
Nonlinear Local Optimization and
Zero-Finding Functions in Matlab

Garey Ramey

University of California, San Diego

November 2018

1 Overview

Matlab provides a suite of built-in functions for use in solving nonlinear optimization

and zero-�nding problems.

Unconstrained optimization: fminsearch, fminunc

Constrained optimization: fminbnd, fmincon

Zero-�nding: fzero, fsolve

Let f(X; c1; :::; ck) be the function to be analyzed, where f is real-valued (or vector-

valued for fsolve), X is a scalar, vector or matrix, and c1; :::; cK are Matlab variables (e.g.,

numerical array, string, cell). f may be expressed as a user-de�ned m-�le:

function y = myfun(X; c1; :::; cK)

y = f(X; c1; :::; cK);

The parameter values c1; :::; cK are assigned in the Workspace:

c1 = c1_val; ::: cK = cK_val;

The Matlab solver calculates the solution X_sol by calling myfun as part of an anonymous

function:

1

[X_sol; f_val] = solver (@ (X) myfun(X; c1; :::; cK); parameters; options) ;

where parameters is a list of parameters of the solver, options is a list of user-selected

options governing the solver, and f_val is the value of f evaluated at X_sol.

As an alternative to creating a separate m-�le, f may be expressed as an anonymous

function within the solver:

[X_sol; f_val] = solver (@ (X) f(X; c1; :::; cK); parameters; options) ;

Moreover, if f has no parameters, then the m-�le may be called directly:

[X_sol; f_val] = solver (@myfun; parameters; options) ;

2 Local minimization

a Multivariate minimization The solvers fminsearch and fminunc compute local

solutions to problems of the form

min
x1;:::xM

f(x1; :::xM ; c1; :::; cK);

where the variables x1; :::; xM are real scalars.

Let X be a scalar, vector or matrix that represents theM variables; e.g., X = [x1 ::: xM].

As an initial condition, the solvers require a numerical array X0 that is conformable with

X. The following commands compute a solution using the default options:

[X_sol; f_val] = fminsearch (@ (X) myfun(X; c1; :::; cK); X0) ;

[X_sol; f_val] = fminunc (@ (X) myfun(X; c1; :::; cK); X0) ;

Generally speaking, the algorithms in fminunc make use of linear approximations, and

are well-suited for smooth functions. On the other hand, fminsearch is suited for nonsmooth

functions, but it can be slower when there are many variables.

2

b Univariate minimization with interval constraint The solver fminbnd computes

local solutions to the problem

min
x
f(x; c1; :::; cK) s.t. x1 � x � x2;

where x1; x and x2 are scalars such that x1 < x2.

The solver requires the values of x1 and x2 to be input as parameters. The solution with

default options is computed by

[x_sol; f_val] = fminbnd (@ (x) myfun(x; c1; :::; cK); x1; x2) ;

The algorithm in fminbnd is well-suited for nonsmooth functions.

c Multivariate minimization with linear constraints The solver fmincon com-

putes local solutions to the problem

min
X
f(X; c1; :::; cK);

s.t. AX � B; CX = D; X1 � X � X2;

where X is an M � 1 vector of variables, A and B are P �M and P � 1 matrices that

determine P inequality constraints, C and D are Q�M and Q� 1 matrices that determine

Q equality constraints, and X1 and X2 areM�1 vectors that determine interval constraints

for each variable.

The general syntax under the default options is

[X_sol; f_val] = fmincon (@ (X) myfun(X; c1; :::; cK); X0; A;B;C;D;X1; X2) ;

where X0 is an M � 1 vector of initial values.

Parameters for unneeded constraints are either omitted or replaced with empty matrices,

depending on their position in the heirarchy. For example, if the constraints CX = D and

X1 � X � X2 are unneeded, then the paramaters C, D, X1 and X2 are omitted:

3

[X_sol; f_val] = fmincon (@ (X) myfun(X; c1; :::; cK); X0; A;B) ;

On the other hand, if the constraints AX � B and CX = D are unneeded, then the

parameters A, B, C and D are replaced by empty matrices:

[X_sol; f_val] = fmincon (@ (X) myfun(X; c1; :::; cK); X0; []; []; []; []; X1; X2) ;

The variable X can be an M �N matrix, but for computation fmincon handles it using

1-D indexing; i.e., X is implicitly converted to X(:), and fmincon handles the expressions

AX and CX as A�X(:) and C �X(:), respectively. Thus, A and C must haveMN columns

that are conformable with X(:).

