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1 Model and equilibrium conditions

A standard Real Business Cycle model may be expressed as the following social planner

problem:

maxEt
∑∞

s=0
βs

(
lnCt+s −

L
1+1/η
t+s

1 + 1/η

)
s.t. Zt+sK

α
t+s−1L

1−α
t+s + (1− δ)Kt+s−1 = Kt+s + Ct+s +Gt+s,

Zt+s = Zρt+s−1e
εt+s ,

Gt+s = G1−γGγt+s−1e
νt+s ,

K0, Z0 and G0 given,

where 0 < β,α, δ, ρ, γ < 1, η,G > 0, and {εt}, {νt} are white noise processes.

Necessary conditions for a maximum include, for t = 1, 2, ...,

1

Ct
− λt = 0,

−L1/η
t + λt(1− α)ZtK

α
t−1L

−α
t = 0,

−λt + Etβλt+1(αZt+1K
α−1
t L1−α

t+1 + 1− δ) = 0,

ZtK
α
t−1L

1−α
t + (1− δ)Kt−1 = Kt + Ct +Gt.

These equations determine paths of Ct, Lt, λt and Kt for the given exogenous processes

{Zt} and {Gt}.
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2 Perfect foresight dynamics

Suppose {εt} and {νt} have zero variance. Then the expected and realized future values

of the variables are equivalent, and the expectation operator may be dropped from the

equilibrium conditions. In this case, the system exhibits deterministic dynamics that may

be expressed in terms of the endogenous variables Kt−1, λt and exogenous variables Zt, Gt.

The law of motion for λt is given by

∆λt = λt − λt−1 = λt − βλt
(
αZtK

α−1
t−1 L

1−α
t + 1− δ

)
= βλt

(
1− β
β

+ δ − αZtKα−1
t−1 L

1−α
t

)
= βλt

(
R+ δ − αZtKα−1

t−1 L
1−α
t

)
,

where R = (1− β)/β is the steady-state net return on capital investment.

The law of motion for Kt is given by

∆Kt = Kt −Kt−1 = ZtK
α
t−1L

1−α
t − δKt−1 − Ct −Gt

= ZtK
α
t−1L

1−α
t − δKt−1 − λ−1

t −Gt.

The second equilibrium condition gives

Lt =
(
λt(1− α)ZtK

α
t−1

)1/(α+1/η)
,

which may be used to eliminate Lt from the laws of motion. Note that the partial derivatives

of Lt are
∂Lt
∂Kt−1

=
α

α+ 1/η
LtK

−1
t−1 > 0,

∂Lt
∂λt

=
1

α+ 1/η
Ltλ

−1
t > 0,

∂Lt
∂Zt

=
1

α+ 1/η
LtZ

−1
t > 0.
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3 ∆λt = 0 equation

The partial derivative of the ∆λt equation with respect to Kt−1 is calculated as follows.

∂

∂Kt−1
∆λt = −βλtZt

(
(α− 1)Kα−2

t−1 L
1−α
t + (1− α)Kα−1

t−1 L
−α
t

∂Lt
∂Kt−1

)

= −βλtZtKα−2
t−1 L

1−α
t

(
(α− 1) + (1− α)

α

α+ 1/η

)

=
β(1− α) (1/η)

α+ 1/η
λt

Yt
K2
t−1

> 0,

where Yt = ZtK
α
t−1L

1−α
t . Similarly,

∂

∂λt
∆λt =

∆λt
λt
− βα(1− α)

α+ 1/η

Yt
Kt
,

∂

∂Zt
∆λt = −βα (1 + 1/η)

α+ 1/η
λt

Yt
ZtKt

< 0.

Note that ∂∆λt/∂λt < 0 if ∆λt ≤ 0.

Totally differentiating the ∆λt equation gives

d (∆λt) =

(
∂

∂Kt−1
∆λt

)
dKt−1 +

(
∂

∂λt
∆λt

)
dλt +

(
∂

∂Zt
∆λt

)
dZt.

Thus,
∂λt
∂Kt−1

∣∣∣∣
∆λt=0

= −
(

∂

∂Kt−1
∆λt

)(
∂

∂λt
∆λt

)−1

> 0.

This means the ∆λt = 0 curve is upward-sloping in the Kt−1-λt plane. Moreover, since

∂∆λt/∂Kt−1 > 0, it follows that ∆λt > 0 when Kt−1 is increased from the ∆λt = 0 curve,

and ∆λt < 0 when Kt−1 is decreased from the curve.

