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1 Stationary processes

De�nition A stochastic process is any set of random variables yt indexed by t 2 T :

fytgt2T :

These notes will consider discrete stochastic processes, i.e., processes indexed by the set

of integers T = f:::� 2;�1; 0; 1; 2; :::g:

fytg1t=�1:

Moreover, each yt is a real number. Stochastic processes will be referred to more concisely

as "processes."

De�nition The joint distribution of the process fytg is determined by the joint distributions

of all �nite subsets of yt�s:

Ft1;t2;:::;tn(�1; �2; :::; �n) = Pr(yt1 � �1; yt2 � �2:::; ytn � �n);

for all possible collections of distinct integers t1; t2; :::; tn.

This distribution can be used to determine moments:

Mean: �t = E(yt) =

Z
ytdFt(yt);

Variance: 0t = E(yt � �t)2 =
Z
(yt � �t)2dFt(yt);
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Autocovariance: jt = E(yt � �t)(yt�j � �t�j)

=

Z
(yt � �t)(yt�j � �t�j)dFt;t�j(yt; yt�j):

De�nition f"tg is a white noise process if, for all t:

�t = E("t) = 0;

0t = E("2t ) = �2;

jt = E("t"t�j) = 0, j 6= 0:

f"tg is a Gaussian white noise process if "t � N(0; �2) for all t, i.e., "t is normally distrib-

uted with mean 0 and variance �2.

De�nition fytg is an AR(1) process (�rst-order autoregressive) if

yt = c+ �yt�1 + "t;

where f"tg is white noise and c; � are arbitrary constants.

For an AR(1) process with j�j < 1:

�t =
c

1� �; 0t =
�2

1� �2
; jt =

�j�2

1� �2
:

Note that the moments in the preceding examples do not depend on t. This property

de�nes an important class of processes.

De�nition fytg is covariance-stationary or weakly stationary if �t and jt do not depend

on t.

For these notes we will simply say "stationary." Intuitively, for a stationary process the

e¤ects of a given realization of yt die out as t! �1.
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De�nition fytg is an MA(1) process (in�nite-order moving average) if

yt = �+
X1

j=0
 j"t�j ;

where f"tg is white noise and �;  0;  1; ::: are arbitrary constants.

A su¢ cient condition for stationarity of anMA(1) process is square summability of the

coe¢ cients f jg: X1

j=0
 2j <1:

2 Linear forecasting interpretation

Consider the problem of forecasting yt on the basis of past observations yt�1; yt�2; ::: . A

linear forecasting rule predicts yt as a linear function of n past observations yt�1; yt�2; :::; yt�n:

yt =
Xn

j=1
gj(n)yt�j ;

where g1(n); :::; gn(n) are constants. The forecast error and mean squared error of the fore-

cast rule are given by:

FE = yt �
Xn

j=1
gj(n)yt�j ;

MSE = E(yt �
Xn

j=1
gj(n)yt�j)

2:

De�nition The linear projection of yt on yt�1; yt�2; :::; yt�n is the linear forecasting rule

that satis�es

E(yt �
Xn

j=1
gPj (n)yt�j)yt�s = 0; s = 1; 2; ::: ,

i.e., the forecast error is uncorrelated with yt�s for all s > 0.

Let the linear projection be denoted by yPt (n):

yPt (n) =
Pn
j=1 g

P
j (n)yt�j :

The associated forecast error is denoted by "Pt (n):

"Pt (n) = yt �
Xn

j=1
gPt (n)yt�j :
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The linear projection has the following key property.

Proposition The linear projection minimizes MSE among all linear forecasting rules.

Proof For any linear forecasting rule, we may write

MSE = E(yt �
Xn

j=1
gj(n)yt�j)

2

= E(yt � yPt (n) + yPt (n)�
Xn

j=1
gj(n)yt�j)

2

= E(yt � yPt (n))2 + E(yPt (n)�
Xn

j=1
gj(n)yt�j)

2

+2E(yt � yPt (n))(yPt (n)�
Xn

j=1
gj(n)yt�j)

= E(yt � yPt (n))2 + E(
Xn

j=1
(gPj (n)� gj(n))yt�j)2

+2
Xn

j=1
(gPj (n)� gj(n))E(yt � yPt (n))yt�j :

The third term is zero by the de�nition of linear projection. Thus, MSE is minimized by

setting gj(n) = gPj (n) for all j, i.e., the linear projection gives the lowest MSE among all

linear forecasting rules. �

It can be shown that the linear projections yPt (n) converge in mean square to a random

variable yPt as n!1:

lim
n!1

E(yPt (n)� yPt )2 = 0:

yPt is the linear projection of yt on yt�1; yt�2; ::: .

