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1 Stationary processes

Definition A stochastic process is any set of random variables y; indexed by t € T':

{ytheer.

These notes will consider discrete stochastic processes, i.e., processes indexed by the set

of integers 7 = {... — 2,—-1,0,1,2, ...}

(/3 e

Moreover, each y; is a real number. Stochastic processes will be referred to more concisely

as "processes."

Definition The joint distribution of the process {y.} is determined by the joint distributions

of all finite subsets of yy’s:
Fiytg,.tn (1,02, 00) = Pr(yy, < a1y, < ey, < an),
for all possible collections of distinct integers t1,ta, ..., ty.

This distribution can be used to determine moments:

Mean: pu, = E(y) = /ytdFt(yt),

Variance: g, = E(y; — ut)z = /(yt — Mt)zdFt(yt),
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Autocovariance: Vit = E(yt - Mt)(yt—j - Mt—j)

= /(yt — 1) (Yr—j — te—j)AF 1 (Yes Yi—j)-

Definition {e;} is a white noise process if, for all t:

My = E<€t) =0,

Yot = E(€%) = 027

Vit = E(eier—j) =0, j#0.

{e;} is a Gaussian white noise process if e; ~ N(0,02) for all t, i.e., ¢ is normally distrib-

uted with mean 0 and variance o2.

Definition {y:} is an AR(1) process (first-order autoregressive) if

Yt = C+ QYr—1 + &,

where {e;} is white noise and c, ¢ are arbitrary constants.

For an AR(1) process with |¢| < 1:

c 2 gbj o2

()
:U’t_ﬂv 70t—1_7(b27 ’th—w~

Note that the moments in the preceding examples do not depend on ¢. This property

defines an important class of processes.

Definition {y;} is covariance-stationary or weakly stationary if u, and V¢ do not depend

on t.

For these notes we will simply say "stationary." Intuitively, for a stationary process the

effects of a given realization of y; die out as t — 4o0.



Definition {y:} is an M A(oco) process (infinite-order moving average) if

o0
Yy =p+ ijo Vi€t—js
where {e} is white noise and p, g, ¥y, ... are arbitrary constants.

A sufficient condition for stationarity of an M A(oco) process is square summability of the

coefficients {1;}:

Z:io w? < 00.

2 Linear forecasting interpretation

Consider the problem of forecasting y; on the basis of past observations y;—1, 492, ... . A

linear forecasting rule predicts y; as a linear function of n past observations y;—1, Yt—2, ..., Y¢—n:

n
Yt = Zj:1 95 (n)yi—j»

where g1(n), ..., gn(n) are constants. The forecast error and mean squared error of the fore-

cast rule are given by:

n
FE=y =Y 0y,
n

MSE:E(%—Z.
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Definition The linear projection of y: on y¢—1,Y¢—9, ..., Yyt—n 1S the linear forecasting rule

that satisfies
n
P
E(y; — ijl g; (M) Y—j)—s =0, s=1,2,...,

i.e., the forecast error is uncorrelated with y,—s for all s > 0.

Let the linear projection be denoted by yf (n):

yf(n) = Z?:l gf(n)yt—j-

The associated forecast error is denoted by &f (n):

P n P
e (n) =yt — ijl gt (n)yt—j-



The linear projection has the following key property.
Proposition The linear projection minimizes MSE among all linear forecasting rules.

Proof For any linear forecasting rule, we may write

MSE = E(yt—Z:zl gj(n)yt—j)2
= By — ( +yt Z: 9 n)Yt—j) 2
— By -yl ()2 + Byl (n) - Z" 9;(m)ye5)?

n

+2E(ye — yi (n)) (v (n) — ijl 95(n)ys—j)

= E(yt—yf(n)) +E(Z. (97 () = g;(m))ye—;)?
+2Z — g (M) E(y — y (n))ye—j-
The third term is zero by the definition of linear projection. Thus, M SE is minimized by
setting g;(n) = gf(n) for all j, i.e., the linear projection gives the lowest M SE among all

linear forecasting rules. M

It can be shown that the linear projections y/ (n) converge in mean square to a random

variable y! as n — oo:
lim E(y;"(n) —y{')* = 0.
n—oo

yl is the linear projection of v on y;_1,ys_2, ... .

