Real Business Cycle Models: Linear Approximation and
GMM Estimation

Craig Burnside*
The World Bank

May 1, 1999
Revision 7 (Preliminary)

1 Introduction

These notes are intended to provide interested students with a straightforward guide to solv-
ing and estimating real business cycle models, although the methods are applicable more gen-
erally. The solution method described here fits within the framework of Blanchard and Kahn
(1980) and has been described previously by King, Plosser and Rebelo (1988a,b) (KPR). This
method obtains approximate solutions by linearizing the Euler equations (appropriately de-
trended) of a model around its nonstochastic steady state solution. The interested reader
should also consult King and Watson (1997), Uhlig (1997) and Christiano (1998), among
others, for more general solution methods based on linear approximation. The estimation
method implemented here is a variant of Hansen’s (1982) Generalized Method of Moments
(GMM).

The methods described here are useful when solving models which have no closed form
solutions for the decision variables. They also map easily into the general framework of
linear-quadratic (LQ) stochastic optimization and are very popular in the literature. A good
understanding of the KPR method is obtained by considering LQ stochastic optimization
problems. Sections 2 and 3 consider such problems in some detail. Section 2 describes the so-
lution of a simple univariate L) problem. Section 3 generalizes this method for multivariate
LQ problems. Section 4 introduces three simple real business cycle models with deterministic
growth for which the solution method is illustrated. Section 5 discusses the role played by
boundedness assumptions in obtaining unique solutions, and what happens when bounded-
ness assumptions are not sufficient for uniqueness. Section 6 describes the computation of
impulse response functions, which are useful devices for studying RBC models. Section 7

*As with previous versions of these notes, this version is likely to contain some typographical errors (at
the very least). Consequently, please use these notes at your own risk, and only redistribute them with this
warning attached! Any comments or corrections are much appreciated. Thanks to Dave DeJong, Sangjoon
Jun, Charles Leung and Humam Sakhnini for pointing out errors in previous versions. Nothing in these notes
should be taken to be the opinion of the World Bank. Correspondence should be directed to: Craig Burnside,
The World Bank, 1818 H Street NW, Washington DC 20433. E-mail: ABURNSIDEQWORLDBANK.ORG.

illustrates how the solutions to L(Q problems can be used to compute the autocovariances
of variables of interest. It also illustrates how the autocovariances of Hodrick and Prescott
(HP) (1997) filtered data can be obtained from the regular autocovariances. Section 8 dis-
cusses how models with stochastic growth can be solved, and how relevant moments can
be computed. Section 9 discusses estimation by GMM amd hypothesis testing. Section 10
describes the programs which accompany these notes.

2 Univariate LQ Stochastic Optimization

This example is taken from Sargent (1987), Chapter XIV. This is an example of the de-
cision problem of competitive firms investing in an uncertain environment. Suppose the
representative firm’s problem is to maximize

> d
vo = Eo > B |pefoke — Jo(ky — ki q) — 5(’% — ki 1)?
t=0

by choosing a stochastic process {k;};°, subject to k_; given. The firm is a price taker with
respect to the stochastic processes {.J;}, the price of capital, and {p;}, the market price of
output. The industry demand curve for output at time t is given by

pt:AO_Alm_‘_utv AO) Al > 07

where Y; is industry output. Since firm output is given by, fok;, and there are n firms, Y; =
nfoks. At time 0 the firm has an information set, {2y consisting of at least {po,p_1,..., Jo,
J_1,...,ug,u_1,...}. Ey denotes the expectations operator conditional on €.

Differentiate vy with respect to k; and you obtain

pefo— Jr — d(ky — ki) + BE; [Jip1 + d(kiyr — k)] = 0.
Then substitute the equilibrium condition that p, = Ag — Ainfok; + u; to get
ﬁdEtkt_H — [Alﬂfg + d(l + ﬂ)} kt + dk’t_l = —Aofo — fOUt + Jt — ﬁEtJH_l

or

Evkypr — [Anf(dB) ™ + (14 8)87 | ki + 87 ki =

_AgCJ;O - %ut + éJt - %EtJtH. (1)

To solve this difference equation it’s useful to define the backshift operator B. The back-
shift operator only operates on expectations with respect to some information set. Specif-
ically BE;xy,; = Eyxyj_1. The backshift operator ignores the information set and applies
only to the variable whose expectation is being calculated. Another important feature of B
is that you can only apply polynomials in negative powers of B to both sides of an equation
if you intend to maintain an equality:.

Therefore, defining

Aofo fo 1 1
Bd Bd“ T Ea" T

Zt

EyJia

equation (1) can be written

(1= [Ainf3(d) " + (1+p)3 Y| B+ 8 'B*} Btk = 2 (2)
or

(]. + ¢ﬂ_1B + ﬁ_lBQ)EtkH_l = Zt
(]. — >\1B)(1 —)\QB)Etkt+1 = Zt,

where ¢ = —Ainf2/d— (1+), A2 =Bt and A\; + Xy = —¢3 . Notice that the solution
for the X’s is obtained from

—¢B £V T —AF!
2 Y

-1

- 7[_9251\/&—74&}

Without loss of generality I’ll let A\; be the one with the minus and A\s be the one with the
plus. Notice that —¢ > 1 4+ 3. Therefore,

1
Ay > 7(1+ﬂ+~/1—2ﬁ+52)
pu— /8_1‘
Thus, \; < 1 < 71 < Xy. Therefore, solving (1 — A2 B) ! forward

(1 — AlB)Etkt+1 -
which ends up giving you

Etk’t+1 =)\1]{?15 —)\51 Z)\;jB—jEtthrl
j=0

= Mk = A7 YN Bz (3)
j=0

There are two ways to go from here. We can go straight to the solution which involves
updating any expectations operator in (3) by one period. lLe.

Kip1 = Aike — >‘2_1 Z)‘2_jEt+1Zt+1+j

7=0
or o
k/’t =)\1]{/},1 -)\51 Z A;jEtZt+j. (4)

i=0

Or, proceeding carefully, we can substitute the expression for E; k.1 in (3) into (2) to get

)\1]43,5 —)\2_1 Z)\ngtZH—l-i—j — ()\1 +)\2)kt +)\1)\2](375_1 = Zt

j=0
which implies
oo
)\th = >\1>\th_1 — ZAQ_JEtZH—j
j=0
or
o .
ke = Mke1 — A1) A Bz
j=0
Notice that this solution is the same as the solution for the certainty case, except that
all variables are replaced by their expectations conditional on information at time ¢. This

illustrates the principle of “certainty equivalence”.
The solution we have obtained is not unique. Consider the candidate solution

k’t =)\1]{?15,1 —)\51 Z A;jEtZt+j + ft- (5)
j=0

The Euler equation is Fikiyqr — (A + Ao)ke + MAoki_1 = z. Substituting our candidate
solution, (5), into the Euler equation we obtain

Ak — A5t Z)\Q_jEtzt+1+j + Bl — Mk — Xa(ky — Mkio1) = 2.

i=0

Further susbtitution reveals the restriction Fi&; 1 = A2&. Thus, there is an infinite number
of solutions, corresponding to different processes &. However, because Ay > 1, it is possible
to rule out all solutions except & = 0, for all ¢, if the focus is on solutions which are bounded.
Recursive substitution of the general solution reveals that lim; ., Eik:y; does not exist for
arbitrary &, unless & = 0, for all ¢.

3 A General LQ Stochastic Optimization Problem

Consider the general problem of choosing a contingency plan for {u;};°, to maximize
Eo > B2, Avary + 225 Agutiy + 205 Ag 2y + up Ayt + 2up A2y + 2 A2 24),
=0

subject to
antJrl = B,xy + Buuy + B 2.

The variables are: x;, the state is ngs X 1, u; the control is n. X 1, and z;, the exogenous
variable is n, X 1. The matrix B,, iS N.s X Ng.
Set up a Lagrangean for the problem as

L=FEy> [o Avemy + 22, Aguuy + 227 Ay 2y + up Aty + 203 Auezi + 2, A2+
=0

4

2)\;<Bml’t + Buut + BZZt - ant—i—l)] .

The Lagrange multipliers, \;, are often called co-state variables, and have dimension n.g x 1.

The Euler equation for wu; is
Ay + ALy + Ayzze + Bod =0
while the Euler equation for z;,; is
—sz)\t + BE(Agz®ii1 + Aputierr + Apzziin + B;)\t+1) =0

and the constraint is
Bzxt + Buut + BZZt - Bnl’t+1 =0.

In the notation of KPR (1988b), rewrite (6) as
_ A > Tt o
Auuut - (Axu Bu) < >\t > AuzZt or
Mccut = M () + Mezt
At

U = M 1Mcs ()\t

) + M M.z

Equations (7) and (8) can be rewritten as
ﬂAx;c ﬂB;/c Lit1 0 _B;L T _ _ﬂAxu
(5, o)Pl aa)t le o Jla)T o) et
Tz 0
< > ﬂ) EtZt+1 + < _BZ) Zt

M2 E, (itﬂ) + M, () Mg, gy + Mg + Mg, Erzepy + Mg,z
t+1

Combining this with the (9) we get

(MO 1Mcs xt+1 -]\41 M 1Mcs) N
S8 >‘t+1 sc >‘t
M

(M.?e + MSOCMC_C Ce)EtZt+1 + (Msle + Mschc_clMce)Zt
or
MSOSEt < §t+1 > +M1 <)\t) M EtZt+1 + MsleZt
t+1 t
or
B) = O () O B ()

= W()\ >+REtZt+1+QZt
t

5

(6)

(10)

(11)

Whenever you have an n x n matrix A with n linearly independent eigenvectors you can
form the diagonalization, A = PAP~!, where A is a diagonal matrix with the eigenvalues of
A on its diagonal, and P is a matrix whose columns are n linearly independent eigenvectors
of A. The eigenvalues and eigenvectors are arranged in these matrices so that eigenvector in
the ith column of P is an eigenvector corresponding to the ith eigenvalue on the diagonal of
A. Assuming that n, + n., linearly independent eigenvectors exist for W, let PAP~! = W.
Then multiplying (11) through by P! we get

P_lEt < Ti+1) = AP_l < Tt) +P_1REtZt+1 +P_1Q2t

At41 At

E i’t+1 . A [ﬁt -1 —1

| X = 1 |+ P REzi 1+ P Qz.
At41 At

A typical way of proceeding is to verify that n.s eigenvalues of W are greater than 1 in
absolute value, and that n, are less than 1 in absolute value.! Then, A is constructed with
the eigenvalues in increasing order of modulus and is decomposed into

(A0
(%)

with all elements of A; less than 1, and all values of Ay greater than 1. As a result the
equation for z;,; should be solved backward, while the equation for 5\t+1 should be solved
forward.

At this point we can partition the matrices W, R, @, P and P~! as follows:

o Wi Wi [R, [Qq
W‘(% W22> R‘(m) Q‘(QA)

[Pu P . (PY P
P_<P21 P22> Pl op2)
Notice? also that since W = PAP~! we have

Wor Wag |~ \ PyAi P+ PyAyP?t Py Ay P2 + Py Ay P22

Now solving the first equation backward we get

By = M2 + (Plle + PlZRA)EtZtH + (Pan + PlZQA)Zt

and

and solving the other equation forward we get
Ehiv1 = Ao+ (PR, + P2R))Eizpr + (P*Q, + P¥Q)) 2
N = AS'Eg — ASY PP R, + P2R))Ezi — AN (PPQ, + P2Q)) 2

= =3 AUV [(PP R, + P2Ry)Eyzigs + (P2 Qe + P2Qy) Eyzyy) -
0

!For some models this can be verified analytically for subsets of the parameter space. See KPR (1988b).
Later, we will consider the case where the number of eigenvalues inside the unit circle is not equal to ns.

2The reader should be careful to note that unless ns = n.s the various submatrices are not all ng X ns.
Their dimensions are implicitly defined by conformability in the equations that follow.

6

Going back to the original difference equation you have
Ti41 = Wuﬂft + WIQ)\t + RmEtZt_;,_l + szt~ (12)
Notice that the mapping between the tilded () variables and the regular variables is

it B Pll P12 T
N \PE P2)N)
As a result, P*'z, + P2\, =), or A\, = —(P?)~1 Pz, + (P?)~')\,. Substituting this into
(12) and using the solution for partitioned W given above
w1 = (PuMiPY + PoAyP?Y)ay — (PuAy P + PioAoy PP)(P?) 1 PP
4—(1311/\11312 + PIQAZPZQ)(PQZ)_IS\t + Ry Bz + Quz
= (Pub[P" = P(P?)7' PM]) @y + (Pufy P + Prphy P?)(P?) 7', +
Ry Eiz 01 + Qu2t.

Now, recall the partitioned inverse formula. The inverse of a matrix
E F
G H

(D! —DlFH!)

is given by

—-H'GD™* H'+ H'GD'FH™!

where D = E — FH 'G. Therefore the term in square brackets above is equal to P! so
that

Tiy1 = <P11A1P1_11)37t + (P11A1P12 + P12A2P22)<P22)_15\t + RzEtZt+1 + QZZt. (].3)

This expresses the solution for z;,; as a function of the past state, and, given the solution
for)\, as a function of current and expected future values of the exognous variables, z;. To
get, the solution for \; simply do as above to get

A\ = —(P2)7L P2y, 4 (P2)1), (14)

while the decision rule for the control is given by (9) above.