De�nition The fundamental innovation is the forecast error associated with the linear pro-

jection of yt on yt�1; yt�2; ::: :

"t = yt � yPt :

Note that the fundamental innovation is a least squares residual that obeys the orthog-

onality condition E("tyt�s) = 0 for s = 1; 2; ::: .

Wold Decomposition Theorem Any stationary process fytg with Eyt = 0 can be represented

as:

yt =
X1

j=0
 j"t�j + �t;
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where:

(i)  0 = 1 and
P1
j=0  

2
j <1 (square summability);

(ii) f"tg is white noise;

(iii) "t = yt � yPt (fundamental innovation);

(iv) �t is the linear projection of �t on yt�1; yt�2; :::; and

(v) E("s�t) = 0 for all s and t.

"t is called the linearly indeterministic component, and �t is called the linearly

deterministic component.

The Wold Decomposition Theorem represents the stationary process fytg in terms of

processes f"tg and f�tg that are orthogonal at all leads and lags. The component f�tg can

be predicted arbitrarily well from a linear function of yt�1; yt�2; :::, while the component

f"tg is the forecast error when yPt is used to forecast yt.

De�nition A stationary process fytg is purely linearly indeterministic if �t = 0 for all t.

For a purely linearly indeterministic process, the Wold Decomposition Theorem shows

that fytg can be represented as a MA(1) process with � = 0:

yt =
X1

j=0
 j"t�j ;

This is called the moving average representation of fytg.

Example An AR(1) process fytg may be represented using the lag operator:

(1� �L)yt = c+ "t

If j�j < 1:

yt =
1

1� �L(c+ "t) =
X1

j=0
(�L)j(c+ "t)

=
c

1� � +
X1

j=0
�j"t�j

5



Express as deviation from mean:

ŷt = yt �
c

1� � =
X1

j=0
�j"t�j

Then E(ŷt) = 0. It follows that fŷtg is purely linearly indeterministic, and the MA(1)

representation has  j = �j . Moreover:

E(ŷt � �ŷt�1)ŷt�s = E"t
X1

j=0
�j"t�s�j =

X1

j=0
�jE"t"t�s�j = 0

Thus ŷPt = �ŷt�1, and the "t�s are the fundamental innovations of the process.

3 MA(1) representation of AR(p) processes

De�nition fytg is an AR(p) process ( pth-order autoregressive) if

yt = c+ �1yt�1 + �2yt�2 + :::+ �pyt�p + "t (1)

= c+
Xp

i=1
�iyt�i + "t;

where f"tg is white noise and c; �1; :::; �p are arbitrary constants.

Represent (1) using the lag operator:

(1� �1L� �2L2 � :::� �pLp)yt = c+ "t:

To obtain an MA(1) representation, consider the equation

�p � �1�p�1 � �2�p�2 � :::� �p = 0: (2)

This is called the characteristic equation. According to the fundamental theorem of algebra,

there are p roots �1; �2; :::; �p in the complex plane such that, for any �:

�p � �1�p�1 � �2�p�2 � :::� �p = (�� �1)(�� �2) � � � (�� �p):

Note that complex roots come in conjugate pairs �i = a + bi; �j = a � bi. Divide through

by �p and let z = 1=�:

1� �1z � �2z2 � :::� �pzp = (1� �1z)(1� �2z) � � � (1� �pz):
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By setting z = L we may write

(1� �1L� �2L2 � :::� �pLp)yt

= (1� �1L)(1� �2L) � � � (1� �pL)yt = c+ "t:

Assume j�ij < 1 for all i, i.e., all roots lie inside the unit circle on the complex plane

(recall ja+ bij = a2 + b2, which is the length of the vector (a; b)). Solve for yt:

yt =
1

1� �1L
1

1� �2L
� � � 1

1� �pL
(c+ "t): (3)

The MA(1) representation is derived from (3) in two steps.