The algorithms in fmincon are well-suited for smooth functions.

d Multivariate minimization with nonlinear constraints fmincon can also be

used for problems with nonlinear constraints:

min
X
f(X; c1; :::; cK);

s.t. g(X; c1; :::; cK) � 0; h(X; c1; :::; cK) = 0;

where g and h are vector-valued functions that determine the constraints.

To use this feature, �rst express g and h as a user-de�ned m-�le:

function [G; H] = myconstr(X; c1; :::; cK)

G = g(X; c1; :::; cK);

H = h(X; c1; :::; cK);

To compute a solution, the constraint function is input to fmincon as a parameter:

[X_sol; f_val] = fmincon (@ (X) myfun(X; c1; :::; cK); X0; []; []; []; []; []; []; : : :

@(X) myconstr(X; c1; :::; cK)) ;

4

This command suppresses the inputs for the linear constraints, and calculates a local mini-

mum subject to the nonlinear constraintsG � 0 andH = 0, where [G; H] = myconstr(X; c1;

:::; cK).

Linear and nonlinear constraints may be combined. For example, the following command

combines the constraints CX = D with the inequality constraints:

[X_sol; f_val] = fmincon (@ (X) myfun(X; c1; :::; cK); X0; []; []; C;D; []; []; : : :

@(X) myconstr(X; c1; :::; cK)) ;

3 Zero-�nding

a Single equation The solver fzero computes a solution to the problem

f(x; c1; :::; cK) = 0;

where the variable x is a real scalar.

The solution with default options is computed by

[x_sol; f_val] = fzero (@ (x) myfun(x; c1; :::; cK); x0) ;

If x0 is a scalar, then fzero uses it as an initial point. If x0 is a vector of length 2 such

that f(x0(1); c1; :::; cK) and f(x0(2); c1; :::; cK) di¤er in sign, then fzero searches for a zero

within the interval having x0(1) and x0(2) as endpoints. fzero returns NaN if a solution

cannot be found.

b Systems of equations The solver fsolve computes a solution to the problem

f1(x1; :::xM ; c1; :::; cK) = 0;
...

fN (x1; :::xM ; c1; :::; cK) = 0;

5

where the variables x1; :::; xM are real scalars.

Let X be a vector or matrix that represents theM variables. The system may be de�ned

as a vector- or matrix-valued function; e.g.,

function F = myfun(X; c1; :::; cK)

F = [f1(X; c1; :::; cK);
...

fN (X; c1; :::; cK)];

The following command computes a solution using the default options:

[X_sol; F_val] = fsolve (@ (X) myfun(X; c1; :::; cK); X0) ;

where the initial condition X0 is a vector or matrix that is conformable with X.

4 Options

a Stopping criteria The optimization and zero-�nding solvers carry out calculations

recursively from a given initial point X0 = X0 according to

Xi = 	(Xi�1 : f(�); c1; :::; cK);

where 	 is the formula used by the solver. The recursions are stopped, and the current values

X_sol = Xi and f_val = f(Xi; c1; :::; cK) are output, when a stopping criterion is met.

Stopping criteria are governed by the options TolX, TolFun, MaxIter and MaxFunEvals.

TolX sets a stopping criterion based on the change in Xi at each iteration:

kXi �Xi�1k < TolX (1 + kXi�1k) :

where k�k is the Euclidean norm. TolFun sets an additional stopping criterion based on the

change in fi = f(Xi; c1; :::; cK) at each iteration:

kfi � fi�1k < TolFun (1 + kfi�1k) :

6

TolX and TolFun may be set to any positive scalar.

MaxIter stops the recursion at iteration i = MaxIter. MaxFunEvals stops the recursion

after MaxFunEvals function evaluations have been performed. For example, if each iteration

entails n function evaluations, then the recursion is stopped at iteration i = MaxFunEvals=n.

MaxIter and MaxFunEvals may be set to any positive integer.

b Matlab Toolbox solvers The solvers fminsearch, fminbnd and fzero are part of

the Matlab Toolbox, and their options are controlled by the function optimset. In addition

to the options listed in the preceding subsection, the following options are available:

Display - Controls display of solver output.

�off� - no output displayed.

�iter� - display output at each iteration (not available for lsqnonneg).

�final� - display �nal output only.

�notify� - display output only if the solver does not converge.

FunValCheck - Checks whether the values of f are valid.

�on� - display error when f returns a valye that is complex or NaN.

�off� - display no error.

OutputFcn - User-de�ned function that is called at each iteration.

@myfun

PlotFcn - User-de�ned or built-in plot function called at each iteration.

@myfun

@optimplotx - plots the current point.

@optimplotfval - plots the current function value.

7

@optimplotfunccount - plots the current function count (not available for fzero).

