Notes on Time Series Modeling

Garey Ramey

University of California, San Diego

January 2017

1 Stationary processes

<u>Definition</u> A stochastic process is any set of random variables y_t indexed by $t \in T$:

 $\{y_t\}_{t\in\mathcal{T}}.$

These notes will consider discrete stochastic processes, i.e., processes indexed by the set of integers $\mathcal{T} = \{\dots -2, -1, 0, 1, 2, \dots\}$:

$$\{y_t\}_{t=-\infty}^{\infty}$$

Moreover, each y_t is a real number. Stochastic processes will be referred to more concisely as "processes."

<u>Definition</u> The joint distribution of the process $\{y_t\}$ is determined by the joint distributions of all finite subsets of y_t 's:

$$F_{t_1, t_2, \dots, t_n}(\alpha_1, \alpha_2, \dots, \alpha_n) = \Pr(y_{t_1} \le \alpha_1, y_{t_2} \le \alpha_2 \dots, y_{t_n} \le \alpha_n),$$

for all possible collections of distinct integers $t_1, t_2, ..., t_n$.

This distribution can be used to determine moments:

Mean:
$$\mu_t = E(y_t) = \int y_t dF_t(y_t),$$

Variance: $\gamma_{0t} = E(y_t - \mu_t)^2 = \int (y_t - \mu_t)^2 dF_t(y_t),$

Autocovariance: $\gamma_{jt} = E(y_t - \mu_t)(y_{t-j} - \mu_{t-j})$ $= \int (y_t - \mu_t)(y_{t-j} - \mu_{t-j})dF_{t,t-j}(y_t, y_{t-j}).$

<u>Definition</u> $\{\varepsilon_t\}$ is a white noise process if, for all t:

$$\begin{split} \mu_t &= E(\varepsilon_t) = 0, \\ \gamma_{0t} &= E(\varepsilon_t^2) = \sigma^2, \\ \gamma_{jt} &= E(\varepsilon_t \varepsilon_{t-j}) = 0, \quad j \neq 0. \end{split}$$

 $\{\varepsilon_t\}$ is a <u>Gaussian white noise process</u> if $\varepsilon_t \sim N(0, \sigma^2)$ for all t, i.e., ε_t is normally distributed with mean 0 and variance σ^2 .

<u>Definition</u> $\{y_t\}$ is an AR(1) process (first-order autoregressive) if

$$y_t = c + \phi y_{t-1} + \varepsilon_t,$$

where $\{\varepsilon_t\}$ is white noise and c, ϕ are arbitrary constants.

For an AR(1) process with $|\phi| < 1$:

$$\mu_t = \frac{c}{1-\phi}, \qquad \gamma_{0t} = \frac{\sigma^2}{1-\phi^2}, \qquad \gamma_{jt} = \frac{\phi^j \sigma^2}{1-\phi^2}.$$

Note that the moments in the preceding examples do not depend on t. This property defines an important class of processes.

<u>Definition</u> $\{y_t\}$ is <u>covariance-stationary</u> or <u>weakly stationary</u> if μ_t and γ_{jt} do not depend on t.

For these notes we will simply say "stationary." Intuitively, for a stationary process the effects of a given realization of y_t die out as $t \to \pm \infty$.

<u>Definition</u> $\{y_t\}$ is an $MA(\infty)$ process (infinite-order moving average) if

$$y_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j},$$

where $\{\varepsilon_t\}$ is white noise and $\mu, \psi_0, \psi_1, \dots$ are arbitrary constants.

A sufficient condition for stationarity of an $MA(\infty)$ process is square summability of the coefficients $\{\psi_j\}$:

$$\sum_{j=0}^{\infty}\psi_j^2 < \infty.$$

2 Linear forecasting interpretation

Consider the problem of forecasting y_t on the basis of past observations y_{t-1}, y_{t-2}, \dots . A linear forecasting rule predicts y_t as a linear function of n past observations $y_{t-1}, y_{t-2}, \dots, y_{t-n}$:

$$y_t = \sum_{j=1}^n g_j(n) y_{t-j},$$

where $g_1(n), ..., g_n(n)$ are constants. The <u>forecast error</u> and <u>mean squared error</u> of the forecast rule are given by:

$$FE = y_t - \sum_{j=1}^n g_j(n) y_{t-j},$$
$$MSE = E(y_t - \sum_{j=1}^n g_j(n) y_{t-j})^2.$$

<u>Definition</u> The linear projection of y_t on $y_{t-1}, y_{t-2}, ..., y_{t-n}$ is the linear forecasting rule that satisfies

$$E(y_t - \sum_{j=1}^n g_j^P(n)y_{t-j})y_{t-s} = 0, \quad s = 1, 2, \dots,$$

i.e., the forecast error is uncorrelated with y_{t-s} for all s > 0.

Let the linear projection be denoted by $y_t^P(n)$:

$$y_t^P(n) = \sum_{j=1}^n g_j^P(n) y_{t-j}$$

The associated forecast error is denoted by $\varepsilon_t^P(n)$:

$$\varepsilon_t^P(n) = y_t - \sum_{j=1}^n g_t^P(n) y_{t-j}.$$

The linear projection has the following key property.

Proposition The linear projection minimizes MSE among all linear forecasting rules.

