Economics 210C - Macroeconomics

Prof. Garey Ramey

Phase Diagram Exercise v.2

Consider a version of the RBC model in which the household owns the capital stock and rents capital to the firm. In each period, the household solves the following problem:

$$\max_{C_{t}, L_{t}, K_{t}} \mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{s} \left(\ln C_{t+s} - \frac{L_{t+s}^{1+1/\eta}}{1+1/\eta} \right)$$

s.t. $W_{t+s} L_{t+s} + (1 - \tau_{t+s}) R_{t+s} K_{t+s-1} + \Pi_{t+s} + (1 - \delta) K_{t+s-1}$
 $= K_{t+s} + C_{t+s} + T_{t+s},$

and the firm chooses K_t and L_t to maximize

$$\Pi_t = Z_t K_{t-1}^{\alpha} L_t^{1-\alpha} - W_t L_t - R_t K_{t-1},$$

where R_t is the capital rental rate and Z_t is exogenous. Moreover, in each period, the government chooses the lump-sum tax T_t to balance its budget:

$$\tau_t R_t K_{t-1} + T_t = G_t$$

where τ_t and G_t are exogenous. The parameters satisfy $\eta > 0$ and $0 < \beta, \delta, \alpha < 1$, while $Z_t, G_t > 0$ and $0 \le \tau_t < 1$ for each t.

a. Derive first-order necessary conditions for solutions to the household's and firm's problems, assuming that the labor and capital markets clear in each period.

b. Eliminate the variables W_t , R_t and T_t from your equations in order to express the necessary conditions in terms of the variables C_t , L_t , λ_t , K_{t-1} , Z_t , τ_t and G_t .

c. Solve for $\Delta \lambda_t$ and ΔK_t as functions of the variables C_t , L_t , λ_t , K_{t-1} , Z_t , τ_t and G_t , under the assumption that Z_t , τ_t and G_t are perfectly-anticipated deterministic paths.

d. Convert the necessary conditions from parts b and c to continuous time. Express your conditions as four equations that determine C_t , L_t , λ_t , K_t , $\dot{\lambda}_t$ and \dot{K}_t given Z_t , τ_t and G_t .

Spring 2018-19

e. Let $\dot{\lambda}_t = \dot{K}_t = 0$. Calculate the total log-derivatives of the four equations with respect to the remaining variables at given positive values of the variables. Use the total log-derivatives to calculate the partial log-derivatives of the $\dot{\lambda}_t = 0$ and $\dot{K}_t = 0$ curves in the K_t - λ_t plane (i.e., where the curves determine values of λ_t as functions of K_t and the exogenous variables). Assume that the two curves are well-defined.

f. Suppose the economy begins in a steady state. At period t_0 , τ is <u>reduced</u> to a lower level, and then it is restored to its previous level at period $t_1 > t_0$. Assume that Z_t and G_t remain constant. Show that the $\dot{\lambda}_t = 0$ curve shifts upward in the K_{t-1} - λ_t plane when τ_t increases, while the $\dot{K}_t = 0$ curve is unaffected by changes in τ_t .

g. Trace out the continuous time perfect foresight dynamics in the K_t - λ_t plane generated by the tax rate path from part f, assuming that the economy converges to the original steady state. Describe the corresponding paths of C_t , L_t , Y_t and W_t .