The following table lists the available options for the three solvers:

fminsearch fminbnd fzero

TolX TolX TolX

TolFun MaxIter Display

MaxIter MaxFunEvals FunValCheck

MaxFunEvals Display OutputFcn

Display FunValCheck PlotFcn

FunValCheck OutputFcn

OutputFcn PlotFcn

PlotFcn

fminsearch uses TolX and TolFun as a joint stopping stopping criterion; i.e., it stops the

recursion when both criteria are satis�ed.

User-de�ned option settings are created using optimset. The syntax is:

myopt = optimset (0 option1 0; value1; :::; 0 optionJ 0; valueJ) ;

This command creates a Matlab structure called myopt that sets the options option1; :::

optionJ to the values value1; :::valueJ , leaving the other options at their default values.

Inputting myopt causes the Matlab function to use the speci�ed settings:

[X_sol; f_val] = solver (@ (X) myfun(X; c1; :::; cK); parameters; myopt) ;

For example, the following commands restrict fminbnd to a maximum of n iterations:

myopt = optimset (0 MaxIter 0; n) ;

[x_sol; f_mn] = fminbnd (@ (x) myfun(x; c1; :::; cK); x1; x2; myopt) ;

8

Default options for the three functions may be viewed using optimset. The syntax is:

optimset (0 solver 0) ; or optimset (@solver) ;

Options having the value [] are either not set as defaults, or are unavailable for the solver

considered.

c Optimization Toolbox solvers The solvers fminunc, fmincon and fsolve are part

of the Optimization Toolbox, and their options are controlled by the function optimoptions.

The eight previously discussed options are available for these three solvers, and many more

options are also available. In particular, the solvers allow for a choice of numerical algorithm.

The syntax for creating user-de�ned options settings for these solvers is

myopt = optimoptions (0 solver 0; 0 option1 0; value1; :::0 optionJ 0; valueJ) ;

or

myopt = optimoptions (@solver; 0 option1 0; value1; :::; 0 optionJ 0; valueJ) ;

For example, the following commands set TolX = q in fmincon:

myopt = optimoptions (0 fmincon 0; 0 TolX 0; q) ;

[X_sol; f_val] = fmincon (@ (X) myfun(X; c1; :::; cK); X0; A;B; []; []; []; []; []; myopt) ;

Default options for the three functions may be viewed using

optimoptions (0 solver 0) ; or optimoptions (@solver) ;

For a list of functions in the Optimization Toolbox together with links to the available

options for each function, type doc optimoptions in the Command Window and scroll

down to "Name-Value Pair Arguments"..

9

5 Production economy example

a Problem speci�cation Consider a one-period economy in which goods 1 and 2 are

produced using capital and labor. The economy is endowed with �k and �l units of capital

and labor, respectively. Production functions for the two goods are given by

fi(ki; li) = Aik
�i
i l

1��i
i ; i = 1; 2;

and the social welfare function is

W (y1; y2) = ln y1 + ln y2.

The optimal allocation is the solution to the following problem:

max
y1;y2;k1;k2;l1;l2

W (y1; y2); (1)

s.t. yi; ki; li � 0; yi � Aik�ii l
1��i
i ; i = 1; 2;

k1 + k2 � �k; l1 + l2 � �l:

b Nonlinear programming solution with inequality constraints

Let the variables be represented as a 2� 3 matrix:

X =

24 y1 k1 l1

y2 k2 l2

35 :
The nonnegativity and feasibility constraints can be expressed as

eye(6) �X(:) � zeros(6; 1);24 0 0 1 1 0 0;

0 0 0 0 1 1

35 �X(:) �
24 k_bar;
l_bar

35 :
fmincon correctly implements these constraints for the parameters

A =

26664
�eye(6);

0 0 1 1 0 0;

0 0 0 0 1 1

37775 ; B =

26664
zeros(6; 1);

k_bar;

l_bar

37775 :

10

Next de�ne the function

function [G; H] = prodconstr(X;A1; A2; alph1; alph2)

G = [X(1; 1)�A1 �X(1; 2)^alph1 �X(1; 3)^(1� alph1);

X(2; 1)�A2 �X(2; 2)^alph2 �X(2; 3)^(1� alph2)];

H = 0;

After assigning values for the parameters A1, A2;alph1;alph2 and gam, the solution can be

computed using the command

X_sol = fmincon (@ (X) � (log(X(1; 1)) + gam � log(X(2; 1))); X0; A;B; []; []; : : :