<u>Proof</u> For any linear forecasting rule, we may write

$$MSE = E(y_t - \sum_{j=1}^n g_j(n)y_{t-j})^2$$

= $E(y_t - y_t^P(n) + y_t^P(n) - \sum_{j=1}^n g_j(n)y_{t-j})^2$
= $E(y_t - y_t^P(n))^2 + E(y_t^P(n) - \sum_{j=1}^n g_j(n)y_{t-j})^2$
 $+ 2E(y_t - y_t^P(n))(y_t^P(n) - \sum_{j=1}^n g_j(n)y_{t-j})$
= $E(y_t - y_t^P(n))^2 + E(\sum_{j=1}^n (g_j^P(n) - g_j(n))y_{t-j})^2$
 $+ 2\sum_{j=1}^n (g_j^P(n) - g_j(n))E(y_t - y_t^P(n))y_{t-j}.$

The third term is zero by the definition of linear projection. Thus, MSE is minimized by setting $g_j(n) = g_j^P(n)$ for all j, i.e., the linear projection gives the lowest MSE among all linear forecasting rules.

It can be shown that the linear projections $y_t^P(n)$ converge in mean square to a random variable y_t^P as $n \to \infty$:

$$\lim_{n \to \infty} E(y_t^P(n) - y_t^P)^2 = 0.$$

 y^P_t is the linear projection of y_t on y_{t-1}, y_{t-2}, \dots .

<u>Definition</u> The <u>fundamental innovation</u> is the forecast error associated with the linear projection of y_t on y_{t-1}, y_{t-2}, \dots :

$$\varepsilon_t = y_t - y_t^P.$$

Note that the fundamental innovation is a least squares residual that obeys the orthogonality condition $E(\varepsilon_t y_{t-s}) = 0$ for s = 1, 2,

Wold Decomposition Theorem Any stationary process $\{y_t\}$ with $Ey_t = 0$ can be represented as:

$$y_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} + \nu_t,$$

where:

(i) ψ₀ = 1 and ∑_{j=0}[∞] ψ_j² < ∞ (square summability);
(ii) {ε_t} is white noise;
(iii) ε_t = y_t - y_t^P (fundamental innovation);
(iv) ν_t is the linear projection of ν_t on y_{t-1}, y_{t-2}, ...; and
(v) E(ε_sν_t) = 0 for all s and t.
ε_t is called the linearly indeterministic component, and ν_t is called the linearly

deterministic component.

The Wold Decomposition Theorem represents the stationary process $\{y_t\}$ in terms of processes $\{\varepsilon_t\}$ and $\{\nu_t\}$ that are orthogonal at all leads and lags. The component $\{\nu_t\}$ can be predicted arbitrarily well from a linear function of $y_{t-1}, y_{t-2}, ...,$ while the component $\{\varepsilon_t\}$ is the forecast error when y_t^P is used to forecast y_t .

<u>Definition</u> A stationary process $\{y_t\}$ is purely linearly indeterministic if $\nu_t = 0$ for all t.

For a purely linearly indeterministic process, the Wold Decomposition Theorem shows that $\{y_t\}$ can be represented as a $MA(\infty)$ process with $\mu = 0$:

$$y_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j},$$

This is called the moving average representation of $\{y_t\}$.

Example An AR(1) process $\{y_t\}$ may be represented using the lag operator:

$$(1 - \phi L)y_t = c + \varepsilon_t$$

If $|\phi| < 1$:

$$y_t = \frac{1}{1 - \phi L} (c + \varepsilon_t) = \sum_{j=0}^{\infty} (\phi L)^j (c + \varepsilon_t)$$
$$= \frac{c}{1 - \phi} + \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$$

Express as deviation from mean:

$$\hat{y}_t = y_t - \frac{c}{1-\phi} = \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$$

Then $E(\hat{y}_t) = 0$. It follows that $\{\hat{y}_t\}$ is purely linearly indeterministic, and the $MA(\infty)$ representation has $\psi_j = \phi^j$. Moreover:

$$E(\hat{y}_t - \phi \hat{y}_{t-1})\hat{y}_{t-s} = E\varepsilon_t \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-s-j} = \sum_{j=0}^{\infty} \phi^j E\varepsilon_t \varepsilon_{t-s-j} = 0$$

Thus $\hat{y}_t^P = \phi \hat{y}_{t-1}$, and the ε_t 's are the fundamental innovations of the process.

3 $MA(\infty)$ representation of AR(p) processes

<u>Definition</u> $\{y_t\}$ is an AR(p) process $(p^{th}$ -order autoregressive) if

$$y_{t} = c + \phi_{1}y_{t-1} + \phi_{2}y_{t-2} + \dots + \phi_{p}y_{t-p} + \varepsilon_{t}$$
(1)
= $c + \sum_{i=1}^{p} \phi_{i}y_{t-i} + \varepsilon_{t},$

where $\{\varepsilon_t\}$ is white noise and $c, \phi_1, ..., \phi_p$ are arbitrary constants.

