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Abstract

We estimate a monthly income process using annual longitudinal household-level income
data, in order to understand the nature of income risk faced by households at high fre-
quency, and to provide an input for models that wish to study household decision-making
at higher frequency than available data. At both frequencies, idiosyncratic earnings shocks
have a highly persistent component. At monthly frequency, transitory shocks account for
most of the earnings variance; at annual frequency, the persistent component is dominant.
We apply our estimates in the context of a standard incomplete-market model, and show
that decision-making frequency per ce makes a small difference.
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1 Introduction

In the literature on household consumption-saving decisions under exogenously incomplete

markets, it is typically assumed that households face some form of idiosyncratic risk. For any

applications involving working-age households, a widely studied form of such risk is income

uncertainty.

In order to study implications of idiosyncratic income uncertainty, researchers typically

assume some process for income that may involve permanent, persistent and/or transitory

components. In order to calibrate the models, researchers need to measure these components

in the data. There is a large and active literature on estimating income uncertainty in the

data; a few recent examples are Guvenen (2007), Guvenen and Smith (2010) and Heathcote

et al. (2010). For the estimation of persistent processes, the econometrician needs longitudinal

household-level data on income, which leads researchers to use, in most cases, survey data

such as the Panel Study on Income Dynamics (PSID) and the Consumer Expenditure Survey

(CEX). Alternatively, as in Daly et al. (2011), administrative (register) data are used.

The limitation of all these datasets is that they are annual at best, and sometimes biennial,

like the PSID in recent years. This means that the literature typically relies on these once-a-

year observations of income to estimate income risk; models then typically use the same period

length as in the data.1 This of course restricts model households to make decisions at an

annual frequency. For some decisions, this is an acceptable approximation, but one can think

1 An exception is Erosa et al. (2011) who use an indirect inference approach to calibrate the four-monthly
wage process on the basis of annual data.
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of many other aspects of economic behavior for which we may prefer to model decision-making

at quarterly, and even monthly, frequency. Understanding portfolio allocation, especially with

respect to liquid assets, studying decisions to revolve or repay secured or unsecured debt, and

characterizing demand for money are some issues for which a high-frequency model would be

preferred, or even necessary. An example is Telyukova (2011), who addresses the question of

co-existence in household portfolios of expensive credit card debt and low-return checking and

savings accounts. In such a model, annual decision-making would be uninformative, as it would

obscure the decision to revolve credit card debt each month, or to repay a portion of it using

currently available liquid assets.

In this paper, we provide parameter estimates for a yearly and a monthly earnings process

designed to match key features of annual PSID data. Based on an extension of Gervais and

Klein (2010), we posit a monthly process underlying the observed annual income process;

in both cases, we assume that income has a permanent component, a persistent stochastic

component, and a transitory component. We estimate the monthly process based on annual

data, using a simulated method of moments and moments of the autocovariance function. Our

main finding is that a transitory component accounts for about a quarter of overall annual

variance of earnings, and that this is true whether the model we estimate is monthly or annual.

The remainder is mostly accounted for by a component that is highly persistent but far from a

random walk. Instead, looking at monthly earnings variance, much of that is accounted for by

transitory earnings shocks that last less than a year. Our approach to estimating the annual

model can be thought of as a contribution to the ongoing debate about how best to estimate
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wage and earnings processes and the implications of each method for the relative importance

of persistent and transitory shocks (see Domeij and Flodén (2010) and Daly et al. (2011) for

recent contributions), but this is incidental; our main innovation concerns the estimation of the

monthly model using annual data.

In addition to providing estimates of monthly income risk, which we believe to be of interest

in themselves, we also investigate whether frequency of decision making matters for risk-sharing

implications of a standard consumption-saving model. We do this by computing an infinite-

horizon version of the Huggett (1993) model at annual and monthly frequency. The main

finding here is that the degree of risk sharing is affected by increasing the frequency of decision

making, but quantitatively the impact of the frequency is moderate and depends on the size

of the borrowing limit. The difference that we do observe—broadly speaking, consumption

changes are more responsive to income changes in the monthly model—is due to the higher

estimated importance of the permanent component in the annual model, relative to the monthly

one. The permanent component is of course impossible to insure against, so there is perhaps

a deeper sense in which the monthly model exhibits more risk sharing than the annual model.