Step 1 - Constant term. Note that, for any constant �:

1

1� �iL
� =

X1

j=0
(�iL)

j� =
X1

j=0
�ji� =

�

1� �i
:

Thus:

1

1� �1L
1

1� �2L
� � � 1

1� �pL
c =

c

(1� �1)(1� �2) � � � (1� �p)
=

c

1� �1 � :::� �p
� �: (4)

Step 2 - MA coe¢ cients. Suppose the roots of (2) are distinct, i.e., �i 6= �k for all i; k.

Then the product term in (3) can be expanded with partial fractions:

1

1� �1L
1

1� �2L
� � � 1

1� �pL
=
Xp

i=1

!i
1� �iL

;

where

!i �
�p�1i

pY
k=1
k 6=i

(�i � �k)
: (5)

It can be shown that
Pp
i=1 !i = 1. Furthermore, we can write:Xp

i=1

!i
1� �iL

=
Xp

i=1
!i
X1

j=0
(�iL)

j =
X1

j=0

Xp

i=1
!i�

j
iL
j =

X1

j=0
 jL

j ;

where

 j �
Xp

i=1
!i�

j
i : (6)
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Thus:
1

1� �1L
1

1� �2L
� � � 1

1� �pL
"t =

X1

j=0
 j"t�j :

Clearly,  0 = 1. Combining the terms gives:

yt = �+ "t +
X1

j=1
 j"t�j : (7)

The restriction j�ij < 1 for all i implies that f jg satis�es square summability, and so fytg

is stationary.

The following proposition summarizes this analysis.

Proposition. Suppose (2) has distinct roots �1; :::; �p satisfying j�ij < 1 for all i. Then the

AR(p) process (1) is stationary and has an MA(1) representation (7), where � is given by

(4) and  i is given by (5) and (6).

Often AR(p) processes are analyzed using this alternative form of the characteristic

equation:

1� �1z � �2z2 � :::� �pzp = 0:

In this case, the stationarity condition is that the roots lie outside of the unit circle, since

the roots of this equation are the inverses of the earlier roots.

4 Nonstationary processes

a Trend-stationary processes

De�nition fytg is a trend-stationary process if fyt � ytrt g is stationary, where fytrt g is a

deterministic sequence referred to as the trend of fytg.

Example Let fytg be given by

yt =
XK

k=0
�kt

k +
X1

j=0
 j"t�j ;
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where �1; :::; �K are arbitrary constants. In this case the process has a polynomial trend:

ytrt =
XK

k=0
�kt

k:

fytg is trend-stationary as long as its MA(1) component is stationary.

b Unit root processes

De�nition An AR(p) process is integrated of order r, or I(r), if its characteristic equation

has r roots equal to unity.

Let fytg be an AR(p) process whose roots satisfy j�ij < 1, i = 1; :::; p � 1, and �p = 1.

Then fytg is I(1), and it may be written as

(1� �1L� �2L2 � :::� �pLp)yt

= (1� �1L)(1� �2L) � � � (1� �p�1L)(1� L)yt

= (1� �1L)(1� �2L) � � � (1� �p�1L)�yt = c+ "t;

where �yt = yt � yt�1 is the �rst di¤erence of yt. It follows that the process f�ytg is

stationary.

Example The following AR(1) process is called a random walk with drift:

yt = c+ yt�1 + "t:

De�ne the process f�ytg by

�yt = c+ "t:

Then f�ytg is stationary.

5 V AR(p) processes

a De�nition

De�nition. fYtg is a V AR(p) process ( pth-order vector autoregressive) if

Yt = C +
Xp

i=1
�iYt�i + "t; (8)
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where

Yt =

26666664
y1t

y2t
...

ynt

37777775 ; C =

26666664
c1

c2
...

cn

37777775 ; �i =

26666664
�i11 �i12 � � � �i1n

�i21 �i22 � � � �i2n
...

...
...

�in1 �in2 � � � �inn

37777775 ; "t =

26666664
"1t

"2t
...