Represent (1) using the lag operator:

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p)y_t = c + \varepsilon_t.$$

To obtain an $MA(\infty)$ representation, consider the equation

$$\lambda^{p} - \phi_{1}\lambda^{p-1} - \phi_{2}\lambda^{p-2} - \dots - \phi_{p} = 0.$$
⁽²⁾

This is called the characteristic equation. According to the fundamental theorem of algebra, there are p roots $\lambda_1, \lambda_2, ..., \lambda_p$ in the complex plane such that, for any λ :

$$\lambda^p - \phi_1 \lambda^{p-1} - \phi_2 \lambda^{p-2} - \dots - \phi_p = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_p).$$

Note that complex roots come in conjugate pairs $\lambda_i = a + bi$, $\lambda_j = a - bi$. Divide through by λ^p and let $z = 1/\lambda$:

$$1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = (1 - \lambda_1 z)(1 - \lambda_2 z) \cdots (1 - \lambda_p z).$$

By setting z = L we may write

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) y_t$$

= $(1 - \lambda_1 L)(1 - \lambda_2 L) \cdots (1 - \lambda_p L) y_t = c + \varepsilon_t.$

Assume $|\lambda_i| < 1$ for all *i*, i.e., all roots lie inside the unit circle on the complex plane (recall $|a + bi| = a^2 + b^2$, which is the length of the vector (a, b)). Solve for y_t :

$$y_t = \frac{1}{1 - \lambda_1 L} \frac{1}{1 - \lambda_2 L} \cdots \frac{1}{1 - \lambda_p L} (c + \varepsilon_t).$$
(3)

The $MA(\infty)$ representation is derived from (3) in two steps.

Step 1 - Constant term. Note that, for any constant α :

$$\frac{1}{1-\lambda_i L}\alpha = \sum_{j=0}^{\infty} (\lambda_i L)^j \alpha = \sum_{j=0}^{\infty} \lambda_i^j \alpha = \frac{\alpha}{1-\lambda_i}.$$

Thus:

$$\frac{1}{1 - \lambda_1 L} \frac{1}{1 - \lambda_2 L} \cdots \frac{1}{1 - \lambda_p L} c = \frac{c}{(1 - \lambda_1)(1 - \lambda_2) \cdots (1 - \lambda_p)} = \frac{c}{1 - \phi_1 - \dots - \phi_p} \equiv \mu.$$
(4)

<u>Step 2 - MA coefficients</u>. Suppose the roots of (2) are distinct, i.e., $\lambda_i \neq \lambda_k$ for all i, k. Then the product term in (3) can be expanded with partial fractions:

$$\frac{1}{1-\lambda_1 L} \frac{1}{1-\lambda_2 L} \cdots \frac{1}{1-\lambda_p L} = \sum_{i=1}^p \frac{\omega_i}{1-\lambda_i L},$$

where

$$\omega_i \equiv \frac{\lambda_i^{p-1}}{\prod\limits_{\substack{k=1\\k\neq i}}^p (\lambda_i - \lambda_k)}.$$
(5)

It can be shown that $\sum_{i=1}^{p} \omega_i = 1$. Furthermore, we can write:

$$\sum_{i=1}^{p} \frac{\omega_{i}}{1 - \lambda_{i}L} = \sum_{i=1}^{p} \omega_{i} \sum_{j=0}^{\infty} (\lambda_{i}L)^{j} = \sum_{j=0}^{\infty} \sum_{i=1}^{p} \omega_{i} \lambda_{i}^{j}L^{j} = \sum_{j=0}^{\infty} \psi_{j}L^{j},$$

where

$$\psi_j \equiv \sum_{i=1}^p \omega_i \lambda_i^j. \tag{6}$$

Thus:

$$\frac{1}{1-\lambda_1 L} \frac{1}{1-\lambda_2 L} \cdots \frac{1}{1-\lambda_p L} \varepsilon_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$

Clearly, $\psi_0 = 1$. Combining the terms gives:

$$y_t = \mu + \varepsilon_t + \sum_{j=1}^{\infty} \psi_j \varepsilon_{t-j}.$$
 (7)

The restriction $|\lambda_i| < 1$ for all *i* implies that $\{\psi_j\}$ satisfies square summability, and so $\{y_t\}$ is stationary.

The following proposition summarizes this analysis.

Proposition. Suppose (2) has distinct roots $\lambda_1, ..., \lambda_p$ satisfying $|\lambda_i| < 1$ for all *i*. Then the AR(p) process (1) is stationary and has an $MA(\infty)$ representation (7), where μ is given by (4) and ψ_i is given by (5) and (6).

Often AR(p) processes are analyzed using this alternative form of the characteristic equation:

$$1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = 0.$$

In this case, the stationarity condition is that the roots lie <u>outside</u> of the unit circle, since the roots of this equation are the inverses of the earlier roots.

4 Nonstationary processes

a Trend-stationary processes

<u>Definition</u> $\{y_t\}$ is a <u>trend-stationary process</u> if $\{y_t - y_t^{tr}\}$ is stationary, where $\{y_t^{tr}\}$ is a deterministic sequence referred to as the <u>trend</u> of $\{y_t\}$.

Example Let $\{y_t\}$ be given by

$$y_t = \sum_{k=0}^{K} \mu_k t^k + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j},$$

where $\mu_1, ..., \mu_K$ are arbitrary constants. In this case the process has a polynomial trend:

$$y_t^{tr} = \sum_{k=0}^K \mu_k t^k.$$

 $\{y_t\}$ is trend-stationary as long as its $MA(\infty)$ component is stationary.

b Unit root processes

<u>Definition</u> An AR(p) process is <u>integrated of order r</u>, or I(r), if its characteristic equation has r roots equal to unity.

