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1 General model
Consider the following linear first-order expectational difference system:

E X1 Xy
A1(p) = Ao(n) + Bo(p)et41- (1)
Yina Y;

X; = m x 1 vector of expectational variables

Y; = n x 1 vector of nonexpectational variables

et = d x 1 vector of exogenous shocks

= vector of underlying model parameters

A1(p), Ao(p) = (m+n) x (m + n) matrices of coefficients

Bo(p) = (m +n) x d matrices of coefficients

Suppress dependence on u. Sims (Computational Economics, 2001) proposes to solve the

model by replacing the expectation terms with realized forecast errors:
Nir1 = X1 — £y Xy11 = m X 1 vector of realized forecast errors

The system may be rewritten as follows:

X, X,
Ay A Ap 4 Bogy1 + As o

}/t‘f‘l }/t 0n><l

We will solve the model under given assumptions. Sims’ method holds more generally.



Assumption 1 A is invertible.

Under this assumption we can work with the following reduced-form system:

Xpiq X
HE A T e Bea | (3

}/;5_‘_1 }/;f 0n><1

~—

where

A= AIle, B = Aleg.

Let the eigenvalues of A be denoted by A;, i = 1,...,m + n, ordered so that |Ai| > |Ag|... >
|[Am4n|- Recall that the (m+n)x1 vector v; is an eigenvector associated with A; if Av; = \;v;.

Define the following (m + n) x (m + n) matrices:

_)\1 0 ... 0 |
0 Ao 0

A= . ‘ R Um+n]'
0 0 o A

Observe that the 7" column of the matrix V' contains an eigenvector associated with the "

element of the diagonal of A.

Assumption 2 The eigenvalues of A satisfy |\i| # 1.

Assumption 3 The matriz V is invertible.

2 Solving for the REE

a Set up decoupled system

Assumption 3 allows the matrix A to be expressed as:

A=VAVL



Substitute into (3) and premultiply by V! to obtain:

X X
vul T Ayt | T v iBey, v | T

}/t+]_ th On><l

(4)

A unique nonexplosive rational expectations solution exists under the following assump-

tion:
Assumption 4 The eigenvalues of A satisfy |Apm| > 1 > |[Amt1]-

Thus, the number of explosive eigenvalues is exactly equal to the number of expectational
variables. Intuitively, the solution method uses forward solutions for the m expectational
variables to tie down the m explosive roots (as in Blanchard and Kahn (Econometrica,

1980)). Sims’ approach does this by determining the appropriate expectation errors 7, ;.

In view of Assumption 4, (4) can be decoupled into separate "unstable" and "stable"
subsystems by partitioning A and V! in an appropriate manner. Define the matrices Ay

and Ag by

M 0 - 0 A1 0 o0
0 A 0 0 Am 0
Ay = i . As= "
0 0 - )\m_ 0 0 )\n_

This allows A to be written as:

Ao A Omxn
Onxm  As
Next, partition V! as:
o Quu Qus
Qsu Qss

where Quy is m X m and 2gg is n X n. Define transformed variables by

)Et _ oyt Xe | _ | QwuXe+QusYy ' 5)
Y, Y; Qs Xt + QssYr



(4) may be written as:

Xt+1 AU Omxn

}/t+1 0n><m AS

b Solve for X;
The first m rows of (6) are:

Xt QUU QUS QUU

|+ Beyiq + Mis1-

Y; Qsy Qsg Qs

Xip1=AvXe+ | Quu Qus ] Betr + Quutiyyr-

(6)

(7)

This constitutes an unstable subsystem, since the diagonal elements of Ay lie outside of the

unit circle. To obtain a nonexplosive REE we must have )Z't = 0 for all t. Because V is

invertible, Qyy will also be invertible. Thus it follows from (5) that X; = 0 holds if and

only if:

c Solve for Y;

X = —Qu QusYs.

In view of (7) and X; = 0, 7, must satisfy:

M=y | Qv Qus ] Bepon=—| In QuQws | Berra.

Substituting (9) and X; = 0 into (6) yields:

Omx1 Ay

Y;—i—l 0n><m

AU Omxn
Onxm AS

Omxn Omx1 Qur Qus
_ + Beiiq
Ag Y; Qsy Qgg
Lo QupQus ]B€t+1

Onxm 55 — Qsv Q1 Qus

(8)

(10)



Note that the last n rows of (10) constitute a stable n-equation system, since the diagonal
clements of Ag lie inside the unit circle. For given initial condition Yp, (10) determines a
unique nonexplosive solution path of )N/Hl for any path of shocks e;1.

To recover Y;, partition B and V as

By v Vou Vus
Bs Vsu Vss

where By is m x 1, Bg is n x 1, Vyy is m x m and Vgg is n x n. Using (10):

Xit1 _ v Omx1 | | Vou Vus Av Omxn Omx1
Yiq1 Vi1 Vs Vss Onxm  As Y;

Onxm  ss — Qsv Q1 Qus

VouAu VusAs Omx1

VsuAy  VssAg Y;
Omxm  Vrs(Qss — QsuQ51Qus) By

+ . €t+1
Onxm  Vss(Qss — QsuQyQus) Bg

Vus ~ 4
= , (AsY; + (Qss — QsuQ,Qus)Bsei1)-
59

Substitute from (5) and (8):

Visr = VesAs(QsuXi + Qssi) + Vss(Qss — QsvQppQus) Bser
= VesAs(—Qsv Q5 Qus + Lss) Vi + Vis(Qss — Qsv Qi Qus)Bseri
= VssAsVigYi + Bsers,
where Vgg = (Qgs — QSUQ[}%]QUS)_1 follows from a standard formula for inverting par-

titioned matrices (see Hayashi, Econometrica, p. 673). The same formula also gives

—Q51Qus = VusVig -



The following proposition summarizes the solution.