Suppose we choose a simple AR(1) representation for z;, so that 2,1 = Iz + €,1. Then
Eizj = II72;. To make sure this formula converges as j — oo we need to assume that
the eigenvalues of Il are less than 1 in modulus. This is the equivalent of the roots of
|(I —11Z)| = 0 having roots greater than 1 in modulus. The easiest way to solve the model
is to go back to the solution for e given above

Moo= =S NYTV[(PRR, + PRy By + (P Qu + PPQ)) Evy

=0

= -> A9 (@ Brziary + ®1Eizisy)

=0

= — | AUT(@IT + @) | 2
§=0

= ‘I’Zt.

We can develop an explicit formula for the rows of ¥ by exploiting the diagonality of As,.
Defining Ay, as the ¢th diagonal element of Ay, and ®;; as the ith row of ®;, j = 0, 1, it
follows that the ith row of W, denoted V;, is given by

U, = — [AT (@I + @)1
j=0
= A (Do dl+ @y) Y AT

i=0

= —AN(Pull + ®4;)(1,, — A5
Then, the solution for z;,; is just

Tiy1 = (P11A1P1_11)$t + <P11A1P12 + P12A2P22)(P22)_1‘112t + RmHZt + szt
= (PuAiPR)a+ [(Pud P + PiohoP?)(P?) 70 + BT+ Q) 2
== szxt + Tmzzt (15)

The solution for A; is,

A = —(PB)TIPa, + (PP) Ty
= T)\xmt_l_T/\zzt (16)

and the solution for the controls is obtained from (9)

_ I _ 0 _
Uy = McclMcs (_(PQQ)—1P21) Ty + [McclMcs ((PQZ)_l\I/) + McclMce] %
= Tumﬁt + Tuzzt. (17)

4 Three Real Business Cycle Models
4.1 A Simple Growth Model

So far we have only looked at linear-quadratic models. However, for reasons of parsimony,
and modelling flexibility it is often useful to look at non-L(Q models. In general these models
will have Euler equations which are not linear in the unknown solution functions. Take for
example the Cass-Koopmans neoclassical growth model with a 100% depreciation rate for
capital:

max Eo Y 3'In(c)
t=0
s.t. ¢+ kyyy = Ak, Setting up this problem as we set up the general LQ problem the
Lagrangean is

L=E iﬁt [n(ce) + Ne(Acky — ke —)] -

t=0

The Euler equations for the choices of ¢; and k; 1, along with the constraint are

Ct_l = >‘t
At = 5Et()\t+10414t+1k?ﬁl)
Cct + kt—i—l == Atk}?.

Clearly the trivial solution for ¢; is ¢; = A\;'. You then have

>\t = ﬁEt()\t+1OéAt+1k?_~__11)
)\t_l - Atkf—kt_;'_l.

Then substitute the solution for \; into the first equation to get the fundamental difference
equation in k (it is nonlinear).

1 A k&
. — BE, QA1 7]
Ak — ki

Ap1ky — Ky

The solution for k;y; is proportional to output, i.e. ki1 = dAk*. To get the form of d
substitute this guess into the difference equation for k

1 _ ﬂE OéAt_i_lk’fi_ll
(1 — d) Ak (1= d) Ak,
— /8 i
ki1 (1 —d)
(6%
= g

dAkg (1 — d)

Clearly this implies d = a3 so that k.1 = aBAk*. This happens to be a fortuitous result.
It is very special to the functional form. Notice that in logarithms the solution is linear
In(kiy1) = In(af) + In(A;) + aln(ky).

If we generalize the Cass-Koopmans model to the case where there is not complete de-
preciation we get

max Eo Y 3'In(c)
=0

s.b. etk — (1—0)ky = Aiky. Tt is straightforward to show that the fundamental difference
equation in k is
1 B /BE aAtJ'_lktajr_ll + (]. - 6)
Ak 4+ (1 —)k — ky Ak 4 (1= 8)kipr — kuga |

There is no closed form solution for k;y; in this case. The basic KPR method and similar
methods involve obtaining an approximation to the solution which is linear in the logarithms
of the variables.

4.2 The Divisible and Indivisible Labor Models

KPR present a quite general dynamic optimization problem in an environment which may
involve growth. We will consider less general economies in which the solution to a social
planner’s problem is equivalent to the equilibrium of a decentralized competitive economy.?
In particular, we consider a social planner’s problem

max U = Ej i B In(Cy) + 0V (1 — Ny)]

t=0

s.t.
Ct + Kt+1 - (1 - 6)Kt - Athl_a<NtXt)a.

The function V' defines utility over the fraction of the representative agent’s time spent in
leisure. In the case of the divisible labor model of KPR (1988a) the function V' is given by

V(- N,)=1In(1—N,),

whereas, in the indivisible labor model of Hansen (1985) and Rogerson (1988) the function
V is given by*

Growth in these economies comes from the assumption of deterministic labor augmenting
technical progress in the form of X; = yx X;_1, with vx > 1.
If you set up the Lagrangean for this problem you get

L= E, i {B'In(C) + 0V (1 = N + Ay [A K] (NX)" + (1= 6)Ky — Ky — Cil } -

=0
The efficiency conditions for this problem are

/BtCt—l o At

—ﬂtmf’(l — Nt) + AtOéAthlia(NtXt)ailXt

—A + EAn[(1 =) Aen K S (N Xen)* + (1 - 6)] =
AtKlfl_Oé(NtXt)a + (1 - 6)Kt - Kt+1 — Ct =

o o O O

The transversality condition is lim;_,., A;K; = 0.

3The interested reader should refer to King, Plosser and Rebelo (1988b) for their discussion of a general
set up. There are many models where the social planner’s solution is not a competitive equilibrium. In
these cases, the KPR method of linearizing can still be applied in the solution of the Euler equations for the
competitive equilibrium.

4In the indivisible labor model the variable N, actually represents the probability of employment. The
underlying utility function is logarithmic in leisure, and if the fraction of their time endowment that the
employed spend working is denoted h, the expected utility is Ny@In(1 — h) 4+ (1 — N;)81In(1) = 6In(1 — k) N;.
So, letting V(1~— N;) = 1 — N; simply involves adding a constant to the utility function and defining the
constant § = —01n(1 — h).

10

Now define transformed variables ¢; = C;/ Xy, ky = K/ Xy, vy = Y/ Xy, and Ay = B A X
Clearly in terms of these variables the Euler equations are

it — N

—0V'(1 — N;) + \a Ak N2t =

M\t + BEA vk (1 —) A kSN, + (1= 6)) =
Akt TONE 4 (1= Ok — kpyx — ¢ =

o o O O

with the transversality condition becomes lim;_ o, 3*\;k; = 0.

Notice that a nonstochastic steady state in terms of the transformed variables will exist,
since they have been divided by their common growth component, X;.> To find that steady
state simply remove time subscripts from the Euler equations

cl—XA =0 (18)
—0V'(1 — N) + oAk *N“1 = 0 (19)
A+ BRI —)AE™ N+ (1-6)] = 0 (20)
AN+ (1 =8k —kyx —c = 0 (21)
The steady state output-capital ratio is given by (20)
1= Byx (1= a)(y/k) + (1 -). (22)

Therefore,
(y/k) =[x — (1= 8)]/(1 — a).
Then, from (21)
(¢/y) =141 = 6) — x| (k/y).
Then from (19) you get 0V'(1 — N) = a(y/c)/N. Thus, in the divisible labor model

N =aly/e)/ [0+ aly/e)].

In the indivisible labor model
N = (a/0)(y/c).
Notice that the production function implies that y = Ak'=*N*. Therefore, the capital-labor

ratio is given by
(k/N) = (y/k)~/*AY=.

Given the solution for N we then have a full set of steady state values for k, then y, then c,
and finally \.

As in the Cass-Koopmans case there is no closed-form solution to the Euler equations for
either model . Therefore, we need an alternate solution method. The method proposed by
KPR approximates the Euler equations by a set of linear equations in the unknowns. The
way they do this is to totally differentiate the Euler equations at the steady state values.

SKPR (1988b) give a detailed discussion of the stationary inducing transformation and of the existence
of the nonstochastic steady state.

11

This provides a linear approximation to the Euler equations in the neighbourhood of the
steady state. Totally differentiating the Euler equations above

—c e, —dNy = 0 (23)
OV"(1 — N)dN; + aAE'"*N*td)\, + ok * N 1dA,+
(1 —) XAk Ntk + (o — DA AKT™*N*2dN;, = 0 (24)
—d\ + EdAig + (8/7x) (M1 =)k *N®Eid Ay +
A=a(l = a) Ak 'N*|Edk 1 + Aa(l — @) Ak “N® 'EdNy,) = 0 (25)
E'ONYdA, + (1 — o) Ak~ N°dk, + « Ak N YA N+
(1 —6)dky — yxdky 1 — dey = (26)

In (25) I have used the fact that (5/vx)[(1—a)Ak~*N“+(1—6)] = 1. Multiply (23) through
by ¢ = A7, Divide (25) by A. Divide (26) by y = Ak'"*N.

)

RN V-
ONV"(1 — N)djvvt T\]%d;t 1 %d%q
(1- a)AoaNdi + (o — 1)>\04]3<[d]]\\;t =0 (28)
—% + EtdA;“ + fX ((1 - O‘)k dﬁ“
a(l - a)%% +al— a)%Etd%H) = 0 (29)
-l a-gt ot e 0 g)
Noting that Aa(y/N) =60V’'(1 — N) divide through (28) by 8V'(1 — N) to get
N‘Z:fl__N];[) djjvvt % d‘:t +(1- a)% + (- 1)djjvvt =0. (31)
Defining pn = (8/7x)(1 = a)(y/k) =1 = (8/7x)(1 —), rewrite (29) as
d:t E, dA;“ + uE, d’i;“ - audk;“ + auEthtH = 0. (32)

KPR define the variables 2, = dz;/z. These variables represent first-order approximations
to percentage deviations from the steady state values. l.e. dz/z =~ In(z/z). Rewriting
equations (27), (31), (32) and (30) in terms of these variables we get

—4—XN = 0 (33)
NV"(1—=N) ~ < - ~ .
i+ Etj\tJrl + MEtAt+1 — O‘/d%t+1 + aMEtNt+1 = 0 (35)
. A . k - k -
At+<1—a/)k’t—i‘Q/Nt—F(l—6);]6,5—’}/)(516754_1—56,5 =0 (36)

12

Notice that this system can be written in the form

~1 0 ¢ 0 1 ky 0\ ;
(0 1—a—NV”(1—N)/V’(1—N)>(Nt):<1—a 1)<xt)+<1>‘4t

(it 0) 20)+ (amt—nam o) (5)-

_ ~ 0 ~
(Olu > EtAt+1 + (-1)At

Notice that these systems of equations conform to the form of the equations solved in Section
3, where

Ut:<_§;t> xt:/;‘t)\tzj\t Zt:At

o 0 0 1 0
Mcc:< 0 1—a—NV//(1_N)/V/(1_N)) MCS:<1_a 1) Mce:<1)

My, = (—7;?15/31) (1)) Mo = ((I-a)+ (01 —0)(k/y) _01 >

0 0 —« 1 0 0 0 — 1 0
(3) (%) () ()

As a result, the divisible and indivisible labor models can be solved approximately by
employing the methods provided in Section 3, as long as an appropriate law of motion is
chosen for the exogenous variable, A;. The typical assumption is that

In(A:) = (1 —p)In(A) + pln(Ai_1) + &,

where ¢; is i.i.d. with mean zero and variance 2.

law of motion of the form

This suggests an approximation to the

A = PAHL + €,

where A, = In(4,/A).

Often, we are interested in variables other than the states, controls, and exogenous vari-
ables. For example, we may be interested in the properties of output, y;, average productiv-
ity, wy, investment, i, the ex-post gross real rate of return on capital, RF, or the gross real
interest rate, R;. These variables are all determined in terms of the others,

gy = Ay NP

w, = AklTON!

i = AkITONE — ¢

Rf = (1—a)AK;*(NX)* = (1—a)Ak; Ny + (1—6)

C -1 " ¢ -1
R, = E,— -2 (g —t>
t (ﬁ tCt+1> 3 (tCt+1

13

Notice that these expressions can be linearized.

dy (y/A)dA: + (1 — a)(y/k)dk; + ay/N)dN; (37)
dwy (y/NA)A, + (1 — a)(y/Nk)dk; + (a —1)(y/N?)dN, (38)
diy = (y/A)dA; + (1 —a)(y/k)dk; + a(y/N)dN, — dc; (39)
dRF = (1—a)(y/kA)dA; — a(l — a)(y/k?)dk, + o1 — a)(y/EN)AN, (40)
dR, = %X [(1/c)Edeyr — (1/c)de] (41)

Divide equation (37) by y. Divide equation (38) by w = (y/N). Divide equation (39) by
i =[yx — (1 — §)]k. Divide equation (40) by R* = (1 — «a)(y/k) + (1 — §). Divide equation
(41) by R = (yx/f). Notice from (22) that R* = R.

gho= A+ (1- Oé)if?t +ah, (42)
Wy = A+ (1 —)k + (o —1)N, (43)
A%t = (y[z‘)flt +(1- a)(}//i)l%t +aly/i)Ny — (y/i)(c/y)é (44)
RF = pA; — apk, + aulN, (45)
R, = B —& (46)

where p is defined as above. When R* and R are approximately equal to 1, Rf and Rn which
represent percentage deviations from R* and R, will be approximately measured in percent-
age points which is useful in their interpretation. The interest rate is more complicated to
compute than the other variables since it depends on a conditional expectation. Since ¢; is
a control variable we can use the notation of Section 3 so that

Cop1 = Top@er + Vo ze41.
Substituting in equation (15) we have
ét+1 = sz(waxt + Twzzt) + TZZZHL

Taking the conditional expectation, equation (46) becomes

~

Rt = TZImet + (T,imez + TZZH)Zt — ét'

4.3 A Labor Hoarding Model

In this section we consider the labor hoarding model in Burnside, Eichenbaum and Rebelo
(1993). This model is a good example of a case in which ns # n.. The model is a mod-
ified version of the indivisible labor model presented in the last section, and the model in
Christiano and Eichenbaum (1992) which we will examine in Section 8.