Definition The fundamental innovation s the forecast error associated with the linear pro-

jection of y: on Yi—1,Yt—2,... :
€&t =Yt — yf .
Note that the fundamental innovation is a least squares residual that obeys the orthog-

onality condition E(g;y—s) =0 for s = 1,2, ... .

Wold Decomposition Theorem Any stationary process {y.} with Ey; = 0 can be represented

as:

oo
= E =0 Yjiet—j + Vi,



where:
(i) Yo =1 and 3732, TJJJQ < oo (square summability);
(ii) {e+} is white noise;
(iii) e = y¢ — yf (fundamental innovation);
(iv) vy is the linear projection of vy on yi—1,Yi—2,...; and
(v) E(esvy) =0 for all s and t.

€t s called the linearly indeterministic component, and v; s called the linearly

deterministic component.

The Wold Decomposition Theorem represents the stationary process {y;} in terms of
processes {g;} and {v;} that are orthogonal at all leads and lags. The component {v;} can
be predicted arbitrarily well from a linear function of 41, %¢_9,..., while the component

{&/} is the forecast error when g/ is used to forecast y;.

Definition A stationary process {y;} is purely linearly indeterministic if vy = 0 for all t.

For a purely linearly indeterministic process, the Wold Decomposition Theorem shows

that {y:} can be represented as a M A(co) process with p = 0:

o0
Yt = E jzo%ft—j,

This is called the moving average representation of {y;}.

Example An AR(1) process {y;} may be represented using the lag operator:
(1—¢L)y =c+e
If |¢| < 1:

o= oplere) = 30 (@1 e+ )




Express as deviation from mean:

C [e'e} .
U = — = J .
Yt = Yt 1—¢ E j:0¢ Et—j

Then E(y:) = 0. It follows that {¢:} is purely linearly indeterministic, and the M A(co)

representation has ¢; = ¢’. Moreover:

oo - o0 .
E(Jt — ¢g—1)—s = Eey ijo RS ijo ¢’ Eergr—s—j =0

Thus 9 = ¢@j;_1, and the g,’s are the fundamental innovations of the process.

3 MA(o0) representation of AR(p) processes

Definition {y} is an AR(p) process (p'"-order autoregressive) if

Yo = Ct+o1y—1+ Goyr—2+ .. + Opyrp + & (1)

= c+ Zle PiYi—i + €t
where {e;} is white noise and c, ¢y, ..., ¢, are arbitrary constants.
Represent (1) using the lag operator:
(1= L —pl? — ... — L)y = c + e
To obtain an M A(oo) representation, consider the equation
AN — g NPT — g NP7 — g = 0. (2)

This is called the characteristic equation. According to the fundamental theorem of algebra,

there are p roots A1, A2, ..., A, in the complex plane such that, for any A:
AN — G AT — AP T2 — == (A= A (A= A2) - (A= Ap).

Note that complex roots come in conjugate pairs A\; = a + bi, A\; = a — bi. Divide through

by AP and let z = 1/\:

1 — ¢z — g2 — ... — Pp2f = (1= A12)(1 = Aaz) -+ (1 = Ap2).



By setting z = L we may write

(1—-¢1L— ¢2L2 e T %Lp)?/t

= (1-ML)A—=XL) - (1= ML)y = c+ &

Assume |)\;| < 1 for all ¢, i.e., all roots lie inside the unit circle on the complex plane

(recall |a + bi| = a® + b2, which is the length of the vector (a,b)). Solve for y;:

1 1 1
A TS V5 B W A D W 5

(c+et). 3)
The M A(oo) representation is derived from (3) in two steps.

Step 1 - Constant term. Note that, for any constant a:

1 00 ; 0o o
— L) a = Ty =
T—nLY ZJ:O()\ZL) ‘= Zj=0 A= T Ai

Thus:

1 1 1 - c -~ c
T-ML1-2L 1ML 0= -A) - (1=N) L1—¢— =0

=p (4)

Step 2 - MA coefficients.  Suppose the roots of (2) are distinct, i.e., \; # Agfor all 4, k.

