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Exercises on the New Keynesian Model - Solutions

1. Taylor principle and indeterminacy

a. Solve for Ê+1:
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Substitute this and the policy rule into the bond pricing equation:
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Thus we have
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b. The eigenvalues  ofM are the solutions to
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Calculating the determinant gives
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Note that   ¡2 and   1. The eigenvalues are given by
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If 2 ¸ 4, then the eigenvalues are real, and + ¸ ¡. Moreover, +  1 follows from

¡  2. If 2  4, then the eigenvalues are complex, and
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c. If 2 ¸ 4, then ¡ is the smallest eigenvalue. We have ¡  1 if and only if
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which is equivalent to   1.

If 2  4, then part b shows that the eigenvalues must exceed unity in modulus. More-

over, we can write

2  4  4+ (1¡ )2 = (1 + )2 

or
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which implies   1.

2. Policy objectives and divine coincidence

a. Solving the money demand equation for ̂ , substituting into the bond pricing

equation, and rearranging gives
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The other two equations are
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b. The equilibrium satis…es  = 0 for all  if and only if

1
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Ê+1 =
1


̂

̂ = ¡̂ + ̂¡1 + ̂

Eliminating Ê, rearranging, and using (3) gives
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Thus, for any path of ̂, choosing ̂ to satisfy (4) generates an equilibrium having  = 0

for all .

c. If ̂ = 0 for all , then (2) implies  = 0 for all . Substituting into (1), rearranging,

and using (3) gives

̂ =
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= ̂¡1 + ̂

Thus, choosing ̂ to satisfy (5) generates an equilibrium having ̂ =  = 0 for all .

Moreover, (5) implies that ̂ = 0 holds necessarily, in view of (3).

d. Suppose the economy begins at the steady state. According to (5), if ̂ =   0,

then

̂ =


(1¡ )
(2¡  ¡ )̂  0

3



Thus the policymaker raises money growth in response to the shock. In equilibrium, the

bond pricing equation implies

̂ = ¡(1¡ )̂
̂

and hence the rise in ̂ induces a reduction in ̂ . Intuitively, lower ̂

 is needed in order

to o¤set higher ̂ in the bond pricing equation, making it possible for the bond market to

clear with  = E+1 = 0. This preserves  = E+1 = 0 in the NKPC.

Broadly speaking, zero in‡ation eliminates the outut gap via the NKPC. This causes the

stochastic discount factor to be constant in this simple model. Since a positive productivity

shock would ordinarily raise the real interest rate, the policymaker raises money growth to

o¤set this e¤ect and maintain a constant real interest rate.

e. Beginning in the steady state, if   0, then (5) gives

̂ =
1


  0

Thus the policymaker expands money growth to accommodate fully the money demand

shock. This implies ̂ = 0, which must hold in equilibrium in view of the bond pricing

equation.
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