The model uses the same device as in the Hansen (1985) and Rogerson (1988) models
to generate variability in employment. Agents face a lottery which determines whether they
will work or not work. The probability of working is N;. If an agent works, they work a fixed
number of hours, f, of their time endowment, normalized to T" hours. Furthermore, they
lose a fixed cost of £ hours by reporting for work. However, workers can adjust their level

14

of effort, e;, which means they will receive T'— £ — fe; effective hours of leisure. Assuming
logarithmic preferences over leisure, the utility from leisure for the representative agent is
therefore N, In(T" — € — fe,) +6(1 — N,) In(T).

A second feature of the model is that the lottery probability, and therefore, the level
of employment, is predetermined, capturing the notion that employment is costly to adjust
immediately in response to new information. This amounts to making N; a state variable
which, like k;, is chosen at time t— 1. However, there is no additional constraint in the model,
so we have two state variables but one co-state variable. The social planner’s problem for
this economy is equivalent to various decentralizations so we can solve the planner’s problem
to find a competitive equilibrium.

A final feature of the model is that government expenditure acts as a form of lump-sum
taxation. This expenditure is modelled as a purely exogenous process relative to the level of
technology, and introduces a second source of uncertainty into the model.

The Lagrangean for the planner’s problem is

L = Ej iﬁt {In(Cy) + 0 [NeIn(T — € — fer) + (1 — N) In(T)]} +

Eo > A [AK] ™ (feNiX,)® + (1= §)K; — Kija — G — G } .

t=0

The transformed optimality conditions for this problem are

gt=XN =
—O0fN(T — & — fet)fl + oz)\tAtk:g*a(th)aeffl =

OB In[(T — & — fer1)/T) + Et>\t+1aAt+1ktl-|t1a<fet+1)aNt(j__ll
N+ BEMavx (1= @) Ak (feraNep)* + (1= 68)] =
Aiky *(feN)* + (1= 6k — krpayx —ge — ¢ =

oS O O O O

As in the previous models, it is easy to verify that in nonstochastic steady state

(y/k) =B 7x — (1= 8)]/(1 - a).

The budget constraint implies that

(c/y) =1+ [(1—6) —vx](k/y) — (9/v),

where (g/y) is parameterized. Burnside, Eichenbaum and Rebelo chose the normalization
e =1, so that

N = (a/0f)(T =& — f)y/c).
Finally, by choosing e = 1, there is an implied relationship among the parameters from the
optimality condition for N;,:

In[(T'=&=f)/T]+ f/(T=§—=f)=0.

15

Burnside, Eichenbaum and Rebelo (1993) use this to determine f in terms of 7" and &.
Proceeding as in the previous sections it is straightforward to linearize the Euler equations
to obtain the following set of equations.

—— N 0 (47)

M+t A+1—-—a)k+(a—1)N+[a—1—-f/(T—-¢—f)lés = 0 (48)

By M1+ A + (1= @)k + (@ = Dégga + (@ =)Ny | = 0 (49)
M+ Etj\tJrl + NEtAtJrl — O‘ﬂl%t+1 + aﬂEtNt+1 + aMEtNt+1 =0 (50)
A+ (1= @)k + aN, + aé, + (1 — 5)§l%t - yxgi%m - gét - %gt = 0. (51)

This system of equations can easily be written in the usual form using

: k . A
s () e (R) en wo(2)
t

Burnside, Eichenbaum and Rebelo close the model by assuming that At = pAAt_l + €41,
Gt = PgJi—1 + €gt, and €4, and €4 are mutually independent.

5 Uniqueness, Boundedness and Sunspots

In the previous sections we have focused attention on cases where the number of eigenvalues
of the matrix W which are less than one is exactly ng, the number of endogenous state
variables. Furthermore, even in this case we ignored the possibility that there might be
multiple solutions to the difference equation

By = Moy + (PP R, + P2R)IL + PQ, + P2Q,]x.

In this section we consider the possibility of multiple solutions to this difference equation,
as well as the possibilities that arise when the number of eigenvalues inside the unit circle,
denoted n; is not equal to n.

5.1 Uniqueness When n; = ng

In this section we need only verify the conditions under which the solution we obtained in
Section 3 is unique. It turns out that uniqueness relies on side conditions put on the process
x;. Without these side conditions there are many explosive solutions for x; that satisfy the
difference equations governing the model. Returning to the original difference equation (12)

we see that
Ti41 = Wnﬁt -+ W12>\t -+ (RzH + Qz)Zt,

where I have used, for simplicity of notation, the assumption that z1 = Iz + €41. As
before, we solve this equation by substituting in A\, = —(P?*)~!P*z, + (P??)7');, which
gives us

Ti41 = <P11A1P1_11)$t -+ W12<P22)_15\t + (RmH -+ Qm)Zt.

16

The difference equation for \; is
Etj\t+1 = Agj\t + ((I)OH + <I)1)zt, (52)

where I am using again the AR(1) assumption for z; and ®¢ and ®; are defined as in Section
3. We found a solution to this difference equation which was denoted A\; = Wz;. This was
obtained by inverting (52) and iterating forward

N o= AJ'EM g — AFY DI+ @y)z
= — Z A;(]Jrl) ((D()H + cbl)Hth.

j=0
This last equation implicitly defined W. However, it is easily verified by substitution that
a more general solution to (52) is denoted \; = ¥z; + &, where ; is any process for which

Eiiv1 = A&y
As a result, a general solution for z;, is given by

e = (PubiPyz, + [Win(P2) 10 + RT1+ Q) 2+ Wis(P?2) ¢,

Thus, an infinite variety of solutions exists, because there is only one restriction on the form
& should take.

Typically, it is assumed that the solution of interest is bounded in some way. Notice that
since Ay consists of eigenvalues greater than one in absolute value, the process &; is expected
to explode. Le. lim;_,o Ft&tj = lim; o0 Et/\%ft = +00, depending on the sign of &.

A simple condition which leaves only the solution we found earlier is to require

hm Etxtﬂ- = 0, Y t.
j—00

This is only true for the particular solution we found earlier, i.e. for & = 0, for all t.
A different method of rendering the solution unique would be to impose a transversality
condition on the original optimization problem. The problem in Section 3 would have the
transversality condition

Jim EoB' |2}, Avuy + 23, Agyuy + 225 Ayr 2y + 22, BLN] = 0.

If at least one of the eigenvalues in A, is greater than $~'/2 in absolute value, then the
explosiveness in & will dominate the term (' and the transversality condition will not be
satisfied. Therefore, requiring that the condition holds eliminates all but the solution with
& =0 for all ¢t.

5.2 Sunspots and Boundedness When n; > ng

In this section we consider a second possibility, that the number of eigenvalues which are
less than one in modulus exceeds the number of state variables. We use the usual definitions
of A1 and As, except that in this case Ay has n; — n, elements which are less than one in
absolute value. This suggests a further partition of A, as

Ay O
A2_< 0 A2g>’

17

where the elements of Ay, are less than one in modulus and the elements of Ay, are greater
than one in modulus. In this case, it is convenient to write (52) in two parts

Eduir = Moo + Qo(Poll + @)z, (53)

Et)\gt—l—l == A29>\gt + Qg((DOH + (I)l)ztv (54)

where 5\& is simply the first n; — ns elements of 5\t and S\Qt is the last n. + ns — n; elements.
Furthermore, we have

Q= (Ini—ns Oni—nsxncs—&-ns—m) and Qg = (Oncs+ns_ni X1;—ns Incs—&-ns—m) .

In this case, we iterate backward on (53) and forward on (54) to obtain the general solutions

[o.°]

Mo = D (Ao (Pl + ®1)2z 15+ Ea (55)

§=0
Fo = = () O (@I + @)1z + &
j=0

= \Ingt + ggt (56)

where we have the restrictions iy 1 = Aol and E€ge i1 = Agy€ye. This gives us a general
solution for z;,1 of the form

Aoe)? Qu(PoIl + D1) 21— + &t

Ty = (Pudi Pl)z +Wio(P#)™ (ikl o2t + >
g g

>+(RZH+Qm)Zt.

In this case a boundedness condition on z;,; will allow us to assume that {; = 0 for all
t. However, the same cannot be said for &, since it is not explosive. Therefore, even with
boundedness we get left with a multitude of solutions,

00 J ,
Tip1 = (PrA P)+ Wi (P?) ™! (25Zo(Aar) QA(I)?IIHZ—: P1)2i-1- + L >+(RZH+Qm)zt.
9

The variables & are referred to as sunspots as they need bear no relationship to the variables
in the model (i.e. they are nonfundamental), and need only satisfy the restriction that

Eui1 = Noeer.

5.3 Explosiveness When n; < ng

If there are fewer eigenvalues less than one in modulus than there are state variables, it is
not, in general, possible to derive a solution that satisfies the typical boundedness condition.
The general solution to the difference equation governing z; is

Tiy1 = P11A1P1_11£13t + [W12<P22)_1\If + RmH -+ Qm} Zt -+ W12<P22)_1£t,

where W is defined as in section 5.1, since in this case, as in that section, it makes sense to
solve forward for all elements of)\;. Simple iteration on this equation indicates that

Etxt+j = P11A{P1711xt + Z P11A21P1711 { [W12(P22)*1\I, + R, + Qx} Hjil*zzt—l—
i=0

W12(P22)71A%'7172‘§t } ‘

18

Regardless of the assumptions made concerning &;, this expression has, in general, no limiting
value because A; contains eigenvalues which are greater than 1 in absolute value.

6 Computing Impulse Response Functions

This section discusses impulse response functions. An impulse response function is a device
which is used to describe the response of endogenous variables in a model to innovations
in the exogenous variables in the model. In the context of the real business cycle models
discussed in Section 4, we might be interested in the response of output, over time, to an
innovation in the level of technology. One way of describing that response is to derive the
moving average representation of output as a function of current and past innovations in the
level of technology.

In the more setting of the general L(Q) problem of Section 3, the relevant exercise is to
derive expressions for all variables of interest in terms of current and lagged innovations in
the exogenous shock vector z;. Recall that the solution for the endogenous state variable
Zy11 in that problem is given by

Ti41 = Tmmxt + Tzzzt~

The solution for \; is,
At = Togy + Thaoze

and the solution for the controls is given by
Uy = Tummt + Tuzzt-

This means we can write
Stp1 = Msy + €141

Ty A 0
(1) = (2)

Yoo Y
M — T Tz .
The vector ¢; is the vector of innovations to the exogenous variables. Furthermore, we have

)\t = (T/\:r T/\z)st (57)
Uy = (Tux Tuz>8t (58)

where

and

There may be other variables in our model of interest, denoted f; (such as output, average
productivity, investment and the rate of return in the real business cycle models described in
Section 4) which are expressible as a linear combination of the controls, states and exogenous
variables

i = Fouy+ Fooy + Fez
[Fc<Tum Tuz)+<Fx Fe)}st (59)

19

Therefore it is possible to represent all the variables except the state and exogenous variables

in the form
At

u | = Hs; (60)
Jt

To generate moving average representations for each of the variables notice that

St — MStfl —I— ét
2 ~ ~
= M St—2 + € + MEt_l

— ét+Mét_1 +M2€t_2+"'

Impulse response functions usually refer to the response of variable i to an innovation in
exogenous variable j at time ¢ — k, which we might denote IRF;;(k). So, to measure the
response of the ith element of s; to an innovation in the j element of €_;, we would simply
let IRF;;(k) be the ijth element of M*. Similarly, to measure the response of the ith element
of (M we fy) to the same innovation we would let IRF;;(k) be the ijth element of HM k.
igures 1 and 2 illustrate the impulse response functions for the divisible and indivisible
labor models described in Section 4. Each diagram represents the response of the indicated
variable to a 1% innovation in the level of technology. MATLAB procedures to compute the
impulse response functions are included in the programs that accompany these notes.

7 Computing Autocovariances

In the previous section we derived a representation of the solution to the general LQ problem
given by

St41 = MSt + ét—i—l (6].)
and
At
w | = Hs;
e

To compute the autocovariances of s; notice that
St = MiSt_Z' + ét +...+ Mi_lét_H_L
Therefore

Iy = E(sis,)
= E[(Mseité+...+M Y)s |
— MT,

To compute Iy, in some cases we can diagonalize M = VDV ~! where D is a diagonal
matrix with the eigenvalues of M on the diagonal and V' is a matrix whose columns are the

20

corresponding n + n, linearly independent eigenvectors. Then pre-multiplying (61) by V!
we get
V_18t+1 = DV_ISt + V_1€t+1

Str1 = DS+ 641

where the covariance matrix of € is
i:v1<00>v“.
Notice that the ith element of §; is given by
S = diSy1+ €q

oo .
_ E) =
= d2 Eitfj
Jj=0

Therefore I'y, the covariance matrix of §;, is a matrix whose ij element is given by

1 -
— .
1—did;”

The matrix I'y = VI\V’. In some cases, M may be singular and the diagonalization cannot
be performed. For example, if one of the shocks in z; is white noise, II, will be singular,
rendering M singular. In cases for which M is singular, I'y can be computed by some finite
approximation to ¥ + MY M’ + M?S(M')2 + - - .

We also have the covariance

E s | w = F(s;s,H')

= ToH'.