Let $\{y_t\}$ be an AR(p) process whose roots satisfy $|\lambda_i| < 1$, i = 1, ..., p - 1, and $\lambda_p = 1$. Then $\{y_t\}$ is I(1), and it may be written as

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) y_t$$

= $(1 - \lambda_1 L)(1 - \lambda_2 L) \cdots (1 - \lambda_{p-1} L)(1 - L) y_t$
= $(1 - \lambda_1 L)(1 - \lambda_2 L) \cdots (1 - \lambda_{p-1} L) \Delta y_t = c + \varepsilon_t,$

where $\Delta y_t = y_t - y_{t-1}$ is the <u>first difference</u> of y_t . It follows that the process $\{\Delta y_t\}$ is stationary.

Example The following AR(1) process is called a <u>random walk with drift</u>:

$$y_t = c + y_{t-1} + \varepsilon_t.$$

Define the process $\{\Delta y_t\}$ by

$$\Delta y_t = c + \varepsilon_t.$$

Then $\{\Delta y_t\}$ is stationary.

5 VAR(p) processes

a Definition

<u>Definition</u>. $\{Y_t\}$ is a VAR(p) process (pth-order vector autoregressive) if

$$Y_t = C + \sum_{i=1}^p \Phi_i Y_{t-i} + \varepsilon_t, \tag{8}$$

where

$$Y_t = \begin{bmatrix} y_{1t} \\ y_{2t} \\ \vdots \\ y_{nt} \end{bmatrix}, \quad C = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad \Phi_i = \begin{bmatrix} \phi_{11}^i & \phi_{12}^i & \cdots & \phi_{1n}^i \\ \phi_{21}^i & \phi_{22}^i & \cdots & \phi_{2n}^i \\ \vdots & \vdots & & \vdots \\ \phi_{n1}^i & \phi_{n2}^i & \cdots & \phi_{nn}^i \end{bmatrix}, \quad \varepsilon_t = \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \vdots \\ \varepsilon_{nt} \end{bmatrix},$$

and ε_t is vector white noise:

$$E(\varepsilon_t) = 0_{n \times 1}, \quad E(\varepsilon_t \varepsilon'_t) = \Omega,$$

where Ω is a positive definite and symmetric $n \times n$ matrix, and

$$E(\varepsilon_s \varepsilon'_t) = 0_{n \times n}$$
 for all $s \neq t$.

 Ω is the <u>variance-covariance matrix</u> of the white noise vector. Positive definiteness means that $x'\Omega x > 0$ for all nonzero *n*-vectors *x*.

b Stationarity

To evaluate stationarity of a VAR(p), consider the equation

$$|I_n \lambda^p - \Phi_1 \lambda^{p-1} - \Phi_2 \lambda^{p-2} - \dots - \Phi_p| = 0,$$
(9)

where $|\cdot|$ denotes the determinant and I_n is the $n \times n$ identity matrix:

$$I_n \equiv \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right].$$

The VAR is stationary if all solutions $\lambda = \lambda_i$ to (9) satisfy $|\lambda_i| < 1$. (Note that there are np roots of (9), possibly repeated, and complex roots come in conjugate pairs.) Equivalently, the VAR is stationary if all values of z satisfying

$$|I_n - \Phi_1 z - \Phi_2 z^2 - \dots - \Phi_p z^p| = 0$$

lie outside of the unit circle.

The solutions to (9) can be computed using the following $np \times np$ matrix:

$$F = \begin{bmatrix} \Phi_1 & \Phi_2 & \Phi_3 & \cdots & \Phi_{p-1} & \Phi_p \\ I_n & 0_n & 0_n & \cdots & 0_n & 0_n \\ 0_n & I_n & 0_n & \cdots & 0_n & 0_n \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0_n & 0_n & 0_n & \cdots & I_n & 0_n \end{bmatrix},$$

where 0_n is an $n \times n$ matrix of zeros. It can be shown that the eigenvalues $\lambda_1, ..., \lambda_{np}$ of F are precisely the solutions to

$$|I_n \lambda^p - \Phi_1 \lambda^{p-1} - \Phi_2 \lambda^{p-2} - \dots - \Phi_p| = 0.$$

To calculate the <u>mean</u> of a stationary VAR, take expectation:

$$EY_t = C + \sum_{i=1}^p \Phi_i EY_{t-i}.$$

Stationarity implies $EY_t = \mu$ for all t. Thus:

$$\mu = (I_n - \sum_{i=1}^p \Phi_i)^{-1}C.$$

The <u>variance</u> and <u>autocovariances</u> of a stationary VAR are given by

$$\Gamma_j \equiv E(Y_t - \mu)(Y_{t-j} - \mu)'.$$

Each Γ_j is an $n \times n$ matrix, with γ_{ik}^j giving the covariance between y_{it} and $y_{k,t-j}$.

c $MA(\infty)$ representation

To obtain an $MA(\infty)$ representation, express (8) as

$$(I_n - \sum_{i=1}^p \Phi_i L^i) Y_t = C + \varepsilon_t.$$

Stationarity allows us to invert the lag polynomial:

$$(I_n - \sum_{i=1}^p \Phi_i L^i)^{-1} = \sum_{j=0}^\infty \Psi_j L^j.$$
 (10)

Thus:

$$Y_t = \mu + \sum_{j=0}^{\infty} \Psi_j \varepsilon_{t-j}.$$
 (11)