Then the product term in (3) can be expanded with partial fractions:

1 1 1 . ZP W;
1—-ML1—=XL 1-XL 4=i=11-)\L’
where

P
W; = L (5)

TTw =)
”

It can be shown that Y ?_; w; = 1. Furthermore, we can write:

S s _“’;iL =37 Z;’,’;O(Ai Ly — Z;io S wNL = Z;:o I,

x>
—_

<

where

b= wiN. (6)
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Thus:

1 1 1 oo
T-ML1— L 1T-2L' 7 Zj:o Vgt

Clearly, ¥y = 1. Combining the terms gives:

Yy = [ + &+ ijl wjgtfj' (7)

The restriction [A;| < 1 for all 4 implies that {¢;} satisfies square summability, and so {y:}
is stationary.

The following proposition summarizes this analysis.

Proposition. Suppose (2) has distinct roots A1, ..., \p satisfying |N;| < 1 for all i. Then the
AR(p) process (1) is stationary and has an M A(oo) representation (7), where u is given by

(4) and 1p; is given by (5) and (6).

Often AR(p) processes are analyzed using this alternative form of the characteristic

equation:
1— ¢z — oz — ... — ¢,2" = 0.

In this case, the stationarity condition is that the roots lie outside of the unit circle, since

the roots of this equation are the inverses of the earlier roots.

4 Nonstationary processes
a Trend-stationary processes

Definition {y;} is a trend-stationary process if {y; — y!"} is stationary, where {y!"} is a

deterministic sequence referred to as the trend of {y:}.

Example Let {y;} be given by

K o)
— k ,
be = Zkzo pt” + Zj:(] ijet*]’



where piq, ..., iy are arbitrary constants. In this case the process has a polynomial trend:

K
i = Zk:o it

{y:} is trend-stationary as long as its M A(co) component is stationary.

b Unit root processes

Definition An AR(p) process is integrated of order r, or I(r), if its characteristic equation

has T roots equal to unity.

Let {y;} be an AR(p) process whose roots satisfy [\;| <1,i=1,..,p—1, and \, = 1.
Then {y;} is I(1), and it may be written as
(1= ¢1L — §oL? — ... — ¢, L)y
= 1-ML)A—=XL)---(1—=X1L)(1 - L)y
= (I1-ML)A—=XL)--- (1 = A1 L)Ays = c + &4,

where Ay, = y¢ — y—1 is the first difference of y;. It follows that the process {Ay;} is

stationary.

Example The following AR(1) process is called a random walk with drift:

Yt = Cc+ Y1 + €t

Define the process {Ay;} by

Ay = ¢+ &

Then {Ay,} is stationary.

5 VAR(p) processes
a Definition

Definition. {Y;} is a VAR(p) process (p'"-order vector autoregressive) if
p
Y,=C+)  ®Yiite, (8)
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where

i i i ] i 1
Y1t C1 11 12 " 1n €1t
Yot C2 51 Poy v on €2t
Yt = . ) C = . ) (I)Z = . . . y &t = )
L Ynt | L Sn | L “n1 n2 7 nn | [ Ent |

and & is vector white noise:
E(gt) = 0nx1, FEl(gg)) = Q,
where ) is a positive definite and symmtric n X n matriz, and
E(ese}) = Opxp for all s # t.

() is the variance-covariance matrix of the white noise vector. Positive definiteness means

that 2'Qx > 0 for all nonzero n-vectors z.

b Stationarity

To evaluate stationarity of a VAR(p), consider the equation

I — BN - DoAP2 — D, =0, (9)
where | - | denotes the determinant and I, is the n x n identity matrix:
(10 0|
01 0
I, =
| 00 1]

The V AR is stationary if all solutions A = A; to (9) satisfy |A\;| < 1. (Note that there are np
roots of (9), possibly repeated, and complex roots come in conjugate pairs.) Equivalently,

the VAR is stationary if all values of z satisfying
I, — ®12 — Dg2® — ... — Bp2P| =0
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lie outside of the unit circle.

The solutions to (9) can be computed using the following np X np matrix:

O, By Oy o, @,
I, 0, 0, 0, 0,
[ 0, 0, 0, - I, 0,

where 0,, is an n x n matrix of zeros. It can be shown that the eigenvalues A1, ..., Ay, of F

are precisely the solutions to
I P — B NP — DpAP2 — D, = 0.
To calculate the mean of a stationary V AR, take expectation:
EY,=C+Y ) ®EY ;.
Stationarity implies FY; = p for all £. Thus:

p=L—Y . ®)'C.

=1

The variance and autocovariances of a stationary VAR are given by

0= B(Y; - ) (Yiy — 1)’
Each I'; is an n X n matrix, with 'ng giving the covariance between y;; and yg;—;.