But a relatively important permanent component does not affect the regression coefficient of

household-level consumption changes on income changes in any direct way. It does, however,

leave less of the variance to be accounted for by the persistent component. That is, we find

that in the annual model, the persistent shocks to income are relatively less important than in

the monthly model, and since transitory shocks are easier to self-insure against than persistent

shocks, households in the annual model are able to self-insure more completely, at least when
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the borrowing limit is not too tight.

In any case, we conclude that frequency of decision making per ce is not sufficiently im-

portant for the degree of risk sharing in the Huggett (1993) framework. Instead, the use of

a higher-than-annual frequency model should be driven primarily by specific questions that

require the modeling of frequent decision-making, where annual frequency would be insufficient

for understanding the issues of interest.

In addition to the literature that estimates income uncertainty in the data, our work is

related to the literature on risk-sharing in incomplete-market models. Some examples are

Krueger and Perri (2004) and Kaplan and Violante (2010), who do this in calibrated models

of household decision-making, and Blundell et al. (2008), who use econometric techniques to

measure the degree of consumption risk sharing.

The rest of the paper is organized as follows. Section 2 describes the data we use in our

estimation, the estimation procedure and results. We then apply these annual and monthly

estimates in the context of the Huggett-style model, which we describe, calibrate and compute

in section 3. Section 4 concludes.

2 Estimation of the Earnings Process

2.1 Data

In order to estimate the earnings process, we rely on the Panel Study of Income Dynamics

(PSID). We employ the data from 1968 to 1997, which is the period during which data are
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available annually; after 1997, PSID becomes biennial. Our sample consists of individuals

between the ages of 21 and 62. We consider different subsamples: all men and women, only

men, and only male heads of households. For our purposes, all of these samples yield similar

results. We also drop those with annual earnings below $2000 in 1968 dollars.

2.2 Procedure

The main challenge in estimating the earnings process is that we have annual data but want to

estimate a monthly process. But before we tackle that issue, we have to choose a specification

for the time series process that can be made to fit the available facts, regardless of the length

of the time period.

Our choice of specification is designed to capture the key statistical properties in the micro

data on earnings. Following many other authors, we extract the idiosyncratic component of

log earnings by regressing log-earnings on a cubic in age, dummies for education, gender, race,

marital status and birth cohort, and retaining the residuals. The question is how to model this

residual.

Our specification is as follows. The residual yi,t of monthly or annual log earnings is assumed

to have three distinct components according to

yi,t = αi + zi,t + xi,t (1)

where we call αi the permanent component (since it doesn’t change as a household ages)

with variance σ2
α, where the persistent component zi,t satisfies
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zi,t−1 = ρzi,t−1 + εi,t (2)

and where εi,t and xi,t are i.i.d., with variances σ2
ε and σ2

x respectively. In contrast to

Guvenen (2007), we do not allow for heterogeneous predictable age-earnings profiles.

Since in our model agents have infinite lives, it makes sense to ignore the age dimension of

observations, and we do not allow the variances of the shocks εi,t and xi,t to depend on age.

For reasons of parsimony, we also do not allow them to depend on cohort or on calendar time.

Thus the only parameters that need to be estimated are σ2
ε , ρ, σ2

x and σ2
α. This is done by

GMM where the moments are the autocovariances Γk = E[yi,tyi,t+k], where the kth covariance

is computed as the average over all possible products yi,tyi,t+k for which data are available and

regardless of age.

The choice of specification described in Equation (1) is based on some striking features of

the autocovariance function of the residuals, displayed in Figure 1. What we see there is that

Γk falls steeply as k goes from 0 to 1 and then very gradually, with a near-constant rate of

decay, as k increases further. This is evidence in favor of the view that purely transitory shocks

(or possibly measurement error) accounts for a large fraction of the total variance of earnings.