The values of Ψ_j , j = 0, 1, 2, ... may be obtained using the <u>method of undetermined</u> <u>coefficients</u>. Write (10) as

$$I_n = (I_n - \sum_{i=1}^p \Phi_i L^i) \sum_{j=0}^\infty \Psi_j L^j.$$
 (12)

The constant terms on each side of (12) must agree. Thus:

$$I_n = \Psi_0. \tag{13}$$

Further, since there are no powers of L on the LHS, the coefficient of L^{j} on the RHS must equal zero for each j > 0:

$$0 = \Psi_j - \Psi_{j-1}\Phi_1 - \Psi_{j-2}\Phi_2 - \dots - \Psi_{j-p}\Phi_p, \quad j = 1, 2, \dots .$$
(14)

Given the coefficients Φ_i and $\Psi_0 = I_n$, (14) may be iterated to compute MA coefficients $\Psi_1, \Psi_2, \Psi_3, \dots$.

Nonuniqueness. Importantly, the $MA(\infty)$ representation of a VAR is nonunique. Let H be any nonsingular $n \times n$ matrix, and define

$$u_t \equiv H\varepsilon_t$$

Note that u_t is vector white noise:

$$E(u_t) = HE(\varepsilon_t) = 0_{n \times 1},$$
$$E(u_t u'_t) = HE(\varepsilon_t \varepsilon'_t)H' = H\Omega H',$$
$$E(u_s u'_t) = HE(\varepsilon_s \varepsilon'_t)H' = 0_n,$$

and $H\Omega H'$ is positive definite since H'x is nonzero whenever x is. The $MA(\infty)$ representation can be expressed as

$$Y_t = \mu + \sum_{j=0}^{\infty} \Psi_j H^{-1} H \varepsilon_{t-j} = \mu + \sum_{j=0}^{\infty} \Theta_j u_{t-j},$$

where $\Theta_j \equiv \Psi_j H^{-1}$.

Note that in this case u_t is <u>not</u> the fundamental innovation. To obtain the $MA(\infty)$ representation in terms of the fundamental innovation we must impose the normalization $\Theta_0 = I_n$, i.e., $H = I_n$.

6 Identification of shocks

a Triangular factorization

We wish to assess how fluctuations in "more exogenous" variables affect "less exogenous" ones. One way to do this is to rearrange the vector of innovations ε_t into components that derive from "exogenous shocks" to the *n* variables. This can be accomplished using a triangular factorization of Ω .

For any positive definite symmetric matrix Ω , there exists a unique representation of the form

$$\Omega = ADA',\tag{15}$$

,

where A is a lower triangular matrix with 1's along the principal diagonal:

$$A = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ a_{21} & 1 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 1 \end{bmatrix}$$

and D is a diagonal matrix:

$$D = \begin{bmatrix} d_{11} & 0 & 0 & \cdots & 0 \\ 0 & d_{22} & 0 & \cdots & 0 \\ 0 & 0 & d_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & d_{nn} \end{bmatrix},$$

with $d_{ii} > 0$ for i = 1, ..., n.

Use the factorization to define a vector of exogenous shocks:

$$u_t \equiv A^{-1}\varepsilon_t.$$

Substitute into the $MA(\infty)$ representation to obtain an alternative "structural" representation:

$$Y_t = \mu + \varepsilon_t + \sum_{j=1}^{\infty} \Psi_j \varepsilon_{t-j} = \mu + Au_t + \sum_{j=1}^{\infty} \Psi_j Au_{t-j} = \mu + \sum_{j=0}^{\infty} \Theta_j u_{t-j},$$

where

$$\Theta_0 \equiv A, \qquad \Theta_j \equiv \Psi_j A, \quad j = 1, 2, \dots$$

Note that the shocks $u_{1t}, ..., u_{nt}$ are mutually uncorrelated:

$$E(u_t u'_t) = A^{-1} E(\varepsilon_t \varepsilon'_t) (A^{-1})' = A^{-1} \Omega(A')^{-1} = A^{-1} A D A'(A')^{-1} = D.$$

Thus:

$$Var(u_{it}) = d_{ii}, \quad Cov(u_{it}, u_{kt}) = 0.$$

To implement this approach, we order the variables from "most exogenous" to "least exogenous." This means that innovations to y_{it} are affected by the shocks $u_{1t}, ..., u_{it}$, but not by $u_{i+1,t}, ..., u_{nt}$.

<u>Bivariate case</u>. Let n = 2. (11) may be expressed as

$$\begin{bmatrix} \hat{y}_{1t} \\ \hat{y}_{2t} \end{bmatrix} = \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} + \sum_{j=1}^{\infty} \begin{bmatrix} \psi_{11}^j & \psi_{12}^j \\ \psi_{21}^j & \psi_{22}^j \end{bmatrix} \begin{bmatrix} \varepsilon_{1,t-j} \\ \varepsilon_{2,t-j} \end{bmatrix},$$

where $\hat{y}_{it} \equiv y_{it} - \mu_i$. Here y_{1t} is taken to be "most exogenous." Ω is factorized using the matrices

$$A = \begin{bmatrix} 1 & 0 \\ a_{21} & 1 \end{bmatrix}, \quad D = \begin{bmatrix} d_{11} & 0 \\ 0 & d_{22} \end{bmatrix}.$$

Thus,

$$\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} = \begin{bmatrix} u_{1t} \\ a_{21}u_{1t} + u_{2t} \end{bmatrix}.$$

Innovations to y_{1t} are driven by the exogenous shocks u_{1t} . Innovations to y_{2t} are driven by both innovations to y_{1t} and uncorrelated shocks u_{2t} .

