-of-treatment exercise. We observe behavior consistent 
with these two different groups in this new treatment, which illustrates that our cat-
egorization of subjects into types might be meaningful.

Finally, we look at the predictions of alternative models of cognition in the con-
text of our paper and find mixed evidence about their predictions when analyzing 
behavior at the individual level.

In short, our paper provides an interesting insight into the usefulness of response 
times in the explanation of choice in global games.
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