"nt

37777775 ;

and "t is vector white noise:

E("t) = 0n�1; E("t"
0
t) = 
;

where 
 is a positive de�nite and symmtric n� n matrix, and

E("s"
0
t) = 0n�n for all s 6= t:


 is the variance-covariance matrix of the white noise vector. Positive de�niteness means

that x0
x > 0 for all nonzero n-vectors x.

b Stationarity

To evaluate stationarity of a V AR(p), consider the equation

jIn�p � �1�p�1 � �2�p�2 � :::� �pj = 0; (9)

where j � j denotes the determinant and In is the n� n identity matrix:

In �

26666664
1 0 � � � 0

0 1 � � � 0
...
...

...

0 0 � � � 1

37777775 :

The V AR is stationary if all solutions � = �i to (9) satisfy j�ij < 1. (Note that there are np

roots of (9), possibly repeated, and complex roots come in conjugate pairs.) Equivalently,

the V AR is stationary if all values of z satisfying

jIn � �1z � �2z2 � :::� �pzpj = 0
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lie outside of the unit circle.

The solutions to (9) can be computed using the following np� np matrix:

F =

26666666664

�1 �2 �3 � � � �p�1 �p

In 0n 0n � � � 0n 0n

0n In 0n � � � 0n 0n
...

...
...

...
...

0n 0n 0n � � � In 0n

37777777775
;

where 0n is an n� n matrix of zeros. It can be shown that the eigenvalues �1; :::; �np of F

are precisely the solutions to

jIn�p � �1�p�1 � �2�p�2 � :::� �pj = 0:

To calculate the mean of a stationary V AR, take expectation:

EYt = C +
Xp

i=1
�iEYt�i:

Stationarity implies EYt = � for all t. Thus:

� = (In �
Xp

i=1
�i)

�1C:

The variance and autocovariances of a stationary V AR are given by

�j � E(Yt � �)(Yt�j � �)0:

Each �j is an n� n matrix, with jik giving the covariance between yit and yk;t�j .

c MA(1) representation

To obtain an MA(1) representation, express (8) as

(In �
Xp

i=1
�iL

i)Yt = C + "t:

Stationarity allows us to invert the lag polynomial:

(In �
Xp

i=1
�iL

i)�1 =
X1

j=0
	jL

j : (10)
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Thus:

Yt = �+
X1

j=0
	j"t�j : (11)

The values of 	j , j = 0; 1; 2; ::: may be obtained using the method of undetermined

coe¢ cients. Write (10) as

In = (In �
Xp

i=1
�iL

i)
X1

j=0
	jL

j : (12)

The constant terms on each side of (12) must agree. Thus:

In = 	0: (13)

Further, since there are no powers of L on the LHS, the coe¢ cient of Lj on the RHS must

equal zero for each j > 0:

0 = 	j �	j�1�1 �	j�2�2 � � � � �	j�p�p; j = 1; 2; ::: . (14)

Given the coe¢ cients �i and 	0 = In, (14) may be iterated to compute MA coe¢ cients

	1;	2;	3; ::: .

Nonuniqueness. Importantly, the MA(1) representation of a V AR is nonunique. Let H

be any nonsingular n� n matrix, and de�ne

ut � H"t:

Note that ut is vector white noise:

E(ut) = HE("t) = 0n�1;

E(utu
0
t) = HE("t"

0
t)H

0 = H
H 0;

E(usu
0
t) = HE("s"

0
t)H

0 = 0n;

and H
H 0 is positive de�nite since H 0x is nonzero whenever x is. The MA(1) representa-

tion can be expressed as

Yt = �+
X1

j=0
	jH

�1H"t�j = �+
X1

j=0
�jut�j ;
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where �j � 	jH�1.

Note that in this case ut is not the fundamental innovation. To obtain the MA(1)

representation in terms of the fundamental innovation we must impose the normalization

�0 = In, i.e., H = In.

6 Identi�cation of shocks

a Triangular factorization

We wish to assess how �uctuations in "more exogenous" variables a¤ect "less exogenous"

ones. One way to do this is to rearrange the vector of innovations "t into components that

derive from "exogenous shocks" to the n variables. This can be accomplished using a

triangular factorization of 
.

For any positive de�nite symmetric matrix 
, there exists a unique representation of the

form


 = ADA0; (15)

where A is a lower triangular matrix with 1�s along the principal diagonal:

A =

26666666664

1 0 0 � � � 0

a21 1 0 � � � 0

a31 a32 1 � � � 0
...

...
...