¢ MA(oo) representation

To obtain an M A(oo) representation, express (8) as
p .
(I, — Zizl O, L)Y; = C +¢.
Stationarity allows us to invert the lag polynomial:

(I, — Z:’Zl o) =Y"" ;L. (10)

Jj=0
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Thus:
o
Y, =p+ ijo Uit j. (11)

The values of ¥;, j = 0,1,2,... may be obtained using the method of undetermined

coefficients. Write (10) as

P . o0 .
I, = (I, — Zizl ®; LY ZFO ;L. (12)
The constant terms on each side of (12) must agree. Thus:

I, = 0. (13)

Further, since there are no powers of L on the LHS, the coefficient of L7 on the RHS must

equal zero for each j > 0:
0= \I/j — \I/j—l(I)l — \I/j_gq)g — = \I/j_pq)p, ] = 1, 2, oo . (14)

Given the coefficients ®; and Yo = I,,, (14) may be iterated to compute M A coefficients
Wy, Uy, Us, ... .

Nonuniqueness. Importantly, the M A(co) representation of a VAR is nonunique. Let H

be any nonsingular n x n matrix, and define
uy = Hey.
Note that u; is vector white noise:
E(ut) = HE(et) = Onxa,

E(up) = HE(eie))H' = HQH',
E(usu}) = HE(gsep) H' = 0,

and HQH' is positive definite since H'z is nonzero whenever x is. The M A(co) representa-

tion can be expressed as
00 1 oo
Yy =M+Zj:0 V,H "Heyj =H+Zj:0 Oju—j,
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where ©; = \I/ijl.
Note that in this case u; is not the fundamental innovation. To obtain the M A(oc0)
representation in terms of the fundamental innovation we must impose the normalization

Qg = I, i.e., H = I,.

6 Identification of shocks

a Triangular factorization

We wish to assess how fluctuations in "more exogenous" variables affect "less exogenous"
ones. One way to do this is to rearrange the vector of innovations €; into components that
derive from "exogenous shocks" to the n variables. This can be accomplished using a

triangular factorization of €.

For any positive definite symmetric matrix €2, there exists a unique representation of the

form

Q=ADA, (15)

where A is a lower triangular matrix with 1’s along the principal diagonal:

1 0 o --- 0
a1 1 0o --- 0
A=]azn ap 1 - 0/,
L @nl1 Qn2 Gnp3 - - 1 ]
and D is a diagonal matrix:
[dy 0 0 0 |
0 dy O 0
D= 0 0 ds3 0 )
| 0 0 0 dnn |

with d; >0 fori=1,...,n.
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Use the factorization to define a vector of exogenous shocks:

u = A ey

Substitute into the M A(co) representation to obtain an alternative "structural" represen-

tation:
o0 o0 o0
Yi=p+e+ Zj:l Vigi_j = p+ Aug + Zj:l ViAu_j =+ Zj:ﬂ Ojui—j,

where

Oy = A, 0,=VA, j=1,2,...
Note that the shocks uyy, ..., un: are mutually uncorrelated:
E(usu)) = A7 E(gie}) (A7) = A71Q(A) L = A ADA'(A) L = D.
Thus:
Var(ui) = dis, Cov(uig,ugy) = 0.

To implement this approach, we order the variables from "most exogenous" to "least
exogenous.”" This means that innovations to y;; are affected by the shocks wyy, ..., us, but

not by Ui41,t5 --+5 Unt-
Bivariate case. Let n = 2. (11) may be expressed as

A J J

Y1t €1t N ZOO Y11 1o E1,t—j
N j=1 i J .
Yot €9t 21 Yoo €2,t—j

where 9 = yit — p;. Here yi¢ is taken to be "most exogenous." € is factorized using the

matrices -~ _
A 1 0 D= din 0
azr 1 0 do
Thus, ) )
e | | 10 ug | (o
Eat | a1 1| | ux a1 u1¢ + Ut
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Innovations to yi; are driven by the exogenous shocks uy;. Innovations to yo; are driven by
both innovations to y1; and uncorrelated shocks uo;.
Furthermore, for j > 0:
O — UiA— Vi Ui L0 | | Y1y tandiy ¥,
Vo1 Vi agr 1 Vo1 + aathly Uy

