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1 Linear dynamic stochastic model

Consider the following model:

0= Ayv + ANt + Ak + Az 2, (1)
By Eivii1 + ByxiEiAiv1 + Brikiy1 + B Eyzi 1 = B, (2)
Crikir1 = Cyvp + Croky + Cl 2, (3)

where v; is an [ X 1 vector of endogenous variables determined at ¢, A\; is an m x 1 vector of
Lagrangian multipliers, k; is an s X 1 vector of endogenous variables determined at ¢t —1, and
z is a dx 1 vector of exogenous variables determined at ¢. In terms of macroeconomic models,
(1) represents [ linearized intratemporal Euler equations corresponding to the elements of vy,
(2) gives s linearized intertemporal Euler equations associated with the elements of k41, and
(3) gives m linearized constraints. A, is assumed to be invertible, and {z:} is a stationary
vector process.

The system may be expressed as
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Using (4) to substitute for Eyvy11 and vy and rearranging gives
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Dy and Dy are (m + s) X (m + s) matrices, and D,; and D,y are (m + s) X d matrices.
Note that (6) reduces the system to m costate variables and s endogenous state variables,

combined with the exogenous process {z:}.



2 Rational expectations solution

Suppose zi+1 = lz; + €441, where {g,} is vector white noise. Then (6) and the z; process

may be expressed jointly as
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A; and Ag are (m+ s+ d) x (m + s + d) matrices.
A rational expectations solution of (7) takes the form (see "Notes on Linear Rational

Expectations Equilibria"):
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The associated solution for v; is determined by (4).



3 RBC model with government spending

Consider the following standard specification of the Real Business Cycle model with
government spending: For ¢ = 0,1, 2, ..., the social planner solves
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subject to

ZiKOL 4+ (1 = 0)Ky = Cy + Gy + Ky,
Zy = 7P e,
Gy =G'"G) e,

where x,G > 0, 0 < 8,0a,0,p,7 < 1, and {[e; v¢]'} is exogenous vector white noise. First-

order necessary conditions for a solution are
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together with the Z; and G; processes, where ); is the Lagrange multiplier on the resource
constraint in period ¢.

Log-linearizing the necessary conditions gives
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where k, L and C are nonstochastic steady state values:
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For this example, the vectors v, A, k¢ and z; are given by
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Expressing the linearized necessary conditions in the form (1)-(3) gives:
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