# BUSINESS CYCLES ECONOMICS 210C

Johannes Wieland jfwieland@ucsd.edu

Spring 2018

#### COST OF BUSINESS CYCLES

• Lucas (2003) assumes that the process for consumption and utility are

$$C_t = C_t^* \exp\{\varepsilon_t - \frac{1}{2}\sigma^2\}$$
$$U_0 = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma} - 1}{1-\gamma}$$

where  $arepsilon_t \sim N(0,\sigma^2)$ 

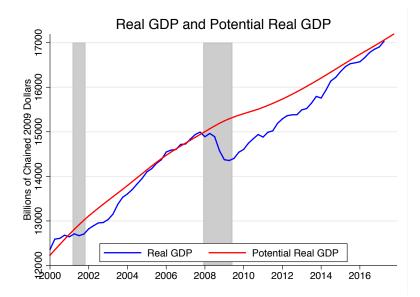
• We construct the certainty equivalent: fraction *s* of  $C_t^*$  consumer is willing to pay to eliminate business cycles

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\frac{[(1-s)C_{t}^{*}]^{1-\gamma}-1}{1-\gamma} = \mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\frac{C_{t}^{1-\gamma}-1}{1-\gamma}$$

• W.I.o.g., assume  $C_t^* = 1$ .

#### COST OF BUSINESS CYCLES

• Expected utility each period:


$$\mathbb{E}_{0} \frac{C_{t}^{1-\gamma} - 1}{1-\gamma} = \frac{\mathbb{E}[\exp((1-\gamma)\varepsilon_{t})\exp(-(1-\gamma)\sigma^{2}/2)] - 1}{1-\gamma} \\ = \frac{\exp[(1-\gamma)\mu_{\varepsilon} + 1/2(1-\gamma)^{2}\sigma^{2}]\exp(-(1-\gamma)\sigma^{2}/2) - 1}{1-\gamma} \\ = \frac{\exp[-1/2(1-\gamma)\gamma\sigma^{2}] - 1}{1-\gamma}$$

• Solving for the certainty equivalent:

$$\frac{\exp[-1/2(1-\gamma)\gamma\sigma^2]-1}{1-\gamma} = \frac{(1-s)^{1-\gamma}-1}{1-\gamma}$$
$$\exp[-1/2(1-\gamma)\gamma\sigma^2] = \exp[(1-\gamma)\ln(1-s)]$$
$$\exp[-1/2(1-\gamma)\gamma\sigma^2] \approx \exp(-(1-\gamma)s)$$
$$s = 1/2\gamma\sigma^2$$

• With parameters values plausible to Lucas ( $\gamma = 1, \sigma = 0.013$ ), s < 0.1% of  $C_t^*$ .

## ARE BUSINESS CYCLES IRRELEVANT?

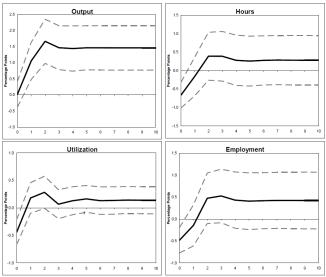


# CRITIQUE OF THE LUCAS CALCULATION

- Risk aversion given by  $\gamma$  could be much larger.
- Shocks could be serially correlated:  $\frac{\sigma^2}{1-\sigma^2}$
- Credit markets provide limited insurance against income risk. The cost of business cycles can be very large for households with no financial wealth.
- Unemployment spells could be longer during recessions. Long spells of unemployment could be very costly: stabilization reduces earnings risk.
- Stabilization can affect the level of consumption and investment. Less uncertainty may lead to more investments. Great Recession appears to have long-lasting effects.
- Asymmetric effects of booms and recessions.

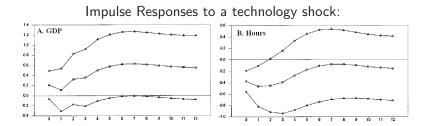
(My view:) Total cost of business cycles could be 10% of PV of consumption.