Proposition Under Assumptions 1-4, the model (1) possesses a unique nonexplosive REE,
given by:
Xi=VusVggYe,  Yir1 = VssAsVeg Vi + Bseryn.

d Check the solution
Put &y = VUSVS_S1 and &g = VSSASVS_;. The reduced form of (1) is

B X X
i =A ! + B€t+1. (11)
Yit1 Yy

The solution is checked by substituting X; = ®¢Y; and Y11 = ®gY; + Bgeryr into (11).

Substitute for X;+1 and Y;41 in the left-hand side of (3):

X1 Py Pydyg oy Bg
= )/%_A'_l = 1/% + Et+1,
Y1 I, Og Bg

where [, is the n x n identity matrix. Take expectation of the first m rows:

Ei X1 Pydg Omxd
tAt+ _ Y;g + m X 1.
Yi Og Bs

Substitute for X; in the right-hand side of (11):

X, oy
A + B€t+1 =A }/t + B€t+]_.
Y I,
Thus, (11) becomes
Pydg Omxd oy
Vi+| " =4 Y: + Begy.

It follows that the solution satisfies (11) if and only if

Q)U(I’S Q)U Omxd
g I, Bg



3 Example: Asset pricing model

The equilibrium conditions for a standard asset pricing model are:

g, BC

P =
L Ct+1

(D1 + Pey1) s

Ct = Dt, Dt+1 = Dfest'H,

where p € (0,1) and Eye;1 = 0. Let the steady state solution be denoted by P,C,D. L

linearizing around the steady state gives:

tdt+1 +

pr =¢t — By + ——— FEiDiaa,
Dt tCt+1 Drp tDt+1

D+ P
¢ =dy, dip1 = pdp +epy,
where p; = In P, —In P, etc. Use the second equation to eliminate ¢, substitute EtC/i\t+1 = pc@

Pp \ ~
— _E.» 1— = — | d
P tDt+1 = ( D+P> ts

and rearrange:

P
D+
dps1 = pdy + €111
The system can be expressed in the form (1):
_ R 5 R
55 0 Epeyn | |1 *( *ﬁpp) Pt 0

R = + Et+1-
0 1 diy1 0 o dy

Reduced form:

D+P D+P ~

Di+1 - P— "5 Dt 0 n
=] 7 P | e+ |
diy1 0 P dy 1
Eigenvalues and eigenvectors:
DiP 11
A=| F , V=
0 »p 0 1

Solution:

pr=VusVsg dy = dy,



i1 = VssAsVigdy + Bserr1 = pdy + 41

4 Example: RBC model

The equilibrium conditions for a standard version of the RBC model are:

0C;
1—-H,

B(l+g)7'C
Cii1

ZiKITHE + (1= 0)Ky = Cy + K1,

= aZyK/TH} T,

E; (1= a)Zy K G HE +1-0] =1,

__ 7P €
Tpir = ZeH1,

where 0,9 > 0, o, 3,d,p € (0,1), and {g;} is a white noise process. Log-linearizing around

the nonstochastic steady state values C, K, H and Z = 1 gives

1 —Hht = (Zt—F(l—Oé)k‘t—F(Oé— ].)h,t,

Ct +
e — Bt +B(1+9) 11— a)s™™ (EtétJrl — kg1 + OéEtiLtJd) =0,
ol o o .
K (zt +(1— )k + aht) (1= )k = o+ ke,

Zt41 = P2t + 441,

:§:<1+i(—1§<§y)—5>>w‘

Substitute E;2;11 = pZ; and rearrange:

where

0=—é& —Phe + (1 — @)k + %,
Eicip1 — Oﬂ/)QEtiLt+1 + aabokiy1 = & + phots,
7. C. —a, 7 7 —ag
ki1 = —Ect + Kk %ahy + 1/J3kt + K "z,

Zi41 = pzZr + €y,



where

H

=g tl-o ¥= Bl+9) M1 —a)s™?,

w3:’£70¢(1_a>+1_6‘

To obtain the reduced-form system, use the first equation to eliminate hy from the second

and third equations:

o R 1—a) - N o\ .
(1 + %> Eiciyq1 + arpy <1 - > kiv1 = ¢+ py (1 + > Zt,
(08 (8 Py

- B C  ark )\ . a(l—a)r™ >\ » a a\ .
kt+1 = <K + 1/}1 > Ct + <w3 + —’l][)l ) kt + K (]. + ’l[)l> Zt-.

Express the reduced system in matrix form:

1+ % ary (1 - 11;1a> 0 Eici
0 1 0 ke
0 0 1 Zt41
1 0 pin (14 2) | [ @ 0
[ () vt e (e g) | R 0 e
O 0 P i’t 1

The system may now be solved for the REE, as described above.