Furthermore, for j > 0:

$$\Theta_j = \Psi_j A = \begin{bmatrix} \psi_{11}^j & \psi_{12}^j \\ \psi_{21}^j & \psi_{22}^j \end{bmatrix} \begin{bmatrix} 1 & 0 \\ a_{21} & 1 \end{bmatrix} = \begin{bmatrix} \psi_{11}^j + a_{21}\psi_{12}^j & \psi_{12}^j \\ \psi_{21}^j + a_{21}\psi_{22}^j & \psi_{22}^j \end{bmatrix}$$

The alternative "structural" $MA(\infty)$ representation is

$$\begin{bmatrix} \hat{y}_{1t} \\ \hat{y}_{2t} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} + \sum_{j=1}^{\infty} \begin{bmatrix} \psi_{11}^j + a_{21}\psi_{12}^j & \psi_{12}^j \\ \psi_{21}^j + a_{21}\psi_{22}^j & \psi_{22}^j \end{bmatrix} \begin{bmatrix} u_{1,t-j} \\ u_{2,t-j} \end{bmatrix}.$$

We can use this to assess the effects of an exogenous shock to y_{1t} . Suppose the system begins in the nonstochastic steady state:

$$\begin{bmatrix} u_{1,t-j} \\ u_{2,t-j} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad j = 1, 2, \dots \quad \Rightarrow \quad \begin{bmatrix} \hat{y}_{1,t-j} \\ \hat{y}_{2,t-j} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

At time t there is a positive shock to y_{1t} , and there are no shocks following this:

$$\begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} u_{1,t+j} \\ u_{2,t+j} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad j = 1, 2, \dots$$

Then from the above representation we have

$$\begin{bmatrix} \hat{y}_{1t} \\ \hat{y}_{2t} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{21} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ a_{21} \end{bmatrix},$$
$$\begin{bmatrix} \hat{y}_{1,t+j} \\ \hat{y}_{2,t+j} \end{bmatrix} = \begin{bmatrix} \psi_{11}^j + a_{21}\psi_{12}^j & \psi_{12}^j \\ \psi_{21}^j + a_{21}\psi_{22}^j & \psi_{22}^j \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \psi_{11}^j + a_{21}\psi_{12}^j \\ \psi_{21}^j + a_{21}\psi_{22}^j \end{bmatrix}.$$

Subsequent movements in each variable are driven by the direct effect of y_{1t} and an indirect effect coming through the response of y_{2t} . These are the <u>orthogonalized impulse-response</u> functions.

We can also assess the effects of a positive shock to y_{2t} , as captured by u_{2t} . In this case the change in y_{2t} is conditioned on u_{1t} , i.e., u_{2t} indicates the movement in y_{2t} that cannot be predicted after u_{1t} is known.

$$\begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} u_{1,t+j} \\ u_{2,t+j} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, j = 1, 2, \dots,$$
$$\begin{bmatrix} \hat{y}_{1t} \\ \hat{y}_{2t} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a_{21} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$
$$\begin{bmatrix} \hat{y}_{1,t+j} \\ \hat{y}_{2,t+j} \end{bmatrix} = \begin{bmatrix} \psi_{11}^j + a_{21}\psi_{12}^j & \psi_{12}^j \\ \psi_{21}^j + a_{21}\psi_{22}^j & \psi_{22}^j \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \psi_{12}^j \\ \psi_{22}^j \end{bmatrix}.$$

Note that u_{1t} affects y_{2t} in period t (as long as $a_{21} \neq 0$), but u_{2t} does not affect y_{1t} . This is the sense in which y_{1t} is "more exogenous."

Empirical implementation. For a given observed sample of size T, we can obtain OLS estimates \hat{C} and $\hat{\Phi}_i$, i = 1, ..., p by regressing Y_t on a constant terms and p lags $Y_{t-1}, ..., Y_{t-p}$. Estimated innovations are obtained from the OLS residuals:

$$\hat{\varepsilon}_t = Y_t - \hat{C} - \sum_{i=1}^p \hat{\Phi}_i Y_{t-i}.$$

The variance-covariance matrix is estimated as

$$\hat{\Omega} = \frac{1}{T} \sum_{t=1}^{T} \hat{\varepsilon}_t \hat{\varepsilon}_t'.$$

Estimates of the *MA* coefficients $\hat{\Psi}_j$, j = 1, 2, ... can be obtained using the formulas derived above:

$$\hat{\Psi}_0 = I_n,$$

 $\hat{\Psi}_s - \hat{\Psi}_{s-1}\hat{\Phi}_1 - \hat{\Psi}_{s-2}\hat{\Phi}_2 - \hat{\Psi}_{s-p}\hat{\Phi}_p = 0, \quad s = 1, 2, \dots.$

Orthogonalized impulse response functions are computed as

$$\hat{\Theta}_0 = A, \qquad \hat{\Theta}_j = \hat{\Psi}_j A, \quad j = 1, 2, \dots.$$

The coefficient $\hat{\theta}_{ik}^{j}$, the *ik*-element of $\hat{\Theta}_{j}$, gives the response of $\hat{y}_{i,t+j}$ to a one-unit positive shock to u_{kt} .