The alternative "structural" M A(co) representation is

(v 1 0 we | Zoo Yl +aaly, Uiy ULt
o 1 Jj=1 J J J .
Yo as1 gy 91 T @219y Py U2t—j
We can use this to assess the effects of an exogenous shock to y1;. Suppose the system begins

in the nonstochastic steady state:

UL,t—j 0 , U1,t—j 0
U, t—j 0 U2,t—j 0

At time ¢ there is a positive shock to y1;, and there are no shocks following this:

Ul 1 UL t4j 0 .
- : - L j=1,2,....
Ut 0 U245 0
Then from the above representation we have
g1t 1 0 1 1
pr— = 5
U2t az; 1 0 as
Jieeg || Y1 tandiy Y, || Y+ aanddy
U2,t+j Uy + a1y, Uy 0 Yy + a11Ph,

Subsequent movements in each variable are driven by the direct effect of y1; and an indirect

effect coming through the response of yo;. These are the orthogonalized impulse-response

functions.
We can also assess the effects of a positive shock to yo;, as captured by ug. In this case

the change in yo; is conditioned on wyy, i.e., ug; indicates the movement in yo; that cannot
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be predicted after uis is known.

(75} 0 U1 i 0
! = 5 i = , J= 17 27 ’
Ut 1 U2 t+j 0
G 1 o0|]o 0
U2t azn 1 1 1
Dievg || Y tandiy Y, 01 12
2,1+ Py + a21dy Py 1 %9

Note that uy, affects yo; in period t (as long as ag; # 0), but ug; does not affect yy;. This is

the sense in which yq; is "more exogenous."

Empirical implementation. For a given observed sample of size T, we can obtain OLS

estimates C' and éi, i =1,...,p by regressing Y; on a constant terms and p lags Y;_1, ..., Y;—p.

Estimated innovations are obtained from the OLS residuals:
. A Poos
=Y, -C-) Vi
The variance-covariance matrix is estimated as
~ 1 T
Q== g
T Zt—l EtEt

Estimates of the M A coefficients \i/j, j =1,2,... can be obtained using the formulas derived

above:
\iJO - I’n7

A N ~ N N

U, — U, &) -V, 5Py — T, &, =0, s=1,2,....

Orthogonalized impulse response functions are computed as

Go=A4, ©,=VA, j=1,2,...

The coefficient 9fk, the ik-element of éj, gives the response of ;1 ; to a one-unit positive

shock to up:.
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Cholesky factorization. For any positive definite symmetric matrix €2, there exists a unique

representation of the form

Q=PP, (16)
where
1 0 0o - 0|[vas o 0o - 0 ]
asl 1 0 0 0 AV d22 0 0
P:AD1/2: a3z; asg 1 - 0 0 0 \/d33 0
L @n1 Qn2 Aap3 - 1 1L 0 0 0 dnn ]

This is called the Cholesky factorization.

Using the Cholesky factorization, the vector of exogenous shocks may be defined as:
Ve = P_lé"t.

In the structural representation, A is simply replaced by P. Moreover, E(vwv;) = I, i.e.,

Var(vit) =1 for all 4.

b Forecast error decomposition
For a stationary VAR(p), consider the problem of forecasting Y;;s at period ¢. Using

(11), the forecast error may be written

s
Y;Hrs - EtY;ers = E i1 \IjsfjgtJrja

where Ey(-) denotes expectation conditional on period ¢ information. The mean squared

error of the s-period ahead forecast is given by
MSE(S) = E(Y;f+s - EtYVtJrs)(}/t+s - EtY;f+s)/
S S
=L <Zj:1 W jetty - 25:1 6:€+Z‘Il;‘fl>
S S
= Zj:l \IJS,]'E(QJFJ'SQ_,_]-)\I/;_]- + Zj:l I \I]sij(Et+j52+l)\I’;fl

§ ’

= Zj:1 \IJ.Sij\I]s—j’
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since E(etﬂ-sgﬂ) = E(eigy) = Q for all j, while E(etyje; ;) = Opxn for I # j.
M SE(s) can be decomposed based on the contributions of the identified shocks w1, ..., .