It also points in the direction of idiosyncratic earnings having a component that is persistent

but not quite a random walk.

These conclusions—that the persistent component does not have a unit root and the tran-

sitory component is important—contrast somewhat with the influential work of Storesletten

et al. (2004), who argue that the persistent component is a random walk and that it accounts
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Figure 1: The autocovariance function of log earnings residuals.

for most of the variance. This approach is followed in Blundell and Preston (1998), who model

earnings as the sum of a random walk and a white noise process.2 As Figure 1 shows, the

autocovariance function of earnings is not consistent with such a representation. When k ≥ 1,

Γk tends to decline more or less geometrically and at a non-negligible rate. This is why our

specification allows for a persistent component that is not a random walk.

Moreover, it is not obvious (though it is possible) that Γk tends to zero as it would if the

earnings residual consisted of just a transitory and a persistent (but unit root) component. In

fact Γk+1/Γk starts out at about 0.92 at k = 1 and then increases somewhat towards unity as

k increases so that Γk appears to tend a strictly positive limit. More data would be required

2As discussed in Domeij and Flodén (2010) and Daly et al. (2011), given the specification in Blundell and
Preston (1998), the estimation results are dramatically different depending on whether the estimation is done
in levels or differences. Here we bypass that issue by using a different specification.
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Figure 2: Yearly model. Empirical and estimated theoretical autocovariances.

for any firm conclusion about this, but in the absence of any strong evidence that Γk tends to

zero as k →∞, it makes sense to allow for a truly permanent individual-specific component as

well.

Given the specification (1) it is straightforward to derive the theoretical autocovariance

function. It is

Γk = σ2
α + I{k=0} · σ2

x +
ρk

1− ρ2
σ2
ε

where I{k=0} is an indicator function that equals one if k = 0 and zero otherwise. The GMM

estimation chooses ρ, σ2
α, σ2

ε and σ2
x so as to minimize the (unweighted) distance between the

first 20 theoretical autocovariances and their empirical counterparts; the fit of the model is
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shown in Figure 2. The estimation results are summarized in the first row of Table 1 and

discussed in Section 2.4 below. In particular, notice that ρ ≈ 0.93, a number quite far from

unity.

2.3 A Monthly Earnings Process

We now discuss how to estimate a monthly model. The statistical specification is still given

by Equation (1). If we had monthly data, we could proceed exactly as above. But we do not.

Nevertheless, a monthly model has implications for the annual autocovariance function and we

can use these implications to estimate the parameters of the monthly model. This approach is

similar to but extends that of Gervais and Klein (2010).

Computing the theoretical moments presents something of a challenge. They can be com-

puted by simulation, following Lee and Ingram (1991). However, this is very time-consuming

in terms of CPU time. On the other hand, exact analytical formulas are not available because

of Jensen’s inequality. To see this, denote (residual) log earnings in month s by υi,s. We then

define annual earnings via

yi,a = ln

(
1

12

11∑
s=0

exp {υi,12a+s}

)
(3)

Thus our statistical model implies that

yi,a = ln

(
1

12

11∑
s=0

exp

{
αi + xi,s +

s∑
k=0

ρs−kεi,k

})
. (4)
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If it weren’t for the ln followed by exp, analytical formulas would be available. If we remove

these functions, we obtain approximate results, and the errors are fairly small for the autoco-

variances, with the exception of the 0th autocovariance (the variance). This exception, however,

is sufficiently important, so that we have chosen to compute moments by simulation.

Specifically, we drawN = 1000 individual histories of length T = 1000 years (12000 months).

We draw the line there in order not to slow down the estimation too much but at the same

time to maintain acceptable precision. If N = 6000 and T = 6000, the largest change in

an autocovariance is about 0.6 percent compared to the N = 1000, T = 1000 case. If N is

then maintained at 6000 but T is increased to 10000 years, the autocovariances change by a

further 0.2 percent for a total maximum change of 0.8 percent compared with the N = 1000,

T = 1000 year case. Essentially this means that the autocovariances in our simulation are

accurately computed to two decimal places. The fit of the monthly model, in terms of the

annual autocovariance function, is shown in Figure 3.