...

an1 an2 an3 � � � 1

37777777775
;

and D is a diagonal matrix:

D =

26666666664

d11 0 0 � � � 0

0 d22 0 � � � 0

0 0 d33 � � � 0
...

...
...

...

0 0 0 � � � dnn

37777777775
;

with dii > 0 for i = 1; :::; n.
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Use the factorization to de�ne a vector of exogenous shocks:

ut � A�1"t:

Substitute into the MA(1) representation to obtain an alternative "structural" represen-

tation:

Yt = �+ "t +
X1

j=1
	j"t�j = �+Aut +

X1

j=1
	jAut�j = �+

X1

j=0
�jut�j ;

where

�0 � A; �j � 	jA; j = 1; 2; ::: .

Note that the shocks u1t; :::; unt are mutually uncorrelated:

E(utu
0
t) = A�1E("t"

0
t)(A

�1)0 = A�1
(A0)�1 = A�1ADA0(A0)�1 = D:

Thus:

V ar(uit) = dii; Cov(uit; ukt) = 0:

To implement this approach, we order the variables from "most exogenous" to "least

exogenous." This means that innovations to yit are a¤ected by the shocks u1t; :::; uit, but

not by ui+1;t; :::; unt.

Bivariate case. Let n = 2. (11) may be expressed as24 ŷ1t

ŷ2t

35 =
24 "1t

"2t

35+X1

j=1

24  j11  j12

 j21  j22

3524 "1;t�j

"2;t�j

35 ;
where ŷit � yit � �i. Here y1t is taken to be "most exogenous." 
 is factorized using the

matrices

A =

24 1 0

a21 1

35 ; D =

24 d11 0

0 d22

35 :
Thus, 24 "1t

"2t

35 =
24 1 0

a21 1

3524 u1t

u2t

35 =
24 u1t

a21u1t + u2t

35 :
14



Innovations to y1t are driven by the exogenous shocks u1t. Innovations to y2t are driven by

both innovations to y1t and uncorrelated shocks u2t.

Furthermore, for j > 0:

�j = 	jA =

24  j11  j12

 j21  j22

3524 1 0

a21 1

35 =
24  j11 + a21 

j
12  j12

 j21 + a21 
j
22  j22

35 :
The alternative "structural" MA(1) representation is24 ŷ1t

ŷ2t

35 =
24 1 0

a21 1

3524 u1t

u2t

35+X1

j=1

24  j11 + a21 
j
12  j12

 j21 + a21 
j
22  j22

3524 u1;t�j

u2;t�j

35 :
We can use this to assess the e¤ects of an exogenous shock to y1t. Suppose the system begins

in the nonstochastic steady state:24 u1;t�j

u2;t�j

35 =
24 0
0

35 ; j = 1; 2; ::: )

24 ŷ1;t�j

ŷ2;t�j

35 =
24 0
0

35 :
At time t there is a positive shock to y1t, and there are no shocks following this:24 u1t

u2t

35 =
24 1
0

35 ;
24 u1;t+j

u2;t+j

35 =
24 0
0

35 ; j = 1; 2; ::: .

Then from the above representation we have24 ŷ1t

ŷ2t

35 =
24 1 0

a21 1

3524 1
0

35 =
24 1

a21

35 ;
24 ŷ1;t+j

ŷ2;t+j

35 =
24  j11 + a21 

j
12  j12

 j21 + a21 
j
22  j22

3524 1
0

35 =
24  j11 + a21 

j
12

 j21 + a21 
j
22

35 :
Subsequent movements in each variable are driven by the direct e¤ect of y1t and an indirect

e¤ect coming through the response of y2t. These are the orthogonalized impulse-response

functions.

We can also assess the e¤ects of a positive shock to y2t, as captured by u2t. In this case

the change in y2t is conditioned on u1t, i.e., u2t indicates the movement in y2t that cannot
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be predicted after u1t is known.24 u1t

u2t

35 =
24 0
1

35 ;
24 u1;t+j

u2;t+j

35 =
24 0
0

35 ; j = 1; 2; ::: ,

24 ŷ1t

ŷ2t

35 =
24 1 0

a21 1

3524 0
1

35 =
24 0
1

35 ;
24 ŷ1;t+j

ŷ2;t+j

35 =
24  j11 + a21 

j
12  j12

 j21 + a21 
j
22  j22

3524 0
1

35 =
24  j12

 j22

35 :
Note that u1t a¤ects y2t in period t (as long as a21 6= 0), but u2t does not a¤ect y1t. This is

the sense in which y1t is "more exogenous."