These simple calculations show that it is straightforward to compute any of the autocovari-
ances among Ty, zi, A¢, Uz OT fi.

7.1 The Hodrick-Prescott Filter

The literature contains many papers which compare the predictions of a model for the prop-
erties of Hodrick-Prescott (HP) filtered time series to the properties of corresponding time
series in the data. This filter was proposed by Hodrick and Prescott (1997). It decomposes
the logarithm of a time series, denoted 1, into two components, the growth component,
gi, and the cyclical component, ¢;. That is ¢, + ¢ = ;. The way they determine this
decomposition is to choose {g;}7 ; to minimize

T T-1
Z(yt —g)*+ A Z(Qtﬂ —2g;+ g 1)*
t=1 t=2

21

Notice that the first order conditions, for g, gs, ..., from this minimization are

—1+g1+AMgs—292+g1) = 0
—Y2 + g2 + Al(—293 + 492 — 291) + (94 — 293 + g2) = 0
Yt + g+ A9 — 20121 + gi-2) + (20041 + 49t — 20-1) + (Gr42 — 20041+ 90)] = 0
t=3,...T—2
—yr-1+9r1+M(—29r +49r 1 — 297 2) + (971 — 297 2 +gr 3) = 0
—yr+9r + Xgr —29r-1+gr—2) = 0
If you write the time series {y;}._, as a vector, y, and the growth components {g;}1 ; as

a vector, g, the first order conditions for the growth components are given by Ag = vy, or
g = A1y, and the cyclical component is ¢ = y — g. The matrix A is equal to

1+ —2) A 0 0 e 0 0 0
=2\ 145X —4X A 0 0 0 0
A —4X 1+6X —4A A 0 0 0
0 A —4X 1+6X —4) 0 0 0
0 0 A —4X 1+6X 0 0 0
0 0 0 0 0 146X —4X A
0 0 0 0 0 —4X 14+5X =2
0 0 0 0 0 A —2X 1+

Notice that the filter lets you write g; = G} (L)y;, where G} (L) is a polynomial (possibly
double-sided) in the lag-operator. Notice that the coefficients in the polynomial are time-
varying and depend on the sample size.

The series created by the HP filter are similar (in large samples) to the time series
obtained by choosing the time series {g;};°_. to minimize

[o.°]

S we—a) XD (gie1— 290+ 9e1)

t=—00 t=—0o0

This minimization problem leads to a time-invariant form of the HP filter. I.e. we get a form
g+ = G(L)y:, where G(L) is independent of time. The second moments of cyclical components
obtained using the time-varying filter are asymptotically equivalent to the second moments
of cyclical components obtained using the time-invariant filter. Therefore, we focus on the
time-invariant filter.

The bigger is A the smoother is the series g; that you get out of the filter. The number
usually used for quarterly data is A = 1600. King and Rebelo (1989) describe the form of
the time-invariant filter. They show that the filtered series ¢, is given by

N2+ (1— L)Y, = (1—- L)%,
R(L)e; = (1— L)y,

King and Rebelo show that this can be written as

c=H(L)(1— L)'y

22

where
H(L) = (L) [0 =)™ (=707 (0= rL7) 7 (1= L)
= (Ir’L?) [1 — 2Re(r)L + ‘T‘QLQ}A [1 — 2Re(r)L ! + MgLfﬂfl .

The parameter r is the reciprocal of a stable root of R(Z) = 0 (these are all complex as
shown by King and Rebelo 1989). Re(r) is the real part of r, while 7 is its complex conjugate.
King and Rebelo (1989) show that this can be written in the form of an infinite symmetric
double-sided filter,

cc=BL)y;= (... +b oL+ b L7 + by + b L+bL*+ ..)y,

where by = 1—[.0561 cos(0)+.0558 sin(0)], b_; = b; = —(0.8947)[.0561 cos(.1125)+.0558 sin(.1127)]
when A = 1600.

To get a good understanding of what the HP filter does to data you need a basic un-
derstanding of spectral analysis. The spectrum of a time series is a function which depends
on the autocovariances of that time series. Suppose we have a covariance stationary, mean
zero, time series xy. The ith autocovariance is defined as

vi = E(wmi_;) 1=0,1,...00.

The spectrum of a time series is a function of the frequency w

1 o° ‘
f(w):% 70+2Z'y¢cos(wz) , w € [0,7].
=1

Frequencies are mapped into periods using the mapping p = 27 /w. The spectrum roughly
tells you how much of the variance of the time series occurs in components with different
frequencies. If you take any covariance stationary time series it has a spectrum given by the
formula above. In Figure 3, the spectra of four time series are plotted. These time series are

e a white noise process, T; = ¢, where Ee? = o2 and E(e€; ;) = 0, for i # 0.
e a first order autoregressive, AR(1), process x; = pry_1 + €;, where p = 0.8,

e a first order moving average, MA(1), process x; = €; + f¢;_1, where § = 0.5,

a seasonal AR(4) process, x; = ¢z 4 + €, with ¢ = 0.8.

In each case, the spectra are plotted for 0% = 1.
Now suppose a filter B(L) is applied to z;. That is, define

Y = B(L).Tt
The spectrum of y; is given by

fyw) = [BW)]* fa(w),

23

where B(w) = Y32 bje ™/ and i = /1. Using this information you can simply plot the
transfer function, | B(w)|?, that goes with any filter in order to see how different components
of the variation in z; are affected by the application of the filter. The transfer function of
the time-invariant HP filter is given in Figure 4 for different values of A. For the sake of
comparison, Figure 4 also contains a graph of the transfer function for the first difference
filter, A = (1—L).

A useful property of the time-invariant HP filter is that the cyclical component does not
change when anything up to a quadratic deterministic trend is added to the series being
filtered, y;. To see this, define x; = y; + 7, where 7, = o + 3t + yt%. The growth component
of x; is determined by

AL? = AL + (14 6X) =AML+ AL 2| gop = 2 =y + 70,
while the growth component of 1, is determined by
AL =AML + (14 6)) — 4AL '+ AL 2| gy = 1.
These equations combine to yield
AL = AL + (14 6)) =AML+ AL 2| (gur — gyu) = 7.
Since x; = y; + Ty = Cat + gue and Yy = ¢yt + Gye, We have guy — gye = T + ¢yt — €44 Therefore,
AL? = AAL + (14 6X) =AML+ AL 2| (cy—car) +[AL? = AAL 46X — AL ' + AL 2| 7, = 0.
Showing that c,;; = ¢,; depends on showing that
[ML? =AML +6) — AAL 7 + AL 7] 7, = 0,
for all . Some algebra shows that this requires showing that

[+ B(t —2) +y(t — 2)*] — 4a+ B(t — 1) +4y(t — 1)*] + 6(a + Bt +7t2)
—Ala+ Bt +1) +4yt + 1)+ [a+ Bt +2) +~(t+2)* = 0.

More algebra confirms that these equalities hold. This property is not shared by the time-
varying filter, although it is invariant to anything up to a linear trend.

This property of the HP filter is useful because it allows a simple mapping from the
moments implied by the model for the hatted variables to the moments implied by the model
for HP filtered data. Take for example, ;. It was argued in Section 4 that g, ~ In(y/y) =
In[(Y:/Xt)/y] = In(Y:) — In(y) — In(X;) = In(Y;) — In(y) — In(Xo) — tIn(yx). Therefore,
the moments of the hatted variables are directly comparable to the moments of linearly
detrended data. The invariance of the cyclical component to the inclusion or exclusion of a
trend suggests that the moments of HP filtered hatted variables can be compared directly
to the moments of HP filtered data. The next step is to determine the mapping from the
moments of the hatted variables to the moments of HP filtered data.

24

Let z; denote a vector of hatted time series and let E(xix;_;) = I';. Then HP filtered
series corresponding to x; are given by y; = bjx,_;, where the b; are defined above.
The autocovariances of y; are given by

‘]7—00

—+o0 —+0o0
E(yyi_) = E Z bjmi—j Z bjx;—i—j

i j=—00
= Iy Z b;b,_ Z—i-ZFk Z b;ibj Z—i—ZF’ Z bibj_r—i
j=—00 j=—00 j=—o
Suppose we used a finite number of the b; in approximating this sum, say b; for j = —N to
j = N and a finite number of the autocovariances, I'y, k = 0,..., M. The autocovariances

of y; could be approximated by

N i N i N
S obibimilo + > > bibji T+ Y. > bbbl +
J

=—N+i k=1 j=—N+i—k k=1 j=—N+i+k

M N M N
Z Z bjbj+i,kf‘k + Z Z bjbjf’ifk]‘_‘;g‘

k=i+1 j=—N-+k—i k=i+1 j=— N-+k+i

In order for this formula to be accurate, N should be considerably larger than M which
should be considerably larger than .

It is much easier to derive the autocovariances of first-differenced series. For example,
Ag = Aln(y:/y) = In(Y;) — In(Yi_1) — In(yx). If the autocovariances of z; are given by I';,
then it is easy to show that the autocovariances of Ax; are given by

E(AzAzy;) = E(vx—;) — Elwwi—ioq) — E(vi—1xi—;) + E(xi_1mii1)

2PZ'—FZ'_1—PZ'+1 1>0

These are directly comparable to the autocovariances of first-differenced data.

8 Models With Stochastic Growth

Some RBC models specify the labour augmenting growth component, X;, as a stochastic
process. Such stochastic trends can be accommodated in a similar fashion to the way de-
terministic trends are handled. However, some differences arise, especially when computing
moments of interest. Take, for example, one of Christiano and Eichenbaum’s (1992) models.
They considered a model with indivisible labor in which the government removes a stochastic
quantity of resources in a lump-sum manner. Government expenditure yields no utility to
private consumers. The social planner’s problem in their model is to maximize

L=E, i {8 In(Cy) + 0T — Nl + A [KE (N X)* + (1= §)K, — Kpiy — Gy — Gy}

t=0

25

Government expenditure is exogenous, as is X;. The Euler equations are
BCTt—A = 0
—B'0 + Ao KFTENATIXY = 0
—Ai+ B [(1—) K S (N X)) + (1= 6)] = 0
KN X))+ (1=K, — Ky —Cr =Gy = 0
Christiano and Eichenbaum assume that X; = exp(y + v;)X; 1. L.e. the common growth
component is stochastic rather than deterministic. The shock v, is assumed to be a stationary
mean zero AR(1) process. Le. vy = p,v;_1 + €,;. We write the model in terms of detrended
series using the following transformations: ¢; = Cy/ Xy, ki = K/ Xe1, y¢ = Yo/ Xy, g =
Gi/ X, i = B'AX;. K is divided by X; ; so that k; remains predetermined. The
stochastic process for g, is assumed to be stationary, with In(g;) = (1—p,) In(g)+p, In(g:—1)+
€st-° Rewritten in these terms the Euler equations are
at—MN =0
—0 + Mok *NX texpl(a—1)(y+v)] = 0
N+ B (1= @R NG explla = D0+ o) + (1=) exp(—y — wgn)] = 0
kI “N&expl(a— 1) (v +ve)] + (1 — 8) exp(—y — v)ki — key1 —ct — g = 0

The nonstochastic steady state is easily obtained. Simply remove all time subscripts and
expectations from the Euler equations and set v; = 0. The equations become

cl—X =0
—0 + Xk N lexp[(a—1)y] = 0
—A+ B [(1 =)k~ *N¥exp[(a — 1] + (1 = §)exp(—y)| = 0
EreN“exp[(a — 1)y + (1 —8)exp(—y)k—k—c—g = 0
Clearly, the steady state detrended output-capital ratio” is given by
1= pl(1 = a)(y/k) + (1 = 6) exp(—=7)]. (62)
Therefore,
(y/k) =[8"" = (1= 6)exp(=7)]/(1 -).
Similarly, the capital-labor ratio is given by
p~ = (1= b)exp(—)
(1 — o) exp(er — 1)7]

From the Euler equation for /V this determines A which determines c. The resource constraint
implies that

-1/«

(k/N) =

y=[1-(1-08)exp(—y)]k+c+g

6The accompanying program for this model assumes that all state variables are rescaled by dividing by
X;_1 and that all exogenous shocks are defined relative to the common trend Xj.
"The non-detrended output-capital ratio is (y/k) exp(v) because Y;i1/Kiy1 = (Yrp1 Xes1)/ (ke1 Xy).

26

y (1 - (- &) exp(—)] S) e+

Since g is a parameter, this determines y, which determines k, which then determines V.
To linearize the Euler equations proceed as in Section 4. Defining o, = dv;, since v, is
already measured in logarithms, and p = (1 — «)(y/k), we obtain

=N = 0
M+ A=)k +(a@—1)N, + (@—1)i, = 0
Nt Ayt — opipgr + opNey + (ap — Doy = 0
(1—- a)l;’t + OéNt —[(1 =)+ (1 —06)exp(—)(k/y)]v:+
(1= &) exp(—y) (k/y)ke — (k/y)kier — (c/y)ér — (9/9)ge = 0

The additional variables y;, wy, 1, Rf and R; are given by

ye = kTN expl(a—1)(y +)]
we = kg Ny expl(a = 1)(v +vy)]
i = ki “NEexp[(a—1)(y+v)] — ¢ — g
RF = (1-a)K7*NX)* = (1 —)k “Nf expla(y 4+ v¢)] + (1 = 6)

G\ exp(y) a1
R, = (ﬂEt ') = [Etexp<_Ut+1 :]
Cip B

Ct+1
The steady state value of RF is R* = (1 —a)(y/k)exp(y) + (1 —6). The steady state value of
Ry is given by R = exp(v)/. From (62) it follows that R* = R. These equations linearized
are given by

@t = (]_ — Oé)]%t + Oth —I— (Oé — 1)'[)15

i = (1—a)(y/i)ke+aly/i)Ny + (o — 1) (y/i)i, — (y/i)(c/y)éee — (y/1)(9/y) e
RF = —oz,ul%t + oz,uNt + auty
Ry = Ei¢i41 — G,

where we have used the fact that i = [1 — (1 — §) exp(—7)]k.