2.4 Estimation results

In Table 1 we report the estimation results for the stationary versions of the annual and the

monthly models, respectively. The key thing to notice is that the relative importance of the

three components of earnings is quite different in the two cases. In the monthly model, about

75 percent of the variance is accounted for by transitory shocks and about 21 percent by

persistent shocks, leaving about 4 percent for the permanent shock. In the annual model,

about 22 of the total variance is accounted for by the transitory shocks and 59 percent by the
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Figure 3: Monthly model. Empirical and estimated theoretical yearly autocovariances.
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persistent component, leaving about 20 percent for the permanent component. What explains

this difference? Our findings are consistent with significant monthly noise that is to some extent

washed out at the annual frequency. In any case, our first result is that it makes a difference

whether we use an annual or a monthly model to measure the relative importance of transitory

and persistent shocks to earnings.

We have just said that, in the monthly model, 75 percent of the variance of earnings is

accounted for by transitory shock. That is the monthly variance. What about the yearly

variance? Clearly much more of the variance of the transitory component washes out than that

of the persistent component when we add up monthly earnings to annual frequency. As it turns

out, in the monthly model, about 24 percent of the annual variance of earnings is accounted

for by the transitory component, and about 64 percent by the persistent component, leaving

almost 13 percent for the permanent component. Thus in the monthly model, the transitory

component has essentially the same relative importance in the monthly as in the annual model.

The relative importance of the permanent component is less robust; this suggests that the

relative importance of the permanent and the persistent component are not so easily identifiable

by the data.

2.5 Robustness and identification

What aspects of our specification are forced upon us by the data and what aspects have to be

assumed more or less arbitrarily?

To shed light on this issue, consider a more general specification that will nest our baseline.
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As before, log monthly income is the sum of three components: a permanent component,

a persistent component and a transitory component. But now, assume that the persistent

component remains constant with some probability 1 − p and that the transitory component

equals zero with some probability 1− q, these events being independent. Thus, the probability

of income remaining constant from one month to the next is (1 − p)(1 − q), while persistent

and transitory shocks arrive with probability p and q respectively.

It turns out that with this specification, p and q cannot be identified. Indeed, the model can

be made to fit the empirical autocovariance function extremely well regardless of the precise

choice of p and q, provided that neither is zero. This is perhaps not surprising; with annual data,

there is a limit to how much information can be extracted about events at a monthly frequency.

However, certain very important features of the data generating process are strikingly robust

to different assumptions about p and q. To make this point, consider four possibilities, (1)

p = 1/2 and q = 1/2, (2) p = 1/2 and q = 1/4, (3) p = 1/4 and q = 1/2 and, finally, (4)

p = 1 and q = 1. Notice that case (4) corresponds to our baseline specification of the monthly

earnings process.

In the baseline case (4), we concluded that transitory shocks account for 24 percent of the

annual variance of log earnings. What is that number in cases (1)-(3)? In case (1) the fraction

is 22 percent, in case (2) it is 23 percent, in case (3) it is also 23 percent. Thus this fraction is

rather robust to the exact specification, and we conclude that any model capable of replicating

the empirical annual autocovariance function must assign about a quarter of the total variance

to shocks that last no longer than a year.
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3 Application: Implications for Risk-Sharing

3.1 General-Equilibrium Incomplete-Market Model

In our computational experiments we use the canonical infinite-horizon model of Huggett

(1993). Each period, households choose the level of consumption ct and saving at+1 in a real

risk-free bond, given their current earnings and asset states. The earnings state is stochastic

and idiosyncratic, and consists of three components as described in the estimation section: the

permanent component α, the persistent component zt, and the transitory component xt. The

permanent component is known to the household and does not change period to period. The

persistent income state zt is discrete and evolves according to a Markov process with associated

transition function Γz(z
′|z). The transitory shock x is likewise discrete and i.i.d. Denote by Px

the probability of realization of a given shock x.