#### OVERVIEW OF METHODS


- Dynamic stochastic general equilibrium (DSGE) models; a leading example is Smets and Wouters (AER 2007).
- Vector autoregressions (VARs); e.g., Sims (Econometrica 1980).
- Narrative approach; Romer and Romer (NBER Macro Annual 1989)
- Natural experiments; Schwartz and Friedman (1963)
- Everything else (e.g., market-based indicators of expectations)

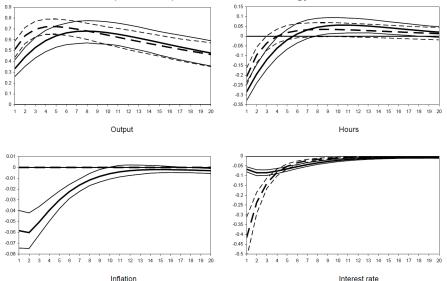
#### **TECHNOLOGY SHOCKS**

• Major source of business cycles in real business cycle models.


• We can use differential predictions of NK and RBC models to the effects of technology shocks to rule out a theory.

## BASU, FERNALD AND KIMBALL (AER, 2006)




Impulse Responses to a technology shock:

# Gali (AER, 1999)



### SMETS AND WOUTERS (AER, 2007)

Impulse Responses to a technology shock:



#### NARRATIVE APPROACH

• Alexopoulos (AER, 2011)

• Method: read patents, inventions, technological breakthroughs, etc. from specialized and popular press,

$$Y_{t} = \sum_{s=0}^{k} \alpha_{s} D_{t-s} + \sum_{q=1}^{m} \beta^{q} Y_{t-1} + e_{t}$$

## NEWS SHOCKS ABOUT FUTURE TECHNOLOGY

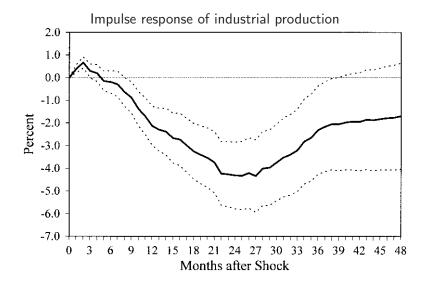
- Empirically plausible
- Attractive source of fluctuations
- Use forward-looking variables to identify news shocks; e.g. Beaudry and Portier (AER 2004) use stock market.
- Need very small wealth effects for these shocks to generate cyclical comovement of macroeconomic variables. (Jaimovich and Rebelo, AER 2009.)
- Arezki Ramey and Sheng (2016): news of oil discoveries more consistent with large wealth effects.

#### NOMINAL SHOCKS

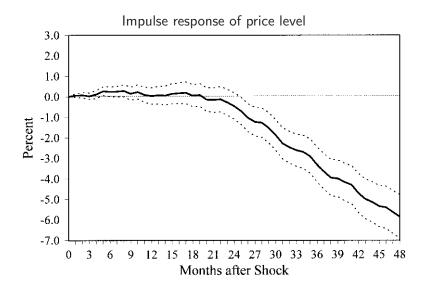
- Traditional dichotomy between nominal and real sides of the economy.
- Neoclassical macroeconomics predicts that nominal shocks have no real effects.
- Keynesian macroeconomics builds on inflexible prices/wages and thus nominal shocks have real effects.
- One of the key questions in macroeconomics.
- Nominal shocks are typically identified with unforecastable innovations in the fed funds rate (FFR).

#### ROMER AND ROMER (2004)

• Use Greenbook forecasts to remove endogenous changes in the FFR


• Run:  $i_t = \phi_{\pi} \pi_{t+1|t} + \phi_y g y_{t+1|t} + \rho_i i_{t-1} + \varepsilon_t$  and interpret the residual  $\varepsilon_t$  as an exogenous innovation in monetary policy.