Once we have the linearized equations in this form, it is straightforward to solve the
linearized model using the methods of Section 3. However, given the definition of the trans-
formed variables, the mapping from the moments of the hatted variables to the moments of
HP filtered, or first-differenced series is not the same as the mapping used in Section 7.

As an example, consider the first difference of output, given by Aln(Y;) = Aln(y, X;) =
v+ Aln(y:) + v,. Given this, the autocovariances of Aln(Y;) can be approximated by the
moments of Ay, + v;.

The HP-filtered series for output would be ¢,; = B(L)In(Y;) = B(L)AIn(Y;), where
b = Zézfoo b;. Therefore, both the moments of log first-differenced data implied by the
model and the moments of HP-filtered data implied by the model can be constructed using
the autocovariances of the hatted variables.

27

Suppose we were interested in the moments of HP filtered data from the model. A simple
approach is to first derive the moments of the first-differenced variables. Recall the solution
for the state variable given by equation (15)

Ty = T;c;cxtfl + szztfl-

Notice that in the Christiano and Eichenbaum model the variable z; is interpreted as
In(K;/X;—1) — In(k). TLe. it is the percentage deviation of the capital stock, relative to
the trend, from its nonstochastic steady state value. Therefore, the second moments of
Aln(K};) would correspond to the second moments of Az; + Aln(X; 7). Since Aln(X; 1)
is simply v + v 1, it is clear that these second moments would correspond to the second

moments of Az; + v;_;. To compute these moments for general models it is convenient to
define
Aact + 21,t—1
St = 2t)
Zt—1

where I am assuming that the shock to the stochastic trend (in our example v;) is always
defined as the first element in the vector of exogenous variables. There are two useful sets
of equations involving 5;. First, define a ns x n, matrix ©, whose first column is a vector of
ones, and whose other elements are 0. I.e. define,

10 ... 0
10 0
0, = : .
10 0
Then
Ty — X1 + Oz
S = Zt
Zt—1
I 0 -1 O,
— o1 <%>+ 0 0 (”*)
00 A 0 I -1
= B()St + Blst,1 (63)
Second, note that
§t = 0 II 0 gt,1 + €¢
0 I 0 0
= M5, 1 +&. (64)

Notice that (63) implies that
Ty = B(5,5) = BoloB), + B\ToB, + BoMToB, + B,I,M'B}, (65)

28

where I'y and M are defined as in Section 7. Furthermore, (64) can be used to show that

[, = E(53, ;) = M'T. (66)

Some care has to be taken, in order to compute covariances involving the other variables of
interest. These might include, Aln(K}), Aln(X;), Aln(Ge), Aln(A;), Aln(Cy), Aln(N,),
Aln(Y;), Aln(Y;/N,), Aln(I;), Aln(RF) and Aln(R;). Define

Aln(K) Al + Aln(X;1) Ay + 7+ vy 0

Aln(X;) Aln(X;) 0 1

Aln(Gy) Agi+A In(X) Agy 1

A ln(At) A)\t — A ln(Xt) A)\t —]_

Aln(Cy) Acy + AAln(Xt) A(”;t 1
AF;: = Aln(Nt) = ANt = ANt + 0 (’y+’l)t)

A ln(Y}) Agt + A lIl(Xt) Agt 1

AIH(K/Nt) A'UA}t + Aln(Xt) A'UA}t 1

Aln(I,) Ai 4+ Aln(X,) Ay 1

Aln(Rp) AR ARE 0

Aln(R:) AR, AR, 0
Ignoring the constant v, this can be written as

A];It + viq
AF, = v
' Agy + vy
Afi+ Cuy
where (=(-1 10 1 1 10 0) andfi=(A\ & N, g @ i R R).Ouw
solution method implies that f; can be written as f; = Hiz; + Hsz;. Therefore,
AIt + GZZt—l
= Elzt

AFt - 9

Hoz + E3z1
HlA,It + (H2 + @f)zt — HQZt,1

where = is a 1 X n, vector whose first element is 1 and whose other elements are 0, =, is
a (ne — 1) X n, matrix whose first column is a vector of ones and whose remaining block is
an identity, =3 is a (ne — 1) X n, matrix whose first column is a vector of zeros and whose
remaining block is the negative of an identity and © is a ny X n. matrix whose first column
is the vector (and whose remaining elements are zero. l.e.

110 -0
2 =(10 0) == 1010
100 1

29

=, = : O, = (¢ 0)
0 0 0 —1
This enables us to write
I 0 0 _
. 0 E 0 AT
AFt = —_ —_ Zt
0 =P =3

H (Ho+©;) —(Hy+H®,)) \ !
— Hs, (67)
Thus we can compute the autocovariances of AF; quite easily as
E|AFAF,,| = HT,H'.
In order to obtain the moments of HP filtered data, we can simply obtain the impact of

applying the filter B(L) described above to the vector AF,.% This will be the straightforward
analog of the method described in Section 7 for the HP filter B(L).

9 Estimation and Hypothesis Testing Using GMM

9.1 Estimation

There are many methods which can be applied to the estimation of real business cycle
models. These notes focus on GMM estimation as described by Hansen (1982) and as
implemented for RBC models by Christiano and Eichenbaum (1992) among others. GMM
estimators are quite general, and include many of the common estimators we are familiar
with. Parameter estimates are obtained by exploiting moment restrictions implied by the
model to be estimated. In particular, assume that the model in question implies that the
following moment conditions hold

E [f(xt, @/J)] =0,

where 1 is a k x 1 vector, z; is a vector of stationary time series, and f(x, 1)) is m x 1 where
m > k. Since these moment conditions hold in population when the model is true, a natural
way to choose an estimate of v is to set the sample moment condition to 0. I.e. choose ’Q/AJT
in order to set

1 T
f;ﬂﬂftﬂp) = 0.

Clearly if none of the moment conditions are redundant this is only possible if m = k. If
m > k we must generalize the estimator. One way to do this is to minimize a quadratic form
in the sample moments. I.e. choose ¥ to minimize

100 = [15 st)] Wi [gta]

8We apply B (L) since we have already first differenced the logarithms of the variables of interest.

30

where Wy is a m X m symmetric positive definite weighting matrix. The first-order condition
for the minimization problem is

You can see that the result of satisfying the first-order condition is to set k linear combina-
tions of the m sample moment conditions equal to zero.
Let the true value of the parameter vector be given by . Define the m x k matrix

Dy=E laf(ax;/;/%)]

and let Wy converge almost surely to the symmetric positive definite matrix W,. Then
Hansen (1982) shows that tr is consistent and that

VT (i — o) == N [0, (DgWo Do) DgWoSoWo Do(Dy WoDo) |

The matrix Sy is given by

So=FE

i f(xt=¢0)f(xt+j7¢o)'] .

j=—00

Hansen (1982) shows that across all GMM estimators which exploit the same moment re-
strictions, the asymptotic variance-covariance matrix is smallest when W converges almost
surely to Sy !'. This suggests the following two step procedure.

e Estimate v using any positive definite weighting matrix, for example the identity ma-
trix. Since this estimated parameter vector, 1[1%7 is consistent it can be used to construct
a consistent estimator of Sy. There are many methods that can be used to estimate
Sp. Several of these methods are roughly of the form,

R n 1 X R .
Sr="3 kGn)m X [e dh) flaes, 0p)
j=—n t=1
where k(j,n) takes several forms depending on the method.?

e Setting Wy = 5’;1 re-estimate 1. The estimator I/AJT has the following asymptotic
distribution
5 d - -
VT (ihr — o) == N [0, (DS, " Do)] .

The asymptotic variance-covariance matrix can be estimated by computing

where

9See the Hansen, Heaton and Ogaki (1992) GAUSS GMM programs for the details.

31

This procedure can be iterated on several times, but it will not change the asymptotic
distribution of ¢;. Hansen (1982) also shows that when this two step procedure is used, the
value of the objective function at the optimum has the following asymptotic distribution

TTo(dhr) == x*(m — k).

This provides a test of the over-identifying restrictions when m > k.

In order to estimate a RBC model using GMM, moment restrictions which are sufficient
to identify the parameters are required. Consider the indivisible labor model. Assume first
that we know that 3 = 1.037??, so that it does not need to be estimated. The parameter
vector ¢ is given by

v=(0 6 a A, In(y) In(4) p o).

Consider a simple, exactly identified GMM estimator based on the following moment condi-
tions

v
Elo— _
[5] =0 (68)
Ky L]
E[a Lem -] =0 (69)
Cy Y >
El1l— l—a)2HL L8| = o 70
1- g (a-atsa-0))
E[ln(Y)) — A, — In(yx)f] = 71
E[lnYt Ay—ln('yx)t)% = 72

73
74

75

EIn(A;) — In(A)(1 - p) — pIn(Ai_1)]
E[(In(A;) — In(A)(1 = p) — pIn(A4; 1)) In(4;1)] =
E [(ln(At) —In(A)(1 - p) — pln(4A,_1))* — 02} —

Data for the series N; are obtained by using a series on per capita hours per quarter and
dividing it by a measure of the time endowment.!® Data for the series A; can be created for
each value of « using data on Y;, K; and IV; and the Cobb-Douglas assumption.

Equation (68) is derived from the Euler equation for employment. Equation (69) is
derived from the identity that relates gross investment to capital stocks.!! Equation (70) is
derived from the Euler equation for the capital stock. Equations (71) and (72) identify the
parameter vx with the average growth rate of output over the sample. The parameter A,
is estimated, but is not used to solve the model. Equations (73), (74) and (75) are derived
from the law of motion for technology shocks, A;.

Since there are 8 moment conditions and 8 parameters, the estimator is exactly identified.
The value of the objective function at the optimum will not provide a test of the model.
However, it is possible to imagine estimators which are based on over-identifying restrictions.

(70)
(71)
(72)
(73)
(74)
(75)

SO oo o o

10Tn the examples estimated in this paper, the time endowment is normalized to 1369 hours, as in Christiano
and Eichenbaum (1992).

HFormally, neither (68) nor (69) should be employed in estimation. Since these two equations hold without
the expectations operator, under the null that the model is true, the matrices St and Sy will be singular.

32

9.2 Hypothesis Testing

Much of the real business cycle literature focuses on the ability of these models to replicate
the time series properties of macroeconomic variables. For the most part, the time series
properties of interest have been the autocovariances of output, consumption, investment, av-
erage productivity, hours worked, government expenditure and interest rates. In an informal
approach, the researcher obtains parameters for a model, solves that model, then either sim-
ulates the model or uses the methods suggested above to calculate the autocovariances of the
variables in question. The model is judged based on how well these ‘model’” autocovariances
match the corresponding moments from the data.

Christiano and Eichenbaum (1992) suggest a formal statistical metric for measuring how
close the model moments are to the data moments. The problem with informal metrics is
twofold

e they do not take into account the effect of parameter uncertainty on the judgments
being made, and

e they do not take into account sampling uncertainty in the data moments.

The method Christiano and Eichenbaum (1992) suggest is essentially a Wald type testing
procedure. They note that the second moments implied by the model can be expressed
implicitly as a nonlinear function of the parameter vector . This is clearly true. In Section
4 we showed that the linearized solution depends only on the model’s structure, steady state
values which are functions of the underlying parameters, and the parameters of the law
of motion of the exogenous shocks. Furthermore, in Sections 7 and 8 we showed that the
solutions, along with more parameters of the law of motion of the exogenous shocks could
be used to determine second moments of linearly detrended, HP filtered or first-differenced
data. Therefore, those second moments are just complicated nonlinear functions of the data.

Let the mapping from the parameter vector to the model moments be given by m(1)).
Notice that the function m can be given different definitions depending on how many model
moments we are interested in calculating.

In order to compare the model moments to the data moments it is necessary to aug-
ment the parameter vector. Redefine the model parameters as v, and define a new set of
parameters, ¥y, whose true values are the population values of the sample moments which
correspond to the model moments in question. For example, suppose the only moments of
interest are the mean and the standard deviation of the growth rate of output. Then the
parameter vector 1, is given by

B EAIn(Y;)
ve = ((B (A(Y)? - [BAW(Y)2)]?) |

In general we can imagine that the sample moments are identifiable from a condition of the
form E [g(x¢,102)] = 0, of which the above expression for ¢ is an example. To see this, write
the expression for i, as

ElAW(Y) —¢a] =
b [[A In(Y;)]* — 3, — ¢§2} =

33

The parameter 19, represents the mean of Aln(Y;), while 19 represents its standard de-

!/
viation. The combined parameter vector i = ((AT) can be estimated by GMM by
exploiting the moment conditions

Elf(z,¢1)] = 0
Elg(xe,2)] = 0

Suppose the entire parameter vector ¢ is estimated by GMM, and its asymptotic variance
covariance matrix is given by V. The distance between the ‘model’ moments and the ‘data’
moments is given by R R R

h(¢r) = m(Yr1) — Yra.
Since this distance depends on both zﬂTl and 1[1T2 we would probably be advised to make
judgements about whether this distance is large or small depending on how much uncertainty
we have about the true values of 1, the model parameters, and 5, the ‘data’ moments.
Assuming that /T h(@ZT) is a £ x 1 vector, with ¢ < k, its variance-covariance matrix is given
by the ¢ x ¢ matrix

On(to) (,On (o)’
h _
‘/EJ - 81/1’ 4 a¢/ ’
This matrix can be estimated consistently by substituting zﬂT for ¢y and Vi for Vj. Le.,
Oh(ir),, Oh(r)
h _
Vp = oY’ Vr oy

This suggests that we use the following test statistic
Wr = Th(ir) (V1) h(tr)-

Under the null hypothesis that the ‘model’ moments and the ‘data’ moments are equal in
population Wy —% x2(0).

