Economics 210C - Macroeconomics

Prof. Garey Ramey

Exercises on the New Keynesian Model - Solutions

1. Taylor principle and indeterminacy

a. Solve for $\mathbb{E}_t \hat{\pi}_{t+1}$:

$$\mathbb{E}_t \hat{\pi}_{t+1} = -\frac{\hat{\theta}}{\beta} \chi_t + \frac{1}{\beta} \hat{\pi}_t.$$

Substitute this and the policy rule into the bond pricing equation:

$$\mathbb{E}_t \chi_{t+1} = \left(1 + \frac{\hat{\theta}}{\xi\beta}\right) \chi_t + \left(\frac{\rho_\pi}{\xi} - \frac{1}{\xi\beta}\right) \hat{\pi}_t + \frac{1}{\xi} v_t + \hat{\gamma}(1-\rho)\hat{z}_t.$$

Thus we have

$$\mathcal{M} = \begin{bmatrix} 1 + \frac{\hat{\theta}}{\xi\beta} & \frac{\rho_{\pi}}{\xi} - \frac{1}{\xi\beta} \\ -\frac{\hat{\theta}}{\beta} & \frac{1}{\beta} \end{bmatrix}.$$

b. The eigenvalues λ of \mathcal{M} are the solutions to

$$\det\left(\left[\begin{array}{ccc}1+\frac{\hat{\theta}}{\xi\beta}-\lambda & \frac{\rho_{\pi}}{\xi}-\frac{1}{\xi\beta}\\ -\frac{\hat{\theta}}{\beta} & \frac{1}{\beta}-\lambda\end{array}\right]\right)=0.$$

Calculating the determinant gives

$$\left(\left(1+\frac{\hat{\theta}}{\xi\beta}\right)-\lambda\right)\left(\frac{1}{\beta}-\lambda\right)+\frac{\hat{\theta}}{\beta}\left(\frac{\rho_{\pi}}{\xi}-\frac{1}{\xi\beta}\right)$$
$$=c+b\lambda+\lambda^{2},$$

where

$$b = -\left(1 + \frac{1}{\beta} + \frac{\hat{\theta}}{\xi\beta}\right), \quad c = \frac{1}{\beta} + \frac{\hat{\theta}\rho_{\pi}}{\xi\beta}.$$

1

Note that b < -2 and c > 1. The eigenvalues are given by

$$\lambda^{+} = \frac{1}{2} \left(-b + \left(b^{2} - 4c \right)^{1/2} \right),$$
$$\lambda^{-} = \frac{1}{2} \left(-b - \left(b^{2} - 4c \right)^{1/2} \right).$$

If $b^2 \ge 4c$, then the eigenvalues are real, and $\lambda^+ \ge \lambda^-$. Moreover, $\lambda^+ > 1$ follows from -b > 2. If $b^2 < 4c$, then the eigenvalues are complex, and $|\lambda^+| = |\lambda^-|$. Moreover,

$$|\lambda^+| |\lambda^-| = \frac{1}{4} (b^2 + (4c - b^2)) = c > 1.$$

c. If $b^2 \ge 4c$, then λ^- is the smallest eigenvalue. We have $\lambda^- > 1$ if and only if

$$-b - 2 > \left(b^2 - 4c\right)^{1/2},$$

which is equivalent to $\rho_{\pi} > 1$.

If $b^2 < 4c$, then part b shows that the eigenvalues must exceed unity in modulus. Moreover, we can write

$$b^{2} < 4c < 4c + (1-c)^{2} = (1+c)^{2},$$

or

$$-b < 1 + c,$$

which implies $\rho_{\pi} > 1$.