Empirical implementation. For a given observed sample of size T , we can obtain OLS

estimates Ĉ and �̂i, i = 1; :::; p by regressing Yt on a constant terms and p lags Yt�1; :::; Yt�p.

Estimated innovations are obtained from the OLS residuals:

"̂t = Yt � Ĉ �
Xp

i=1
�̂iYt�i:

The variance-covariance matrix is estimated as


̂ =
1

T

XT

t=1
"̂t"̂

0
t:

Estimates of the MA coe¢ cients 	̂j , j = 1; 2; ::: can be obtained using the formulas derived

above:

	̂0 = In;

	̂s � 	̂s�1�̂1 � 	̂s�2�̂2 � 	̂s�p�̂p = 0; s = 1; 2; ::: .

Orthogonalized impulse response functions are computed as

�̂0 = A; �̂j = 	̂jA; j = 1; 2; ::: .

The coe¢ cient �̂
j

ik, the ik-element of �̂j , gives the response of ŷi;t+j to a one-unit positive

shock to ukt.
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Cholesky factorization. For any positive de�nite symmetric matrix 
, there exists a unique

representation of the form


 = PP 0; (16)

where

P = AD1=2 =

26666666664

1 0 0 � � � 0

a21 1 0 � � � 0

a31 a32 1 � � � 0
...

...
...

...

an1 an2 an3 � � � 1

37777777775

26666666664

p
d11 0 0 � � � 0

0
p
d22 0 � � � 0

0 0
p
d33 � � � 0

...
...

...
...

0 0 0 � � �
p
dnn

37777777775
:

This is called the Cholesky factorization.

Using the Cholesky factorization, the vector of exogenous shocks may be de�ned as:

vt � P�1"t:

In the structural representation, A is simply replaced by P . Moreover, E(vtv0t) = In, i.e.,

V ar(vit) = 1 for all i.

b Forecast error decomposition

For a stationary V AR(p), consider the problem of forecasting Yt+s at period t. Using

(11), the forecast error may be written

Yt+s � EtYt+s =
Xs

j=1
	s�j"t+j ;

where Et(�) denotes expectation conditional on period t information. The mean squared

error of the s-period ahead forecast is given by

MSE(s) = E(Yt+s � EtYt+s)(Yt+s � EtYt+s)0

= E
�Xs

j=1
	s�j"t+j �

Xs

l=1
"0t+l	

0
s�l

�
=
Xs

j=1
	s�jE("t+j"

0
t+j)	

0
s�j +

Xs

j=1

X
l 6=j
	s�jE("t+j"

0
t+l)	

0
s�l

=
Xs

j=1
	s�j
	

0
s�j ;
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since E("t+j"0t+j) = E("t"
0
t) = 
 for all j, while E("t+j"

0
t+l) = 0n�n for l 6= j.

MSE(s) can be decomposed based on the contributions of the identi�ed shocks u1t; :::; unt.

The innovations "t may be expressed as

"t = Aut =
Xn

i=1
Aiuit;

where Ai is the ith column of the matrix A de�ned in (15). Thus:


 = E("t"
0
t) = E

�Xn

i=1
Aiuit �

Xn

k=1
A0kukt

�
=
Xn

i=1
AiE(u

2
it)A

0
i +

Xn

i=1

X
i6=k

AiE(uitukt)A
0
k

=
Xn

i=1
AidiiA

0
i;

since E(u2it) = V ar(uit) = dii and, for k 6= i, E(uitukt) = Cov(uit; ukt) = 0. Substitution

gives

MSE(s) =
Xs

j=1
	s�j

�Xn

i=1
AidiiA

0
i

�
	0s�j (17)

=
Xn

i=1
dii
Xs

j=1
	s�jAiA

0
i	
0
s�j :

Equation (17) decomposes MSE(s) into n terms, associated with variation contributed by

the n shocks u1t; :::; unt.

As s!1, stationarity implies EtYt+s ! �, and

MSE(s)! E(Yt � �)(Yt � �)0 = �0;

i.e., MSE(s) converges to the variance of the V AR. Thus, (17) decomposes the variance in

terms of the contributions of the underlying shocks.