<u>Cholesky factorization</u>. For any positive definite symmetric matrix Ω , there exists a unique representation of the form

$$\Omega = PP',\tag{16}$$

•

where

$$P = AD^{1/2} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ a_{21} & 1 & 0 & \cdots & 0 \\ a_{31} & a_{32} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 1 \end{bmatrix} \begin{bmatrix} \sqrt{d_{11}} & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{d_{22}} & 0 & \cdots & 0 \\ 0 & 0 & \sqrt{d_{33}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sqrt{d_{nn}} \end{bmatrix}$$

This is called the Cholesky factorization.

Using the Cholesky factorization, the vector of exogenous shocks may be defined as:

$$v_t \equiv P^{-1} \varepsilon_t.$$

In the structural representation, A is simply replaced by P. Moreover, $E(v_t v'_t) = I_n$, i.e., $Var(v_{it}) = 1$ for all *i*.

b Forecast error decomposition

For a stationary VAR(p), consider the problem of forecasting Y_{t+s} at period t. Using (11), the forecast error may be written

$$Y_{t+s} - E_t Y_{t+s} = \sum_{j=1}^s \Psi_{s-j} \varepsilon_{t+j},$$

where $E_t(\cdot)$ denotes expectation conditional on period t information. The mean squared error of the s-period ahead forecast is given by

$$MSE(s) = E(Y_{t+s} - E_t Y_{t+s})(Y_{t+s} - E_t Y_{t+s})'$$
$$= E\left(\sum_{j=1}^{s} \Psi_{s-j} \varepsilon_{t+j} \cdot \sum_{l=1}^{s} \varepsilon'_{t+l} \Psi'_{s-l}\right)$$
$$= \sum_{j=1}^{s} \Psi_{s-j} E(\varepsilon_{t+j} \varepsilon'_{t+j}) \Psi'_{s-j} + \sum_{j=1}^{s} \sum_{l\neq j} \Psi_{s-j} E(\varepsilon_{t+j} \varepsilon'_{t+l}) \Psi'_{s-l}$$
$$= \sum_{j=1}^{s} \Psi_{s-j} \Omega \Psi'_{s-j},$$

since $E(\varepsilon_{t+j}\varepsilon'_{t+j}) = E(\varepsilon_t\varepsilon'_t) = \Omega$ for all j, while $E(\varepsilon_{t+j}\varepsilon'_{t+l}) = 0_{n \times n}$ for $l \neq j$.

MSE(s) can be decomposed based on the contributions of the identified shocks $u_{1t}, ..., u_{nt}$. The innovations ε_t may be expressed as

$$\varepsilon_t = Au_t = \sum_{i=1}^n A_i u_{it},$$

where A_i is the *i*th column of the matrix A defined in (15). Thus:

$$\Omega = E(\varepsilon_t \varepsilon'_t) = E\left(\sum_{i=1}^n A_i u_{it} \cdot \sum_{k=1}^n A'_k u_{kt}\right)$$
$$= \sum_{i=1}^n A_i E(u_{it}^2) A'_i + \sum_{i=1}^n \sum_{i \neq k} A_i E(u_{it} u_{kt}) A'_k$$
$$= \sum_{i=1}^n A_i d_{ii} A'_i,$$

since $E(u_{it}^2) = Var(u_{it}) = d_{ii}$ and, for $k \neq i$, $E(u_{it}u_{kt}) = Cov(u_{it}, u_{kt}) = 0$. Substitution gives

$$MSE(s) = \sum_{j=1}^{s} \Psi_{s-j} \left(\sum_{i=1}^{n} A_i d_{ii} A'_i \right) \Psi'_{s-j}$$

$$= \sum_{i=1}^{n} d_{ii} \sum_{j=1}^{s} \Psi_{s-j} A_i A'_i \Psi'_{s-j}.$$
(17)

Equation (17) decomposes MSE(s) into *n* terms, associated with variation contributed by the *n* shocks $u_{1t}, ..., u_{nt}$.

As $s \to \infty$, stationarity implies $E_t Y_{t+s} \to \mu$, and

$$MSE(s) \rightarrow E(Y_t - \mu)(Y_t - \mu)' = \Gamma_0,$$

i.e., MSE(s) converges to the variance of the VAR. Thus, (17) decomposes the variance in terms of the contributions of the underlying shocks.

When the Cholesky factorization is used, the vectors A_i are replaced by vectors P_i , which are columns of the matrix P defined in (16).

c Identification via long-run restrictions

Consider the following bivariate VAR process:

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} y_{1,t-1} \\ 0 \end{bmatrix} + \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} + \sum_{j=1}^{\infty} \Psi_j \begin{bmatrix} \varepsilon_{1,t-j} \\ \varepsilon_{2,t-j} \end{bmatrix}, \quad (18)$$

with variance-covariance matrix Ω , where

$$\Psi_j = \begin{bmatrix} \psi_{11}^j & \psi_{12}^j \\ \psi_{21}^j & \psi_{22}^j \end{bmatrix}.$$

Note that forecasted values of y_{1t} are permanently affected by innovations, while the effects on y_{2t} die out when the Ψ_j 's satisfy suitable stationary restrictions. This distinction can be used to identify "permanent" versus "transitory" shocks.