Run:


$$Y_t = \sum_{s=0}^k \alpha_s \varepsilon_{t-s} + \sum_{q=1}^m \beta^q Y_{t-1} + e_t$$

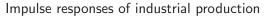
and construct impulse responses

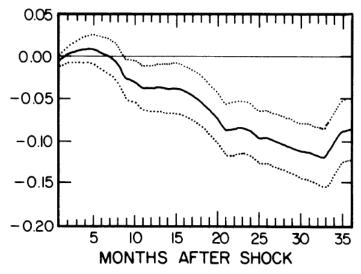
# Romer and Romer (2004)



## Romer and Romer (2004)




# NARRATIVE APPROACH OF ROMER AND ROMER (1989)

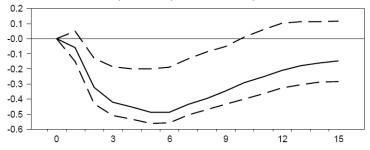

- Read FOMC minutes and try to identify instances when the Fed changed the policy for reasons not related to business cycles.
- Romers identify six instances since World War II (and up to 1989) when the Federal Reserve moved to induce a recession to reduce inflation: October 1947, September 1955, December 1968, April 1974, August 1978, and October 1979.
- Method:

$$Y_{t} = \sum_{s=0}^{k} \alpha_{s} D_{t-s} + \sum_{q=1}^{m} \beta^{q} Y_{t-1} + e_{t}$$

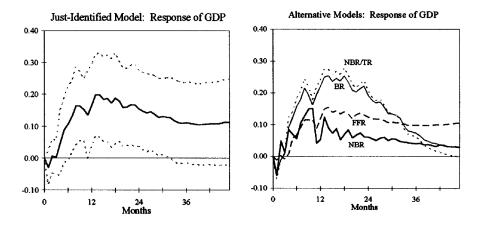
• Shapiro (1994) criticism: Romer dates are forecastable and thus not exogenous.

# ROMER AND ROMER (1989)



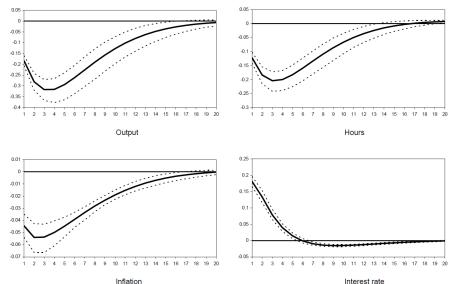



# NOMINAL SHOCKS IN VARS


- Filter out predictable movements using projections on own lags and focus on unforecastable innovations (i.e. VAR residuals) in macroeconomic variables.
- VAR residuals are correlated and we need to remove endogenous responses in innovations to FFR.
- Use minimum delay restriction.
- Key concerns: forecastable shocks, omitted variables.

## CHRISTIANO, EICHENBAUM, EVANS (1999)

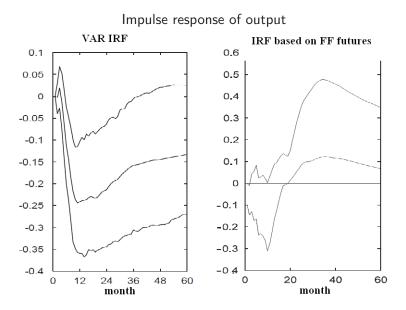
Impulse responses of output




#### BERNANKE AND MIHOV (QJE, 1998)



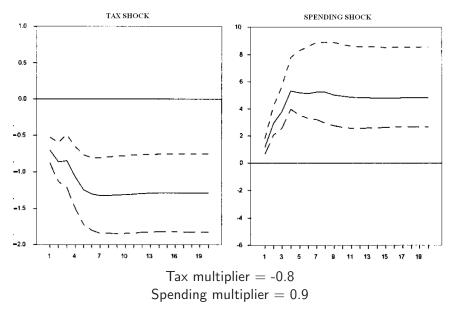
## SMETS AND WOUTERS (2007)

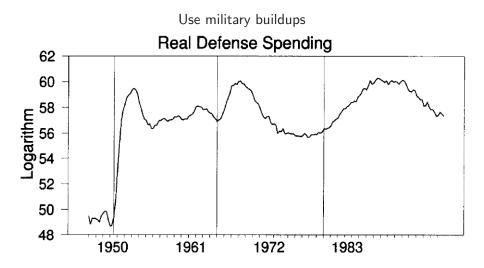

Contractionary monetary policy shock:

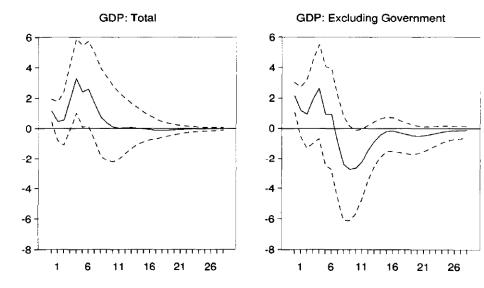


#### MARKET-BASED EXPECTATIONS

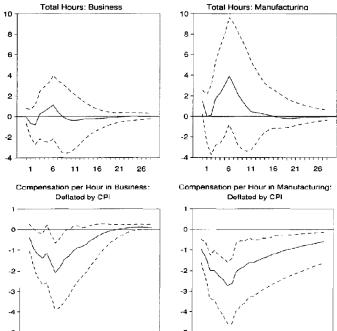
- Fed funds futures have market expectations about the future course of policy. We can use this information to construct unforecastable shocks.
- Do not need a model!
- Use very high frequency data: windows are typically measured in minutes.
- Key concern: unforecastable by market, but may contain private information of the Fed.

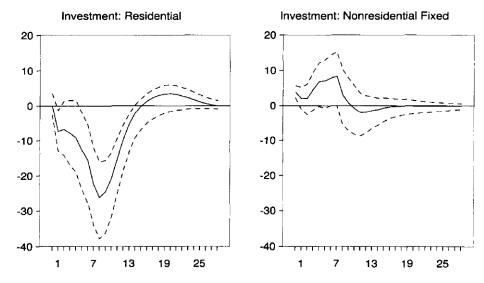

## FAUST, SWANSON AND WRIGHT (JME, 2007)

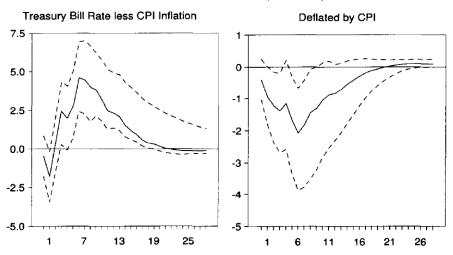




## FISCAL SHOCKS

- Need to identify fiscal shocks if we want to know the effects of fiscal stimuli.
- Identification of unanticipated shocks is tricky because many changes in fiscal policy are anticipated.
- VARs typically assume that
  - Government spending does not respond contemporaneously to current economic conditions.
  - ► Taxes have a fixed elasticity with respect to output.


## BLANCHARD AND PEROTTI (QJE, 2002)

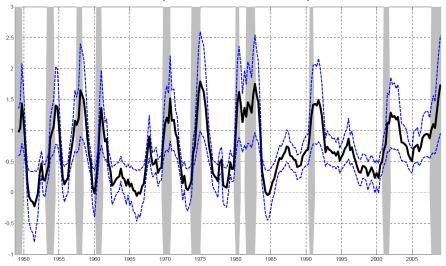


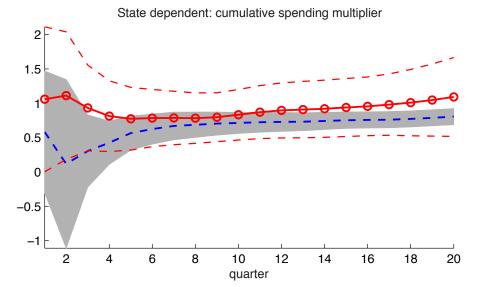



RAMEY AND SHAPIRO (1998)









Compensation per Hour in Business:

# AUERBACH AND GORODNICHENKO (AEJ, 2012)

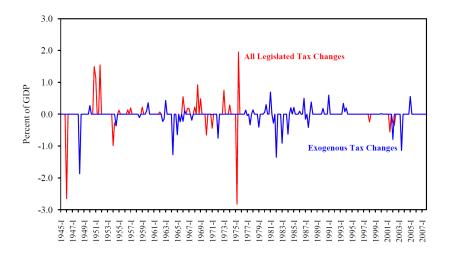
State-dependence of fiscal multiplier:



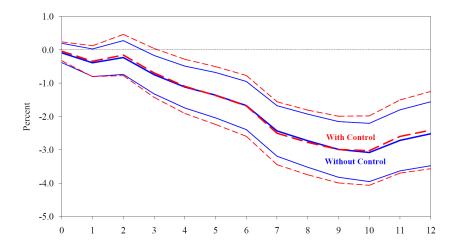
## RAMEY AND ZUBEIRY (2018)



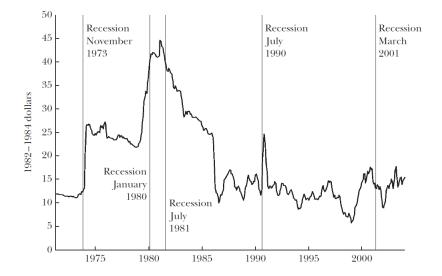
## ROMER AND ROMER (AER, 2010)


- Use a narrative approach
- Identify changes in taxes and spending which are not due to cyclical factors.
- Assess the size of the changes and label them as shocks  $\varepsilon_t$ .

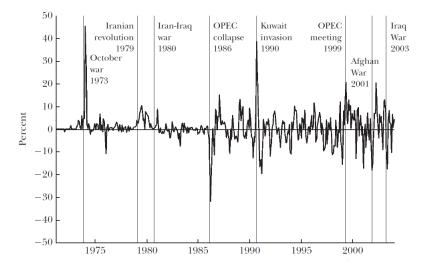
Run


$$Y_t = \sum_{s=0}^k \alpha_s \varepsilon_{t-s} + \sum_{q=1}^m \beta^q Y_{t-1} + e_t$$

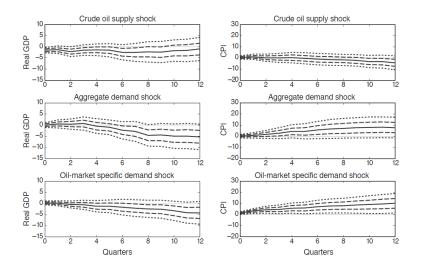
and construct impulse responses


#### ROMER AND ROMER (AER, 2010)

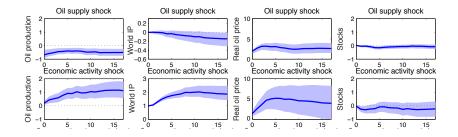



# ROMER AND ROMER (AER, 2010)




#### **OIL PRICE SHOCKS AND RECESSIONS**




# OIL PRICE CHANGES



## KILIAN (2009)



## **BAUMEISTER AND HAMILTON (2015)**



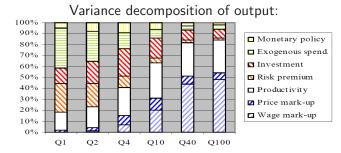
### **RELATIVE IMPORTANCE OF SHOCKS**

- IRFs are useful tools to rule out theories but they do not provide information on what constitutes quantitatively important sources of fluctuations.
  - RBC models can have demand shocks
  - NK models can have TFP shocks
- We need to do "variance decomposition" to compare relative contributions.
- VARs and (especially) DSGE models are the best tools for variance decompositions.