When the Cholesky factorization is used, the vectors Ai are replaced by vectors Pi, which

are columns of the matrix P de�ned in (16).

c Identi�cation via long-run restrictions

Consider the following bivariate VAR process:24 y1t

y2t

35 =
24 y1;t�1

0

35+
24 "1t

"2t

35+X1

j=1
	j

24 "1;t�j

"2;t�j

35 ; (18)
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with variance-covariance matrix 
, where

	j =

24  j11  j12

 j21  j22

35 :
Note that forecasted values of y1t are permanently a¤ected by innovations, while the e¤ects

on y2t die out when the 	j�s satisfy suitable stationary restrictions. This distinction can be

used to identify "permanent" versus "transitory" shocks.

Write (18) as 24 �y1t
y2t

35 =
24 "1t

"2t

35+X1

j=1
	j

24 "1;t�j

"2;t�j

35 ; (19)

where �yt = yt � yt�1, and assume that (19) is stationary. We wish to obtain a structural

representation 24 �y1t
y2t

35 =X1

j=0
�j

24 u1;t�j

u2;t�j

35 ; (20)

where u1t and u2t indicate permanent and transitory shocks, respectively, and

�j =

24 �j11 �j12

�j21 �j22

35 :
Assume Cov(u1t; u2t) = 0 and V ar(u1t) = V ar(u2t) = 1, i.e., the variances of the shocks are

normalized to unity. Furthermore, since �0ut = "t:

�0Et(utu
0
t)�

0
0 = Et("t"

0
t) ) �0�

0
0 = 
:

Recall that the Cholesky factorization gives a unique lower triangular matrix satisfying

PP 0 = 
. It follows that �0 = P� for some orthogonal matrix �, i.e., � satis�es ��0 = I2.

Orthogonality implies three restrictions on �, so we need one more restriction to identify

�0.

For the fourth restriction, assume that u2t has no long-run e¤ect on the level of y1t, so

that u2t is transitory. For this to be true, all e¤ects on �y1t must cancel out in the long

run: X1

j=0
�j12 = 0:
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Moreover, since �j = 	j�0:

�j12 =  j11�
0
12 +  

j
12�

0
22:

Substitute and rearrange:

�012
X1

j=0
 j11 + �

0
22

X1

j=0
 j12 = 0:

This supplies one more restriction, and thus �0 is identi�ed.

7 Granger causality

Consider two stationary processes fy1tg and fy2tg. Recall that the linear projection of

y1t on y1;t�1; y1;t�2; :::, denoted by yP1t, minimizes MSE among all linear forecast rules. We

are interested in whether the variable y2t can be used to obtain better predictions of y1t.

That is, does the linear projection of y1t on y1;t�1; y1;t�2; ::: and y2;t�1; y2;t�2; ::: give a lower

MSE than yP1t? If not, then we say that the variable y2t does not Granger-cause y1t.

Suppose y1t and y2t are given by a bivariate V AR:24 y1t

y2t

35 =
24 c1

c2

35+Xp

i=1

24 �i11 �i12

�i21 �i22

3524 y1;t�i

y2;t�i

35+
24 "1t

"2t

35 :
Then y2t does not Granger-cause y1t if the coe¢ cient matrices are lower triangular:24 �i11 �i12

�i21 �i22

35 =
24 �i11 0

�i21 �i22

35 ; i = 1; :::; p:

To test for Granger causality, estimate the �rst equation in the V AR with and without the

parameter restriction

y1t = c1 +
Xp

i=1
�i11y1;t�i + �1t;

y1t = c1 +
Xp

i=1
(�i11y1;t�i + �

i
12y2;t�i) + "1t:

Let �̂1t and "̂1t be the �tted residuals and let the sample size be T . De�ne

RSS0 =
XT

t=1
�̂21t; RSS1 =

XT

t=1
"̂21t:
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Then for large T the following statistic has a �2 distribution:

S =
T (RSS0 �RSS1)

RSS1

If S exceeds a designated critical value for a �2(p) variable (e.g., 5%), then we reject the

null hypothesis that y2t does not Granger-cause y1t, i.e., y2t does help in forecasting y1t.
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