Write (18) as

$$\begin{bmatrix} \Delta y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix} + \sum_{j=1}^{\infty} \Psi_j \begin{bmatrix} \varepsilon_{1,t-j} \\ \varepsilon_{2,t-j} \end{bmatrix}, \qquad (19)$$

where $\Delta y_t = y_t - y_{t-1}$, and assume that (19) is stationary. We wish to obtain a structural representation

$$\begin{bmatrix} \Delta y_{1t} \\ y_{2t} \end{bmatrix} = \sum_{j=0}^{\infty} \Theta_j \begin{bmatrix} u_{1,t-j} \\ u_{2,t-j} \end{bmatrix},$$
(20)

where u_{1t} and u_{2t} indicate permanent and transitory shocks, respectively, and

$$\Theta_j = \left[egin{array}{cc} heta_{11}^j & heta_{12}^j \ heta_{21}^j & heta_{22}^j \end{array}
ight],$$

Assume $Cov(u_{1t}, u_{2t}) = 0$ and $Var(u_{1t}) = Var(u_{2t}) = 1$, i.e., the variances of the shocks are normalized to unity. Furthermore, since $\Theta_0 u_t = \varepsilon_t$:

$$\Theta_0 E_t(u_t u_t') \Theta_0' = E_t(\varepsilon_t \varepsilon_t') \quad \Rightarrow \quad \Theta_0 \Theta_0' = \Omega.$$

Recall that the Cholesky factorization gives a unique lower triangular matrix satisfying $PP' = \Omega$. It follows that $\Theta_0 = P\Gamma$ for some orthogonal matrix Γ , i.e., Γ satisfies $\Gamma\Gamma' = I_2$. Orthogonality implies three restrictions on Γ , so we need one more restriction to identify Θ_0 .

For the fourth restriction, assume that u_{2t} has no long-run effect on the <u>level</u> of y_{1t} , so that u_{2t} is transitory. For this to be true, all effects on Δy_{1t} must cancel out in the long run:

$$\sum_{j=0}^{\infty} \theta_{12}^j = 0.$$

Moreover, since $\Theta_j = \Psi_j \Theta_0$:

$$\theta_{12}^j = \psi_{11}^j \theta_{12}^0 + \psi_{12}^j \theta_{22}^0$$

Substitute and rearrange:

$$\theta_{12}^0 \sum_{j=0}^\infty \psi_{11}^j + \theta_{22}^0 \sum_{j=0}^\infty \psi_{12}^j = 0.$$

This supplies one more restriction, and thus Θ_0 is identified.

7 Granger causality

Consider two stationary processes $\{y_{1t}\}$ and $\{y_{2t}\}$. Recall that the linear projection of y_{1t} on $y_{1,t-1}, y_{1,t-2}, ...$, denoted by y_{1t}^P , minimizes MSE among all linear forecast rules. We are interested in whether the variable y_{2t} can be used to obtain better predictions of y_{1t} . That is, does the linear projection of y_{1t} on $y_{1,t-1}, y_{1,t-2}, ...$ and $y_{2,t-1}, y_{2,t-2}, ...$ give a lower MSE than y_{1t}^P ? If not, then we say that the variable y_{2t} does <u>not</u> Granger-cause y_{1t} .

Suppose y_{1t} and y_{2t} are given by a bivariate VAR:

$$\begin{bmatrix} y_{1t} \\ y_{2t} \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \sum_{i=1}^p \begin{bmatrix} \phi_{11}^i & \phi_{12}^i \\ \phi_{21}^i & \phi_{22}^i \end{bmatrix} \begin{bmatrix} y_{1,t-i} \\ y_{2,t-i} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}.$$

Then y_{2t} does not Granger-cause y_{1t} if the coefficient matrices are lower triangular:

$$\begin{bmatrix} \phi_{11}^i & \phi_{12}^i \\ \phi_{21}^i & \phi_{22}^i \end{bmatrix} = \begin{bmatrix} \phi_{11}^i & 0 \\ \phi_{21}^i & \phi_{22}^i \end{bmatrix}, \quad i = 1, ..., p.$$

To test for Granger causality, estimate the first equation in the VAR with and without the parameter restriction

$$y_{1t} = c_1 + \sum_{i=1}^{p} \phi_{11}^{i} y_{1,t-i} + \eta_{1t},$$
$$y_{1t} = c_1 + \sum_{i=1}^{p} (\phi_{11}^{i} y_{1,t-i} + \phi_{12}^{i} y_{2,t-i}) + \varepsilon_{1t}.$$

Let $\hat{\eta}_{1t}$ and $\hat{\varepsilon}_{1t}$ be the fitted residuals and let the sample size be T. Define

$$RSS_0 = \sum_{t=1}^T \hat{\eta}_{1t}^2, \quad RSS_1 = \sum_{t=1}^T \hat{\varepsilon}_{1t}^2.$$

Then for large T the following statistic has a χ^2 distribution:

$$S = \frac{T(RSS_0 - RSS_1)}{RSS_1}$$

If S exceeds a designated critical value for a $\chi^2(p)$ variable (e.g., 5%), then we reject the null hypothesis that y_{2t} does not Granger-cause y_{1t} , i.e., y_{2t} does help in forecasting y_{1t} .

Sources

Hamilton, Time Series Analysis, 1994, chs. 3,4,11

Blanchard and Quah,"The Dynamic Effects of Aggregate Demand and Supply Disturbances," <u>AER</u>, Sept. 1989