The innovations e; may be expressed as

n
et = Auy = E =1 Aju,

where A; is the 7" column of the matrix A defined in (15). Thus:

Q= Etgt (Z A; s UGt * Z Akukt)
- Zi:l AlE(u?t)A; + Zi:l itk AZE(uZtukt)A;c
:Zn Aydii Aj
i=1
since E(u2) = Var(uit) = d;; and, for k # i, E(ujug) = Cov(ui, ugy) = 0. Substitution

gives

MSE(s Z U, (Z A, d”A’) (17)
= Zi:l dii Zj:l \Ils—inA;\I]/sf]

Equation (17) decomposes M SE(s) into n terms, associated with variation contributed by
the n shocks wyy, ..., Ung.

As s — o0, stationarity implies F;Y; s — p, and
MSE(s) — B(Y: — p)(Y; — )’ = o,

i.e., MSE(s) converges to the variance of the VAR. Thus, (17) decomposes the variance in
terms of the contributions of the underlying shocks.
When the Cholesky factorization is used, the vectors A; are replaced by vectors P;, which

are columns of the matrix P defined in (16).

¢ Identification via long-run restrictions
Consider the following bivariate VAR process:

Y1t Y1,t—1 n €1t 0o El,t—j

j=1

Yot 0 Eat €2,t—j
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with variance-covariance matrix €2, where
J J
Y11 V1o
J J
Vo1 Yoo

Note that forecasted values of yi; are permanently affected by innovations, while the effects

U, =

on yo; die out when the W;’s satisfy suitable stationary restrictions. This distinction can be
used to identify "permanent” versus "transitory" shocks.
Write (18) as
Ayt €1t 00 €1,t—j
Yot N €2t ! Zj:l . €2,t—j , )
where Ay, = yy — yi—1, and assume that (19) is stationary. We wish to obtain a structural

representation

Ayyy o0 U1,t—j
= i—0 ej ) (20)
Yot J U2,t—j

where u1; and ug; indicate permanent and transitory shocks, respectively, and
01 01
091 03
Assume Cov(ujy, ug) = 0 and Var(uyy) = Var(ug) = 1, i.e., the variances of the shocks are

normalized to unity. Furthermore, since ©Ogu; = &:
®0Et(utu£)96 = Et(€t€;) = (“)0@, = .

Recall that the Cholesky factorization gives a unique lower triangular matrix satisfying
PP’ = Q. Tt follows that ©y = PT for some orthogonal matrix T', i.e., I' satisfies I'T" = I5.
Orthogonality implies three restrictions on I', so we need one more restriction to identify
Op.

For the fourth restriction, assume that us; has no long-run effect on the level of 414, so
that uo: is transitory. For this to be true, all effects on Ayi; must cancel out in the long

run:
o
S~ 6, =0.
j=0
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Moreover, since ©; = ¥;0q:
J .50 g0 J po
019 = 11072 + V1902.

Substitute and rearrange:

o . o .
0% ijo Py + 09, ijo 1y = 0.

This supplies one more restriction, and thus Qg is identified.

7 Granger causality

Consider two stationary processes {y1:} and {y2:}. Recall that the linear projection of
Y1t On Y1,4—1,Y1,t—2, ..., denoted by yﬁ, minimizes MSE among all linear forecast rules. We
are interested in whether the variable yo; can be used to obtain better predictions of yi;.
That is, does the linear projection of y1; on y1¢—1,y1,¢—2,... and y2;—1, Y212, ... give a lower
MSE than yﬁ? If not, then we say that the variable yo; does not Granger-cause ;.

Suppose y1; and yo; are given by a bivariate V AR:
Yt ol Zp P P i || e
i=1 i i
Yot C2 o1 Pag Y2,t—i €2t

Then yo; does not Granger-cause y1; if the coefficient matrices are lower triangular:

S i ¢ 0 .
. . = . . , t=1,..,p.
P91 P P91 P
To test for Granger causality, estimate the first equation in the VAR with and without the

parameter restriction

p .
Yyt =c1+ Zi:l F11Y1t—i + e
p . .
Yt =c1+ Zi:1<¢lllyl,t—i + Ploy2t—i) + -

Let 71, and &1 be the fitted residuals and let the sample size be T'. Define

T T
RSSy = thl W2, RSS) = thl &2,
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Then for large T the following statistic has a x? distribution:

¢ _ T(RSSy — RSS))
- RSS,

If S exceeds a designated critical value for a x2(p) variable (e.g., 5%), then we reject the

null hypothesis that yo; does not Granger-cause yi¢, i.e., y2; does help in forecasting y14.
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