The household problem in recursive formulation is

V (α, zt, xt; at) = max
ct+1,at+1

u(ct) + β
∑
z′

∑
x′

Γz(z
′|zt)Px′V (α, zt+1, xt+1; at+1) (5)

s.t. ct + at+1 = exp(α + zt + xt) + at(1 + rt) (6)

ct ≥ 0 (7)

at+1 ≥ a (8)

Here, the household expectation of future shock realizations is written in terms of discretized

shocks zt and xt. The risk-free bond pays real return rt. The transition matrices give probabili-

ties of future shock realizations conditional on current realizations. In the budget constraint, the
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current earnings realization is given by the product of the three components of (log) earnings.

Households can borrow subject to the borrowing constraint (8) where a < 0.

We will consider the stationary equilibrium of this economy, where the distribution of agents

along the earnings and assets dimensions is constant over time. Define the transition function

Π(s, B) from state st = (α, zt, xt; at) ∈ S to the subset of state space B in the standard way.3

Denote by Ψ(st) the distribution of agents across the state space. Denote by ga(st) and gc(st)

the decision rules with respect to saving and consumption in some period t.

The stationary equilibrium for this economy is the set of functions (gc(s), ga(s),Ψ(s), V (s), r(s))

such that: (a) gc(s) and ga(s) are optimal decision rules for the household given the price r(s);

(b) consumption and asset markets clear, so that
∫
gc(s)dΨ =

∫
αzxdΨ and

∫
ga(s)dΨ = 0; (3)

the distribution Ψ is a stationary probability measure, so that Ψ(B) =
∫

Π(s, B)dΨ ∀B.

See, e.g., Huggett (1993) for a detailed discussion of this equilibrium concept, which is

standard in the literature.

3.2 Calibration and Computation

We calibrate those parameters of the model that pertain to our earnings process from the

estimation that we described above. The estimation yields parameters of the AR(1) processes

for the persistent and transitory components of earnings which we then discretize using the

method of Rouwenhorst (1995).

Following Huggett (1993), we test a variety of borrowing limits, from 0.5 to 4 times average

3Formally, B is a subset of the Borel σ-algebra on the state space S.
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annual earnings, computing the equilibium interest rate in each case. We choose the standard

CRRA functional form for the utility function: u(c) = c1−σ

1−σ . The remaining parameters are

calibrated within the range in Huggett (1993). For the annual calibration, the discount factor

βa is set at 0.97, which at monthly frequency yields βm = 0.9975. The coefficient of risk aversion

is σ = 2.

The algorithm to compute the model is standard: given a guess of the interest rate r, we

solve the household problem, then compute the stationary distribution of agents across the

state space, and then check the asset market clearing condition. We iterate on the price until

the market clears given household optimization. To solve for the decision rules of the household,

we use the endogenous grid method of Carroll (2006). The search for the market-clearing price

is done using a bisection method.

3.3 Measures of Risk-Sharing

We devise several measures of risk sharing, all of which are inspired by considering two polar

opposite cases: perfect risk-sharing and autarky. The measures are:

1. The regression coefficient β of log-consumption changes on log-earnings changes:

∆ log(cit) = β∆ log(eit) + εit, where eit = αzitxit. (See Krueger and Perri (2004).)

2. Variance of log-consumption relative to variance of log-earnings.

3. Autocorrelation of log-consumption.
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The first two measures share the property that they are one in autarky and zero under

perfect risk sharing. All three form a convenient metric through which model predictions

are summarized and compared across the models of differing frequencies. For both models,

the measures are computed for annual consumption and earnings, which in the monthly case

requires adding up monthly data to annual frequency.

3.4 Results

In Table 2, we report the results from the computational experiment. First, notice that as

the borrowing limit increases, the interest rate increases as well, since the bond becomes less

valuable at the margin as a hedge against earnings risk when the borrowing constraint is relaxed.

This results is consistent with the findings of Huggett (1993). Second, as the borrowing limit

increases, the regression coefficient falls, suggesting increasing ability to self-insure against risk,

as we would expect (see, e.g., Krueger and Perri (2004)); moreover, our regression coefficients

are in line with previous literature. The other measures of risk-sharing confirm this tendency

as well.