2. Policy objectives and divine coincidence

a. Solving the money demand equation for \hat{r}_t^n , substituting into the bond pricing equation, and rearranging gives

$$\mathbb{E}_t \chi_{t+1} + \frac{1}{\xi} \mathbb{E}_t \hat{\pi}_{t+1} + \frac{(1-\beta)\gamma}{\xi} \hat{m}_t$$

$$= (2-\beta)\chi_t + (2-\beta-\rho)\hat{\mu}\hat{z}_t + \frac{1-\beta}{\xi}\zeta_t.$$

$$(1)$$

The other two equations are

$$\mathbb{E}_t \hat{\pi}_{t+1} = -\frac{\hat{\theta}}{\beta} \chi_t + \frac{1}{\beta} \hat{\pi}_t, \qquad (2)$$

$$\hat{m}_t = -\hat{\pi}_t + \hat{m}_{t-1} + \hat{\psi}_t.$$
(3)

b. The equilibrium satisfies $\chi_t = 0$ for all t if and only if

$$\frac{1}{\xi} \mathbb{E}_t \hat{\pi}_{t+1} + \frac{(1-\beta)\gamma}{\xi} \hat{m}_t = (2-\beta-\rho)\hat{\mu}\hat{z}_t + \frac{1-\beta}{\xi}\zeta_t,$$
$$\mathbb{E}_t \hat{\pi}_{t+1} = \frac{1}{\beta}\hat{\pi}_t,$$
$$\hat{m}_t = -\hat{\pi}_t + \hat{m}_{t-1} + \hat{\psi}_t.$$

Eliminating $\mathbb{E}_t \hat{\pi}$, rearranging, and using (3) gives

$$\hat{m}_{t} = \frac{1}{(1-\beta)\gamma} \left(-\frac{1}{\beta} \hat{\pi}_{t} + \xi (2-\beta-\rho) \hat{\mu} \hat{z}_{t} + (1-\beta)\zeta_{t} \right)$$

$$= -\hat{\pi}_{t} + \hat{m}_{t-1} + \hat{\psi}_{t}.$$
(4)

Thus, for <u>any</u> path of $\hat{\pi}_t$, choosing $\hat{\psi}_t$ to satisfy (4) generates an equilibrium having $\chi_t = 0$ for all t.

c. If $\hat{\pi}_t = 0$ for all t, then (2) implies $\chi_t = 0$ for all t. Substituting into (1), rearranging, and using (3) gives

$$\hat{m}_t = \frac{\xi}{(1-\beta)\gamma} (2-\beta-\rho)\hat{\mu}\hat{z}_t + \frac{1}{\gamma}\zeta_t$$

$$= \hat{m}_{t-1} + \hat{\psi}_t.$$
(5)

Thus, choosing $\hat{\psi}_t$ to satisfy (5) generates an equilibrium having $\hat{\pi}_t = \chi_t = 0$ for all t. Moreover, (5) implies that $\hat{\pi}_t = 0$ holds necessarily, in view of (3).

d. Suppose the economy begins at the steady state. According to (5), if $\hat{z}_t = \varepsilon_t > 0$, then

$$\hat{\psi}_t = \frac{\xi}{(1-\beta)\gamma} (2-\beta-\rho)\hat{\mu}\varepsilon_t > 0.$$

Thus the policymaker raises money growth in response to the shock. In equilibrium, the bond pricing equation implies

$$\hat{r}_t^n = -\xi(1-\rho)\hat{\mu}^{\hat{z}_t}\varepsilon_t,$$

and hence the rise in $\hat{\psi}_t$ induces a reduction in \hat{r}_t^n . Intuitively, lower \hat{r}_t^n is needed in order to offset higher \hat{z}_t in the bond pricing equation, making it possible for the bond market to clear with $\chi_t = \mathbb{E}_t \chi_{t+1} = 0$. This preserves $\pi_t = \mathbb{E}_t \pi_{t+1} = 0$ in the NKPC.

Broadly speaking, zero inflation eliminates the outut gap via the NKPC. This causes the stochastic discount factor to be constant in this simple model. Since a positive productivity shock would ordinarily raise the real interest rate, the policymaker raises money growth to offset this effect and maintain a constant real interest rate.

e. Beginning in the steady state, if $\zeta_t > 0$, then (5) gives

$$\hat{\psi}_t = \frac{1}{\gamma} \zeta_t > 0.$$

Thus the policymaker expands money growth to accommodate fully the money demand shock. This implies $\hat{r}_t^n = 0$, which must hold in equilibrium in view of the bond pricing equation.