# BLANCHARD AND QUAH (AER, 1988)

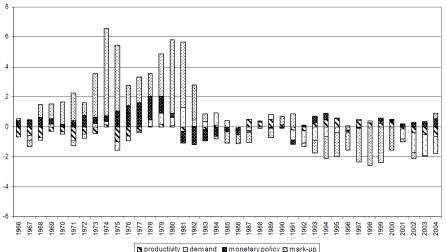
(CHANGE IN OUTPUT GROWTH AT 1973/1974; UNEMPLOYMENT DETRENDED)

| Percentage of Variance Due to Demand: |              |              |  |  |
|---------------------------------------|--------------|--------------|--|--|
| Horizon                               |              |              |  |  |
| (Quarters)                            | Output       | Unemployment |  |  |
| 1                                     | 99.0         | 51.9         |  |  |
|                                       | (76.9,99.7)  | (35.8, 77.6) |  |  |
| 2                                     | 99.6         | 63.9         |  |  |
|                                       | (78.4, 99.9) | (41.8, 80.3) |  |  |
| 3                                     | 99.0         | 73.8         |  |  |
|                                       | (76.0, 99.6) | (46.2, 85.6) |  |  |
| 4                                     | 97.9         | 80.2         |  |  |
|                                       | (71.0, 98.9) | (49.7, 89.5) |  |  |
| 8                                     | 81.7         | 87.3         |  |  |
|                                       | (46.3, 87.0) | (53.6, 92.9) |  |  |
| 12                                    | 67.6         | 86.2         |  |  |
|                                       | (30.9, 73.9) | (52.9, 92.1) |  |  |
| 40                                    | 39.3         | 85.6         |  |  |
|                                       | (7.5, 39.3)  | (52.6, 91.6) |  |  |


NOTE.-Numbers in parentheses are the boundaries of the associated 95 percent confidence interval.

# CHRISTIANO, EICHENBAUM AND EVANS (JPE, 2004)

|                    | 4 Quarters<br>Ahead | 8 Quarters<br>Ahead | 20 Quarters<br>Ahead |
|--------------------|---------------------|---------------------|----------------------|
| Output             | 15                  | 38                  | 27                   |
|                    | (4, 26)             | (15, 48)            | (9,35)               |
| Inflation          | 1                   | 4                   | 7                    |
|                    | (0,8)               | (1,11)              | (3, 18)              |
| Consumption        | 14                  | 21                  | 14                   |
|                    | (4, 26)             | (5, 37)             | (4, 26)              |
| Investment         | 10                  | 26                  | 23                   |
|                    | (2,21)              | (7, 39)             | (6, 32)              |
| Real wage          | 2                   | 2                   | 4                    |
|                    | (0,8)               | (0, 14)             | (0, 15)              |
| Productivity       | 15                  | 14                  | 10                   |
|                    | (3,25)              | (3, 26)             | (3,20)               |
| Federal funds rate | 32                  | 19                  | 18                   |
|                    | (18, 44)            | (8,27)              | (5,27)               |
| M2 growth          | 19                  | 19                  | 19                   |
|                    | (8,29)              | (8,26)              | (8, 24)              |
| Real profits       | 13                  | 18                  | 7                    |
|                    | (5,25)              | (6,31)              | (2,20)               |


NOTE.-Numbers in parentheses are the boundaries of the associated 95 percent confidence interval.

#### SMETS AND WOUTERS (2007) Variance decomposition of inflation: 100% 90% Monetary policy 80% Exogenous spend. 70% **N** Investment 60% 50% Risk premium 40% Productivity 30% Price mark-up 20% Wage mark-up 10% 0% Q1 $Q^2$ Q4 Q10 Q40 O100



# SMETS AND WOUTERS (2007)

Historical decomposition of inflation:



### SOURCES OF BUSINESS CYCLE FLUCTUATIONS

• Most economists (informal survey) now view demand shocks as (relatively) more important than supply side shocks.

• General agreement that monetary shocks and government spending shocks are not the major source of demand-side shocks. (That does not mean systematic changes in policy is unimportant.)

# LONG LIVE BUSINESS CYCLES

- Many people many times suggested that business cycles are dead or will be dead shortly.
- Perennial questions in business cycles:
  - What is the source of TFP shocks?
  - What is the source of preference shocks?
  - Why shocks identified with particular events are small?
  - Why do we see massive comovement of variables in the business cycle?
  - What is the relationship between long-term growth and business cycles?
  - What are the costs of business cycles?