If we now compare the models of differing frequency, the main result is that frequency of

decision-making on its own does not make a quantitatively dramatic difference. All of our

measures of risk-sharing are close in the two models, as are the implied interest rates. Whether

or not self-insurance is better at annual or monthly frequency depends on the borrowing limit;

being able to borrow more improves the extent of self-insurance regardless of frequency. How-

ever, we also see that for higher borrowing limits, agents are better able to self-insure in the
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annual model than in the monthly one.

The reason is that as we discussed above, in the annual model, the persistent component

accounts for 59% of the annual income variance, and the permanent component explains 20%;

in the monthly model, the persistent component contributes 64% of the annual income variance,

while the permanent component contributes 13%. Because of this, households in the monthly

model are overall better able to share risk than their counterparts in the annual model, simply

because the permanent and therefore uninsurable component is less important. But the mea-

sured degree of risk sharing is another matter. The responsiveness of consumption changes to

income changes depends on how important the persistent component is relative to the transi-

tory component, not on the importance of the permanent component, because the measures of

risk-sharing are conditional on the realization of the permanent component of earnings. Since

the persistent component is relatively more important in the monthly model than in the annual

model, there is less measured risk sharing at monthly frequency of decision-making.

4 Conclusion

In this paper, we used standard annual longitudinal household-level income data from PSID

to study the nature of income risk that households face at monthly frequency. In particular,

we estimated an annual income process typical of the literature, but also posed and estimated

an underlying monthly income process. We view the results of our estimation as interesting in

their own right, as they shed light on the properties of risk that households face in the data
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between the times that we observe them in our surveys. We find that monthly earnings, though

quite persistent, have a very significant transitory component.

We used our estimates to test whether frequency of decision-making is important in deriving

implications of incomplete-market models for risk-sharing between households. In the context of

the Huggett (1993) model, we find that frequency alone does not lead to significant differences

in risk-sharing, although interesting variation results from differing implied contributions of

permanent versus persistent shocks to earnings. We view this as encouraging for the literature

that has studied risk-sharing predominantly in annual models.

We believe our results to be valuable to anyone who is interested in studying household

decisions that are not usefully modeled at low frequency, so that an annual model would be

too restrictive, and even uninformative, for the question of interest. For example, aspects

of portfolio allocation may be best studied at the frequency at which households are paid

their labor income, especially if the interest might be in money demand or liquid assets more

generally. The same goes for applications pertaining to household decisions to borrow or revolve

debt. Our results can be used directly as an input to such calibrated models, or our methodology

can be applied more broadly to study high-frequency risk of other types or from other data

sets.
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Table 1: Parameters for the Earnings Process

σ2
α ρ σ2

ε σ2
x

Annual 0.0461 0.9254 0.0197 0.0506

Monthly 0.0268 0.9947 0.0016 0.5395
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Table 2: Risk-Sharing Implications of the Annual and Monthly Models

Frequency a r β var(ln(c))
var(ln(e))

ρ(ln c)

Annual 0.5 1.6 0.73 0.94 0.75

Monthly 1.4 0.72 0.96 0.78

Annual 1.5 1.8 0.60 0.90 0.79

Monthly 1.6 0.62 0.93 0.80

Annual 2.5 2.0 0.49 0.88 0.82

Monthly 1.7 0.57 0.92 0.81

Annual 4 2.1 0.40 0.89 0.85

Monthly 1.8 0.52 0.92 0.82

Note: a is the borrowing limit given as a factor multiplying average annual earnings. β is
the regression coefficient of log consumption changes on log earnings changes. ρ(ln c) is the
autocorrelation of log consumption. The interest rate r is the annual rate.

25


	Introduction
	Estimation of the Earnings Process
	Data
	Procedure
	A Monthly Earnings Process
	Estimation results
	Robustness and identification

	Application: Implications for Risk-Sharing
	General-Equilibrium Incomplete-Market Model
	Calibration and Computation
	Measures of Risk-Sharing
	Results

	Conclusion