Therefore, by computing Wy for any pair of ‘model’ and ‘data’ moments we wish to
compare, we have a simple way of deciding whether the model is consistent with that aspect
of the data. If the test statistic is large, we will reject the null hypothesis that the model is
capable of reproducing the ‘data’ moment in question.

10 The Programs

In this section I describe computer programs written in MATLAB that can be used to
estimate and test the indivisible labor model, described in Section 4.!> These programs
are located on the disk that accompanies these notes. The user should copy the files and
subdirectories on the disk into a directory which can be given any name the user chooses,
say C:\notes. To run the indivisible labor programs, open MATLAB, and type

12The programs were tested in MATLAB 5.2 for Windows 95/NT. They may not run correctly in other
versions of MATLAB. Older programs that I wrote for GAUSS, along with notes that describe them, are
available upon request.

34

cd c:\notes\indivis
path(path,’c:\notes’)
indivis

The first line changes directory to the one in which the files for the indivisible labor model
are located.!® The second line adds to MATLAB’s internal search path the directory in
which files that are necessary for the estimation of any of the models are located. The last
line runs the program indivis.m which controls the estimation.

The next several pages dissect the files used in estimating the indivisible labor model to
provide the reader with guidance to their use. Therefore, the files themselves do not include
many comment lines. In order to differentiate the code from explanatory text, I have set all
computer code in the typewriter font. The following diagram describes the dependence
of various files on each other with m-files being called by a program located to the right of
it.
indsolve

indmom ———
{ tshpmom

inddata
cdfchic
dfeval
mgmmerr
sOcalc
gmmest —{ quadmin
cdfchic
dfeval

indtests

gmmerr

indivis

hpfilter
indimp

indsolve

The files cdfn.m, cdfnc.m, and cdfchi.m are not used by any of the other m-files. They
are included for the reader’s convenience. They compute the left-tail of a normal, the right-
tail of a normal, and the the left-tail of a x? distribution respectively. The file dshpmom.m
is not called by any of the routines used for the indivisible labor example. It is similar to
tshpmom.m and will be described briefly below.

We begin by describing the m-files to the extreme right, and we will work backward
toward indivis.m. The first file is indsolve.m, which defines a function taking 5 parameters
of the model as arguments and providing output equal to the linearized decision rules. A
careful examination of that model shows that the only parameters which matter for the
linearized solution are 3 (beta.), o (alpha-), In(yx) (lngamm), 6 (deltak) and p (rho).
The next part of the code defines some parameters and some steady state values. nc is the
number of control variables (¢ and N), ns is the number of state variables (k), ncs is the
number of co-state variables (\), nex is the number of exogenous variables (A) and nf is

BNotice that the files for the indivisible labor model are located in a subdirectory called indivis. There
are similar files located for the divisible labor model in the subdirectory divisib. The directory ce1992
contains files for Christiano and Eichenbaum’s (1992) indivisible labor model with government purchases,
and stochastic growth. The directory ber1993 contains files for Burnside, Eichenbaum and Rebelo’s (1993)
labor hoarding model. The main directory contains files that are used in estimating any of the models.

35

the number of additional variables (y, y — n, i, r and the interest rate). mu is p defined in
Section 4.

function mh=indsolve(beta_,alpha_,lngamm,deltak,rho) ;

nc=2 ;
ns=1 ;
ncs=1 ;
nex=1 ;
nf=5 ;

gammax=exp (lngamm) ;
kyratio=(1-alpha_)/(gammax/beta_-(1-deltak)) ;
iyratio=(gammax-(1-deltak))x*kyratio ;
cyratio=1-iyratio ;

mu=(gammax-beta_*(1-deltak))/gammax;
muk=-alpha_x*mu ;
mun=alpha_x*mu ;

After this section it is possible to define the M.. matrices defined in Section 4, which are
used in the solution of the model.

mcc = [-1 0
0 1-alpha_] ;
mcs = [0 1
1-alpha_ 1] ;
mce = [O
11
mssO = [muk 1
-gammax*kyratio 0] ;
mssl = [O -1
1-alpha_+(1-deltak)*kyratio O] ;
mscO = [0 -mun
o 0 1;
mscl =[O 0
cyratio -alpha_] ;
mse0 = [-mu
0 1;
msel = [0
-11;
fc=[0 alpha_
0 alpha_-1

-cyratio/iyratio alpha_/iyratio

36

0 mun

-1 o 1;
fx = [1-alpha_
1-alpha_
(1-alpha_)/iyratio
muk
0 1 ; % to be updated below
fe=1[1
1
1/iyratio
mu

0 1 ; % to be updated below

In the next section the fundamental difference equation is put in the form

T+l =W i + th+1 + ta.
Aot A

The eigenvalues and eigenvectors of W are computed. The last line in this section normalizes
the eigenvectors so that they have norm 1. The solution is invariant to this normalization,
but it helps to scale things.

w = —-inv(mssO - mscOxinv(mcc)*mcs)*(mssl - mscl*inv(mcc)*mcs);
r = inv(mssO - mscO*inv(mcc)*mcs)*(mse0 + mscO*inv(mcc)*mce) ;
q = inv(mssO - mscOxinv(mcc)*mcs)*(msel + mscl*inv(mcc)*mce);

[pr,lambr]=eig(w) ;

In the next section the eigenvalues and eigenvectors are sorted in ascending order as suggested
by the solution method of Section 3. Then the matrices, A, P, P! (ps), R and @ are broken
up into appropriate sub-blocks.

alamb=abs(diag(lambr)) ;
[lambs,lambz]=sort (alamb) ;

lambda=lambr (lambz,lambz) ;
p=pr(:,lambz) ;

lambl=lambda(l:ns,1:ns) ;
lamb2=lambda(ns+1:ns+ncs,ns+1:ns+ncs) ;

pli=p(1l:ns,1:ns) ;
pl2=p(1:ns,ns+1:ns+ncs) ;
p21=p(ns+1:ns+ncs,1:ns) ;
p22=p(ns+1:ns+ncs,ns+1:ns+ncs) ;

37

ps=inv(p) ;

psll=ps(l:ns,1:ns) ;
ps12=ps(1l:ns,ns+1l:ns+ncs) ;
ps21=ps(ns+1:ns+ncs,1l:ns) ;
ps22=ps(ns+1:ns+ncs,ns+l:ns+ncs) ;

rxe=r(1:ns,1:nex) ;
rle=r(ns+1:ns+ncs,l:nex) ;

gqxe=q(l:ns,1:nex) ;
qle=q(ns+1:ns+ncs,1:nex) ;

In the next section the matrices &y and ®; are defined. Then the matrix ¥ is computed row
by row by looping over the rows.

phiO=ps21*rxe+ps22*rle ;
phil=ps21*qgxe+ps22x*qle ;

psi=zeros(ncs,nex) ;

for i=1:ncs
psi(i,:)=-(phiO(i,:)*rho+phil(i,:))*inv(eye(nex)-rho/lamb2(i,i))/lamb2(i,i) ;
end

Next, the matrices which express x;,; as a function of z; and z; are computed. These are
denoted xx and xe respectively. These are combined into the matrix solx which lets you
express ;1 as a function of s; = (x, z)/. Similarly, the solution for \; in terms of s; is
given by soll while the solution for the controls is given by solc and the solution for the
other variables of interest is given by solf. The interest rate equation is also updated here.
The user must ensure that this part of the code remains valid with alternative models.

xx=pll*lambl*inv(pll) ;
xe=(pll*lambl*ps12+p12*lamb2*ps22)*inv(ps22) *psi+rxe*rhotqxe ;
solx=[xx xe] ;

1x=-inv(ps22) *ps21 ;
lex=inv(ps22)*psi ;
soll=[1x lex] ;
cxl=inv(mcc)*mcs ;
ce=inv(mcc)*mce ;

solc=[cxl*[eye(ns) ; 1x] cx1l*[zeros(ns,nex) ; lex J+ce] ;

% update the interest rate equation

38

fx(5,:)=s0lc(1,1:n8)*xx ;
fe(5,:)=s0lc(1,1:ns)*xe+solc(1,ns+1:ns+nex)*rho ;

solf=[fx fe]+fcx*xsolc ;

Finally, the stacked matrices referred to in Section 6, M and H are defined. Then control is
returned to the program that called this m-file.

m = [solx ; [zeros(nex,ns) rho]] ;
h = [soll ; solc ; solf] ;
mh=[m ; h] ;

The next m-file tshpmom.m computes the implications of a trend stationary model for the
moments of HP filtered data. This procedure takes as arguments the covariance matrix of
€, > or sigma, drules which is simply a large matrix containing M and H, and ncorr,
the number of autocovariances you want to calculate. At the beginning of the procedure it
determines which part of drules is M and which is H. Then it defines sigh which is just

0 0
0 X /-
function [facv,facr]=tshpmom(sigma,drules,ncorr) ;

[nex,nex2]=size(sigma) ;
[ny,ns]=size(drules) ;

ns=ns-nex ;

m=drules(1:nex+ns,:) ;
h=drules(nex+ns+1:ny,:) ;
sigh=zeros(ns+nex,ns+nex) ;
sigh(ns+1:ns+nex,ns+1:ns+nex)=sigma ;

Then, M is diagonalized. Then the matrix 3, (sigt) is calculated. This quickly leads to the
solution for Iy, (gammo).

[vr,dr]=eig(m) ;
dr=diag(dr) ;

sigt=inv(vr)*sigh*inv(vr’) ;

gammtO=(ones (ns+nex,ns+nex) ./ (ones (ns+nex,ns+nex)-kron(dr,dr’))) .*sigt ;
gammO=vr*gammtO* (vr’) ;

39

The first matrix in the next section, (hbig), defines the stacked vector
!/ !/ !/ ! !
(sp Atoup fi)

in terms of s;. The parameters (base and maxf) are the same as N and M in Section 7 on
the HP filter. The vector hpa contains the weights in the HP cyclical filter.

hbig=[eye(ns+nex) ; h] ;

base=181;
maxf=101;

jp=(1:1:maxf)’ ;

jm=(maxf:-1:1)’ ;
hpap=-(0.894."jp) .*(0.0561*cos (jp*0.112)+0.0558*sin(jp*0.112)) ;
hpam=-(0.894."jm) .*(0.0561*cos (jm*0.112)+0.0558*sin(jm*0.112)) ;
hpa=[hpam ; 1-(0.0561*cos(0)+0.0558*sin(0)) ; hpap] ;

The next section does the large double summations used in Section 7 to approximate the
autocovariances of HP filtered data. Ultimately the autocovariances for ¢ =0, ..., ,ncorr are
stored in the matrix facv. You can think of this matrix as being of the form

facv = (Iyo T'yi -+ Tyncorr)

where the y subscript just signifies that these are the autocovariances of the stacked vector,

(sy A up ff 2,. As MATLAB passes through these nested loops it is evaluating the
autocovariances for lag k. It starts by getting the kth autocovariance of HP filtered s; with
itself. The loop over j effectively accomplishes this. Once the autocovariance of s; is known
it is straightforward to get the autocovariance of the HP filtered stacked vector since it is
just a linear function of s;.

gammf=kron (zeros(1,ncorr+1) ,zeros(ns+nex,ns+nex)) ;
facv=zeros(ny, (ncorr+1) *ny) ;

for k=0:ncorr
for j=0:base
if j==
gammj=gamm0 ;
gammf (: ,k* (ns+nex)+1: (k+1) *(ns+nex))=
gammf (: ,k* (ns+nex)+1: (k+1)* (ns+nex))+
gammj* (hpa (k+1:2*maxf+1,1)’*hpa(1l:2*maxf+1-k,1)) ;
else
gammj=m*gamnj ;
if j<=k
gammf (: ,k*(ns+nex)+1: (k+1)*(ns+nex))=
gammf (: ,k* (ns+nex)+1: (k+1)*(ns+nex))+

40

gammj* (hpa (k+1-j:2*maxf+1,1) ’>*hpa(1l:2*maxf+1-k+j,1))+
gammj’* (hpa(k+j+1:2*maxf+1,1) **hpa(1:2*maxf+1-k-j,1)) ;
else
gammf (: ,k* (ns+nex)+1: (k+1)*(ns+nex))=
gammf (: ,k* (ns+nex)+1: (k+1)*(ns+nex))+
gammj* (hpa (1:2*maxf+1+k-j,1) ’>*hpa(l-k+j:2*maxf+1,1))+
gammj’* (hpa(k+j+1:2*maxf+1,1) **hpa(1:2*maxf+1-k-j,1)) ;
end
end
end
facv(:,k*xny+1: (k+1)*ny)=
hbig*gammf (: ,k* (ns+nex)+1: (k+1)*(ns+nex))* (hbig’) ;
end

Finally the procedure gets the standard deviations of the HP filtered data and uses these
to define the autocorrelations which are stored in a matrix with the same shape as the
autocovariance matrix. The results for both are returned to the calling m-file.

sd=sqrt(diag(facv(l:ny,1:ny))) ;
tcorr=kron(sd,sd’) ;
facr=facv./kron(ones(1,ncorr+1) ,tcorr) ;