Finally, we have

∂λt
∂Zt

∣∣∣∣
∆λt=0

= −
(

∂

∂Zt
∆λt

)(
∂

∂λt
∆λt

)−1

< 0,

∂λt
∂Gt

∣∣∣∣
∆λt=0

= 0.
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This means an increase in Zt shifts the ∆λt = 0 curve to lower levels of λt for each Kt−1,

while changes in Gt have no effect on the curve.

4 ∆Kt = 0 equation

The partial derivatives of the ∆Kt equation are

∂

∂Kt−1
∆Kt = α

(
1 + 1/η

α+ 1/η

)
Yt
Kt−1

− δ,

∂

∂λt
∆Kt = λ−1

t

(
1− α
α+ 1/η

Yt + λ−1
t

)
> 0,

∂

∂Zt
∆Kt =

1/η + 1

α+ 1/η

Yt
Zt

> 0,

∂

∂Gt
∆Kt = −1 < 0.

Note that

α

(
1 + 1/η

α+ 1/η

)
Yt
Kt−1

− δ > α
Yt
Kt−1

− δ.

In the neighborhood of the steady state, we have

α
Yt
Kt−1

− δ ∼= α
Y

K
− δ = ακα−1 − δ = R > 0,

and hence ∂∆Kt/∂Kt−1 > 0 if Yt/Kt−1 lies either above, or below but close to, the steady-

state value Y/K. Moreover,

∂

∂Kt−1

Yt
Kt−1

= −(1− α)(1/η)

α+ 1/η
ZtK

α−2
t−1 L

1−α
t < 0.

Thus ∂∆Kt/∂Kt−1 > 0 for a range of low values of Kt−1 that includes the steady state

value; i.e., there exists K̄t−1 > K such that ∂∆Kt/∂Kt−1 > 0 for Kt−1 < K̄t−1, and

∂∆Kt/∂Kt−1 < 0 for Kt−1 > K̄t−1.

Totally differentiating the ∆Kt equation gives

d (∆Kt) =

(
∂

∂Kt−1
∆Kt

)
dKt−1 +

(
∂

∂λt
∆Kt

)
dλt +

(
∂

∂Zt
∆Kt

)
dZt
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+

(
∂

∂Gt
∆Kt

)
dGt.

Thus,

∂λt
∂Kt−1

∣∣∣∣
∆Kt=0

= −
(

∂

∂Kt−1
∆Kt

)(
∂

∂λt
∆Kt

)−1
 < 0, Kt−1 < K̄t−1,

> 0, Kt−1 > K̄t−1,
.

It follows that the ∆Kt = 0 curve is downward-sloping for a low region of Kt−1, and upward-

sloping for a high region of Kt−1. Since the steady state values satisfy ∆λt = ∆Kt = 0, the

∆Kt = 0 curve must be downward-sloping at any point of intersection with the ∆λt = 0

curve. This means the curves have a unique intersection.

Since ∂∆Kt/∂λt > 0, it follows that ∆Kt > 0 when λt is increased from the ∆Kt = 0

curve, and ∆Kt < 0 when λt is decreased from the curve.

Finally, we have

∂λt
∂Zt

∣∣∣∣
∆Kt=0

= −
(

∂

∂Zt
∆Kt

)(
∂

∂λt
∆Kt

)−1

< 0,

∂λt
∂Gt

∣∣∣∣
∆Kt=0

= −
(

∂

∂Gt
∆Kt

)(
∂

∂λt
∆Kt

)−1

> 0.

This means an increase in Zt shifts the ∆Kt = 0 curve to lower levels of λt for each Kt−1,

while an increase in Gt shifts the curve to higher levels of λt for each Kt−1.

5 Labor market equilibrium

Labor supply and demand may be expressed as

Ls(Wt;λt) = (λtWt)
η ,

Ld(Wt;Zt,Kt−1) =

(
(1− α)ZtK

α
t−1

Wt

)1/α

.

where Wt is the wage rate. Equating supply and demand determines the equilibrium wage

W e
t :

Ls(W e
t ;λt) = Ld(W e

t ;Zt,Kt−1).
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We have
∂Ls

∂Wt
,
∂Ls

∂λt
> 0.

Thus Ls is upward-sloping in the Lt-Wt plane, and an increase in λt shifts Ls to higher levels

of Lt for each Wt. Moreover,

∂Ld

∂Wt
< 0 <

∂Ld

∂Zt
,

∂Ld

∂Kt−1
.

Thus Ld is downward-sloping in the Lt-Wt plane, and an increase in Zt or Gt shifts Ld to

higher levels of Lt for each Wt.
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