[]; [];@(X) prodconstr(X;A1; A2; alph1; alph2)) ;

c Nonlinear programming solution with equality constraints

Alternatively, the production and resource constraints can be treated as equality con-

straints. In this case, de�ne the m-�le

function [G; H] = prodconstr_eq(X;A1; A2; alph1; alph2)

G = 0;

H = [A1 �X(1; 2)^alph1 �X(1; 3)^(1� alph1)�X(1; 1);

A2 �X(2; 2)^alph2 �X(2; 3)^(1� alph2)�X(2; 1)];

and the parameters

C =

24 0 0 1 1 0 0;

0 0 0 0 1 1

35 ; D =

24 k_bar;
l_bar

35 ;
LB = zeros(2; 3):

The solution is computed by

X_sol = fmincon (@ (X) � (log(X(1; 1)) + gam � log(X(2; 1))); X0; []; []; C;D; : : :

LB; [];@(X) prodconstr_eq(X;A1; A2; alph1; alph2)) ;

11

d Solution using �rst-order conditions

The Lagrangian for problem (1) is

L = ln y1 + ln y2 + �1
�
A1k

�1
1 l

1��1
1 � y1

�
+�2

�
A2k

�2
2 l

1��2
2 � y2

�
+ �k(

�k � k1 � k2) + �l(�l � l1 � l2):

First-order necessary conditions for a solution include the equations

1

y1
= �1;

y2
= �2;

�1�1A1k
�1�1
1 l1��11 = �k = �2�2A2k

�2�1
2 l1��22 ;

�1(1� �1)A1k�11 l
��1
1 = �l = �2(1� �2)A2k�22 l

��2
2 ;

which may be rearranged as follows:

�1
�2

k2
k1
=
(1� �1)
(1� �2)

l2
l1
= ; (2)

y1 = A1k
�1
1 l

1��1
1 ; y2 = A2k

�2
2 l

1��2
2 : (3)

The solution is determined by (2), (3) and the resource constraints:

k1 + k2 = �k; l1 + l2 = �l:

For this case, de�ne the m-�le

function F = FOC(X;A1; A2; alph1; alph2; gam)

F = [(alph1 �X(2; 2))=(alph2 �X(1; 2))� gam;

((1� alph1) �X(2; 3))=((1� alph2) �X(1; 3))� gam;

X(1; 1)�A1 �X(1; 2)^alph1 �X(1; 3)^(1� alph);

X(2; 1)�A2 �X(2; 2)^alph2 �X(2; 3)^(1� alph2);

X(1; 2) +X(2; 2)� k_bar;

X(1; 3) +X(2; 3)� 1_bar]

The solution is computed by

X_sol = fsolve (@ (x) FOC(X;A1; A2; alph1; alph2; gam); X0) ;

12

4 Maximum likelihood estimation example

Consider the following linear model:

yi = �+
XJ

j=1
�jxji + "i; i = 1; :::; N;

where yi; xi1; :::; xiJ are observations, �; �1; :::; �J are parameters, and "i are mutually un-

correlated normal random variables with zero mean and variance �2.

a Estimation using fminsearch

The likelihood function of �; �1; :::; �J ; �
2 of the model given the observations is

L =
�

1

2��2

�N=2
exp

�
� 1

2�

XN

i=1
"2i

�

=

�
1

2��2

�N=2
exp

�
XN

i=1

�
yi � ��

XJ

j=1
�jxji

�2!1=2�
:

The maximum likelihood estimates �̂; �̂1; :::; �̂J are the solutions to the following problem:

max
�;�1;:::;�p

exp

�
XN

i=1

�
yi � ��

XJ

j=1
�jxji

�2!
: (4)

Let the observations and parameters be expressed as

Y =

26666664
y1

y2
...

yN

37777775 ; X =

26666664
1 x11 � � � xJ1

1 x12 � � � xJ2
...

...
. . .

...

1 x1N � � � xJN

37777775 ;

bet = [� �1 � � � �J

Create the m-�le:

function x = lik_fn(bet; Y;X)

x = exp(�sum(Y �X � bet):^2);
:

13

For given data matrices Y and X of size N � 1 and N � J , respectively, the solution is

calculated by

bet_hat = fminsearch (@ (x) � lik_fn(x; Y;X); zeros(J + 1; 1)) ;

Alternatively, the objective function can be de�ned within fminsearch:

bet_hat = fminsearch (@ (x) exp(�sum(Y �X � x):^2); zeros(J + 1; 1)) ;

b Estimation using OLS

Problem (4) is equivalent to

min
�;�1;:::;�p

�
yi � ��

XJ

j=1
�jxji

�2
:

The solution is given by the standard OLS estimator, which can be calculated by

bet_hat = (X 0 �X)n(X 0 � Y);

14