Next we have the m-file gmmerr .m. This file defines the GMM errors. The name of this file
cannot be changed by the user. Formally, this procedure defines the T' x m matrix whose ¢th
row is the GMM error term, f(z;,)". The user can think of this procedure as defining the
moment restrictions used to estimate the parameters. With the first 8 parameters ordered
as 6, In(A), p, o, A,, In(yx), 6 and «, it should be clear that the vectors ul through u8
define the GMM error terms for the eight Euler equations listed in Section 9. The moment
restrictions used to estimate the data moments are as follows
FE [y,%pyt — 02] =0

)

9 2
g
2 c 2 _
E Chp,t_ <_> yhp,t =0
Oy
9 Z
O-.
-2 2 2 _
E th,t_ <_> yhp,t =0
Oy
9 Z
(oF
2 n 2 _
E nhp,t_ <_> yhp,t =0
Oy
9 Z
g
2 n 2 _
E Nppt — (O’ > (y - n)hp,t = 0.
y—n

The hp subscript simply denotes the HP cyclical component of the time series in question.
The data are recovered from the global variable xdata. As we will see below, its columns are,
in order, the levels of consumption (1), investment (2), output (3), hours (4) and capital (5),

41

followed by HP filtered consumption (6), investment (7), output (8), hours (9) and average
productivity (10).

function u=gmmerr (b)

global xdata ;

dep=1-(xdata(2:115,5)-xdata(1:114,2)) ./xdata(1:114,5) ;
t=(1:1:113)’ ;

t0=(0:1:114)" ;

beta_=1.03"(-.25) ;

loga=log(xdata(1:115,3))-log(xdata(1:115,5))*(1-b(8,1))-
log(xdata(1:115,4))*b(8,1)-t0*b(6,1)*b(8,1) ;

ul=ones(113,1)*b(1,1)-b(8,1)*xdata(2:114,3)./(xdata(2:114,1) .*xdata(2:114,4)) ;

u2=loga(2:114,1)-b(2,1)-1loga(1:113,1)*b(3,1) ;

u3=u2.*loga(1:113,1) ;

ud=u2."2-b(4,1)°2 ;

ub=log(xdata(2:114,3))-b(5,1)-t*b(6,1) ;

ub=ub.*t/113 ;

u7=dep(2:114,1)-b(7,1) ;

u8=1-beta_x*(xdata(2:114,1)./xdata(3:115,1)) .*x((1-b(8,1))*xdata(3:115,3) ./
xdata(3:115,5)+1-b(7,1)) ;

u9=xdata(2:114,8).7°2-b(9,1)"2 ;

ulO=xdata(2:114,6).72-b(10,1) "2*xxdata(2:114,8) .72 ;

ull=xdata(2:114,7).72-b(11,1) "2*xdata(2:114,8) .72 ;

ul2=xdata(2:114,9).72-b(12,1) "2*xdata(2:114,8) .72 ;

ul3=xdata(2:114,9).°2-b(13,1) "2*xdata(2:114,10) .72 ;

u=[ul u2 u3 u4 ub u6 u7 u8 u9 ulld uill ul2 ulld] ;

The file cdfchic.m is used to compute the right-hand tail of a y? distribution. It’s first
argument is the statistic for which the tail area is to be evaluated. It’s second argument is
the number of degrees of freedom.

function y=cdfchic(x,d)
y=1-gammainc(x/2,d/2) ;

The file dfeval .m computes numerical gradients of vector-valued functions with vector ar-
guments. It’s first argument, £, is the name of the m-file that defines the function to be
differentiated. It’s second argument, £0, is the value of the function at the point of differ-
entiation, x0. The fourth argument, dx, is a steplength to use in computing the derivatives.
If this is set to 0, a default steplength will be used.

function df=dfeval (f,f0,x0,dx)

[n,nc]l=size(f0) ;
[k,nc]=size(x0) ;

42

df=zeros(n,k) ;

if dx==
ax=abs(x0) ;

dx=(max([ax ones(k,1)*(1le-2) 1’)’)*(1le-5) ;
end

dxm=eye (k) . *(dx*ones(1,k)) ;

for j=1:k

dxj=dxm(:,j) ;

df (:,j)=feval (f,x0+dxj)-feval (f,x0-dxj) ;
end

df=df./(ones(n,1)*(dx’)*2) ;
The next m-file mgmmerr .m, computes the means of the GMM errors.

function m=mgmmerr (b0)
m=mean (gmmerr (b0))’ ;

The m-file sOcalc.m computes Sy as part of the GMM procedure. The parameters wt and
wl control the computation of Sr. When wt=0, the user is imposing the assumption that
the GMM errors are orthogonal to lagged information. For each of the other methods the
user is computing

= Y [feedor))] +21L) 3 [flaw do)f @, bo)]
- j= t=1+j

N T J o

Zl - [f $t7 $t+jﬂ/’T)/}

where wl=N and L(j,N) is a particular type of lag window. When wt=1, L(j, N) = 1,
and the user is effectively imposing that the GMM errors have an MA(N) structure. This
approach is not guaranteed to lead to a positive semi-definite Sr. The other methods are
appropriate for cases where the GMM errors may have an infinite order and are described
by Newey and West (1987). The lag length, N, should be increased with the sample size, T,
for consistency, but in finite samples there are no hard and fast rules about how to choose
N. For wt=2, L(j, N) =1—j/(N + 1), while for wt=3,

1-6 <N+1>3 +6 () forj < (N+1)/2

T) otherwise.

For the type of estimation described in Section 9, the GMM errors will have arbitrary serial
correlation so that one of the latter methods should be used.

43

function sO=sOcalc(u,wt,wl)

% wt indicates the window type

% 0: no lags used in computing sO

% 1: flat window used-may not be psd

% 2: Bartlett window used

% 3: Parzen window used

% wl indicates the lag length for the window (largest non-zero lag)

[T,k]l=size(u) ;
sO0=(u’*u) /T ;
if wt™=0
if wt==
for j=1:wl
sOj=(u(1+j:T,:)*u(1:T-j,:))/T ;
s0=s0+s0j+(s0j’) ;

end
elseif wt==2
for j=1:wl

sOj=(u(1+j:T,:)’*u(1:T-j,:))/T ;
s0=s0+(s0j+(s0j’))*(1-j/(wl+1)) ;
end
else
for j=1:wl
sOj=(u(1+j:T,:)’*u(1:T-j,:))/T ;
if j<((wl+1)/2)
fac=1-6%(j/(wl+1)) "2+6x(j/(wl+1))"3 ;
else
fac=2*((1-j/(wl+1))"3) ;
end
s0=s0+(s0j+(s0j’))*fac ;
end
end
end

The file quadmin.m is the m-file that minimizes the GMM objective function for a given
weighting matrix, Wr. It mimics the GMM code written by Hansen, Heaton and Ogaki
(1992) for GAUSS. It has several arguments. First, is func, which is the name of the m-file
that defines the means of the GMM errors. Second is x0, which is the initial value of the
parameter vector. Third is xtol, a convergence criterion defined on the scaled gradients
of the GMM objective function. This has no default value so it must be set by the user.
Similarly, nitermax is the maximum number of iterations over the parameter vector allowed,
and it has no default value. Finally, on each iteration over the parameters, the minimizer
tries to take a step in a direction suggested by the gradients of the objective function. If a
full step does not go downhill, then the step length is cut in half. This process continues until

44

a lower point is found. The parameter sstol puts a limit on how small a step is permitted.
The output of the function is the minimizing point, the value of the GMM objective at that
point, and the number of iterations it took to obtain the minimum.

The first part of the code defines the weighting matrix, Wr, as a global variable. It finds
the size of the initial parameter vector, x0. It then evaluates the means of the GMM errors,
at x0, denoted g0. It also computes the derivatives of these means, denoted dg0, with respect
to the parameter vector.

function [x1,f1,niter]=quadmin(func,x0,xtol,nitermax,sstol) ;
global wmatrix_ ;

[k,nc]=size(x0) ;

g0=feval (func,x0) ;
dgO=dfeval (func,g0,x0,0) ;

The next part of the code computes the initial value of the GMM objective function, f0,
and its derivatives with respect to the parameters, df0. An initial outer-product method
approximation to the inverse Hessian is then computed: hO. The initial vector of directions
in which to try to move the parameter vector is given by xi, and is df0 scaled by h0. The
parameters which keep track of whether the convergence criterion has been satisified or not
and the number of iterations are also initialized.

f0=g0’ *ymatrix_*g0 ;
df0=g0’ *wmatrix_xdg0 ;

h0=inv(dgO’*wmatrix_x*dg0) ;

xi=-hO*(df0’) ;
convcrit=0 ;
niter=1 ;

The next part of the code is executed if the convergence criterion has not yet been satisified.
This is true as long as convcrit=0. The next part of the code initializes s, the size of the
step to take in the directions suggested by xi. When s=1 a full step is taken. As long
as s does not become too small, smaller and smaller steps are taken until a lower value
of the GMM objective is obtained. Then test_ is computed to see if the scaled gradients
satisfy their convergence criterion, xtol. If they do, or if the maximum number of iterations
has been exceeded, the process stops. If not, the function values, derivatives, approximate
inverse Hessian and suggested directions for minimization are recomputed, and the process
is repeated.

while convcrit==

s=1 ;
while s>sstol

45

dx=s*xi ;
x1=x0+dx ;
gl=feval (func,xl) ;
fl=gl’*wmatrix_xgl ;
if f1<f0

go=gl ;

f0o=f1 ;

x0=x1 ;

s=0 ;
end

s=sx0.5 ;

end

test_=max(abs(xi)./(max([abs(x0) omnes(k,1) 1°)’)) ;

if niter==nitermax
convcrit=1 ;

elseif test_<xtol
convcrit=1 ;

else
dgO=dfeval (func,g0,x0,0) ;
df0=g0’*wmatrix_*dg0 ;
h0=inv(dg0’ *wmatrix_x*dg0) ;
xi=-h0*(df0’) ;

end

niter=niter+1 ;

end

The file gmmest.m controls the GMM estimation. It has as arguments, b0, the initial pa-
rameter vector, nstep, the number of steps over the weighting matrix to take, nmax, the
maximum number of iterations on any one step over the weighting matrix, xtol, the conver-
gence criterion on the gradients on each step over the weighting matrix, wOflag, the type of
initial weighting matrix, w0, the initial weighting matrix if the defaults are not desired, wtype
and wlgth, the parameters wt and wl of the sOcalc procedure, and sstol, the tolerance on
step length in the hill climbing algorithm (see quadmin.m). If wOflag=0 an identity matrix
is used for the initial weighting matrix. If wOflag=1, the weighting matrix is initialized to
equal the inverse of Sy evaluated at the starting parameter vector. Otherwise, the user must
pass a full weighting matrix wO to gmmest.m. Notice that the weighting matrix is always
defined as a global variable. The output of gmmest.m is a vector of parameters estimates, b,
a variance covariance matrix, v, and a value of the GMM objective function, q.

function [b,v,q]l=gmmest(b0,nstep,nmax,xtol,w0flag,w0,wtype,wlgth,sstol)
global wmatrix_ ;

[nb,nbl]=size(b0) ;

46

uO=gmmerr (b0) ;
[T,k]l=size(u0) ;

if wOflag==
wmatrix_=eye (k) ;
elseif wOflag==
wmatrix_=inv(sOcalc(u,wtype,wlgth)) ;
else
wmatrix_=w0 ;
end

% 1st Step of GMM
[b,q,niter]=quadmin(’mgmmerr’ ,b0,xtol,nmax,sstol) ;
if niter>nmax
’warning: maximum iterations reached’
end
u=gmmerr (b) ;
gO=mean(u)’ ;
dg=dfeval (’mgmmerr’,g0,b,0) ;
idwd=inv(dg’*wmatrix_x*dg) ;

sO=s0Ocalc(u,wtype,wlgth) ;

’Iteration & Number of Steps’
[1 niter]

’Parameters’

[b]

iter=1 ;

while iter<nstep

wmatrix_=inv(s0) ;
b0=b ;

[b,q,niter]=quadmin(’mgmmerr’,b0,xtol,nmax,sstol) ;
if niter>nmax

’warning: maximum iterations reached’
end

47

gO=feval (’mgmmerr’,b) ;
dg=dfeval (’mgmmerr’,g0,b,0) ;
v=(inv(dg’*wmatrix_x*dg)) /T ;
sd=sqrt (diag(v)) ;

iter=iter+1 ;

’Iteration & Number of Steps’
[iter niterl]
’GMM Tx*Q’
q=T*q ;
if k>nb

[q cdfchic(q,k-nb)]
else

q
end
’Parameters & Std. Errors’
[b sd]

end

Working our way in, the next m-file indmom.m takes the parameter vector as an argument.
It then calls the file indsolve.m to determine the decision rules. Then, given the decision
rules, it calls tshpmom.m to calculate the autocovariances and autocorrelations of HP filtered
data implied by the model. The moments we are interested in are

g, % 9 Ou _On
Y oy

Oy Oy—n pn,y—n

Since these are all based on contemporaneous relationships the parameter ncorr is set to 0.
These moments are then returned to the calling program.

function mm=indmom(b)

beta_=1.037(-.25) ;
sigma=b(4,1) ; sigma=sigma*sigma ;

drules=indsolve(beta_,b(8,1),b(6,1),b(7,1),b(3,1)) ;
[facv,facr]=tshpmom(sigma,drules,0) ;

sd=sqrt(diag(facv)) ;

mm=[sd(6,1) ; sd(4,1)/sd(6,1) ; sd(8,1)/sd(6,1) ; sd(5,1)/sd(6,1) ;
sd(5,1)/sd(7,1) ; facr(5,7) 1 ;

The next m-file, inddata.m, takes the parameter vector as an argument and pulls off the
elements of the parameter vector which represent the corresponding ‘data’ moments. Notice

48

that the last moment p,, ,_,, is defined in terms of the others. If this parameter were estimated
separately the matrix Sy, and the matrix S, would be singular.

function dm=inddata(b)

dm=[b(9:13,1) ;
(b(9,1)72-b(12,1)"2%b(9,1) "2-b(13,1) " (-2)*b(12,1) "2%b(9,1)"2) /
(2xb(13,1) " (-1)*b(12,1)"2%b(9,1)"2)] ;

Moving in again we have indtests.m. It uses the estimated parameter vector, b, and its
variance-covariance matrix, varb, to compute the test statistics and their associated p-values.
The methods outlined in Section 7 are used to compute the model moments (generated by
indmom.m), the data moments (generated by inddata.m), and their standard errors. Then
it calculates the test statistic YW and p-value associated with the difference between each
‘model” moment and the corresponding ‘data’ moment. These results are then printed in
tabular form.

function tsts=indtests(b,varb)

mm=indmom(b) ;
[nm,nm2] =size (mm) ;
gm=dfeval (’ indmom’ ,mm,b,0) ;

dm=inddata(b) ;
gd=dfeval(’inddata’,dm,b,0) ;

vm=zeros(nm,1) ;
vd=zeros(nm,1) ;

test=zeros(nm,1) ;
pv=zeros(nm,1) ;

for k=1:nm
vm(k,1)=gm(k, :)*varb*(gm(k, :)
vd(k,1)=gd(k, :)*varb*(gd(k,:)’
testn=mm(k,1)-dm(k,1) ;
testd=(gm(k, :)-gd(k, :))*varbx((gm(k, :)-gd(k,:))’) ;
test(k,1)=(testn"2) /testd ;
pv(k,1)=cdfchic(test(k,1),1) ;

end

b

)
)

b

sqvm=sqrt (vm) ;
sqvd=sqrt(vd) ;

’Model Moments s.e. Data Moments s.e Test P-Value’

49

tsts=[mm sqvm dm sqvd test pv] ;
tsts

Next we have hpfilter.m, which is located in the main directory. It is designed to HP filter
data. It takes as arguments a matrix of data of dimension d x k, where d is the sample size
and k is the number of variables, and a parameter lamb which is the A\ parameter of the
filter. The user can leave this procedure unchanged.

function y=hpfilter(x,lamb)
[d,k]=size(x) ;
a=zeros(d,d) ;
for i=3:d-2
a(i,i)=6%lamb+1;
a(i,i+1)=-4%xlamb;
a(i,i+2)=1amb;
a(i,i-2)=lamb;
a(i,i-1)=-4xlamb;
end
a(2,2)=1+5%xlamb;
a(2,3)=-4*lamb;
a(2,4)=lamb;
a(2,1)=-2%xlamb;
a(1l,1)=1+lamb;
a(1,2)=-2%xlamb;
a(1,3)=lamb ;
a(d-1,d-1)=5%*lamb+1;
a(d-1,d)=-2xlamb;
a(d-1,d-2)=-4*lamb;
a(d-1,d-3)=lamb;
a(d,d)=1+lamb;
a(d,d-1)=-2xlamb;
a(d,d-2)=lamb;
y=(eye(d)-inv(a))*x ;

The last m-file called by indivis.mis indimp.m. It computes the impulse response functions
of technology, consumption, hours, output, average productivity and investment in response
to technology innovations up to nimp periods in the past. It takes the parameter vector
and nimp as arguments. A large part of the code is concerned with beautifying the graphics
output. Computing the decision rules is done by calling indsolve.m. The impulse responses
are generated recursively as described in Section 6.

function irf=indimp(b,nimp)

beta_=1.03"(-.25) ;

20

sigma=b(4,1) ; sigma=sigma*sigma ;

drules=indsolve(beta_,b(8,1),b(6,1),b(7,1),b(3,1))

[nex,nex2]=size(sigma) ;
[ny,ns]=size(drules) ;
ns=ns-nex ;
m=drules(1:nex+ns,:) ;
h=drules(nex+ns+1:ny,:) ;
irf=zeros(nimp,9) ;

for k=1:nimp
if k==
irfs=eye(ns+nex) ;
else
irfs=m*irfs ;
end
irff=h*irfs ;
irf(k,1)=irfs(ns+1,ns+1) ;
irf(k,2)=irfs(1,ns+1) ;
irf(k,3)=irff(2,ns+1) ;
irf(k,4)=irff(3,ns+1) ;
irf(k,5)=irff(4,ns+1) ;
irf(k,6)=irff(5,ns+1) ;
irf(k,7)=irff(6,ns+1) ;
irf(k,8)=irff(7,ns+1) ;
irf(k,9)=irff(8,ns+1) ;
end

t=(1:1:nimp)’ ;
zers=zeros (nimp,1) ;

figure(1)

subplot (221)

plot(t,[irf(:,1) zers])
title(CA?)

set(gca,’XLim’, [0 nimp+1]) ;

subplot (222)

plot(t,[irf(:,4) irf(:,6) zers])
title(’H and Y/N’)
set(gca,’XLim’, [0 nimp+1]) ;

subplot (223)
plot(t,[irf(:,3) irf(:,7) zers])

o1

b

title(’C and I°)
set(gca,’XLim’, [0 nimp+1]) ;

subplot (224)

plot(t,[irf(:,5) irf(:,2) zers])
title(’Y and K’)

set(gca,’XLim’, [0 nimp+1]) ;

The main program that controls estimation and testing is indivis.m. At the beginning
are several sections the user should change depending on the model being estimated. First,
the starting values of the parameter vector are defined in bstart. The parameters being
estimated in our indivisible labor example (see above) are

Oc O0; Op On
(071nA7pAuU€uAyuln77670470-y7 9 9 9
O'y O'y O'y O-y—n

’Indivisible Labor Model Deterministic Trend’
’Parameters: Theta,lnA,rhoA,sighA,Ay,1lnGamm,Delta,Alpha,5 Data Mom’

% SET INITIAL PARAMETER VALUES

bstart=[1.0 1.0 0.9 0.01 1.0 0.01 0.02 0.6 0.01 1.0 1.0 1.0 1.0]’ ;

Next comes a section in which various parameters controlling the GMM estimation procedure
are defined. w0 and wOflag determine the weighting matrix on the first GMM iteration.
nstep determines the number of steps over the weighting matrix that will be taken before the
estimation procedure is terminated. The parameters miter and xtol control the maximum
number of iterations on each GMM step, and the convergence tolerance, respectively.

The parameters sOmethod and lags define the window type and lag length to be used in
computing S7. (See the description of sOcalc.m, above.)

Finally sstol determines a step length tolerance used in the estimation procedure. See
the file quadmin.m for details.

% SET GMM PARAMETERS

wOflag=0 ;

% wOflag=0 : WO=I is used as the initial weighing matrix
% wOflag=1 : bstart is used to calculate initial WO

% wOflag=2 : WO passed to gmmest is used as initial WO.

w0=0 ; % initial WO, set to O if wOflag=0 or 1

nstep=2 ;

52

% Sets # of steps over weighting matrix, WO.
% Set wOflag=0 and nstep=2 to execute usual 2-Stage GMM.

miter=400 ;

% Sets maximum number of iterations on each GMM step
xtol=le-6 ;

% gradient tolerance for convergence on each step
sOmethod=2;

% This variable is used to choose the method to calculate SO

% sOmethod=0 No lags used in computing sO

% sOmethod=1 Flat window used when computing sO (may not be psd)
% sOmethod=2 Bartlett window used when computing sO

% sOmethod=3 Parzen window used when computing sO

lags=5 ; ' number of lags used in window methods for calculating sO
sstol=1le-12 ;
% step length tolerance - see quadmin

The next step involves reading in the data which are contained in the file HOARDING.DAT.
These data are the same as the data from Christiano and Eichenbaum (1992). They represent
quarterly observations from 1955Q3-1984Q1. The columns represent the per-capita levels
of C, I, G, Y, H* K and H¢ respectively. H" and H¢ are the household and establishment
hours series discussed by Christiano and Eichenbaum (1992). The data are HP filtered using
the m-file hpfilter.m. Finally, the data are stored in a global variable xdata

% LOAD THE DATA
load hoarding.dat ;

c=hoarding(:,1) ;
dk=hoarding(:,2) ;
y=hoarding(:,4) ;
n=hoarding(:,5)/1369 ;
k=hoarding(:,6) ;
hc=hpfilter(log(c),1600) ;
hi=hpfilter(log(dk),1600) ;
hy=hpfilter(log(y),1600) ;

23

hn=hpfilter(log(n),1600) ;
hapl=hy-hn ;

global xdata ;
xdata=[¢ dk y n k hc hi hy hn hapl] ;

The final part of the program calls the m-file gmmest.m to perform the estimation. The
variables b, v, and q represent the parameter estimates, their variance-covariance matrix
and the @ statistic for testing over-identifying restrictions, if any. The routine indtests.m
performs statistical tests regarding the data and model moments. Finally, indimp.m plots
impulse response functions from the model out to 47 periods after a technology shock.

% ESTIMATE THE MODEL, PERFORM TESTS, GRAPH IMPULSE RESPONSES
[b,v,q]=gmmest (bstart,nstep,miter,xtol,w0flag,w0,sOmethod,lags,sstol) ;
dmmy=indtests(b,v) ;

dmmy=indimp(b,47) ;

This completes the description of the programs. The comfortable user should examine
the files in the directories divisib, ce1992 and ber1993, to see which minor changes are
necessary to the above code in order to estimate different models. The file dshpmom.m replaces
tshpmom.m for the programs in ce1992, because the model is one in which technology is
difference stationary rather than trend stationary.

o4

References

Burnside, C., M. Eichenbaum and S. Rebelo (1993) “Labor Hoarding and the Business
Cycle”, Journal of Political Economy, 101, pp.

Christiano, L. (1998) “Solving Dynamic Equilibrium Models by a Method of Undetermined
Coefficients,” manuscript, Northwestern University.

Christiano, L. and M. Eichenbaum (1992) “Current Real Business Cycle Theories and
Aggregate Labor-Market Fluctuations,” American Economic Review, 82, pp 430-450.

Hansen, G. (1985) “Indivisible Labor and the Business Cycle,” Journal of Monetary Eco-
nomics, 16, pp 309-328.

Hansen, L.P. (1982) “Large Sample Properties of Generalized Method of Moments Estima-
tors,” Econometrica, 50, pp 1029-1054.

Hansen, L.P., J. Heaton and M. Ogaki (1992) GMM Software for GAUSS.

Hodrick, R.J. and E.C. Prescott (1997) “Postwar U.S. Business Cycles: An Empirical
Investigation,” Journal of Money, Credit and Banking, 29, pp 1-16.

Judd, K.L. (1998) Numerical Methods in Economics. Cambridge, MA: MIT Press.

King, R., C. Plosser and S. Rebelo (1988a) “Production, Growth and Business Cycles: T &
I1,” Journal of Monetary Economics, 21, pp 195-232, 309-341.

King, R., C. Plosser and S. Rebelo (1988b) “Production, Growth and Business Cycles:
Technical Appendix,” manuscript.

King, R. and S. Rebelo (1989) “Low Frequency Filtering and Real Business Cycles,”
Rochester Center for Economic Research Working Paper No. 205.

King, R.G. and M.W. Watson (1997) “System Reduction and Solution Algorithms for Sin-
gular Linear Difference Systems Under Rational Expectations,” manuscript, University
of Virginia.

Marimon, R. and A. Scott, eds. (1999) Computational Methods for the Study of Dynamic
Economies. Oxford: Oxford University Press.

Newey, W.K. and K.D. West (1987) “A Simple, Positive Semi-definite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix,” Econometrica, 55, pp 703-708.

Rogerson, R. (1988) “Indivisible Labor, Lotteries and Equilibrium,” Journal of Monetary
Economics, 21, pp 3-16.

Sargent, T. (1987) Macroeconomic Theory. New York: Academic Press.

Uhlig, H. (1997) “A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily,”
manuscript, CentEr, University of Tilburg.

95

0.8

0.6

0.4

0.2

Impul se Response Functions from the Divisible Labor Model

Figure 1

10 20 30 40

Cand |

10 20 30 40

56

1.2

0.8

0.6

0.4

0.2

-0.2

1.6

1.4

1.2

0.8

0.6

0.4

0.2

H and Y/N

10 20 30 40
Y and K

10 20 30 40

Figure 2

Impulse Response Functions from the Indivisible Labor Model

0.8

0.6

0.2

Cand |

57

1.4

1.2

0.8

0.4

0.2

H and Y/N

0.6l

10

20 30 40

Y and K

2mf(w)

2mf(w)

0.5

2.5

0.5

Figure 3

Spectra of Four Time Series

W hite Noise AR(1) p=0.8
25

20

15

2nf(w)

10

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
/T /T

MA(1) 6=0.5 Seasonal AR(4) 9=0.8
25

20

15

2nf(w)

10

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

58

A2

A2

Figure 4

The Transfer Function of the HP Filter

HP Filter A=100 HP Filter A=1600

1
0.8 0.8
0.6 0.6

o

g

<
0.4 0.4
0.2 0.2
0 0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
/T /T
HP Filter A=10000 First Difference Filter
1 4
3.5
0.8

3
0.6 2.5

o
3 2

<
0.4 15
1

0.2
0.5
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

59

